
Using Annoy in package C++ code
Aaron Luna

ahttps://github.com/LTLA

This version was compiled on June 14, 2023

This note shows how to use the Annoy library for Approximate Nearest

Neighbours (Oh Yeah) from C++ code using the headers provided by the

RcppAnnoy package.

Rcpp | Annoy | Approximate Nearest Neighbours

Setting up your package

The Annoy C++ library (Bernhardsson, 2020) implements a quick

and simple method for approximate nearest neighbor (oh yeah)

searching. The RcppAnnoy package (Eddelbuettel, 2020) provides

a centralized resource for developers to use this code in their own

R packages by relying on Rcpp (Eddelbuettel and Balamuta, 2018;

Eddelbuettel et al., 2020). To use Annoy in C++ code, simply put

in your DESCRIPTION the line

LinkingTo: RcppAnnoy

and the header files will be available for inclusion into your

package’s source files. Note that Annoy is a header-only library so

no additional commands are necessary for the linker.

Including the header files

Obviously, the header files need to be included in any C++ source

file that uses Annoy. A few macros also need to be added to handle

Windows-specific behaviour and to ensure that error messages are

printed through R. Version number comparison macros help in

conditioning changes on a particular version. Since release 0.0.17

all this is now expressed centrally in a header in the package so

users can just use this one-liner:

#include "RcppAnnoy.h"

Defining the search type

The AnnoyIndex template class can accommodate different data

types, distance metrics, random number generators, and thread-

ing policies (where the latter are a choice between sequential or

multithreaded). Here, we will consider the most common appli-

cation of a nearest-neighbor search on floating-point data with

Euclidean distance. We typedef the type and realized template

for convenience:

typedef float ANNOYTYPE;

typedef

Annoy::AnnoyIndex<int, ANNOYTYPE, Annoy::Euclidean, Kiss64Random,

RcppAnnoyIndexThreadPolicy>

MyAnnoyIndex;

Note that we use float by default, rather than the more con-

ventional double. This is chosen for speed and to be consistent

with the original Python implementation.

The Annoy library uses random number generation during index

creation (via the Kiss64Random class), with a seed that is separate

from R’s RNG seed. By default, the seed is fixed and results will be

“deterministic” in the sense that repeated runs on the same data will

yield the same result. They will also be unresponsive to the state

of R’s RNG seed. The seed used by AnnoyIndex can be specified

by the set_seed method, which should be called before adding

items to the index.

Building an index

Let’s say we have an Rcpp::NumericMatrix named mat, where

each row corresponds to a sample and each column corresponds

to a dimension/variable.

const size_t nsamples=mat.nrow();

const size_t ndims=mat.ncol();

It is simple to build a MyAnnoyIndex containing the data in

this matrix. Note the copy from the double-precision matrix into a

float vector before calling add_item().

MyAnnoyIndex obj(ndims);

// from <vector>

std::vector<ANNOYTYPE> tmp(ndims);

for (size_t i=0; i<nsamples; ++i) {

Rcpp::NumericMatrix::Row cr=mat.row(i);

// from <algorithm>

std::copy(cr.begin(), cr.end(), tmp.begin());

obj.add_item(i, tmp.data());

}

obj.build(50);

The build() method accepts an integer argument specifying

the number of trees to use to construct the index. Indices with

more trees are larger (in memory and on file) but yield greater

search accuracy.

The index can also be saved to file via

obj.save(indexfile.c_str());

and reloaded in some other context:

MyAnnoyIndex obj2(ndims);

obj2.load(indexfile.c_str()); // same as 'obj'.

This is helpful for parallelization across workers running in

different R sessions. It also allows us to avoid rebuilding the index

in applications where the same data set is to be queried multiple

times.

Searching for nearest neighbors

Let’s say that we want to find the K (approximate) nearest neighbors

of sample c in the original data set used to construct obj. To do

this, we write:

https://cran.r-project.org/package=RcppAnnoy RcppAnnoy Vignette | June 14, 2023 | 1–2

std::vector<int> neighbor_index;

std::vector<ANNOYTYPE> neighbor_dist;

obj.get_nns_by_item(c, K + 1, -1, &neighbor_index,

&neighbor_dist);

Upon return, the neighbor_index vector will be filled with

the sample numbers of the K nearest neighbors (i.e., rows of the

original mat, in this case). The neighbor_dist vector will be filled

with the distances to each of those neighbors. Note that:

• We ask for the K+1 nearest neighbors, as the set returned in

neighbor_index will usually include c itself. This should be

taken into consideration when the results are used in down-

stream calculations.

• The returned neighbors are sorted by increasing distance from

c. However, note that c itself may not necessarily be at the

start if there is another point with the same coordinates.

• get_nns_by_item() requires pointers to the vectors rather

than the vectors themselves. If the pointer to the output vector

for distances is NULL, distances will not be returned. This

provides a slight performance boost when only the identities

of the neighbors are of interest.

• The -1 is the default value for a tuning parameter that specifies

how many samples should be collected from the trees for

exhaustive distance calculations. This defaults to the number

of trees multiplied by the number of requested neighbors;

larger values will increase accuracy at the cost of speed.

Another application is to query the index for the neighbors of a

new sample given its coordinates. Assuming we have a float* to

an array of coordinates of length ndims, we do:

obj.get_nns_by_vector(query, K+1, -1,

&neighbor_index,

&neighbor_dist);

Further information

The Annoy repository is the canonical source of all things Annoying.

Questions or issues related to the Annoy C++ library itself should be

posted there. Any issues specific to the RcppAnnoy interface should

be posted at its separate Github repository. An example of using the

Annoy library via RcppAnnoy is available in the BiocNeighbors

package (Lun, 2020).

References

Bernhardsson E (2020). Annoy: Approximate Nearest Neighbors in C++/Python.

Python package version 1.17.0, URL https://pypi.org/project/annoy/.

Eddelbuettel D (2020). RcppAnnoy: Rcpp Bindings for Annoy, a Library for

Approximate Nearest Neighbors. R package version 0.0.17, URL http://CRAN.

R-Project.org/package=RcppAnnoy.

Eddelbuettel D, Balamuta JJ (2018). “Extending R with C++: A Brief

Introduction to Rcpp.” The American Statistician, 72(1). doi:

10.1080/00031305.2017.1375990.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,

Bates D (2020). Rcpp: Seamless R and C++ Integration. R package version

1.0.5, URL http://CRAN.R-Project.org/package=Rcpp.

Lun A (2020). BiocNeighbors: Nearest Neighbor Detection for Bioconductor

Packages. R package version 1.8.1.

2 | https://cran.r-project.org/package=RcppAnnoy Lun

