
RcppCNPy:
Reading and writing NumPy binary files
Dirk Eddelbuettela and Wush Wub

ahttp://dirk.eddelbuettel.com; bhttps://github.com/wush978

This version was compiled on July 22, 2018

This vignette introduces the RcppCNPy package for reading and writing

files created by or for the NumPy module for Python.

Motivation

Python1 is a widely-used and popular programming language. It is

deployed in use cases ranging from simple scripting to larger-scale

application development. Python is also popular for quantitative

and scientific application due to the existence of extension modules

such as NumPy2 (which is shorthand for Numeric Python) and

many other packages for data analysis.

NumPy is used to efficiently represent N -dimensional arrays,

and provides an efficient binary storage model for these files. In

practice, N is often equal to two, and matrices processed or gen-

erated in Python can be stored in this form. As NumPy is popular,

many project utilize this file format.

R has no dedicated reading or writing functionality for these

type of files. However, Carl Rogers has provided a small Cpp library

called cnpy3 which is released under the MIT license. Using the

‘Rcpp modules’ feature in Rcpp (Eddelbuettel and François, 2011;

Eddelbuettel, 2013; Eddelbuettel et al., 2018), we provide (some)

features of this library to R.

Examples

Data creation in Python. The first code example simply creates two

files in Python: a two-dimensional rectangular array as well as a

vector.

import numpy as np

mat = np.arange(12).reshape(3,4) * 1.1

np.save("fmat.npy", mat)

print(mat)

[[0. 1.1 2.2 3.3]

[4.4 5.5 6.6 7.7]

[8.8 9.9 11. 12.1]]

vec = np.arange(5) * 1.1

np.save("fvec.npy", vec)

print(vec)

[0. 1.1 2.2 3.3 4.4]

As illustrated, Python uses the Fortran convention for storing

matrices and higher-dimensional arrays: a matrix constructed from

a single sequence has its first consecutive elements in its first row—

whereas R, following the C convention, has these first few values

in its first column. This shows that to go back and forth we need

to transpose these matrices (which represented internally as two-

dimensional arrays).

1
http://www.python.org

2
http://numpy.scipy.org/

3
https://github.com/rogersce/cnpy

Data reading in R . We can read the same data in R using the

npyLoad() function provided by the RcppCNPy package:

library(RcppCNPy)

mat <- npyLoad("fmat.npy")

mat

[,1] [,2] [,3] [,4]

[1,] 0.0 1.1 2.2 3.3

[2,] 4.4 5.5 6.6 7.7

[3,] 8.8 9.9 11.0 12.1

vec <- npyLoad("fvec.npy")

vec

[1] 0.0 1.1 2.2 3.3 4.4

The Fortran-order of the matrix is preserved; we obtain the exact

same data as we stored.

Reading compressed data in R . A useful extension to the cnpy

library is the support of gzip-compressed data.

mat2 <- npyLoad("fmat.npy.gz")

mat2

Support for writing compressed files has been added in version

0.2.0.

Data writing in R . Matrices and vectors can be written to files using

the npySave() function.

set.seed(42)

m <- matrix(sort(rnorm(6)), 3, 2)

m

[,1] [,2]

[1,] -0.564698 0.404268

[2,] -0.106125 0.632863

[3,] 0.363128 1.370958

npySave("randmat.npy", m)

v <- seq(10, 12)

v

[1] 10 11 12

npySave("simplevec.npy", v)

Data reading in Python. Reading the data back in Python is also

straightforward as shown in the following example:

import numpy as np

m = np.load("randmat.npy")

print(m)

[[-0.56469817 0.40426832]

[-0.10612452 0.6328626]

[0.36312841 1.37095845]]

v = np.load("simplevec.npy")

print(v)

https://cran.r-project.org/package=RcppCNPy RcppCNPy Vignette | July 22, 2018 | 1–2

[10 11 12]

Integer support. Support for integer data types has been condi-

tional on use of either the -std=c++0x or the -std=c++11 com-

piler extensions. Only these standards support the long long int

type needed to represent int64 data on a 32-bit OS. Following the

release of R 3.1.0, it has been enabled by default in RcppCNPy

(whereas it previously required a manual rebuild), and following

the release of R 3.3.0 with its updated Windows toolchain, C++11

is now available on all common R platforms. Consequently, support

for large integers in RcppCNPy is no longer just a compile-time

option for some platforms, but generally available on all (current)

R installations.

Performance. The R script timing in the demo/ directory of the

package RcppCNPy provides a simple benchmark. Given two val-

ues n and k, a matrix of size n × k is created with n rows and

k columns. It is written to temporary files in i) ascii format us-

ing write.table(); ii) NumPy format using npySave(); and iii)

NumPy format using npySave() with compression via the zlib

library (used also by gzip).

Table 1 shows some timing comparisons for a matrix with five

million elements. Reading the npy data is clearly fastest as it re-

quired only parsing of the header, followed by a single large binary

read (and the transpose required to translate the representation

used by R). The compressed file requires only one-fourth of the

disk space, but takes approximately 2.5 times as long to read as the

binary stream has be transformed. Lastly, the default ascii reading

mode is clearly by far the slowest.

Limitations

Higher-dimensional arrays. Rcpp supports three-dimensional ar-

rays, this could be support in RcppCNPy as well.

npz files. The cnpy library supports reading and writing of sets of

arrays; this feature could also be exported.

Summary

The RcppCNPy package provides simple reading and writing of

NumPy files, using the cnpy library. Reading of compressed files

is also supported as an extension, offering more compact storage

at the cost of slightly longer read times.

Acknowledgments. This paper can be cited as Eddelbuettel and

Wu (2016); see the citation("RcppCNPy") command in R for

details.

Access method Time in sec. Relative to best

npyLoad(pyfile) 0.074 1.000

npyLoad(pygzfile) 0.190 2.568

read.table(txtfile) 4.189 56.608

Table 1. Performance comparison of data reads using a matrix of size

105
× 50. File size are 39.7mb for ascii, 40.0mb for npy and 10.8mb for

npy.gz. Ten replications were performed, and total times are shown. R

3.3.1 was used on a laptop with an SSD disk.

References

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Use R!

Springer, New York. ISBN 978-1-4614-6867-7.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.”

Journal of Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/

i08/.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,

Bates D (2018). Rcpp: Seamless R and C++ Integration. R package version

0.12.17, URL package=Rcpp.

Eddelbuettel D, Wu W (2016). “RcppCNPy: Read-Write Support for NumPy Files

in R.” Journal of Open Source Software, 1. URL http://dx.doi.org/10.21105/

joss.00055.

2 | https://cran.r-project.org/package=RcppCNPy Eddelbuettel and Wu

