
Package ‘Rcsdp’
June 23, 2025

Version 0.1.57.6

Title R Interface to the CSDP Semidefinite Programming Library

Description R interface to the CSDP semidefinite programming library. Installs ver-
sion 6.1.1 of CSDP from the COIN-OR website if required. An existing installa-
tion of CSDP may be used by passing the proper configure arguments to the installation com-
mand. See the INSTALL file for further details.

LazyLoad yes

Imports methods

Enhances Matrix

License CPL-1.0

URL https://github.com/coin-or/Csdp/

RoxygenNote 7.0.2

BugReports https://github.com/hcorrada/rcsdp/issues

NeedsCompilation yes

Author Hector Corrada Bravo [aut, cre],
Florian Schwendinger [ctb],
Brian Borchers [aut],
Don van den Bergh [ctb]

Maintainer Hector Corrada Bravo <hcorrada@gmail.com>

Repository CRAN

Date/Publication 2025-06-23 10:24:35 UTC

Contents
csdp . 2
csdp-sparse . 5
csdp.control . 6
readsdpa . 8

Index 10

1

https://github.com/coin-or/Csdp/
https://github.com/hcorrada/rcsdp/issues

2 csdp

csdp Solve semidefinite program with CSDP

Description

Interface to CSDP semidefinite programming library. The general statement of the primal problem
is

max tr(CX)

s.t. A(X) = b

X ⪰ 0

with A(X)i = tr(AiX) where X ⪰ 0 means X is positive semidefinite, C and all Ai are symmetric
matrices of the same size and b is a vector of length m.

The dual of the problem is
min b′y

s.t. A′(y)− C = Z

Z ⪰ 0

where A′(y) =
∑m

i=1 yiAi.

Matrices C and Ai are assumed to be block diagonal structured, and must be specified that way (see
Details).

Usage

csdp(C, A, b, K,control=csdp.control())

Arguments

C A list defining the block diagonal cost matrix C.

A A list of length m containing block diagonal constraint matrices Ai. Each con-
straint matrix Ai is specified by a list of blocks as explained in the Details sec-
tion.

b A numeric vector of length m containing the right hand side of the constraints.

K Describes the domain of each block of the sdp problem. It is a list with the
following elements:

type: A character vector with entries "s" or "l" indicating the type of each
block. If the jth entry is "s", then the jth block is a positive semidefinite
matrix. otherwise, it is a vector with non-negative entries.

size: A vector of integers indicating the dimension of each block.

control Control parameters passed to csdp. See CSDP documentation.

csdp 3

Details

All problem matrices are assumed to be of block diagonal structure, and must be specified as fol-
lows:

1. If there are nblocks blocks specified by K, then the matrix must be a list with nblocks com-
ponents.

2. If K$type == "s" then the jth element of the list must define a symmetric matrix of size
K$size. It can be an object of class "matrix", "simple_triplet_sym_matrix", or a valid
class from the class hierarchy in the "Matrix" package.

3. If K$type == "l" then the jth element of the list must be a numeric vector of length K$size.

This function checks that the blocks in arguments C and A agree with the sizes given in argument K.
It also checks that the lengths of arguments b and A are equal. It does not check for symmetry in the
problem data.

csdp_minimal is a minimal wrapper to the C code underlying csdp. It assumes that the arguments
sum.block.sizes, nconstraints, nblocks, block.types, and block.sizes are provided as if
they were created by Rcsdp:::prob.info and that the arguments C, A, and b are provided as if
they were created by Rcsdp:::prepare.data. This function may be useful when calling the csdp
functionality iteratively and most of the optimization details stays the same. For example, when
the control file created by Rcsdp:::write.control.file stays the same across iterations, but it
would be recreated on each iteration by csdp.

Value

X Optimal primal solution X . A list containing blocks in the same structure as
explained above. Each element is of class "matrix" or a numeric vector as
appropriate.

Z Optimal dual solution Z. A list containing blocks in the same structure as ex-
plained above. Each element is of class "matrix" or a numeric vector as appro-
priate.

y Optimal dual solution y. A vector of the same length as argument b

pobj Optimal primal objective value

dobj Optimal dual objective value

status Status of returned solution.

0: Success. Problem solved to full accuracy
1: Success. Problem is primal infeasible
2: Success. Problem is dual infeasible
3: Partial Success. Solution found but full accuracy was not achieved
4: Failure. Maximum number of iterations reached
5: Failure. Stuck at edge of primal feasibility
6: Failure. Stuch at edge of dual infeasibility
7: Failure. Lack of progress
8: Failure. X or Z (or Newton system O) is singular
9: Failure. Detected NaN or Inf values

4 csdp

Author(s)

Hector Corrada Bravo. CSDP written by Brian Borchers.

References

• https://github.com/coin-or/Csdp/

• Borchers, B.:
CSDP, A C Library for Semidefinite Programming Optimization Methods and Software 11(1):613-
623, 1999
http://euler.nmt.edu/~brian/csdppaper.pdf

• Lu, F., Lin, Y., and Wahba, G.:
Robust Manifold Unfolding with Kernel Regularization TR 1108, October, 2005.
http://pages.stat.wisc.edu/~wahba/ftp1/tr1108rr.pdf

Examples

C <- list(matrix(c(2,1,
1,2),2,2,byrow=TRUE),

matrix(c(3,0,1,
0,2,0,
1,0,3),3,3,byrow=TRUE),

c(0,0))
A <- list(list(matrix(c(3,1,

1,3),2,2,byrow=TRUE),
matrix(0,3,3),
c(1,0)),

list(matrix(0,2,2),
matrix(c(3,0,1,

0,4,0,
1,0,5),3,3,byrow=TRUE),

c(0,1)))

b <- c(1,2)
K <- list(type=c("s","s","l"),size=c(2,3,2))
csdp(C,A,b,K)

Manifold Unrolling broken stick example
using simple triplet symmetric matrices
X <- matrix(c(-1,-1,

0,0,
1,-1),nc=2,byrow=TRUE);

d <- as.vector(dist(X)^2);
d <- d[-2]

C <- list(.simple_triplet_diag_sym_matrix(1,3))
A <- list(list(simple_triplet_sym_matrix(i=c(1,2,2),j=c(1,1,2),v=c(1,-1,1),n=3)),

list(simple_triplet_sym_matrix(i=c(2,3,3),j=c(2,2,3),v=c(1,-1,1),n=3)),
list(matrix(1,3,3)))

K <- list(type="s",size=3)
csdp(C,A,c(d,0),K)

https://github.com/coin-or/Csdp/
http://euler.nmt.edu/~brian/csdppaper.pdf
http://pages.stat.wisc.edu/~wahba/ftp1/tr1108rr.pdf

csdp-sparse 5

csdp-sparse Simple support for sparse matrices

Description

Support for sparse matrices in package Rcsdp. The class simple_triplet_sym_matrix is de-
fined to provide support for symmetric sparse matrices. It’s definition is copied from the package
relations by Kurt Hornik. Coercion functions from objects of class matrix and classes in the
Matrix hierarchy are provided.

Usage

simple_triplet_sym_matrix(i,j,v,n=max(c(i,j)),check.ind=FALSE)
S3 method for class 'matrix'

as.simple_triplet_sym_matrix(x,check.sym=FALSE,...)
S3 method for class 'simple_triplet_sym_matrix'

as.matrix(x,...)
S3 method for class 'simple_triplet_sym_matrix'

as.vector(x,...)
.simple_triplet_zero_sym_matrix(n,mode="double")
.simple_triplet_diag_sym_matrix(x,n)

.simple_triplet_random_sym_matrix(n,occ=.1,nnz=occ*n*(n+1)/2,rfun=rnorm,seed=NULL,...)

Arguments

i Row indices of non-zero entries.

j Column indices of non-zero entries.

v Non-zero entries.

n Size of matrix.

check.ind Checks that arguments i and j indicate entries in the lower triangular part of the
matrix. Default FALSE.

check.sym Checks if matrix object is symmetric. Default FALSE.

x Object of class matrix or simple_triplet_sym_matrix.

mode Type of zero matrix to create. Default double.

occ Ratio of occupancy of random sparse matrix. Default .1.

nnz Number of non-zero entries in random sparse matrix. Default corresponds to
occ=.1.

rfun Function to generate random entries in sparse matrix. Default rnorm.

seed Random number generator seed. Set by function set.seed before generating
random sparse matrix. Default NULL.

... Arguments passed on to casting functions.

6 csdp.control

Details

TO DO

Value

TO DO

Author(s)

Hector Corrada Bravo

References

TO DO

See Also

csdp

Examples

TO DO

csdp.control Pass control parameters to csdp solver.

Description

Utility function to pass control parameters to csdp solver.

Usage

csdp.control(axtol = 1e-08,
atytol = 1e-08,
objtol = 1e-08,
pinftol = 1e+08,
dinftol = 1e+08,
maxiter = 100,
minstepfrac = 0.9,
maxstepfrac = 0.97,
minstepp = 1e-08,
minstepd = 1e-08,
usexzgap = 1,
tweakgap = 0,
affine = 0,
printlevel = 1,
perturbobj = 1,
fastmode = 0)

csdp.control 7

Arguments

axtol Tolerance for primal feasibility.

atytol Tolerance for dual feasibility.

objtol Tolerance for relative duality gap.

pinftol Tolerance for primal infeasibility.

dinftol Tolerance for dual infeasibility.

maxiter Maximum number of iterations used.

minstepfrac Minimum distance to edge of feasibility region for step.

maxstepfrac Maximum distance to edge of feasibility region for step.

minstepp Failure is declared if primal line search step size is shorter than this parameter.

minstepd Failure is declared if dual line search step size is shorter that this parameter.

usexzgap If 0, then use objective function duality gap.

tweakgap If 1 (and usexzgap=0) then "fix" negative duality gaps.

affine If 1, only use affine primal-dual steps and do not use barrier function.

printlevel If 0, no printing, 1 normal printing, higher values result in more debug printing.

perturbobj Amount of objective permutation used.

fastmode If 1, csdp will be faster but also less accurate.

Details

Parameters are fully described in CSDP user guide. https://github.com/coin-or/Csdp/

Value

A list with values for all parameters. Any parameters not passed to function are set to default.

Author(s)

Hector Corrada Bravo, CSDP by Brian Borchers

References

https://github.com/coin-or/Csdp/

Examples

params <- csdp.control(axtol=1e-6)

https://github.com/coin-or/Csdp/
https://github.com/coin-or/Csdp/

8 readsdpa

readsdpa Reading and writing semidefinite programs for SDPA format files.

Description

Functions to read and write semidefinite program data and solutions in SDPA format.

Usage

readsdpa(file="",verbose=FALSE)
writesdpa(C,A,b,K,file="")
readsdpa.sol(K,C,m,file="")
writesdpa.sol(X,Z,y,K,file="")

Arguments

file The name of the file to read from or write to.

C Block structured cost matrix

A List of block structured constraint matrices

b RHS vector

K Cone specification, as used in csdp

X Block structured primal optimal solution matrix

Z Block structured dual optimal solution matrix

y Dual optimal solution vector

verbose Printout information as problem is read. Passed to CSDP’s readsdpa function.
Default FALSE

m Number of constraints in problem.

Details

Block structured matrices must be specified as described in csdp. Files read must be in SDPA
format (see http://euler.nmt.edu/~brian/sdplib/FORMAT). However, these functions don’t
support comments or grouping characters (e.g. braces, parentheses) in the block sizes specification.

Value

Function readsdpa returns a list with elements C,A,b,K. Function readsdpa.sol returns a list with
elements X,Z,y. All returned matrices are lists of objects of class simple_triplet_sym_matrix.

Author(s)

Hector Corrada Bravo

References

http://euler.nmt.edu/~brian/sdplib/FORMAT

http://euler.nmt.edu/~brian/sdplib/FORMAT
http://euler.nmt.edu/~brian/sdplib/FORMAT

readsdpa 9

See Also

csdp

Examples

TO DO

Index

∗ optimize
csdp, 2

∗ utilities
csdp-sparse, 5

.simple_triplet_diag_sym_matrix
(csdp-sparse), 5

.simple_triplet_random_sym_matrix
(csdp-sparse), 5

.simple_triplet_zero_sym_matrix
(csdp-sparse), 5

as.matrix.simple_triplet_sym_matrix
(csdp-sparse), 5

as.simple_triplet_sym_matrix.matrix
(csdp-sparse), 5

as.vector.simple_triplet_sym_matrix
(csdp-sparse), 5

csdp, 2, 6, 8, 9
csdp-sparse, 5
csdp.control, 6
csdp_minimal (csdp), 2

readsdpa, 8

simple_triplet_sym_matrix
(csdp-sparse), 5

simple_triplet_sym_matrix-class
(csdp-sparse), 5

writesdpa (readsdpa), 8

10

	csdp
	csdp-sparse
	csdp.control
	readsdpa
	Index

