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2 lmm

lmm Fitting univariate and multiviarate linear mixed models via data trans-
forming augmentation

Description

The function lmm fits univariate and multivariate linear mixed models (also called two-level Gaus-
sian hierarchical models) whose first-level hierarchy is about a distribution of observed data and
second-level hierarchy is about a prior distribution of random effects.

Usage

lmm(y, v, x = 1, n.burn, n.sample, tol = 1e-10,
method = "em", dta = TRUE, print.time = FALSE)

Arguments

y Response variable. In a univariate case, it is a vector of length k for the observed
data. In a multivariate case, it is a (k by p) matrix, where k is the number of
observations and p denotes the dimensionality.

v Known measurement error variance. In a univariate case, it is a vector of length
k. In a multivariate case, it is a (p, p, k) array of known measurement error
covariance matrices, i.e., each of the k array components is a (p by p) covariance
matrix.

x (Optional) Covariate information. If there is one covariate for each object, e.g.,
weight, it is a vector of length k for the weight. If there are two covariates for
each object, e.g., weight and height, it is a (k by 2) matrix, where each column
contains a covariate variable. Default is no covariate (x = 1).

n.burn Number of warming-up iterations for a Markov chain Monte Carlo method. It
must be specified for method = "mcmc"

n.sample Number of iterations (size of a posterior sample for each parameter) for a Markov
chain Monte Carlo method. It must be specified for method = "mcmc"

tol Tolerance that determines the stopping rule of the EM algorithm. The EM algo-
rithm iterates until the change of log-likelihood function is within the tolerance.
Default is 1e-10.

method "em" will return maximum likelihood estimates of the unknown hyper-parameters
and "mcmc" returns posterior samples of those parameters.

dta A logical; Data transforming augmentation is used if dta = TRUE, and typical
data augmentation is used if dta = FALSE.

print.time A logical; TRUE to display two time stamps for initiation and termination, FALSE
otherwise.
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Details

For each group i, let yi be an unbiased estimate of random effect θi, and Vi be a known measurement
error variance. The linear mixed model of interest is specified as follows:

[yi | θi] ∼ N(θi, Vi)

[θi | µ0i, A) ∼ N(µ0i, A)

µ0i = x′
iβ

independently for i = 1, . . . , k, where k is the number of groups (units) and dimension of each
element is appropriately adjusted in a multivariate case.

The function lmm produces maximum likelihood estimates of hyper-parameters, A and β, their
update histories of EM iterations, and the number of EM iterations if method is "em".

For a Bayesian implementation, we put a jointly uniform prior distribution on A and β, i.e.,

f(A, β) ∝ 1,

which is known to have good frequency properties. This joint prior distribution is improper, but their
resulting posterior distribution is proper if k ≥ m + p + 2, where k is the number of groups, m is
the number of regression coefficients, and p is the dimension of yi. We note that an R package Rgbp
also fits this model in a univariate case (p = 1) via ADM (approximation for density maximization).
lmm produces the posterior samples through a Gibbs sampler if method is "bayes".

Value

The outcome of lmm is composed of:

A If method is "mcmc". It contains the posterior sample of A.

beta If method is "mcmc". It contains the posterior sample of β.

A.mle If method is "em". It contains the maximum likelihood estimate of A.

beta.mle If method is "em". It contains the maximum likelihood estimate of beta.

A.trace If method is "em". It contains the update history of A at each iteration.

beta.trace If method is "em". It contains the update history of beta at each iteration.

n.iter If method is "em". It contains the number of EM iterations.

Author(s)

Hyungsuk Tak (maintainer), Kisung You, Sujit K. Ghosh, and Bingyue Su

References

Tak, You, Ghosh, Su, Kelly (2019), "Data Transforming Augmentation for Heteroscedastic Models"
<doi:10.1080/10618600.2019.1704295>
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Examples

### Univariate linear mixed model

# response variable for 10 objects
y <- c(5.42, -1.91, 2.82, -0.14, -1.83, 3.44, 6.18, -1.20, 2.68, 1.12)
# corresponding measurement error standard deviations
se <- c(1.05, 1.15, 1.22, 1.45, 1.30, 1.29, 1.31, 1.10, 1.23, 1.11)
# one covariate information for 10 objects
x <- c(2, 3, 0, 2, 3, 0, 1, 1, 0, 0)

## Fitting without covariate information
# (DTA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, method = "em", dta = TRUE)
# (DTA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, n.burn = 1e1, n.sample = 1e1,

method = "mcmc", dta = TRUE)
# (DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, method = "em", dta = FALSE)
# (DA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, n.burn = 1e1, n.sample = 1e1,

method = "mcmc", dta = FALSE)

## Fitting with the covariate information
# (DTA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, x = x, method = "em", dta = TRUE)
# (DTA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, x = x, n.burn = 1e1, n.sample = 1e1,

method = "mcmc", dta = TRUE)
# (DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, x = x, method = "em", dta = FALSE)
# (DA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, x = x, n.burn = 1e1, n.sample = 1e1,

method = "mcmc", dta = FALSE)

### Multivariate linear mixed model

# (arbitrary) 10 hospital profiling data (two response variables)
y1 <- c(10.19, 11.53, 16.28, 12.32, 12.84, 11.85, 14.81, 13.24, 14.43, 9.35)
y2 <- c(12.06, 14.97, 11.50, 17.88, 19.21, 14.69, 13.96, 11.07, 12.71, 9.63)
y <- cbind(y1, y2)

# making measurement error covariance matrices for 10 hospitals
n <- c(24, 34, 38, 42, 49, 50, 79, 84, 96, 102) # number of patients
v0 <- matrix(c(186.87, 120.43, 120.43, 250.60), nrow = 2) # common cov matrix
temp <- sapply(1 : length(n), function(j) { v0 / n[j] })
v <- array(temp, dim = c(2, 2, length(n)))

# covariate information (severity measure)
severity <- c(0.45, 0.67, 0.46, 0.56, 0.86, 0.24, 0.34, 0.58, 0.35, 0.17)

## Fitting without covariate information
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# (DTA) maximum likelihood estimates of A and beta via an EM algorithm

res <- lmm(y = y, v = v, method = "em", dta = TRUE)

# (DTA) posterior samples of A and beta via an MCMC method

res <- lmm(y = y, v = v, n.burn = 1e1, n.sample = 1e1,
method = "mcmc", dta = TRUE)

# (DA) maximum likelihood estimates of A and beta via an EM algorithm

res <- lmm(y = y, v = v, method = "em", dta = FALSE)

# (DA) posterior samples of A and beta via an MCMC method

res <- lmm(y = y, v = v, n.burn = 1e1, n.sample = 1e1,
method = "mcmc", dta = FALSE)

## Fitting with the covariate information
# (DTA) maximum likelihood estimates of A and beta via an EM algorithm

res <- lmm(y = y, v = v, x = severity, method = "em", dta = TRUE)

# (DTA) posterior samples of A and beta via an MCMC method

res <- lmm(y = y, v = v, x = severity, n.burn = 1e1, n.sample = 1e1,
method = "mcmc", dta = TRUE)

# (DA) maximum likelihood estimates of A and beta via an EM algorithm

res <- lmm(y = y, v = v, x = severity, method = "em", dta = FALSE)

# (DA) posterior samples of A and beta via an MCMC method

res <- lmm(y = y, v = v, x = severity, n.burn = 1e1, n.sample = 1e1,
method = "mcmc", dta = FALSE)

Rdta Data Transforming Augmentation for Linear Mixed Models

Description

The R package Rdta provides a toolbox to fit univariate and multivariate linear mixed models via
data transforming augmentation. Users can also fit these models via typical data augmentation
for a comparison. It returns either maximum likelihood estimates of unknown model parameters
(hyper-parameters) via an EM algorithm or posterior samples of those parameters via a Markov
chain Monte Carlo method.
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