Styling R plots with cascading style sheets and Ressplot

Tomasz Konopka

November 10, 2024

Abstract

Package Rcssplot provides a framework for customizing R plots in a way that separates data-
handling code from appearance-determining settings.

1 Introduction

The R environment provides provides numerous ways to fine-tune the appearance of plots and charts.
Taking advantage of these features can make complex data visualizations more appealing and mean-
ingful. For example, customization can make some components in a composite visualization stand
out from the background. However, such tuning can result in code that is long and complex.

A specific problem with code for graphics is that it often mixes operations on data with book-
keeping of visual appearance. The mixture makes such code difficult to maintain and extend. A
similar problem in web development is addressed by separating style settings from content using
cascading style sheets. The Ressplot package implements a similar mechanism for the R environment.

This vignette is organized as follows. The next section reviews how to create composite visual-
izations with base graphics. Later sections describe how to manage visual style using Ressplot. The
vignette ends with a summary and pointers to other graphics frameworks and packages.

2 Styling plots with base graphics

To start, let’s look at styling plots using R’s built-in capabilities, called ‘base graphics’. For concrete-
ness, let’s use an example with a bar chart and a small data vector.

a <- setNames(c(35, 55, 65, 75, 80, 80), letters[1:6])
a

a b c¢c d e f£
35 55 65 75 80 80

The function to draw a bar chart in R is barplot. We can apply it on this data, a, to obtain a chart
with R’s default visual style (Figure [T)A).

barplot(a, main="Base graphics")

The output has many of the elements that we expect from a bar chart (bars, axes, etc.). But there is
room for improvement. At a minimum, the chart requires a title and a label for the vertical axis. We
might also like to change some colors and spacings. Many of these features can be tuned directly
through the barplot function (Figure [IB).

barplot(a, main="Manual tuning", ylab="y label", col="#000080", border=NA, space=0.35)

The function call is now longer, but the output is more complete.

It is possible to tune the plot further using other arguments to barplot. However, some aspects
of the chart, for example margins, are not accessible in this manner. Furthermore, we may wish to
add other custom elements to the chart area, for example a subtitle. To adjust or to create these
elements, it is necessary to issue several function calls. In practice it is convenient to encapsulate
such commands in a custom function.

A B C

Base graphics Manual tuning Custom plot function

Data range is [35, 80
8
3 3
v |:| I
o |:| . I
a b c d e a b c d e f

80

0
0

@
o

0

y label
40

y label
S
S

20
20

n
=]

]
80 II
0 II II ||
f a b c d e f

Figure 1: Charts created with base graphics using: (A) R’s barplot function and default settings;
(B) R’s barplot function and custom settings; (C) a custom plot function that styles bars, axes, and
labels individually.

range.string <- function(x) {
pasteO("Data range is [", min(x), ", ", max(x), "1")

base.barplot.1 <- function(x, main="Custom plot function", ylab="y label") {

barpos <- barplot(x, col="#000080", axes=FALSE, axisnames=FALSE,
border=NA, space=0.35)

axis(1l, at=barpos[,1], labels=names(x), lwd=0, col="#111111", cex.axis=1.2,
line=-0.35)

axis (2, col.ticks="#444444", col.axis="#444444", cex.axis=1.2, 1lwd=1.2, las=1,
tck=-0.03, lwd.ticks=1.2)

mtext (main, adj=0, line=2.2, cex=1.1)

mtext (range.string(x), adj=0, 1line=0.9, cex=0.8, col="#444444")

mtext (ylab, side=2, cex=0.8, line=3, col="#444444")

}

The first block above is a helper function to construct a subtitle. The second block is a definition of
function base.barplot. 1. It takes as input a data vector and two strings for the title and y-axis label.
The first line of the function body creates a chart without excess decorations. Subsequent lines add
axes and labels. Each command carries several custom settings.

We can now apply the custom function on our data (Figure EF).

base.barplot.1(a)

The function call is concise, yet its output is a bar chart that looks legible and sophisticated.

a b ¢ d e f
35 55 65 75 80 80

Coding custom functions like base.barplot. 1 is the usual way for making composite charts with
R’s base graphics. However, this approach has some disadvantages.

* The custom function is now so specialized that it may only be fit for one-time use. We cannot
easily change any visual aspects without updating the function definition.

* Because the function mixes code that manipulates data with code that adjusts visual appearance,
there are opportunities to introduce bugs during tuning or maintenance.

e [t is rather difficult to create a second function with the same visual style and to keep these
styles consistent throughout the lifetime of a long project.

These observations stem from the fact that the custom function performs several distinct roles. First,
it combines graphical commands to create a composite visualization. Second, it performs some
useful manipulations on the data (here, compute the range). Third, the function styles graphical
components. The difficulties in maintenance all arise from the styling role. Thus, it would be useful
to separate this role from the others, i.e. to provide styling settings that are independent from the
data-handling instructions.

3 Styling with cascading style sheets

The Ressplot package provides a mechanism to style R’s graphics that is inspired by cascading style
sheets (css) used in web-page design. In this approach, settings for visual representation are stored
in a file that is separate from both the raw data and the code that creates visualizations.

To use this framework, we load the package.

library(Rcssplot)

This command triggers some messages from the R environment. They convey that the package
provides new implementations for graphics functions. This means that executing commands with
one of the listed names, for example mtext, will launch implementations provided by Ressplot rather
than by the core packages graphics and grDevices. The new implementations are designed to mimic
behaviors of the familiar base graphics, but also add new features. (Compatibility with base graphics
is discussed further in one of the appendices).

3.1 Rcss styles

Let’s adopt a convention whereby files with style definitions have Rcss extensions. As an example,
a file called vignettes.barl.Rcss is available in a sub-folder along with the package vignette. The
file is formatted in a similar way to cascading style sheets, css, that are ubiquitous in web design.

barplot {
border: NA;
col: #000080;
space: 0.35;
}

The content is a block with the name barplot. This corresponds to R’s function for bar charts.
Elements within the block are property/value pairs that correspond to the function arguments.
We can read this style definition into the R environment using function Rcss.

stylel <- Rcss(file.path("Rcss", "vignettes.barl.Rcss"))

We can look inside the object to check that it loaded correctly.
stylel

Rcssplot:
Defined selectors: barplot
Use function printRcss() to view details for individual selectors

printRcss(stylel, "barplot")

Rcssplot: barplot

#it | border: NA

| col: #000080
#Hit | space: 0.35
##

Defined classes:

The first command displays some basic information about the style. The second command shows
more details for the barplot component (called a selector). In this case, we recognize the three
property/value pairs from the Ress file.

Next, let’s use the style object in a plot. The Ressplot package provides functions that mask
many of R’s graphics functions. These new function replicate the base functions, but also add some
new features. In practice, familiar graphics commands can be used as before, or with additional
arguments. For example, we can create a simple barplot (Figure [2A).

barplot(a, main="Rcssbarplot, unstyled", ylab="y label")

In this plain form, the syntax as well as the output is exactly the same as using base graphics barplot.
But we can add styling by passing a style object as an argument (Figure 2B).

Rcssbarplot, unstyled Rcssbarplot, styled Rcssbarplot, override

o j=3
5] 5]
3 3 3
v |:| I I
o |:| ° I ° I
a b c d e a b c d e f a b c d e f

f
Figure 2: Charts created with Ressplot using: (A) the default style; (B) a style determined through a
style sheet; (C) a style sheet, but with the bar width over-ridden by a setting within a function call.

80

0
0
0

y label
0

y label
40

y label
40

20
20
20

barplot(a, main="Rcssbarplot, styled", ylab="y label", Rcss=stylel)

The output is analogous to one of the previous examples (c.f. Figure [IB). Previously, we achieved
the effect by specifying three arguments (border, col, and space). This alternative requires only one
argument: custom settings are extracted automatically from the style object, stylel.

In some cases it is useful to override settings defined in a style sheet (Figure 2[C).

barplot(a, main="Rcssbarplot, override", ylab="y label", space=1, Rcss=stylel)
Here, the bar width is determined by space=1 in the function call despite this property being also

specified in the style object. Thus, values set manually take precedence over cascading style sheets.

3.2 Rcss classes

Next, let’s implement the entire custom bar plot using style sheets and introduce a new feature - style
classes. We need additional css definitions encoded in another file, vignettes.bar2.Rcss.

axis {
cex.axis: 1.2;
}
axis.x {
line: -0.35;
lwd: O;
}

mtext.ylab, mtext.submain, axis.y {
col: #444444;

¥

axis.y {
col.axis: #444444,
col.ticks: #444444,

las: 1;
lwd: 1.2;
lwd.ticks: 1.2;
tck: -0.03;

}

mtext {
cex: 0.8;
adj: 0;

}

mtext.main {
line: 2.2;
cex: 1.1;

}

mtext.ylab {
line: 3;
adj: 0.5;

}

mtext.submain {

line: 0.9;
}

The definitions are again arranged into blocks that correspond to R’s base graphics commands.

¢ The values in the style sheet match the settings hard-coded into function base.barplot.1. The
format of the style sheet makes it easy to identify property/value pairs.

* Some blocks contain names with dots followed by a string, e.g. axis.x. This notation defines
property/value pairs that are activated only in particular circumstances. In the case of axis.x,
the definitions pertain to function axis, but only when accompanied by class label x. This will
become clearer below.

* Some blocks contain names for several base graphics components separated by commas, e.g.
mtext.ylab, mtext.submain, axis.y. This syntax defines property/value pairs for several
components at once. In this case, it is convenient to specify a common color.

We can now write a new function that can apply these styles.

rcss.barplot.1 <- function(x, main="Custom Rcss plot", ylab="y label",
Rcss="default", Rcssclass=c()) {

barpos <- barplot(x, axes=FALSE, axisnames=FALSE, Rcss=Rcss, Rcssclass=Rcssclass)

axis(1, at=barpos[,1], labels=names(x), Rcss=Rcss, Rcssclass=c(Rcssclass,"x"))
axis(2, Rcss=Rcss, Rcssclass=c(Rcssclass,"y"))

mtext (main, Rcss=Rcss, Rcssclass=c(Rcssclass,"main"))

mtext (range.string(x), Rcss=Rcss, Rcssclass=c(Rcssclass, "submain"))

mtext (ylab, side=2, Rcss=Rcss, Rcssclass=c(Rcssclass,"ylab"))

}

The structure mirrors base.barplot.1, but also accepts an Rcss object and a vector Rcssclass.
Within the function body, all the custom graphical settings are replaced by an Rcss argument and
a vector for Rcssclass. When there are multiple calls to one graphic function (e.g. axis for the x
and y axes), the Rcssclass vector contains some distinguishing labels. These labels match the css
subclasses we saw previously.

The output from the new function is a complete plot with all our custom settings (Figure BJA).

style2 <- Rcss(file.path("Rcss", c("vignettes.barl.Rcss", "vignettes.bar2.Rcss")))
rcss.barplot.1(a, main="Rcss style2", Rcss=style2)

The first line creates a new style object, style2, using the Rcss definitions from both files displayed
above. The call to rcss.barplot.1 then creates the chart.

The advantage of this approach is that we can now change the visual output by replacing the Rcss
style object by another one without re-coding the custom function. One way to change the style is
to edit the Rcss files (or use differet files), load the definitions into a new style object, and generate
a new figure with the new style. Another way, covered next, is to define multiple styles within one
Rcss object.

3.3 Multiple styles
Let’s look at another Rcss file, vignettes.bar3.Rcss.

barplot.typeB {
col: #449944;
space: 0.6;

}

mtext.typeB.main {
cexta MOk
font: 2;

X

The two blocks are decorated with a subclass called typeB. This class name is not explicitly used
within the code of the plot function rcss.barplot.1. However, we can prime the plot function to
use these definitions by providing the class name during the function call (Figure 3B).

A Rcss style2 B Rcss style3, class typeB C Rcss style3, class typeC

Data range is [35, 80] Data range is [35, 80] Data range is [35, 80]

Figure 3: Charts created by custom plot functions with base graphics and Ressplot using: (A) a style
determined by css; (B) a style sub-class defined in css; (C) a style sub-class that is not defined in css
(equivalent to (A)).

@
o
@
o
@
o

y label
5
o

y label
5
o

y label
5
o

N
=]
N
=1
n
=]

style3 <- Rcss(pasteO("Rcss/vignettes.bar", c(1, 2, 3), ".Rcss"))
rcss.barplot.1(a, main="Rcss style3, class typeB", Rcss=style3, Rcssclass="typeB")

The output now incorporates settings defined in the generic barplot and mtext css blocks, but also
those settings targeted using the typeB subclass. As in conventional cascading style sheets, when a
parameter is specified in multiple locations with an Rcss object, the definition with the more specific
class takes precedence.

When the Rcssclass argument contains items that are not recognized, these items are just ignored

(Figure BQ).

rcss.barplot.1(a, main="Rcss style3, class typeC", Rcss=style3, Rcssclass="typeC")

Here, the class name typeC does not appear in the underlying style sheet files, so the output is the
same as if this subclass was not specified at all.

In summary, we saw in this section how to use cascading style sheets to determine visual appear-
ance. This approach has several advantages over using base graphics alone.

* The new function separates the details of visualization from the R code. This makes it easier to
tweak aesthetics (in the Rcss files) without worrying about the code structure.

¢ The new function is shorter because calls to commands that generate structure (e.g. axis and
mtext) are not interspersed with details of graphical parameters. This makes it easier to see the
organization of the composite graphic.

¢ The styles can be reused in several custom functions. Thus, it is straightforward to maintain a
uniform style across a family of functions.

In the next section we will look at additional features that simplify creation of custom graphics.

4 Additional features

This section covers some additional features provided by the package. The first two subsections deal
with reducing repetitive code. The third subsection introduces usage of css objects as general data
stores. Finally, the fourth subsection introduces a system to simplify development through trials and
adjustments.

4.1 Default styles and compulsory classes

While the code in rcss.barplot.1 is simpler than in base.barplot.1, it still contains repetitive
elements. In particular, constructions Rcss=Rcss and Rcssclass=Rcssclasss appear in almost ev-
ery line. We can avoid this repetition by setting a default style and a compulsory class through
RcssDefaultStyle and RecssCompulsoryClass. These objects can be defined in any environment, for
example inside a function. Consider the following adjustment of our barplot function.

rcss.barplot.2 <- function(x, main="Custom Rcss plot", ylab="y label",
Rcss="default", Rcssclass=c()) {
RcssDefaultStyle <- RcssGetDefaultStyle(Rcss)

RcssCompulsoryClass <- RcssGetCompulsoryClass(Rcssclass)

barpos <- barplot(x, axes=FALSE, axisnames=FALSE)
axis(1l, at=barpos[,1], labels=names(x), Rcssclass="x"
axis(2, Rcssclass="y")
mtext (main, Rcssclass="main"
mtext (range.string(x), Rcssclass="submain")
mtext (ylab, side=2, Rcssclass="ylab")

}

The preparation steps set a default style and compulsory class. Subsequent calls to graphics functions
do not to refer to objects Rcss or Ressclass. Nonetheless, the output of the custom function can
exhibit styling.

e Calls to axis and mtext in the above function still carry Rcssclass arguments. These are
necessary to distinguish styling between the x- and y-axis, and between the title and sub-title.
However, setting the compulsory class reduces clutter (no need to write Rcssclass=Rcssclass).

¢ Itis important that the preparation steps set RcssDefaultStyle and RcssCompulsoryClass with
the help of function calls. Their role will become more clear in the next section. In short, those
functions help preserve defaults that may have been set outside of the custom function.

4.2 Global defaults

In the previous example, rcss.barplot.2, we changed the default style within the custom function,
i.e. in a local environment. It is also possible to apply such changes in the global environment.

RcssDefaultStyle <- style3
RcssCompulsoryClass <- c()

When the styling is set as above, i.e. outside a function definition, the custom barplot function can
be simplified even further.

rcss.barplot.3 <- function(x, main="Custom Rcss plot", ylab="y label",
Rcssclass="typeB") {

RcssCompulsoryClass <- RcssGetCompulsoryClass(Rcssclass)

barpos <- barplot(x, axes=FALSE, axisnames=FALSE)
axis(1l, at=barpos[,1], labels=names(x), Rcssclass="x"
axis(2, Rcssclass="y")

mtext(main, Rcssclass="main")

mtext (range.string(x), Rcssclass="submain")

mtext (ylab, side=2, Rcssclass="ylab")

* The function definition no longer carries an argument Rcss. The style is assumed to come
entirely from the default style.

¢ The function still carries an argument Rcssclass. Keeping this argument is a mechanism to
use sub-classes without the need to repeatedly redefine the compulsory class in the global
environment.

Sometimes, we may want to reset the default style and/or the compulsory style class(es). This
can be achieved by setting those objects to NULL.

RcssDefaultStyle <- NULL
RcssCompulsoryClass <- NULL

Now that we’ve adjusted default settings within custom functions as well as in the global en-
vironment, let’s revisit revisit the functions RcssGetDefaultStyle and RcssGetCompulsoryClass.
Consider the following snippet.

RcssCompulsoryClass <- "bar0O"
RcssCompulsoryClass

[1] "bar0"

fool <- function() {
RcssCompulsoryClass <- "barl"
RcssCompulsoryClass

3

fool()

[1] "baril"

The first result is bar0; let’s think of this as a css class that we wish to employ at a global level. In
the first function, foo1, the compulsory class is set with a naive assignment. The return value reveals
that within that function, the compulsory class becomes bar1 and our previous value bar0 is lost.
This is normal behavior, but it does not reflect our intention to keep bar0 as a global style class.

To keep the intended global class, we can use function RcssGetCompulsoryClass.

fo002 <- function() {
RcssCompulsoryClass <- RcssGetCompulsoryClass("bar2")
RcssCompulsoryClass

3

fo02()

[1] "barO" "bar2"
RcssCompulsoryClass

[1] "bar0"

Here, foo02 looks up the compulsory class set in parent environments and augments it with the new
label. The effective compulsory class within that function thus becomes a combination of the global
and local settings. The final command show that RcssCompulsoryClass in the global environment
remains unaffected. Labels bar1 and bar2 are thus localized to the custom functions.

The function RcssGetDefaultStyle fulfills an analogous role for style objects. Using a function
call RessGetDefaultStyle("default") returns an object equivalent to the one set in a parent envi-
ronment.

4.3 Custom selectors

We’ve already seen that Ress files can store settings for familiar graphics settings. But cascading style
sheets can also be used to encode other settings as well, indeed any property/value pairs. Consider
style file vignettes.bar4.Rcss.

baraxis {
stripe: 1;

}
barplot.dotted {
col: #9999cc;

}

baraxis.dotted {
stripe: 1;
ylim: O 101;

¥

abline.dotted {
col: #666666;
1ty: 2;

b

The first block is named baraxis, but this does not correspond to any of R’s base graphics commands.
Therefore, this block does not have any direct effect on styling. But we can write code to exploit
information in baraxis by extracting values manually. There are two functions for this purpose,
RcssProperty and RcssValue.

style4 <- Rcss(file.path("Rcss", pasteO("vignettes.bar", c(1, 2, 4), ".Rcss")))
RcssProperty("baraxis", "stripe", Rcss=style4)

$defined
[1] TRUE
##

$value
[1] 1

The output signals that the stripe property in a baraxis block is indeed defined, and provides its
value. A related command automatically substitutes undefined values with a default.

RcssValue("baraxis", "stripe", default=0, Rcss=style4d)
[1] 1
RcssValue("baraxis", "strpe", default=0, Rcss=style4)
[1]1 0

The result here is 1 for stripe because we saw this property is defined; the suggestion default=0 is
ignored. The second result is 0 because the misspelling strpe is not present in the file.

We can now exploit this feature to augment our bar chart with an option to draw horizontal rules
instead of a y-axis.

barplot using Rcssplot, version 5 (uses custom css selectors)
rcss.barplot.4 <- function(x, main="", ylab="Proportion (%)",
Rcss="default", Rcssclass=c()) {
use custom style, compulsary class
RcssDefaultStyle <- RcssGetDefaultStyle(Rcss)
RcssCompulsoryClass <- RcssGetCompulsoryClass(Rcssclass)
extract custom properties - show azis? force ylim?
stripes <- RcssValue("baraxis", "stripe", default=0)
ylim <- RcssValue("baraxis", "ylim", default=NULL)
create background
barpos <- barplot(x, axes=FALSE, axisnames=FALSE, ylim=ylim,
col="#ffffff", border=NA)
draw a bar chart
axis(1l, at=barpos[,1], labels=names(x), Rcssclass="x")
if (stripes) {
stripevals <- axis(2, lwd=0, labels=NA)
labpos <- axis(2, lwd=0, lwd.ticks=0, Rcssclass="y")
abline(h=labpos)
} else {
axis(2, Rcssclass="y")
}
barplot(x, axes=FALSE, axisnames=FALSE, add=TRUE)
mtext (main, Rcssclass="main"
mtext (range.string(x), Rcssclass="submain")
mtext (ylab, side=2, Rcssclass="ylab")
}

Two commands near the top fetch values for stripe and ylim. The subsequent code produces output
conditional to these new variables (Figure [A).

rcss.barplot.4(a, main="Stripes", Rcss=styled)

The style we loaded also defines a class dotted (Figure @).

rcss.barplot.4(a, main="Stripes, y-scale 100", Rcss=style4, Rcssclass="dotted")

In addition to providing styling for the horizontal rules, the class dotted also defines a property
ylim. Its value is used within rcss.barplot.5 to force limits on the vertical axis. This behavior can
be desirable for several reasons. If the plotted values are proportions in percentages, it may be useful
to show the full range from 0% to 100%. A fixed range can also be useful when displaying plots
side-by-side (Figure Q).

A Stripes B Stripes, y—scale 100 c ... new data
Data range is [35, 80] Data range is [35, 80] Data range is [12, 94]
80 100 ----semmmmeseseee oo 100 ===
~ B - - o 80 oo
g 60 S g
c S B0 ---------- S B0 e
£ 40 = =
2 8 40 -----1 8 40 oo
<) o o
a 20 a 20 a 20 ooeoe
0 0 0
a b c d e f a b c d e f u \ w X y z

Figure 4: Charts using custom css selectors: (A) horizontal rules instead of a y-axis; (B) styled rules
with a fixed vertical scale; (C) again styled rules with a fixed vertical scale, showing new data.

a2 <- setNames(c(12, 20, 26, 72, 88, 94), tail(letters, 6))
rcss.barplot.4(a2, main="... new data", Rcss=style4, Rcssclass="dotted")

The new data are easily compared with the old because the vertical scales in the charts are recogniz-
ably the same.

4.4 File watching

Developing a complex custom graphic requires much tinkering, i.e. defining settings, evaluating
results, and adjusting the code as well as the style. This development cycle is simplified by the
RcssWatch utility. This utility repeatedly evaluates a function, reloading code and style files before
each iteration.

style.files = file.path("Rcss", pasteO("vignettes.bar", c(1, 2, 3), ".Rcss"))
RcssWatch("rcss.barplot.4", files=style.files, x=a)

In this example, RcssWatch loads styles provided in style.files and evaluates rcss.barplot.4
with argument x=a. It waits for a keystroke before repeating this procedure again. With this tool,
adjustments in style definitions can be edited in Rcss files with a text editor, and the effects previewed
with one keystroke. The utility also accepts files with extensions .R and .r, so it can help preview
changes dues to the definition of the custom plot function.

5 Summary

This vignette introduced the Ressplot package through an extended example based on a bar chart.
We started with a visualization implemented using R’s base graphics, and then adapted this design
using Ressplot.

At the technical level, the package provides a framework for customizing R graphics through a
system akin to cascading style sheets. One part of the framework consists of functions that manage
information in style sheets. These functions parse Rcss files, extract property/value pairs relevant in
various contexts, and manage default styles and classes. Another part of the framework consists of
functions that mimic base graphics functions (plot, axis, text, etc.), but extract styling details from
the cascading style objects.

From a useability perspective, the Rcssplot package breaks building composite visualizations
down into distinct tasks. Fine-tuning of aesthetics is delegated to cascading style sheets, which
become external to R code. They can thus be adjusted safely without compromising data analysis
and they can be shared between projects. The R code that is left is focused on data analysis and on
the structure of the composite visualization. It is thus easier to understand and maintain.

The Ressplot package is intended to provide a straightforward and familiar means to tune graph-
ics (given background in conventional cascading-style sheets). It is important to note, however, that
this is not the only graphics framework available for R. Indeed, other approaches have served as in-
spirations and models. In the space of static graphics, package ggplot2 provides a mature approach
to creating complex charts [I]. It supports tuning via themes; package ggthemes provides several
examples [2]]. In the space of interactive visualizations, packages shiny [3] and plotly [4] create very
compelling results.

10

Acknowledgements
Many thanks to R’s documentation and manuals. A particularly valuable resource is [5].

Ressplot is developed on github with contributions from (in alphabetical order): FrancoisGuillem,
nfultz, yihui.

References

[1] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

[2] Jeffrey B. Arnold. ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 3.3.0,
2016.

[3] Winston Chang and Joe Cheng and JJ Allaire and Yihui Xie and Jonathan McPherson. shiny: Web
Application Framework for R. R package version 1.0.0, 2017.

[4] Carson Sievert and Chris Parmer and Toby Hocking and Scott Chamberlain and Karthik Ram
and Marianne Corvellec and Pedro Despouy. plotly: Create Interactive Web Graphics via 'plotly.js’ R
package version 4.5.6, 2016.

[5] Hadley Wickham. Advanced R. http://adv-r.had.co.nz/

A Appendix

A1 Compatibility with base graphics

All plot functions provided by Ressplot are designed to mimic the familiar tools from base packages
graphics and grDevices. In general, code that works under base graphics should continue to work
even when Rcssplot is loaded. Thus, it should be straightforward to adopt the framework into an
existing project. However, code that uses positional arguments can trigger errors. As an example, the
following command does not work.

barplot(a, 2)

The cause for the error is the value ‘2, which is assumed to carry a meaning through its position in
the function call. (In a barplot, the second argument is called width and can specify the width of
individual bars).

There are two strategies to restore such code to working order. The first is to fall back on base
graphics.

graphics: :barplot(a, 2)
The second strategy is to add the intended argument names into the function call.
barplot(a, width=2)

Arguably, the second solution is clearer. Indeed, it is good practice to use argument names whenever
calling complex functions.

A.2 Grammar
Parsing of cascading style sheets is performed within the Ressplot based on the grammar below.

stylesheet
[ruleset]x

>

ruleset
: simple_selector [',' simple_selector]x
'{' declaration? [';' declaration?]x*x '}'

simple_selector
: IDENT [class]x*
| [class 1+

11

class
'. ' IDENT

declaration
: property ':' expr
property
: IDENT
expr
: term [term]x
term
: NUMBER | STRING | IDENT | HEXCOLOR

3

This formal definition is a summary and guide, and can serve as a comparison to the full css grammar
of web design. However, actual parsing within the package is carried out manually, not using an
auto-generated parser.

A.3 Version history
v1.1.0

¢ Update vignette code for compatibility with new versions of knitr and R

¢ Update package description and code patterns for compatibility with new versions of R

v1.0.0

e All Ress wrappers change name to match functions from base graphics. They automatically
mask base graphics functions.

* Watch utility.
® Miscellaneous convenience functions: ctext, parplot
* Error messages generated during parsing of Rcss files include line numbers in the original files.

¢ Some functions from 0.x versions are made redundant or deprecated. These provide warning
messages, but will be removed in a future release.

v0.3.0

* New functions for getting and setting values from Rcss objects: RcssValue, RcssUpdate. These
functions are complementary to previously existing functions, but are less verbose, especially
for fetching values from a default style.

* Better parsing and handling of special values in css files, e.g. TRUE/FALSE, NA, NULL.

v0.2.0

e First version submitted to CRAN.

A.4 Session info

sessionInfo()

R version 4.1.1 (2021-08-10)

Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS

##

Matrix products: default

12

##
##
##
##
##
##
##
##
##
#it
#it
#it
#it
#it
#it
#i#
i3
23
##
##
##
##

BLAS: /software/opt/R/R-4.1.1/1ib/1ibRblas.so
LAPACK: /software/opt/R/R-4.1.1/1ib/1libRlapack.so

locale:
[1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=C
[6] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
[7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils

other attached packages:

[1] Rcssplot_1.1.0 rmarkdown_2.11 knitr_1.34

loaded via a namespace (and not attached):

[1] compiler_4.1.1 fastmap_1.1.0
[5] htmltools_0.5.2 tools_4.1.1

[9] highr_0.9 digest_0.6.27
[13] rlang 1.0.2 evaluate_0.14

magrittr_2.0.1
codetools_0.2-18 stringi_1.7.4
stringr_1.4.0

13

	Introduction
	Styling plots with base graphics
	Styling with cascading style sheets
	Rcss styles
	Rcss classes
	Multiple styles

	Additional features
	Default styles and compulsory classes
	Global defaults
	Custom selectors
	File watching

	Summary
	Appendix
	Compatibility with base graphics
	Grammar
	Version history
	Session info

