
Package ‘RcppProgress’
January 20, 2025

Maintainer Karl Forner <karl.forner@gmail.com>

License GPL (>= 3)

Title An Interruptible Progress Bar with OpenMP Support for C++ in R
Packages

Type Package

LazyLoad yes

Author Karl Forner <karl.forner@gmail.com>

Description Allows to display a progress bar in the R
console for long running computations taking place in c++ code,
and support for interrupting those computations even in multithreaded
code, typically using OpenMP.

URL https://github.com/kforner/rcpp_progress

BugReports https://github.com/kforner/rcpp_progress/issues

Version 0.4.2

Date 2020-02-06

Suggests RcppArmadillo, devtools, roxygen2, testthat

RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-06 12:10:08 UTC

Contents
RcppProgress-package . 2

Index 5

1

https://github.com/kforner/rcpp_progress
https://github.com/kforner/rcpp_progress/issues

2 RcppProgress-package

RcppProgress-package An interruptible progress bar with OpenMP support for c++ in R
packages

Description

This package allows to display a progress bar in the R console for long running computations taking
place in c++ code, and provides support for interrupting those computations even in a multithreaded
code.

Details

When implementing CPU intensive computations in C++ in R packages, it is natural to want to
monitor the progress of those computations, and to be able to interrupt them, even when using
multithreading for example with OpenMP. Another feature is that it can be done so that the code will
still work even without OpenMP support. This package offers some facilities to help implementing
those features. It it biased towards the use of OpenMP, but it should be compatible when using
multithreading in other ways.

quick try: There are two tests functions provided by the package to get a quick overview of what
can be done.
These tests are:

RcppProgress:::test_sequential(max, nb, display_progress) - a sequential code, i.e. single
threaded

RcppProgress:::test_multithreaded(max, nb, threads, display_progress) - a multithreaded code
using OpenMP

They both are wrappers for examples implemented in the RcppProgressExample package located
in the examples directory of the RcppProgress installed package.
Both tests call the very same function that implements a long computation. The max parameter
controls the number of computations, and nb controls the duration of a single computation, that
is quadratic in nb. The threads is as expected the number of threads to use for the computation.
The progress parameter toggles the display of the progress bar.
On my platform,

system.time(RcppProgress:::test_multithreaded(100, 3000, 4))

is a good start.

c++ usage:
There are usually two locations in the c++ code that needs to be modified. The first one is the main
loop, typically on the number of jobs or tasks. This loop is a good candidate to be parallelized
using OpenMP. I will comment the code corresponding to the tests included with the package.

void test_multithreaded_omp(int max, int nb, int threads
, bool display_progress) {

\#ifdef _OPENMP

RcppProgress-package 3

if (threads > 0)
omp_set_num_threads(threads);

REprintf(\"Number of threads=%i\n\", omp_get_max_threads());
\#endif

Progress p(max, display_progress); // create the progress monitor
#pragma omp parallel for schedule(dynamic)

for (int i = 0; i < max; ++i) {
if (! p.is_aborted()) { // the only way to exit an OpenMP loop

long_computation(nb);
p.increment(); // update the progress

}
}

}

Here we create a Progress object with the number of tasks to perform, then before performing a
task we test for abortion (p.is_aborted()), because we can not exit an OpenMP loop the usual
way, suing a break for example, then when after the computation, we increment the progress
monitor.
Then let us look at the computation function (that is completely useless) :

double long_computation(int nb) {
double sum = 0;
for (int i = 0; i < nb; ++i) {
if (Progress::check_abort()) // check for user abort
return -1;

for (int j = 0; j < nb; ++j) {
sum += Rf_dlnorm(i+j, 0.0, 1.0, 0);

}
}

}
return sum;

}

Here the only interesting line is the Progress::check_abort() call. If called from the master
thread, it will check for user interruption, and if needed set the abort status code. When called
from another thread it will just check the status. So all the art is to decide where to put his call: it
should not be called not too often or not frequently enough. As a rule of thumb it should be called
roughly evevry second.

Using RcppProgress in your package:
Please note that we provide the RcppProgressExample example package along with this pack-
age, located in the examples directory of the installed package.
Here are the steps to use RcppProgress in a new package:

skeleton create a package skeleton using Rcpp

library(Rcpp)
Rcpp.package.skeleton("RcppProgressExample")

4 RcppProgress-package

DESCRIPTION edit the DESCRIPTION file and add RcppProgress to the Depends: and
LinkingTo: lines. e.g.
Depends: Rcpp (>= 0.9.4), RcppProgress (>= 0.1)
LinkingTo: Rcpp, RcppProgress

MakeVars edit src/MakeVars and replace its content by
PKG_LIBS = ‘$(R_HOME)/bin/Rscript -e "Rcpp:::LdFlags()"‘ $(SHLIB_OPENMP_CXXFLAGS)
‘$(R_HOME)/bin/Rscript -e "RcppProgress:::CxxFlags()"‘ and
PKG_CXXFLAGS +=-Ilibsrc $(SHLIB_OPENMP_CXXFLAGS) ‘$(R_HOME)/bin/Rscript
-e "RcppProgress:::CxxFlags()"‘

c++ code Put your code in src. You may for instance copy the RcppProgressExample/src/tests.cpp
file in src, and RcppProgressExample/R/tests.R in R, and try to compile the package (R CMD
INSTALL -l test .) and execute the tests:
>library(RcppProgressExample, lib.loc="test")
>RcppProgressExample::test_multithreaded(100, 600, 4)

Using RcppProgress with RcppArmadillo: We also provide the RcppProgressArmadillo
example package along with this package, located in the examples directory of the installed
package.
The peculiarity is that you have to include the RcppArmadillo.h header before the progress.hpp
RcppProgress header, and add the RcppArmadillo in the LinkingTo: field of the package DE-
SCRIPTION file.

Author(s)

Karl Forner

Maintainer: Karl Forner <karl.forner@quartzbio.com>

See Also

OpenMP API specification for parallel programming: http://openmp.org

Rcpp http://r-forge.r-project.org/projects/rcpp

Examples

these are implemented as examples inside RcppProgress provided
example package: examples/RcppProgressExample
check the source code

the underlying test_test_multithreaded c++ function is multithreaded
, has a progress bar and is still interruptible
Not run:

RcppProgress:::test_multithreaded(nb = 300, threads = 4, recompile = TRUE)

End(Not run)

http://openmp.org
http://r-forge.r-project.org/projects/rcpp

Index

∗ package
RcppProgress-package, 2

RcppProgress (RcppProgress-package), 2
RcppProgress-package, 2

5

	RcppProgress-package
	Index

