Package ‘Ravages’

January 20, 2025
Type Package

Title Rare Variant Analysis and Genetic Simulations
Version 1.1.3

Date 2023-03-28

Encoding UTF-8

Author Ozvan Bocher and Hervé Perdry

Maintainer Ozvan Bocher <bocherozvan@gmail.com>

Description Rare variant association tests: bur-
den tests (Bocher et al. 2019 <doi:10.1002/gepi.22210>) and the Sequence Kernel Associa-
tion Test (Bocher et al. 2021 <doi:10.1038/s41431-020-00792-8>) in the whole genome; and ge-
netic simulations.

License GPL-3
LinkingTo Rcpp, ReppParallel, ReppEigen, gaston, BH

Depends R (>=3.5.0), Rcpp, ReppParallel, methods, gaston, mlogit (>=
1.1-0)

Imports Formula, dfidx, parallel, bedr, curl, data.table
NeedsCompilation yes

Suggests knitr, rmarkdown

VignetteBuilder knitr

LazyLoad yes

LazyData yes

LazyDataCompression xz

Repository CRAN

Date/Publication 2023-03-28 13:00:02 UTC

Contents
adjustedCADD.annotation e e 3
adjustedCADD.annotation.indels L oo 4

https://doi.org/10.1002/gepi.22210
https://doi.org/10.1038/s41431-020-00792-8

Index

Contents

adjustedCADD.annotation.SNVs 5
bed.matrix.split.genomic.region e e 6
burden 7
burden.continuouso e 9
burden.continuous.subscoreso 11
burden.mlogit e 13
burden.mlogit.subscores L. L e e 15
burden.subscores L. e 17
burden.weighted.matrix L 19
CAST . . e 20
filteradjustedCADD 21
filterrare.variants L. e e e e 23
ENES.POSILIONS v o o i it e e e e 25
genotypic.freq L 26
GnomADEenes e e e 27
GRR.matrix 28
Jaccard L 29
Kryukov o o 30
LCThaplotypes o o o e 31
LCTmatriX o oot e 32
multinomial.asso.freq 33
NullObject.parameters« o v v vt v s e e e 34
RAVAFIRST e 36
rbm.GRR 38
rbm.GRR.power e 40
rbm.haplos.freqs L L. e e e 42
rbm.haplos.pOwer e e e e e e 43
rbm.haplos.thresholds 45
Set.CADDIegions e e e e e 47
SEL.EENOMIC.TEZION v v v v i vt e i e e e e e e e e e e e e e 48
set.genomic.region.subregiono oL 49
SKAT . . . e 51
SKAT.bootstrap o e e 54
SKAT.continuous oottt e e e e e e e 57
SKAT.permutations i e 59
SKAT.theoretical e 61
subregions.LCT 63
WSS e 63
65

adjustedCADD.annotation 3

adjustedCADD.annotation
SNVs and Indels annotation with adjusted CADD scores

Description

Annotate SNVs and Indels with the adjusted CADD scores (CADD PHRED scores for coding,
regulatory and intergenic regions)

Usage

adjustedCADD.annotation(x, SNVs.scores = NULL, indels.scores = NULL,
cores = 10, verbose = T, path.data)

Arguments

X A bed.matrix annotated with CADD regions using set.CADDregions

SNVs.scores A dataframe containing the ADJUSTED CADD scores of the SNVs (Optional,
useful to gain in computation time if the adjusted CADD scores of variants in
the study are available)

indels.scores A dataframe containing the CADD PHREDvV1.4 scores of the indels - Compul-
sory if indels are present in x

cores How many cores to use, set at 10 by default
verbose Whether to display information about the function actions
path.data The repository where data for RAVA-FIRST are or will be downloaded from

https://lysine.univ-brest.fr/RAVA-FIRST/

Details
This function calls adjustedCADD.annotation.SNVs and adjustedCADD.annotation.indels.
See the help of those two functions for more details.

Value

The bed matrix x with adjusted CADD scores in adjCADD.

Source

https://lysine.univ-brest.fr/RAVA-FIRST/

See Also

adjustedCADD.annotation.SNVs, adjustedCADD.annotation.indels, RAVA.FIRST, filter.adjustedCADD

4 adjustedCADD.annotation.indels

Examples

#Import 1000Genome data from region around LCT gene
#x <- as.bed.matrix(LCT.gen, LCT.fam, LCT.bim)

#Annotate variants with adjusted CADD score
#x <- adjustedCADD.annotation(x)

adjustedCADD.annotation.indels
Indels annotation with adjusted CADD scores

Description
Annotate Indels with the adjusted CADD scores (CADD PHRED scores for coding, regulatory and
intergenic regions)
Usage
adjustedCADD.annotation.indels(x, variant.scores = NULL,
cores = 10, verbose = T, path.data)
Arguments

X A bed.matrix annotated with CADD regions using set.CADDregions
variant.scores A dataframe containing the CADD PHREDvV1.4 scores of the indels

cores How many cores to use, set at 10 by default
verbose Whether to display information about the function actions
path.data The repository where data for RAVA-FIRST are or will be downloaded from

https://lysine.univ-brest.fr/RAVA-FIRST/

Details

Indels are directly annotated with the adjusted CADD scores in the function using the file "Adjust-
edCADD_v1.4_202204_indels.tsv.gz" downloaded from https://lysine.univ-brest.fr/RAVA-FIRST/
in the repository of the package Ravages.

The adjusted CADD scores in "AdjustedCADD_v1.4_202204_indels.tsv.gz" have been computed
using a set of 48M indels already annotated in the CADD website. If indels not present in this
set are to be annotated, they will be given the same adjusted score as the indel with the nearest
PHRED score v1.4 provided in variant.scores which should contain the chromosome (’chr’),
position (pos’), reference allele ("A1’), alternative allele " A2’) and PHRED CADD scores v1.4
(CPHRED_1.4").

Those adjusted scores are used in the RAVA.FIRST() pipeline to filter rare variants.

As this function can take time when a large number of SN'Vs are present, it is recommended to use
this function chromosome by chromosome for large datasets or to fitler the bed matrix before the
annotation.

adjustedCADD.annotation.SNVs 5

Value

The bed matrix x with adjusted CADD scores in adjCADD.

Source

https://lysine.univ-brest.fr/RAVA-FIRST/

See Also
adjustedCADD.annotation, adjustedCADD.annotation.SNVs, RAVA.FIRST, filter.adjustedCADD

adjustedCADD.annotation.SNVs
SNVs annotation with adjusted CADD scores

Description

Annotate SNVs with the adjusted CADD scores (CADD PHRED scores for coding, regulatory and
intergenic regions)

Usage
adjustedCADD.annotation.SNVs(x, variant.scores = NULL,
cores = 10, verbose = T, path.data)

Arguments

X A bed.matrix annotated with CADD regions using set.CADDregions

variant.scores A dataframe containing the ADJUSTED CADD scores of the SNVs (Optional,
useful to gain in computation time if the adjusted CADD scores of variants in
the study are available)

cores How many cores to use, set at 10 by default
verbose Whether to display information about the function actions
path.data The repository where data for RAVA-FIRST are or will be downloaded from

https://lysine.univ-brest.fr/RAVA-FIRST/

Details

SNVs are directly annotated with the adjusted CADD scores in the function using the file "Adjust-
edCADD_v1.4 202108.tsv.gz" downloaded from https://lysine.univ-brest.ft/RAVA-FIRST/ in the
repository of the package Ravages or the scores of variants can be provided to variant.scores
to gain in computation time (this file should contain 5 columns: the chromosome (’chr’), position
(’pos’), reference allele ("A1’), alternative allele ("A2’) and adjusted CADD scores ("adjCADD”’).

Those adjusted scores are used in the RAVA.FIRST () pipeline to filter rare variants.

As this function can take time when a large number of SN'Vs are present, it is recommended to use
this function chromosome by chromosome for large datasets or to fitler the bed matrix before the
annotation.

6 bed.matrix.split.genomic.region

Value

The bed matrix x with adjusted CADD scores in adjCADD.

Source

https://lysine.univ-brest.fr/RAVA-FIRST/

See Also

adjustedCADD.annotation, adjustedCADD.annotation.indels, RAVA.FIRST, filter.adjustedCADD

Examples

#Import 1000Genome data from region around LCT gene
#x <- as.bed.matrix(LCT.gen, LCT.fam, LCT.bim)

#Annotate variants with adjusted CADD score
#x <- adjustedCADD.annotation.SNVs(x)

bed.matrix.split.genomic.region
Bed matrix for variants associated to multiple genomic regions

Description

Creates a new bed matrix with variants associated to multiple genomic regions being duplicated

Usage

bed.matrix.split.genomic.region(x, changeID=TRUE, genomic.region=NULL,

n on

split.pattern=",")

Arguments
X A bed.matrix
changelD TRUE/FALSE: whether to change the variants ID by including the gene name

genomic.region A vector containing the genomic region of each variant

split.pattern The character separating the genomic regions

Details

If changeID=TRUE, variants will have new IDs being CHR:POS:A1:A2:genomic.region.

The genomic region(s) associated to each varaint should be in x@snps$genomic.region or given
as a vector to genomic. region. If both are present, genomic.region is used.

burden 7

Value

A bed matrix with variants assigned to multiple genomic regions being duplicated and the corre-
sponding genomic regions separated and transformed into factors.

Examples

#Example bed matrix with 4 variants
Xx.ex <- as.bed.matrix(x=matrix(@, ncol=4, nrow=10),
bim=data.frame(chr=1:4, id=paste("rs"”, 1:4, sep=""), dist = rep(0,4),
pos=c(150,150,200,250), Al=rep("A", 4), A2=rep("T", 4)))

#Example genes dataframe
genes.ex <- data.frame(Chr=c(1,1,3,4), Start=c(10,110,190,220), End=c(170,180,250,260),
Gene_Name=factor(letters[1:4]))

#Attribute genomic regions
x.ex <- set.genomic.region(x.ex, regions = genes.ex)

#Split genomic regions

x.ex.split <- bed.matrix.split.genomic.region(x.ex, split.pattern = ",")
burden Linear, logistic or multinomial regression on a genetic score
Description

Performs burden tests on categorical or continuous phenotypes

Usage

burden(x, NullObject, genomic.region = x@snps$genomic.region, burden,
maf.threshold = 0.5, get.effect.size = FALSE, alpha = 0.05, cores = 10,
verbose = TRUE)

Arguments
X A bed matrix, only needed if burden="CAST" or burden="WSS"
NullObject A list returned from NullObject.parameters

genomic.region A factor containing the genomic region of each SNP, x@snps$genomic.region
by default, only needed if burden="CAST" or burden="WSS"

burden "CAST" or "WSS" to directly compute the CAST or the WSS genetic score, or
a matrix with one row per individual and one column per genomic.region if
another genetic score is wanted.

maf.threshold The MAF threshold to use for the definition of a rare variant in the CAST score.
Set at 0.5 by default

8 burden

get.effect.size
TRUE/FALSE: whether to return effect sizes of the tested genomic.region (OR
for categorical phenotypes, betas for continuous phenotypes)

alpha The alpha threshold to use for the OR confidence interval

cores How many cores to use, set at 10 by default.

verbose Whether to display information about the function actions
Details

This function will return results from the regression of the phenotype on the genetic score for each
genomic region.

If only two groups of individuals are present, a classical logistic regression is performed. If more
than two groups of individuals are present, a non-ordinal multinomial regression is performed,
comparing each group of individuals to the reference group indicated by the argument ref.level
in NullObject.parameters. The choice of the reference group won’t affect the p-values, but only
the Odds Ratios. In both types of regression, the p-value is estimated using the Likelihood Ratio
test and the function burden.mlogit.

If the phenotype is continuous, a linear regression is performed using the function burden. continuous.
The type of phenotype is determined from NullObject$pheno. type.

If another genetic score than CAST or WSS is wanted, a matrix with one row per individual and
one column per genomic. region containing this score should be given to burden. In this situation,

no bed matrix x is needed.

Value

A dataframe with one row per genomic region and at least two columns:

p.value The p.value of the regression

is.err 0/1: whether there was a convergence problem with the regression

If NullObject$pheno. type = "categorical” and get.OR.value=TRUE, additional columns are

present:

OR/beta The OR/beta value(s) associated to the regression. For categorical phenotypes, if
there are more than two groups, there will be one OR value per group compared
to the reference group

1.1lower The lower bound of the confidence interval of each OR/beta

1.upper The upper bound of the confidence interval of each OR/beta

References

Bocher O, et al. DOI: 10.1002/gepi.22210. Rare variant association testing for multicategory
phenotype. Genet.Epidemiol. 2019;43:646—656.

See Also

NullObject.parameters, burden.continuous, burden.mlogit, CAST, WSS, burden.weighted.matrix

burden.continuous 9

Examples

#Import data in a bed matrix
X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population
x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)

#Group variants within known genes
x <- set.genomic.region(x)

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 2.5%

#keeping only genomic regions with at least 10 SNPs

x1 <- filter.rare.variants(x, filter = "whole"”, maf.threshold = ©.025, min.nb.snps = 10)

#run null model, using the 1000Genome population as "outcome”
x1.H® <- NullObject.parameters(pheno = x1@ped$pop, ref.level = "CEU",
RVAT = "burden”, pheno.type = "categorical”)

#run burden test WSS
burden(x1, NullObject = x1.H@, burden = "WSS", get.effect.size=TRUE, cores = 1)

burden.continuous Linear regression on a genetic score

Description

Performs a linear regression on a genetic score

Usage

burden.continuous(x, NullObject, genomic.region = x@snps$genomic.region,
burden, maf.threshold = 0.5, get.effect.size = F,
alpha = 0.05, cores = 10)

Arguments
X A bed matrix, only needed if burden="CAST" or burden="WSS"
NullObject A list returned from NullObject.parameters

genomic.region A factor containing the genomic region of each SNP, x@snps$genomic.region
by default, only needed if burden="CAST" or burden="WSS"

10 burden.continuous

burden "CAST" or "WSS" to directly compute the CAST or the WSS genetic score, or
a matrix with one row per individual and one column per genomic.region if
another genetic score is wanted.

maf.threshold The MAF threshold to use for the definition of a rare variant in the CAST score.
Set at 0.5 by default

get.effect.size
TRUE/FALSE: whether to return the beta value

alpha The alpha threshold to use for the OR confidence interval
cores How many cores to use for moments computation, set at 10 by default
Details

This function will return results from the regression of the continuous phenotype on the genetic
score for each genomic region.

If another genetic score than CAST or WSS is wanted, a matrix with one row per individual and
one column per genomic. region containing this score should be given to burden. In this situation,
no bed matrix x is needed.

Value

A dataframe with one row per genomic region and at least two columns:

p.value The p.value of the regression
is.err 0/1: whether there was a convergence problem with the regression
beta The beta coefficient associated to the tested genomic region
1.1lower The lower bound of the confidence interval of beta
1.upper The upper bound of the confidence interval of beta

See Also

CAST, WSS, burden.weighted.matrix

Examples

#Import data in a bed matrix
X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population
x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")

x@ped$pop <- droplevels(x@ped$pop)

#Group variants within known genes
x <- set.genomic.region(x)

#Filter of rare variants: only non-monomorphic variants with

burden.continuous.subscores 11

#a MAF lower than 2.5%
#keeping only genomic regions with at least 10 SNPs
x1 <- filter.rare.variants(x, filter = "whole"”, maf.threshold = 0.025, min.nb.snps = 10)

#run burden test

WSS, using a random continuous variable as phenotype

x1@ped$pheno <- rnorm(nrow(x1))

#Null model

x1.H@ <- NullObject.parameters(pheno = x1@ped$pheno,

RVAT = "burden”, pheno.type = "continuous")

#Get the beta value
burden.continuous(x1, NullObject = x1.HQ, burden = "WSS",

get.effect.size = TRUE, cores = 1)

burden.continuous. subscores

Linear regression on a multiple genetic scores within a genomic region

Description

Performs burden tests with subscores in the regression on continuous phenotypes

Usage

burden.continuous.subscores(x, NullObject, genomic.region = x@snps$genomic.region,

Arguments

X
NullObject

genomic.region
SubRegion

burden. function

maf.threshold

get.effect.size

alpha

cores

SubRegion = x@snps$SubRegion, burden.function = WSS,
maf.threshold = 0.5, get.effect.size = FALSE,
alpha = 0.05, cores = 10)

A bed matrix, only needed if burden="CAST" or burden="WSS"
A list returned from NullObject.parameters

A factor containing the genomic region of each SNP, x@snps$genomic.region
by default, for example the CADD regions

A vector containing subregions within each genomic. region, x@snps$SubRegion
by default, for example genomic categories

A function to compute the genetic score, WSS by default.

The MAF threshold to use for the definition of a rare variant in the CAST score.
Set at 0.5 by default

TRUE/FALSE: whether to return effect sizes of the tested genomic.region (OR
for categorical phenotypes, betas for continuous phenotypes)

The alpha threshold to use for the OR confidence interval

How many cores to use, set at 10 by default. Only needed if Nul10bject$pheno. type
= "categorical”

12 burden.continuous.subscores

Details

This function will return results from the regression of the phenotype on the genetic score(s) for each
genomic region. Within each genomic region, a subscore will be computed for each SubRegion and
one test will be performed for each genomic.region.

Value

A dataframe with one row per genomic region and two columns:

p.value The p.value of the regression

is.err 0/1: whether there was a convergence problem with the regression

Ifget.effect.size=TRUE, alist is returned with the previous dataframe in $Asso and with effect,
a list containing matrices with three columns:

beta The beta value(s) associated to the subscores in the regression
1.1lower The lower bound of the confidence interval of each beta
1.upper The upper bound of the confidence interval of each beta

See Also

NullObject.parameters, burden.subscores, CAST, WSS

Examples

#Import data in a bed matrix
#x <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population
#x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
#x <- select.inds(x, superpop=="EUR")
#x@ped$pop <- droplevels(x@ped$pop)

#Group variants within CADD regions and genomic categories
#x <- set.CADDregions(x)

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 2.5%

#and with a adjusted CADD score greater than the median

#x1 <- filter.adjustedCADD(x, filter = "whole"”, maf.threshold = 0.025)

#Simulation of a covariate + Sex as a covariate
#sex <- x1@ped$sex

#set.seed(1) ; u <- runif(nrow(x1))

#tcovar <- cbind(sex, u)

#Null model with the covariate sex and a continuous phenotype
#x1.HO.covar <- NullObject.parameters(pheno = x1@ped$pheno <- rnorm(nrow(x1)),
RVAT = "burden”, pheno.type = "continuous”,

burden.mlogit 13

data = covar, formula = ~ sex)

#WSS test

#res.subscores <-burden.continuous.subscores(x1, NullObject = x1.H®@.covar,

burden = WSS, get.effect.size=TRUE, cores = 1)

#res.subscores$Asso # p-values
#res.subscores$effect #beta values

burden.mlogit Logistic or multinomial regression on a genetic score

Description

Performs a logistical or a non-ordinal multinomial regression on a genetic score

Usage

burden.mlogit(x, NullObject, genomic.region = x@snps$genomic.region, burden,
maf.threshold = 0.5, get.effect.size = FALSE, alpha = 0.05, cores = 10)

Arguments
X A bed matrix, only needed if burden="CAST" or burden="WSS"
NullObject A list returned from NullObject.parameters

genomic.region A factor containing the genomic region of each SNP, x@snps$genomic.region
by default, only needed if burden="CAST" or burden="WSS"

burden "CAST" or "WSS" to directly compute the CAST or the WSS genetic score; or
a matrix with one row per individual and one column per genomic.region if
another genetic score is wanted.

maf.threshold The MAF threshold to use for the definition of a rare variant in the CAST score.
Set at 0.5 by default

get.effect.size
TRUE/FALSE: whether to return OR values

alpha The alpha threshold to use for the OR confidence interval
cores How many cores to use for moments computation, set at 10 by default
Details

This function will return results from the regression of the phenotype on the genetic score for each
genomic region.

If only two groups of individuals are present, a classical logistic regression is performed. If more
than two groups of individuals are present, a non-ordinal multinomial regression is performed,
comparing each group of individuals to the reference group indicated by the argument ref.level
in NullObject.parameters. The choice of the reference group won’t affect the p-values, but only

14 burden.mlogit

the Odds Ratios. In both types of regression, the p-value is estimated using the Likelihood Ratio
test.

If another genetic score than CAST or WSS is wanted, a matrix with one row per individual and
one column per genomic. region containing this score should be given to burden. In this situation,
no bed matrix x is needed.

Value

A dataframe with one row per genomic region and at least two columns:

p.value The p.value of the regression

is.err 0/1: whether there was a convergence problem with the regression

If get.effect.size=TRUE, additional columns are present:

OR The OR value(s) associated to the regression. If there are more than two groups,
there will be one OR value per group compared to the reference group
1.lower The lower bound of the confidence interval of each OR
1.upper The upper bound of the confidence interval of each OR
References

Bocher O, et al. DOI: 10.1002/gepi.22210. Rare variant associationtesting for multicategory phe-
notype. Genet.Epidemiol. 2019;43:646-656.

See Also

NullObject.parameters, CAST, WSS, burden.weighted.matrix

Examples

#Import data in a bed matrix
X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population
x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)

#Group variants within known genes
x <- set.genomic.region(x)

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 2.5%

#keeping only genomic regions with at least 200 SNP

x1 <- filter.rare.variants(x, filter = "whole”, maf.threshold = ©.025, min.nb.snps = 200)

#Simulation of a covariate + Sex as a covariate
sex <- x1@ped$sex

burden.mlogit.subscores 15

set.seed(1) ; u <= runif(nrow(x1))
covar <- cbind(sex, u)

#run null model, using the 1000Genome population as "outcome”
#Null model with the covariate sex
x1.H@.covar <- NullObject.parameters(pheno = x1@ped$pop, ref.level = "CEU",
RVAT = "burden”, pheno.type = "categorical”,
data = covar, formula = ~ sex)
#WSS test
burden.mlogit(x1, NullObject = x1.H@.covar, burden = "WSS", get.effect.size=TRUE, cores = 1)

burden.mlogit.subscores
Logistic or multinomial regression on a multiple genetic scores within
a genomic region

Description

Performs burden tests with subscores in the regression on categorical phenotypes

Usage

burden.mlogit.subscores(x, NullObject, genomic.region = x@snps$genomic.region,
SubRegion = x@snps$SubRegion, burden.function = WSS,
maf.threshold = 0.5, get.effect.size = FALSE,
alpha = 0.05, cores = 10)

Arguments
X A bed matrix, only needed if burden="CAST" or burden="WSS"
NullObject A list returned from NullObject.parameters

genomic.region A factor containing the genomic region of each SNP, x@snps$genomic.region
by default, for example the CADD regions

SubRegion A vector containing subregions within each genomic. region, x@snps$SubRegion
by default, for example genomic categories

burden.function
A function to compute the genetic score, WSS by default.

maf.threshold The MAF threshold to use for the definition of a rare variant in the CAST score.
Set at 0.5 by default

get.effect.size
TRUE/FALSE: whether to return effect sizes of the tested genomic.region (OR
for categorical phenotypes, betas for continuous phenotypes)

alpha The alpha threshold to use for the OR confidence interval

cores How many cores to use, set at 10 by default. Only needed if Nul10bject$pheno. type
= "categorical”

16 burden.mlogit.subscores

Details

This function will return results from the regression of the phenotype on the genetic score(s) for each
genomic region. Within each genomic region, a subscore will be computed for each SubRegion and
one test will be performed for each genomic.region.

If only two groups of individuals are present, a classical logistic regression is performed. If more
than two groups of individuals are present, a non-ordinal multinomial regression is performed,
comparing each group of individuals to the reference group indicated by the argument ref.level
in NullObject.parameters. The choice of the reference group won’t affect the p-values, but only
the Odds Ratios. In both types of regression, the p-value is estimated using the Likelihood Ratio
test and the function burden.mlogit.

Value
A dataframe with one row per genomic region and two columns:

p.value The p.value of the regression

is.err 0/1: whether there was a convergence problem with the regression

If get.effect.size=TRUE, a list is returned with the previous dataframe in $Asso and with effect,
a list containing matrices with three columns:

OR The OR value(s) associated to the subscores in the regression. If there are more
than two groups, there will be one OR value per group compared to the reference
group

1.lower The lower bound of the confidence interval of each OR

1.upper The upper bound of the confidence interval of each OR

See Also

NullObject.parameters, burden.subscores, CAST, WSS

Examples

#Import data in a bed matrix
#x <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population
#x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
#x <- select.inds(x, superpop=="EUR")
#x@ped$pop <- droplevels(x@ped$pop)

#Group variants within CADD regions and genomic categories
#x <- set.CADDregions(x)

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 2.5%

#and with a adjusted CADD score greater than the median

#x1 <- filter.adjustedCADD(x, filter = "whole"”, maf.threshold = 0.025)

burden.subscores 17

#run null model, using the 1000Genome population as "outcome”
#x1.HO <- NullObject.parameters(pheno = x1@ped$pop, ref.level = "CEU",
RVAT = "burden”, pheno.type = "categorical")

#run burden test WSS

#res.subscores <- burden.subscores(x1, NullObject = x1.H@, burden = WSS,
get.effect.size=TRUE, cores = 1)
#res.subscores$Asso # p-values

#res.subscores$effect #OR values

burden.subscores Linear, logistic or multinomial regression on a multiple genetic scores
within a genomic region

Description

Performs burden tests with subscores in the regression on categorical or continuous phenotypes

Usage

burden.subscores(x, NullObject, genomic.region = x@snps$genomic.region,
SubRegion = x@snps$SubRegion, burden.function = WSS,
maf.threshold = 0.5, get.effect.size = FALSE,
alpha = 0.05, cores = 10, verbose = TRUE)

Arguments
X A bed matrix
NullObject A list returned from NullObject.parameters

genomic.region A factor containing the genomic region of each SNP, x@snps$genomic.region
by default, for example the CADD regions

SubRegion A vector containing subregions within each genomic.region, x@snps$SubRegion
by default, for example genomic categories

burden.function
A function to compute the genetic score, WSS by default.

maf.threshold The MAF threshold to use for the definition of a rare variant in the CAST score.
Set at 0.5 by default

get.effect.size
TRUE/FALSE: whether to return effect sizes of the tested genomic.region (OR
for categorical phenotypes, betas for continuous phenotypes)

alpha The alpha threshold to use for the OR confidence interval
cores How many cores to use, set at 10 by default. Only needed if Nu110bject$pheno. type
= "categorical”

verbose Whether to display information about the function actions

18 burden.subscores

Details

This function will return results from the regression of the phenotype on the genetic score(s) for each
genomic region. Within each genomic region, a subscore will be computed for each SubRegion and
one test will be performed for each genomic.region.

When used after set.CADDregions, it will perform a test by CADD region with one subscore by
genomic category (coding, regulatory, intergenic) as in the RAVA.FIRST() strategy.

If only two groups of individuals are present, a classical logistic regression is performed. If more
than two groups of individuals are present, a non-ordinal multinomial regression is performed,
comparing each group of individuals to the reference group indicated by the argument ref.level
in NullObject.parameters. The choice of the reference group won’t affect the p-values, but only
the Odds Ratios. In both types of regression, the p-value is estimated using the Likelihood Ratio
test and the function burden.mlogit.

If the phenotype is continuous, a linear regression is performed using the function burden. continuous.

The type of phenotype is determined from NullObject$pheno. type.

Value
A dataframe with one row per genomic region and two columns:

p.value The p.value of the regression
is.err 0/1: whether there was a convergence problem with the regression

If get.effect.size=TRUE, alist is returned with the previous dataframe in $Asso and with ef fect,
a list containing matrices with three columns:

OR/beta The OR/beta value(s) associated to the subscores in the regression. For categor-
ical phenotypes, if there are more than two groups, there will be one OR value
per group compared to the reference group

1.lower The lower bound of the confidence interval of each OR/beta
1.upper The upper bound of the confidence interval of each OR/beta
See Also

RAVA.FIRST,NullObject.parameters, burden.continuous.subscores, burden.mlogit.subscores,
CAST, WSS

Examples

#Import 1000Genome data from region around LCT gene
X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Group variants within known genes and

#Within coding and regulatory regions

x <- set.genomic.region.subregion(x, regions = genes.b37,
subregions = subregions.LCT)

#Add population
x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

burden.weighted. matrix

#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)

#Keep only variants with a MAF lower than 1%
x1 <- filter.rare.variants(x, filter = "whole"”, maf.threshold = 0.01)

#run null model, using the 1000Genome population as "outcome”
x1.H® <- NullObject.parameters(pheno = x1@ped$pop, ref.level = "CEU",
RVAT = "burden”, pheno.type = "categorical”)

#run functionally-informed burden test WSS in LCT

burden.subscores(select.snps(x1, genomic.region == "LCT"),
NullObject = x1.H@, burden.function = WSS,
get.effect.size=FALSE, cores = 1)

####Using the RAVA-FIRST approach with CDD regions
#Group variants within CADD regions and genomic categories
#x <- set.CADDregions(x)

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 2.5%

#and with a adjusted CADD score greater than the median

#x1 <- filter.adjustedCADD(x, filter = "whole"”, maf.threshold = 0.025)

#run functionally-informed burden test WSS
#burden. subscores(x1, NullObject = x1.HQ, burden.function = WSS,
get.effect.size=FALSE, cores = 1)

19

burden.weighted.matrix
Score matrix for burden tests

Description

Computes the score matrix for burden tests based on variants’ weights

Usage

burden.weighted.matrix(x, weights, genomic.region = x@snps$genomic.region)

Arguments
X A bed.matrix
weights A vector containing the weight of each variant

genomic.region A factorcontaining the genomic region of each variant

20 CAST

Details
For variant i and individual j, the genetic score will be computed as weight of variant i * number of
minor alleles for individual j. This function returns a weighted score of rare alleles in the genomic
region: if the reference allele is rare, it will be counted in the score instead of the atlernative allele.
Value
A matrix containing the computed genetic score with one row per individual and one column per
genomic.region.
See Also

CAST, WSS, burden.mlogit

Examples

#Import data in a bed matrix
X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

Group variants within known genes
x <- set.genomic.region(x)

Filter variants with maf (computed on whole sample) < 0.025
keeping only genomic region with at least 10 SNPs
x1 <- filter.rare.variants(x, filter = "whole"”, maf.threshold = ©.025, min.nb.snps = 10)

#Compute burden score with weights = 1-maf
score.burden <- burden.weighted.matrix(x1, weights=1-x1@snps$maf)

CAST Cohort Allelic Sum Test

Description

Calculates the CAST genetic score

Usage

CAST(x, genomic.region = x@snps$genomic.region, maf.threshold = 0.5,
flip.rare.alleles = T)

Arguments

X A bed.matrix

genomic.region A factor defining the genomic region of each variant

maf.threshold The MAF used for the definition of a rare variant, set at 0.5 by default, i.e. all
variants are kept

flip.rare.alleles
Whether to flip the A1/A2 alleles if the Al allele is rare, set at T by default

filter.adjusted CADD 21

Details

By default, CAST counts if an individual carries at least one rare allele in the genomic region. If
flip.rare.alleles =F and the reference allele Al is rare, the alles Al and A2 won’t be flipped
and CAST will count the number of alternative alleles A2.

Value

A matrix containing the CAST genetic score with one row per individual and one column per
genomic.region

References

Morgenthaler S and Thilly WG. A strategy to discover genes that carry multi-allelic or mono-allelic
risk for common diseases: a cohort allelic sums test (CAST). Mutat Res. 2007

See Also

WSS, burden.weighted.matrix, burden.mlogit

Examples

#Import data in a bed matrix
X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

Group variants within known genes
x <- set.genomic.region(x)

Filter variants with maf (computed on whole sample) < 0.025
keeping only genomic region with at least 10 SNPs
x1 <- filter.rare.variants(x, filter = "whole"”, maf.threshold = 0.025, min.nb.snps = 10)

Compute burden score CAST
score.CAST <- CAST(x1, maf.threshold=0.025)

filter.adjustedCADD Variant filtering based on frequency and median adjusted CADD by
CADD regions

Description

Filter rare variants based on a MAF threshold, a given number of SNP or a given cumulative MAF
per genomic region and the median of adjusted CADD score for each CADD region

22 filter.adjusted CADD

Usage

filter.adjustedCADD(x, SNVs.scores = NULL, indels.scores = NULL,
ref.level = NULL,
filter=c("whole”, "controls"”, "any"),
maf.threshold=0.01, min.nb.snps = 2,
min.cumulative.maf = NULL,
group = NULL, cores = 10, path.data, verbose = T)

Arguments

X A bed.matrix annotated with CADD regions using set.CADDregions

SNVs.scores A dataframe containing the ADJUSTED CADD scores of the SNVs (Optional,
useful to gain in computation time if the adjusted CADD scores of variants in
the study are available)

indels.scores A dataframe containing the CADD PHREDvV1 .4 scores of the indels - Compul-
sory if indels are present in x

ref.level The level corresponding to the controls group, only needed if filter=="controls”

filter On which group the filter will be applied

maf.threshold The MAF threshold used to define a rare variant, set at 0.01 by default

min.nb.snps The minimum number of variants needed to keep a CADD region, set at 2 by
default

min.cumulative.maf
The minimum cumulative maf of variants needed to keep a CADD region

group A factor indicating the group of each individual, only needed if filter = "controls”
or filter = "any". If missing, x@ped$pheno is taken
cores How many cores to use, set at 10 by default
path.data The repository where data for RAVA-FIRST are or will be downloaded from
https://lysine.univ-brest.fr/RAVA-FIRST/
verbose Whether to display information about the function actions
Details

Variants are directly annotated with the adjusted CADD scores in the function using the file "Ad-
justedCADD_v1.4_202108.tsv.gz" downloaded from https://lysine.univ-brest.fr/RAVA-FIRST/ in
the repository of the package Ravages or the scores of variants can be provided to variant.scores
to gain in computation time (this file should contain 5 columns: the chromosome (’chr’), position
(’pos’), reference allele (A1), alternative allele (" A2’) and adjusted CADD scores ("adjCADD”’).
As CADD scores are only available for SN'Vs, only those ones will be kept in the analysis.

If a column *adjCADD’ is already present in x@snps, no annotation will be performed and filtering
will be directly on this column.

To use this function, a factor ’genomic.region’ corresponding to the CADD regions and a vector
’adjCADD.Median’ should be present in the slot x@snps. To obtain those two, use the function
set.CADDregions.

Only variants with an adjusted CADD score upper than the median value are kept in the analysis. It
is the filtering strategy applied in the RAVA.FIRST () pipeline.

filter.rare.variants 23

If filter="whole"”, only the variants having a MAF lower than the threshold in the entire sample
are kept.

If filter="controls”, only the variants having a MAF lower than the threshold in the controls
group are kept.

If filter="any", only the variants having a MAF lower than the threshold in any of the groups are
kept.

It is recommended to use this function chromosome by chromosome for large datasets.

Value

A bed.matrix with filtered variants

Source

https://lysine.univ-brest.fr/RAVA-FIRST/

See Also

RAVA.FIRST, set.CADDregions, burden.subscores, filter.rare.variants

Examples

#Import 1000Genome data from region around LCT gene
#x <- as.bed.matrix(LCT.gen, LCT.fam, LCT.bim)

#Group variants within CADD regions and genomic categories
#x <- set.CADDregions(x)

#Annotate variants with adjusted CADD score

#and filter on frequency and median

#x.median <- filter.adjustedCADD(x, maf.threshold = 0.025,
min.nb.snps = 2)

filter.rare.variants Rare variants filtering

Description
Filter rare variants based on a MAF threshold and a given number of SNP or a given cumulative
MAF per genomic region

Usage

filter.rare.variants(x, ref.level = NULL, filter=c("whole”, "controls”, "any"),
maf.threshold=0.01, min.nb.snps = 2, min.cumulative.maf = NULL,
group = NULL, genomic.region = NULL)

24

Arguments

X
ref.level
filter

maf . threshold

min.nb.snps

min.cumulative.

group

genomic.region

Details

filter.rare.variants

A bed.matrix

The level corresponding to the controls group, only needed if filter=="controls”
On which group the filter will be applied

The MAF threshold used to define a rare variant, set at 0.01 by default

The minimum number of variants needed to keep a genomic region, set at 2 by
default

maf

The minimum cumulative maf of variants needed to keep a genomic region

A factor indicating the group of each individual, only needed if filter = "controls”
or filter = "any". If missing, x@ped$pheno is taken

An optional factor containing the genomic region of each variant, only needed if
min.nb.snpsormin.cumulative.maf is specified and if x@snps$genomic.region
doesn’t exist

To use this function, a factor ’genomic.region’ should be present in the slot x@snps.

If filter="whole", only the variants having a MAF lower than the threshold in the entire sample

are kept.

If filter="controls", only the variants having a MAF lower than the threshold in the controls

group are kept.

If filter="any", only the variants having a MAF lower than the threshold in any of the groups are

kept.

Value

A bed.matrix with

Examples

filtered variants

#Import 1000Genome data from region around LCT gene
X <- as.bed.matrix(LCT.gen, LCT.fam, LCT.bim)

#Group variants within known genes

x <- set.genomic.

region(x)

table(x@snps$genomic.region, useNA="ifany")

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 2.5%

#keeping only genomic regions with at least 10 SNPs

x1 <- filter.rare.variants(x, filter = "whole"”, maf.threshold = ©.025, min.nb.snps = 10)
table(x1@snps$genomic.region, useNA="ifany")

#Keep only variants with a MAF<2%
#and regions with a cumulative MAF>10%
filter.rare.variants(x, filter = "whole”, maf.threshold = 0.02, min.nb.snps = 1,

genes.positions 25

min.cumulative.maf=0.2)

genes.positions Genes positions

Description

Positions of human genes in bed format (Start is 0-based and End is 1-based). These data were
downloaded from Biomart on the Ensembl website with the GRCh37 and GRCh38 versions. Only
genes present in GnomAD were kept.

Data contain the Chr, the Start position, the End position and the Name of all the genes in chromo-
somes 1 to 22 representing 19375 and 18278 genes in the two GRCh versions respectively.

Usage

data(genes.b37)
data(genes.b38)

Format
The data contain one dataframe with four columns:
Chr The chromosome of the gene
Start The start position of the gene (0-based)

End The end position of the gene (1-based)

Name The name of the gene

Source

The data were obtained from the Ensembl website.

References

RJ Kinsella et al, 2011, Ensembl BioMarts: a hub for data retrieval across taxonomic space,
Database. doi:10.1093/database/bar030;

AD Yates et al, 2020, Ensembl 2020, Nucleic Acide Research. doi:10.1093/nar/gkz966

See Also

set.genomic.region

26 genotypic.freq

genotypic.freq Genotypic frequencies calculation for data simulations

Description

Calculates the three genotypic frequencies in the controls group and each group of cases based on
MAF in the general population and GRR values

Usage
genotypic.freq(genes.maf = Kryukov, GRR.het, GRR.homo.alt, prev,
genetic.model = c("general”, "multiplicative”,
"dominant"”, "recessive”), select.gene,

selected.controls = T)

Arguments
genes.maf A file containing the MAF in the general population (column maf) for variants
with their associated gene (column gene), by default the file Kryukov is used
GRR.het A matrix giving the GRR of the heterozygous genotype compared to the ho-
mozygous reference genotype with one row per cases group and one column per
variant

GRR.homo.alt A matrix giving the GRR of the homozygous alternative genotype compared
to the homozygous reference genotype with one row per cases group and one
column per variant, only need if genetic.model="general”

prev A vector containing the prevalence of each group of cases

genetic.model The genetic model of the disease

select.gene Which gene to choose from genes.maf$gene if multiple genes are present. If
missing, only the first level is kept.

selected.controls

Whether controls are selected controls (by default) or controls from the general
population

Details

This function is used to simulate genetic data.
The genetic model of the disease needs to be specified to genetic.model:

If genetic.model="general”, there is no link between the GRR associated to the heterozygous
genotype and the GRR associated to the homozygous alternative genotype. Therefore, the user has
to give two matrices of GRR, one for each of these genotypes.

If genetic.model="multiplicative”, we assume that the GRR associated to the homozygous
alternative genotype is the square of the GRR associated to the heterozygous genotype.

If genetic.model="dominant", we assume that the GRR associated to the heterozygous genotype
and the GRR associated to the homozygous alternative genotype are equal.

GnomADgenes 27

If genetic.model="recessive"”, we assume that the GRR associated to the heterozygous genotype
is equal to 1: the GRR given is the one associated to the homozygous alternative genotype.

prev corresponds to the proportion of each sub-group of cases in the population. It is used only to
calculate the MAF in the controls group.

If selected.controls =T, genotypic frequencies in the control group are computed from geno-
typic frequencies in the cases groups and the prevalence of the disease. If FALSE, genotypic fre-
quencies in the control group are computed from allelic frequencies under Hardy-Weinberg equi-
librium.

The dataframes Kryukov or GnomADgenes available with the package Ravages can be used for the
argument genes.maf.

Value

A matrix of MAF values with one column per variant and one row per group (the first one being the
controls group)

See Also

GRR.matrix, rbm.GRR, GnomADgenes, Kryukov

Examples

#Construction of the GRR matrix using the formula from SKAT

#to compute the GRR (higher weights to rarer variants)

#GRR in the second group are twice as high as in the first group

GRR.del <- GRR.matrix(GRR = "SKAT", GRR.multiplicative.factor=2,
select.gene="R1")

#Calculation of frequency in the three groups of individuals

#under a multilpicative model of the disease

geno.freq.groups <- genotypic.freq(genes.maf = Kryukov, GRR.het = GRR.del,
prev = c(0.001, 0.001), select.gene="R1",
genetic.model = "multiplicative"”)

GnomADgenes GnomADgenes dataset

Description
This dataframe contains variants from the GnomAD database with MAF values in the Non-Finnish
European (NFE) and their consequences from VEP with each associated gene in build version 37.
Usage

data(GnomADgenes)

28

Format

GRR.matrix

GnomADgenes is a dataframe with five columns:

chr The chromosome of the variant

pos The position of the variant

consequence The functionnal consequence of the variant predicted by Variant Effect Predictor

(VEP)

gene The gene associated to each variant predicted by VEP
maf The MAF of the variant in the NFE population

Source

The data were obtained from the GnomAD website (see http://gnomad.broadinstitute.org/) and the
VEP website (see https://www.ensembl.org/info/docs/tools/vep/).

GRR.matrix

GRR matrix for genetic data simulation

Description

Computes a GRR matrix based on a simulation model

Usage

GRR.matrix(genes.maf = Kryukov, n.case.groups = 2,
GRR = c("SKAT", "constant”, "variable"),
GRR.value, GRR.function, GRR.multiplicative.factor, select.gene)

Arguments

genes.maf

n.case.groups

GRR
GRR.value
GRR.function

A dataframe containing at least the MAF in the general population (column maf)
with their associated gene (column gene). By default, maf from the file Kryukov
are used

The number of cases groups (set at 2 by default), i.e. the number of groups
where variants will have a GRR greater than 1

How to calculate the GRR
GRR value if GRR="constant”

A function indicating how to calculate the GRR depending on MAF in the gen-
eral population, only needed if GRR="variable"”

GRR.multiplicative.factor

select.gene

A vector of size (n.case. groups-1) containing the multiplicative factor for the
GRR for each group of cases compared to the first group of cases

The gene(s) to be selected from the file genes.maf if multiple genes are present.
If missing, the first level of genes.maf$gene is kept.

Jaccard 29

Details

The GRR can be computed in three ways using the argument GRR.

If GRR="constant", the same GRR is given to all the variants, its value being specified to GRR. value.
If GRR="SKAT", the GRR are calculating using the formula from the paper presenting the SKAT
method and thus depend on MAF. If GRR="variable"”, the GRR are calculating using a function
given by the user to GRR. function depending only on the MAF in the general population.

The argument multiplicative. factor contains n.case.groups-1 values;ifmultiplicative.factor=1,
GRR will be the same between the different groups of cases.

The two dataframes Kryukov (used by default) and GnomADgenes (containing MAF in the NFE
population) can be used as genes.maf.

GRR.matrix returns a matrix that can be used in other simulation functions such as rbm. GRR.

Value

A matrix containing the GRR values with one column per variant and one line per cases group

See Also

rbm.GRR, GnomADgenes, Kryukov

Examples

#GRR calculated on the MAF from the first unit of the file Kryukov

#using the formula from the SKAT paper, with the second group of cases

#having GRR values twice as high as the first one

GRR.del <- GRR.matrix(GRR = "SKAT", genes.maf = Kryukov,
GRR.multiplicative.factor=2, select.gene = "R1")

Jaccard Jaccard index

Description

Calculates the Jaccard index for each pair of individuals using a bed.matrix

Usage

Jaccard(x, maf.threshold = 0.01)

Arguments

X A bed.matrix

maf.threshold The MAF used for the definition of a rare variant, set at 0.01 by default

30 Kryukov

Details

The individuals carrying no rare variants will have a null Jaccard index with all the individuals
including themselves.

Value

A squared matrix giving the Jaccard index for each pair of individuals

References

Jaccard, P. (1908) Nouvelles researches sur la distribution florale, Bulletin de la Société vaudoise
des sciences naturelles, 44, 223-270

Examples

#Simulation of genetic data with GRR values according to the SKAT formula
GRR.del <- GRR.matrix(GRR = "SKAT", genes.maf = Kryukov,
n.case.groups = 2, select.gene = "R1",
GRR.multiplicative.factor=2)

#Simulation of one group of 1,000 controls and two groups of 500 cases,
#50% of causal variants, 5 genomic regions are simulated.
x <- rbm.GRR(genes.maf=Kryukov, size = c(1000, 500, 500),

prev = c(0.001, 0.001), select.gene = "R1",

GRR.matrix.del = GRR.del, p.causal = 0.5,

genetic.model = "multiplicative”, replicates = 5)

#Calculate the Jaccard matrix
J <- Jaccard(x, maf.threshold = 0.01)

Kryukov Kryukov data set

Description

The data from Kryukov et al, 2009, contain simulated site frequency spectrum data using European
demographic models with purifying selection.

Usage

data(Kryukov)

LCT.haplotypes 31

Format

Kryukov is a dataframe with four columns:

gene The unit of each variant
maf The maf of each variant in the European population
selection.coefficient The selction coefficient of each variant in the European population

position The position of each variant

Details
200 units are present corresponding to 200 genes. For each unit, the data set contains the maf in the
European population, the selection coefficient and the position of each variant.

Source
The data were obtained from the SeqPower software (see also http://www.bioinformatics.org/
spower/input#data_download).

References

Kryukov et al, 2009, Power of deep, all-exon resequencing for discovery of human trait genes,
Proceedings of the National Academy of Sciences, DOI:10.1073/pnas.0812824106

LCT.haplotypes LCT haplotypes data set

Description

These data contain the haplotype matrix LCT. hap (5008 haplotypes) of the 2004 individuals from
the 1000 Genomes data for a ~300kb segment containing the Lactase gene. Information about
individuals (sex, population and super population) is present in LCT. sample, and information about
snps is available in LCT. snps.

Usage

data(LCT.haplotypes)

Format
Three data objects are present in LCT. haplotypes:
LCT.hap A matrix of haplotypes

LCT.sample A data frame with information on individuals (sex, population, super.population)

LCT.snps A data frame with information on snps (chr, id, dist, pos, Al, A2)

http://www.bioinformatics.org/spower/input#data_download
http://www.bioinformatics.org/spower/input#data_download

32 LCT.matrix

Source

Data were obtained from the 1000 Genomes Project.

References

McVean et al, 2012, An integrated map of genetic variation from 1,092 human genomes, Nature
491, 56-65 doi:10.1038/nature11632

See Also

LCT.matrix

LCT.matrix LCT genotypes matrix

Description

These data contain the genotype matrix corresponding to haplotypes present in LCT.haplotypes
from the 1000 Genomes data for a ~300kb segment containing the Lactase gene. Information about
individuals is present in LCT.matrix. fam, and information about population (population and su-
per population) is present in LCT.matrix.pop1000G, in a format needed to generate a bedmatrix.
LCT.snps from LCT.haplotypes can be used as the corresponding bim file of this genotypes ma-
trix.

Usage

data(LCT.matrix)

Format

Three data objects are present in LCT. haplotypes:

LCT.matrix.bed The matrix of genotypes
LCT.matrix.fam The corresponding fam file

LCT.matrix.pop1000G A data frame with population information for individuals (population, su-
perpopulation)
Source

Data were obtained from the 1000 Genomes Project.

References

McVean et al, 2012, An integrated map of genetic variation from 1,092 human genomes, Nature
491, 56-65 doi:10.1038/nature11632

multinomial.asso.freq 33

See Also

LCT.haplotypes

Examples

#Import data in a bed matrix

X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population

x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

multinomial.asso.freq Single variant association test with categorical phenotype

Description

Performs an association test between categorical phenotypes and single variants

Usage

multinomial.asso.freq(x, pheno = x@ped$pheno, ref.level,
test = c("Genotypic”, "Allelic"), get.effect.size = F,
min.maf.threshold = 0.05)

Arguments
X A bed matrix, only needed if burden="CAST" or burden="WSS"
pheno The phenotype of each individual: a factor if pheno.type = "categorical”,
and a numeric vector if pheno. type = "continuous”
ref.level The reference group of individuals for the estimation of the effect size, only
needed if get.effect.size=T
test Whether to perform the test on the three genotypes ("Genotypic") or on the two

alleles ("Allelic")
get.effect.size

TRUE/FALSE: whether to return effect sizes of the variants (OR)
min.maf. threshold

MAF threshold used to define a frequent variant to apply single-variant test

Details

This association test is based on a chi-square with the following number of df: If test = "Genotypic”,
(number of groups of individuals - 1)* 2 If test = "Allelic"”, (number of groups of individuals -

1y

34 NullObject.parameters

Value

A dataframe with one row per variant and three columns: the chromosome, position and p-value of
each variant. If get.effect.size =T, a list with Asso containing the previous dataframe and OR
containing the OR in each group for each variant.

Examples

#Import data in a bed matrix
X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population
x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)

#Perform association test
x.freq.asso <- multinomial.asso.freq(x, test = "Genotypic”,
pheno = x@ped$pop)

NullObject.parameters Null Model for SKAT and burden tests

Description

Get the parameters under the null model to peforms burden tests or SKAT

Usage

NullObject.parameters(pheno, RVAT, pheno.type = c("categorical”, "continuous"),
ref.level, data, formula)

Arguments

pheno The phenotype of each individual: a factor if pheno.type = "categorical”,
and a numeric vector if pheno. type = "continuous”

RVAT The type of Rare Variant Association Test (RVAT) to perform: should be "bur-
den" or "SKAT"

pheno. type The type of phenotype: "categorical" for binary or multinomial traits, or "con-
tinuous"

ref.level The reference group of individuals for the regression, only needed if RVAT =
"burden” and pheno.type = "categorical”

data Optional, a matrix containing the covariates with one column per covariate and
one row per individual

formula Optional, an R formula corresponding to the regression model indicating which

covariates from data to include in the model if only some of them are to be
included

NullObject.parameters 35

Details

Warning: individuals in pheno and data should be in the same order.
This function gets the parameters under the null model for SKAT or the burden tests.

For burden tests, it computes the Log-Likelihood under the null model used to perform the Likeli-
hood Ratio Test.

For SKAT, it computes the probabilites for each individual of belonging to each group based on the
group sizes and the potential covariates.

If formula is missing, all columns from data will be included as covariates.

Value

A list containing different elements depending on the RVAT performed and the pheno. type.
- if RVAT = "burden” and pheno. type = "categorical”:

group A factor containing the group of each individual as given
ref.level The reference group of individuals for the regression as given
Ho.LogLik The Log-Likelihood of the null model

covar.toinclude
Which covariates to include in the regression, depends on the argument formula

data The data argument containing covariates, NULL if it was missing
- if RVAT = "burden” and pheno. type = "continuous":

pheno A numeric vector containing the phenotype value for each individual as given
covar.toinclude
Which covariates to include in the regression, depends on the argument formula

data The data argument containing covariates, NULL if it was missing

- if RVAT = "SKAT" and pheno. type = "categorical”:

Pi.data A matrix n.individuals x n.groups containing the probabilities that each individ-
ual belong to each group

X A matrix containing 1 in the first column for the intercept, and covariates from
data and formula

group A factor containing the group of each individual as given

get.moments How to compute moments based on sample size for p-value calculations (only

used if get.moments = "size.based" for a categorical phenotype in SKAT.

P1 The vairance-covariance matrix of (Y - Pi_hat)
- if RVAT = "SKAT" and pheno. type = "continuous”:
ymp A matrix n.individuals x 1 containing the (y - pi_hat) values, i.e. the residuals

from the regression of the phenotype on the potential covariates

X A matrix containing 1 in the first column for the intercept, and covariates from
data and formula

pheno The phenotype of each individual as given

P1 The variance matrix of ymp

36 RAVA FIRST

See Also
SKAT, burden

Examples

#Random phenotype of 100 individuals

random.multi.pheno <- sample(1:3, 100, replace = TRUE)

#Random continuous phenotype

random.continuous.pheno <- rnorm(100)

#Random sex covariate

random.covar <- matrix(sample(1:2, prob = c(0.4, 0.6), size = 100, replace = TRUE),
ncol = 1)

#Null Model for burden with a multinomi-category phenotype
#Controls as reference group, no covariates
HO.burden.multi <- NullObject.parameters(pheno = as.factor(random.multi.pheno),
RVAT = "burden”, pheno.type = "categorical”, ref.level = 1)
#Null Model for SKAT with a continuous phenotype and a covariate
HO.SKAT.continuous <- NullObject.parameters(pheno = random.continuous.pheno,
RVAT = "SKAT", pheno.type = "continuous”,
data = random.covar)

RAVA.FIRST RAVA-FIRST: RAre Variant Association using Functionally-InfoRmed
STeps

Description

Analyse rare variants using the RAVA-FIRST approach based on CADD scores to group and filter
rare variants

Usage

RAVA.FIRST(x, SNVs.scores = NULL, indels.scores = NULL, ref.level,
filter=c("whole"”, "controls"”, "any"),
maf.threshold=0.01, min.nb.snps = 2,
min.cumulative.maf = NULL, group = NULL,
cores = 10, burden = TRUE, H@.burden, burden.parameters,
SKAT = TRUE, HO.SKAT, SKAT.parameters, verbose = TRUE, path.data)

Arguments

X A bed.matrix

SNVs.scores A dataframe containing the ADJUSTED CADD scores of the SN'Vs (Optional,
useful to gain in computation time if the adjusted CADD scores of variants in
the study are available)

indels.scores A dataframe containing the CADD PHREDV1.4 scores of the indels - Compul-
sory if indels are present in x

RAVA.FIRST 37

ref.level The level corresponding to the controls group, only needed if filter=="controls”

filter On which group the MAF filter will be applied

maf.threshold The MAF threshold used to define a rare variant, set at 0.01 by default

min.nb.snps The minimum number of variants needed to keep a CADD region, set at 2 by
default

min.cumulative.maf
The minimum cumulative maf of variants needed to keep a CADD region

group A factor indicating the group of each individual, only needed if filter = "controls”
or filter = "any". If missing, x@ped$pheno is taken

cores How many cores to use, set at 10 by default

burden Whether to compute the burden test

HO.burden A list returned from NullObject.parameters with RVAT="burden”

burden.parameters
A list containing the parameters to use by burden.subscores for the burden
analysis ("burden.function’ and ’get.effect.size’)

SKAT Whether to compute SKAT

HO. SKAT A list returned from NullObject.parameters with RVAT="SKAT"

SKAT . parameters
A list containing the parameters to use by SKAT (’get.moments’, ’estimation.pvalue’,
’params.sampling’, debug’)

verbose Whether to display information about the function actions

path.data The repository where data for RAVA-FIRST are or will be downloaded from
https://lysine.univ-brest.fr/RAVA-FIRST/

Details

Rare variants are analysed using the 'RAVA-FIRST’ strategy composed of three steps: - Rare vari-
ants are grouped in ’CADD regions’ defined from the CADD scores of variants observed in Gno-
mAD. - Rare variant are selected within each CADD region based on an adjusted CADD score
using a region-specific threshold corresponding to the median of scores observed in GnomAD in
each region. - Burden analysis is performed by integrating sub-scores for the coding, regulatory and
intergenic categories within each CADD region. For SKAT analysis, a test for each CADD region
is performed.

RAVA FIRST() is based on the functions set.CADDregions, filter.adjustedCADD, burden. subscores
and SKAT. Please refer to these functions for more information. Especially, refer to the functions
burden. subscores and SKAT to get more information about what is need in burden.parameters

and SKAT .parameters.

It is recommended to use this function chromosome by chromosome for large datasets.

Value

A list containing the results for the burden analysis ("burden’) and the results for the SKAT analy-
sis SKAT”), along with information about CADD regions (positions, type of genomic categories
overlapped by each region and median of adjusted CADD scores).

38 rbm.GRR

Source

https://lysine.univ-brest.fr/RAVA-FIRST/

See Also

set.CADDregions, filter.adjustedCADD, burden. subscores, SKAT

Examples

#Import 1000Genome data from region around LCT gene
#x <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population
#x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
#x <- select.inds(x, superpop=="EUR")
#x@ped$pop <- droplevels(x@ped$pop)

#Remove indels from the bed matrix
#x <- select.snps(x, nchar(A1)==1 & nchar(A2)==1)

#Perform RAVA-FIRST with burden analysis
#HO.burden <- NullObject.parameters(pheno = x@ped$pop, ref.level = "CEU",

RVAT = "burden”, pheno.type = "categorical”)
#res.burden <- RAVA.FIRST(x, maf.threshold = 0.05,
HO.burden = HO@.burden, SKAT = F)
rbm.GRR Simulation of genetic data using GRR values
Description

Generates a simulated bed.matrix with genotypes for cases and controls based on GRR values

Usage

rbm.GRR(genes.maf = Kryukov, size, prev, replicates,
GRR.matrix.del, GRR.matrix.pro = NULL,
p.causal = 0.5, p.protect = @, same.variant = FALSE,
genetic.model=c("general”, "multiplicative”, "dominant”, "recessive"),
select.gene, selected.controls = T, max.maf.causal = 0.01)

Arguments

genes.maf A dataframe containing at least the MAF in the general population (column
maf) for variants with their associated gene (column gene), by default the file
Kryukov is used

rbm.GRR 39

size A vector containing the size of each group (the first one being the control group)
prev A vector containing the prevalence of each group of cases
replicates The number of simulations to perform

GRR.matrix.del A list containing the GRR matrix associated to the heterozygous genotype com-
pared to the homozygous reference genotype as if all variants are deleterious.
An additional GRR matrix associated to the homozygous for the alternate allele
is needed if genetic.genetic.model="general”

GRR.matrix.pro The same argument as GRR.matrix.del but for protective variants
p.causal The proportion of causal variants in cases
p.protect The proportion of protective variants in cases among causal variants

same.variant TRUE/FALSE: whether the causal variants are the same in the different groups
of cases

genetic.model The genetic model of the disease

select.gene Which gene to choose from genes.maf$gene if multiple genes are present. If
missing, only the first level is kept.

selected.controls
Whether controls are selected controls (by default) or controls from the general
population

max.maf.causal Only variants with a MAF lower than this threshold can be sampled as causal
variants.

Details

The genetic model of the disease needs to be specified in this function.

If genetic.model="general”, there is no link between the GRR for the heterozygous genotype
and the GRR for the homozygous alternative genotype. Therefore, the user has to give two matrices
of GRR, one for the heterozygous genotype, the other for the homozygous alternative genotype.

If genetic.model="multiplicative"”, we assume that the the GRR for the homozygous alterna-
tive genotype is the square of the GRR for the heterozygous genotype.

If genetic.model="dominant"”, we assume that the GRR for the heterozygous genotype and the
GRR for the homozygous alternative genotype are equal.

If genetic.model="recessive”, we assume that the GRR for the heterozygous genotype is equal
to 1: the GRR given is the one associated to the homozygous alternative genotype.

GRR.matrix.del contains GRR values as if all variants are deleterious. These values will be used
only for the proportion p.causal of variants that will be sampled as causal.

If selected.controls =T, genotypic frequencies in the control group are computed from geno-
typic frequencies in the cases groups and the prevalence of the disease. If FALSE, genotypic fre-
quencies in the control group are computed from allelic frequencies under Hardy-Weinberg equi-
librium.

The files Kryukov or GnomADgenes available with the package Ravages can be used as the argument
genes.maf.

If GRR.matrix.del (or GRR.matrix.pro) has been generated using the function GRR.matrix, the
arguments genes.maf and select.gene should have the same value as in GRR.matrix.

40 rbm.GRR.power

Only non-monomorphic variants are kept for the simulations.
Causal variants that have been sampled in each group of individuals are indicated in x@ped$Causal.

Value

A bed.matrix with as much columns (variants) as replicates*number of variants. The field
x@snps$genomic.region contains the replicate number and the field x@ped$pheno contrains the
group of each individual, "0" being the controls group.

See Also

GRR.matrix, Kryukov, GnomADgenes, rbm.GRR.power

Examples

#GRR values calculated with the SKAT formula

GRR.del <- GRR.matrix(GRR = "SKAT", genes.maf = Kryukov,
n.case.groups = 2, select.gene = "R1",
GRR.multiplicative.factor=2)

#Simulation of one group of 1,000 controls and two groups of 500 cases,
#each one with a prevalence of 0.001
#with 50% of causal variants, 5 genomic regions are simulated.
x <- rbm.GRR(genes.maf = Kryukov, size = c(1000, 500, 500),
prev = c(0.001, 0.001), GRR.matrix.del = GRR.del,
p.causal = 0.5, p.protect = 0, select.gene="R1",
same.variant = FALSE,

genetic.model = "multiplicative”, replicates = 5)
rbm.GRR. power Power of RVAT based on simulations and theoretical calculations
(CAST) with GRR

Description

Computes the power of the tests CAST, WSS and SKAT based on simulations with GRR and based
on theoretical calculations for CAST

Usage

rbm.GRR.power (genes.maf = Kryukov, size = c(500, 500), prev = 0.01,
GRR.matrix.del, GRR.matrix.pro = NULL,
p.causal = 0.5, p.protect = @, same.variant = FALSE,

genetic.model=c("multiplicative”, "general”, "dominant”, "recessive"),

select.gene, alpha = 2.5e-6, selected.controls = TRUE,
power.type = c("simulations”, "theoretical”), verbose = TRUE,
RVAT = c("CAST", "WSS", "SKAT"),
SKAT.method = c("permutations”, "theoretical”),
max.maf.causal = 0.01, maf.filter = max.maf.causal,
replicates = 1000, cores = 10)

rbm.GRR.power

Arguments

genes.maf

size
prev
GRR.matrix.del

GRR.matrix.pro
p.causal
p.protect

same.variant

genetic.model

select.gene

alpha

41

A dataframe containing at least the MAF in the general population (column
maf) for variants with their associated gene (column gene), by default the file
Kryukov is used

A vector containing the size of each group (the first one being the control group)
A vector containing the prevalence of each group of cases

A list containing the GRR matrix associated to the heterozygous genotype com-
pared to the homozygous reference genotype as if all variants are deleterious.
An additional GRR matrix associated to the homozygous for the alternate allele
is needed if genetic.genetic.model="general”

The same argument as GRR.matrix.del but for protective variants
The proportion of causal variants in cases
The proportion of protective variants in cases among causal variants

TRUE/FALSE: whether the causal variants are the same in the different groups
of cases

The genetic model of the disease

Which gene to choose from genes.maf$gene if multiple genes are present. If
missing, only the first level is kept.

The significance level to compute the power

selected.controls

power . type

verbose
RVAT

SKAT .method

max .maf . causal

maf.filter

replicates

cores

Details

Whether controls are selected controls (by default) or controls from the general
population

Whether to compute the power based on ’simulations’ (by default) or "theoreti-
cal’ calculations (only for CAST)

Whether to print details about the running function

On which RVAT among *CAST’, "WSS’ and *SKAT’ to compute power (only
needed if power. type="simulations"”

Which method to use to compute SKAT ppower, i.e. permutations or theoretical
moments (cf SKAT documentation)

The maf threshold to consider a causal variant (set at 0.01 by default)

The MAF filter to apply after the simulations to select rare variants to keep for
RVAT power analysis. By default corresponds to max.maf . causal

On how many replicates the power should be computed

How many cores to use for moments computation, set at 10 by default

Simulations are performed in the same was as in rbm. GRR. Please refer to the documentation of this

function.

Theoretical power is only available for CAST for which a non-central Chi-squared is used.

Variants are filtered after the simulations to keep only the rare ones, defined by maf.filter. By
defaut, it corresponds to max.maf. causal is used. To disable this filter, set maf.filter at 0.5.

42 rbm.haplos.freqs

Value

A single value giving the power of CAST if power.type="theoretical” or the power of RVAT if
power.type="simulations".

See Also

GRR.matrix, Kryukov, GnomADgenes, rbm.GRR

Examples

#GRR values calculated with the SKAT formula

GRR.del <- GRR.matrix(GRR = "SKAT", genes.maf = Kryukov,
n.case.groups = 2, select.gene = "R1",
GRR.multiplicative.factor=2)

#Simulation of one group of 1,000 controls and two groups of 500 cases,
#each one with a prevalence of 0.001
#with 50% of causal variants, 5 genomic regions are simulated.
rbm.GRR. power (genes.maf = Kryukov, size = c(1000, 500, 500),
prev = c(0.001, 0.001), GRR.matrix.del = GRR.del,
p.causal = 0.5, p.protect = 0, select.gene="R1",
same.variant = FALSE, genetic.model = "multiplicative”,
power.type="theoretical”, cores = 1, alpha = c(0.001,2.5e-6))

rbm.haplos.fregs Simulation of genetic data based on haplotypic frequencies

Description
Simulates genetic data with respect to allele frequency spectrum and linkage disequilibrium pattern
observed on given haplotypes and their frequencies

Usage

rbm.haplos.freqs(haplos, freqs, size, replicates)

Arguments
haplos A matrix of haplotypes with one row per haplotype and one column per variant
freqgs A matrix of haplotypes frequencies in each group of individuals
size The sizes of each group of individuals
replicates The number of simulations to perform
Details

Simulations are performed to respect linkage disequilibrium pattern and allelic frequency spectrum
in each group of individuals The phenotypic values will be the colnames of fregs and stored in
@ped$pheno. The simulation number will be in @snps$genomic.region.

rbm.haplos.power 43

Value

X A bed matrix with simulated genotypes

Examples

#Simulations of 5 groups of individuals with haplotypes frequencies
#from the 5 EUR populations

#lLoad LCT dataset for haplotype matrix

data(LCT.haplotypes)

#Haplotypes for the variants in the LCT gene in the EUR population

LCT.gene.hap <- LCT.hap[which(LCT.sample$super.population=="EUR"),
which(LCT.snps$pos>=136545410 & LCT.snps$pos<=136594750)]

#Individuals from EUR
LCT.sample.EUR <- subset(LCT.sample, super.population=="EUR")
#Matrix of haplotypic frequencies
LCT.fregs <- sapply(unique(LCT.sample.EUR$population), function(z)
ifelse(LCT.sample.EUR$population==z,
1/table(LCT.sample.EUR$population)[z], @))

#Simulation of genetic data for five groups of 50 individuals
X <= rbm.haplos. freqs(haplos=LCT.gene.hap, freqs=LCT.freqgs, size=rep(50,5), replicates=5)

rbm.haplos.power Power of RVAT based on simulations with haplotypes

Description

Computes the power of the tests CAST, WSS and SKAT based on simulations with haplotypes

Usage

rbm.haplos.power (haplos, freqs, weights = "SKAT",
max.maf.causal = 0.01, maf.filter = max.maf.causal, p.causal = 0.5,

p.protect = @, h2 = c(0.01, 0.01), prev = c(1, 0.01),
normal.approx = TRUE, size = c(500, 500), verbose = TRUE,
alpha = 2.5e-6, RVAT = c("CAST", "WSS", "SKAT"),
SKAT.method = c("permutations”, "theoretical”),
simus.haplos = c("freqs”, "liability"),
replicates = 1000, rep.by.causal = 50, cores = 10)

Arguments
haplos A matrix of haplotypes with one row per haplotype and one column per variant
freqgs A matrix of haplotypes frequencies in each group of individuals, only needed if

simus.haplos = "fregs”

44

weights

max.maf.causal

maf.filter

p.causal

p.protect

h2

prev

normal. approx

size
verbose
alpha
RVAT

SKAT . method

simus.haplos

replicates
rep.by.causal

cores

Details

rbm.haplos.power

How to weight rare variants (if "constant", all variants have the same weight, if
"SKAT", the rarest variants have the highest weights: weights =-0.4*logl0(MAF)
)

The maf threshold to consider a rare variant (set at 0.01 by default). Only vari-
ants with a MAF upper than this threshold will be kept to compute RVAT power.
If simus.haplos="1liability", variants with a MAF upper this threshold will
have a weight of 0

The MAF filter to apply after the simulations to select rare variants to keep for
RVAT power analysis. By default corresponds to max.maf . causal

The percentage of causal variants, only needed if simus.haplos = "liability"”

The proportion of protective variants among causal variants, only needed if
simus.haplos ="liability"”

The variance explained by the gene, only needed if simus.haplos = "liability”

A vector with the prevalence in each group of individuals, only needed if simus.haplos

="liability"

TRUE/FALSE: whether to use the normal approximation to compute thresholds.
Set at TRUE by default, only needed if simus.haplos = "liability”

The sizes of each group of individuals
Whether to display information about the function actions
The significance level to compute the power

On which RVAT among *CAST’, "WSS’ and *SKAT’ to compute power (only
needed if power. type="simulations"”

Which method to use to compute SKAT ppower, i.e. permutations or theoretical
moments (cf SKAT documentation)

Which method to simulate the data, if simus.haplos="freqs", rbm.haplos.freqs()
is used, otherwise rbm.haplos. thresholds() is used.

The number of simulations to perform to estimate the power
The number of time causal variants will be sampled

How many cores to use for moments computation, set at 10 by default

Simulations are perfromed accordingly to rbm.haplos.thresholds() or rbm.haplos.freqgs().
Please refer to the corresponding manuals for more details on the simulation procedures. Variants
are filtered after the simulations to keep only the rare ones, defined by maf.filter. By defaut, it
corresponds to max.maf . causal is used. To disable this filter, set maf.filter at 0.5.

Value

Power values of RVAT

rbm.haplos.thresholds 45

Examples

#Simulations of 5 groups of individuals with haplotypes frequencies
#from the 5 EUR populations

#Load LCT dataset for haplotype matrix

data(LCT.haplotypes)

#Haplotypes for the variants in the LCT gene in the EUR population

LCT.gene.hap <- LCT.hap[which(LCT.sample$super.population=="EUR"),
which(LCT.snps$pos>=136545410 & LCT.snps$pos<=136594750)]

#Individuals from EUR
LCT.sample.EUR <- subset(LCT.sample, super.population=="EUR")
#Matrix of haplotypic frequencies
LCT.fregs <- sapply(unique(LCT.sample.EUR$population), function(z)
ifelse(LCT.sample.EUR$population==2z,
1/table(LCT.sample.EUR$population)[z], @))

#Simulation of genetic data for five groups of 50 individuals

rbm.haplos.power (haplos=LCT.gene.hap, freqs=LCT.freqs, size=rep(50,5),
replicates=5, rep.by.causal = 5, RVAT = "CAST",
alpha = c(0.001,2.5e-6), cores = 1)

rbm.haplos. thresholds Simulation of genetic data based on haplotypes and a libaility model

Description

Simulates genetic data with respect to allele frequency spectrum and linkage disequilibrium pattern
observed on given haplotype data under a libaility model

Usage

rbm.haplos. thresholds(haplos, weights = c("SKAT"”, "constant"),
max.maf.causal = 0.01, p.causal = 0.5, p.protect = 0,
h2, prev, normal.approx = TRUE, size,
replicates, rep.by.causal, verbose = TRUE)

Arguments
haplos A matrix of haplotypes with one row per haplotype and one column per variant
weights How to weight rare variants (if "constant", all variants have the same weight,

if "SKAT", the rarest variants have the highest weights as in the SKAT paper:
weights = -0.4*1ogl 0(MAF))

max.maf.causal The maf threshold to consider a rare variant (set at 0.01 by default), variants
with a MAF upper this threshold will have a weight of 0

p.causal The proportion of causal variants

46

rbm.haplos.thresholds

p.protect The proportion of protective variants among causal variants

h2 The variance explained by the gene

prev A vector with the prevalence in each group of individuals

normal.approx TRUE/FALSE: whether to use the normal approximation to compute thresholds.
Set at TRUE by default

size The sizes of each group of individuals

replicates The number of simulations to perform

rep.by.causal The number of time causal variants will be sampled

verbose Whether to display information about the function actions

Details

nb.causal, p.protect, h2 and prev should be vectors of length corresponding to the number of
groups to simulate. If they are of size 1, values will be duplicated.

All monomorphic variants and variants with a MAF higher than max.maf . causal will have a weight
of 0. Causal variants are sampled among variants having weights greater than 0. Causal variants in
each group of individuals are indicated in x@ped$Causal.

A liability model is built on haplotypes’ burden computed on sampled causal variants using each
variant’s weights, and adjusted on the desired h2. Thresholds from this liability are then chosen
to respect the given prev (from a standard normal distribution if normal. approx=TRUE, or using a
distribution from 1e6 sampled burdens if normal.approx=FALSE). Please be carreful when using
the normal approximation with high h2 values or low prev values. Haplotypes’ probabilities in each
group of individuals are then computed and two haplotypes are then sampled for each individual
based on these probabilities.

To simulate a group of controls, prev needs to be set at 1, regardless of the other arguments.

N replicates will be performed, and to gain in computation time, the same causal variants
can be used for multiple replicates as different haplotypes will be sampled for each individual.
rep.by.causal indicates the number of replicates to perform for each set of causal variants. To
ensure a variability in the simulations, we yet recommend to resample causal variants a few times
when many replicates are to be performed. For example, if 1000 replicates are to be performed, we
recommend to resample causal variants 20 times.

The phenotype will be stored in @ed$pheno, and the simulation number is @snps$genomic. region.

Value

X A bed matrix with simulated genotypes

Examples

#lLoad LCT dataset for haplotype matrix

data(LCT.haplotypes)

#LCT gene in the EUR population

LCT.gene.hap <- LCT.hap[which(LCT.sample$super.population=="EUR"),
which(LCT.snps$pos>=136545410 & LCT.snps$pos<=136594750)]

#Simulation of 100 controls, and two groups of 50 cases with 30% causal variants

set. CADDregions 47

#and with the second group having half h2 and twice the prevalence

#compared to the first one

#5 replicates are performed and causal variants are sampled once

x <= rbm.haplos. thresholds(haplos=LCT.gene.hap, max.maf.causal = 0.01, p.causal=0.3,
p.protect=0, h2=c(0.01, 0.01, 0.02), prev=c(1, 0.01, 0.005),
size=c(100, 50, 50), replicates = 5, rep.by.causal = 5)

set.CADDregions Variants annotation based on 'CADD regions’ and genomic cate-
gories

Description

Attributes CADD regions and genomic categories to variants based on their positions

Usage

set.CADDregions(x, verbose = T, path.data)

Arguments
X A bed.matrix
verbose Whether to display information about the function actions
path.data The repository where data for RAVA-FIRST are or will be downloaded from
https://lysine.univ-brest.fr/RAVA-FIRST/
Details

To attribute variants to CADD regions and genomic categories, the files "CADDRegions.2021.hg19.bed.gz"
and "Functional Areas.hg19.bed.gz" will be downloaded from https://lysine.univ-brest.fr/RAVA-FIRST/

in the repository of the package Ravages. CADD regions are non-overlapping regions that have been
defined in the whole genome to perform rare variant association tests in the RAVA.FIRST () pipeline.

It is recommended to use this function chromosome by chromosome for large datasets for time and
memory managment.

Value

The same bed matrix as x with three additional columns :

genomic.region The CADD region of each variant

SubRegion The genomic category of each variant among ’Coding’, ’Regulatory’ or ’Inter-
genic’

adjCADD.Median The median of adjusted CADD of variants observed at least to times in GnomAD
genomes 12.0.1

48

Source

set.genomic.region

https://lysine.univ-brest.fr/RAVA-FIRST/

See Also

RAVA.FIRST, filter.adjustedCADD, burden. subscores

Examples

#Import 1000Genome data from region around LCT gene
#x <- as.bed.matrix(LCT.gen, LCT.fam, LCT.bim)

#Group variants within CADD regions and genomic categories
#x <- set.CADDregions(x)

#table(x@snps$genomic.region) #CADD regions
#table(x@snps$SubRegion) #Genomic categories

set.genomic.region Variants annotation based on gene positions

Description

Attributes regions to variants based on given region positions

Usage

set.genomic.region(x, regions = genes.b37, flank.width = @L, split = TRUE)

Arguments

X

regions

flank.width

split

A bed.matrix

A dataframe in bed format (start is 0-based and end is 1-based) containing the
fields : Chr (the chromosome of the gene), Start (the start position of the gene,
0-based), End (the end position of the gene, 1-based), and Name (the name of the
gene - a factor),

An integer: width of the flanking regions in base pairs downstream and upstream
the regions.

Whether to split variants attributed to multiple regions by duplicating this vari-
ants, set at TRUE by default

set.genomic.region.subregion 49

Details

Warnings: regions$Name should be a factor containing UNIQUE names of the regions, ORDERED
in the genome order.

We provide two data sets of autosomal humain genes, genes.b37 and genes.b38.
If x@snps$chr is not a vector of integers, it should be a factor with same levels as regions$Chr.

If flank.width is null, only the variants having their position between the regions$Start and the
regions$End of a gene will be attributed to the corresponding gene. When two regions overlap,
variants in the overlapping zone will be assigned to those two regions, separated by a comma.

If flank.width is a positive number, variants flank.width downstream or upstream a gene will be
annotated annotated to this gene. You can use flank.width = Inf to have each variant attributed
to the nearest gene.

If a variant is attributed to multiple genomic regions, it will be duplicated in the bed matrix with one

row per genomic region if split = TRUE. Variants will have new IDs being CHR:POS:A1:A2:genomic.region.
Value

The same bed matrix as x with an additional column x@snps$genomic.region containing the an-

notation of each variant.
See Also

genes.b37, genes.b38

Examples

#Import 1000Genome data from region around LCT gene
X <- as.bed.matrix(LCT.gen, LCT.fam, LCT.bim)

#Group variants within known genes
x <- set.genomic.region(x)

#Group variants within know genes +/- 500bp
x <- set.genomic.region(x, flank.width=500)

set.genomic.region.subregion
Variants annotation based on regions and subregions positions

Description

Attributes regions and subregions to variants based on given positions

Usage

set.genomic.region.subregion(x, regions, subregions, split = TRUE)

50 set.genomic.region.subregion

Arguments
X A bed.matrix
regions A dataframe in bed format (start is O-based and end is 1-based) containing the
regions with the fields : Chr (the chromosome of the gene), Start (the start
position of the gene, 0-based), End (the end position of the gene, 1-based), and
Name (the name of the gene - a factor),
subregions A dataframe containing the subregions in the same format as regions
split Whether to split variants attributed to multiple regions by duplicating this vari-
ants, set at TRUE by default
Details

Warnings: regions$Name and subregions$Name should be factors containing UNIQUE names of
the regions, ORDERED in the genome order.

If x@snps$chr is not a vector of integers, it should be a factor with same levels as regions$Chr.

If a variant is attributed to multiple genomic regions, it will be duplicated in the bed matrix with
one row per genomic region if split = TRUE.

This function can be applied before using burden. subscores to perform a functionally-informed
burden tests with sub-scores for each SubRegion within each genomic.region.

Value

The same bed matrix as x with two additional columns: x@snps$genomic.region containing the
annotation of the regions and x@snps$SubRegion containing the annotation of the subregions.

See Also

set.genomic.region, burden. subscores

Examples

#Import 1000Genome data from region around LCT gene
X <- as.bed.matrix(LCT.gen, LCT.fam, LCT.bim)

#Group variants within known genes and

#Within coding and regulatory regions

x <- set.genomic.region.subregion(x,

regions = genes.b37, subregions = subregions.LCT)

SKAT 51

SKAT SKAT test

Description

Peforms SKAT on categorical or binary phenotypes

Usage

SKAT(x, NullObject, genomic.region = x@snps$genomic.region,
weights = (1 - x@snps$maf)**24, maf.threshold = 0.5,
get.moments = "size.based", estimation.pvalue = "kurtosis”,
params.sampling, cores = 10, debug = FALSE, verbose = TRUE)

Arguments
X A bed.matrix
NullObject A list returned from NullObject.parameters
genomic.region A factor defining the genomic region of each variant
weights A vector with the weight of each variant. By default, the weight of each variant
is inversely proportionnal to its MAF, as it was computed in the original SKAT
method

maf.threshold The MAF above which variants are removed (default is to keep all variants)

get.moments How to estimate the moments to compute the p-values among "size.based",
"bootstrap”, "permutations”, or "theoretical" for categorical phenotypes (2 or
more groups of individuals). By default "size.based" that will choose the method
depending on sample size (see details)

estimation.pvalue
Whether to use the skewness ("skewness") or the kurtosis ("kurtosis") for the
chi-square approximation

params.sampling
A list containing the elements "perm.target”, "perm.max", "debug". Only needed
if get.moments = "boostrap” or get.moments = "permutations”

cores How many cores to use for moments computation, set at 10 by default. Only
needed if get.moments = "theoretical”
debug Whether to return the mean, standard deviation, skewness and kurtosis of the
statistics
verbose Whether to display information about the function actions
Details

For categorical phenotypes, the p-value is calculated using a chi-square approximation based on the
statistics’ moments. The user has to choose how to compute these moments (argument get . moments),
and which moments to use for the chi-square approximation (argument estimation.pvalue).

52 SKAT

The moments can be computed either using a sampling procedure ("permutations” if there are
no covariates, or "bootstrap” otherwise), or using theoretical moments computed as in Liu et al.
2008 ("theoretical”).

If get.moments = "size.based", the sampling procedure will be used for sample sizes lower than
2000, and the theoretical calculations otherwise.

To estimate the p-values, etiher the first three moments are used (estimation.pvalue = "skewness"),
or the moments 1, 2 and 4 are used (estimation.pvalue = "kurtosis").

If get.moments = "theoretical” and estimation.pvalue = "skewness", it corresponds to method
="1liu"” in the SKAT package. If get.moments = "theoretical” and estimation.pvalue =
"kurtosis”, it corresponds to method = "1iu.mod" in the SKAT package.

For small samples, p-values estimation is based on sampling and a sequential procedure: permu-
tated statistics are computed and each one is compared to the observed statistics. This method
requires perm.target and perm.max that should be given as a list to params.bootstrap. If
params.bootstrap is not specified, perm.target will be set at 100, perm.max at 5e4. The boos-
trap progam stops when either perm. target or perm.max is reached. P-values are then computed
using a mixed procedure:

if perm. target is reached, the p-value is computed as : perm. target divided by the number of
permutations used to reach perm. target;

if perm.max is reached, the SKAT small sample procedure is used, and p-values are approximated
using a chi-square distributions based on statistics’ moments 1, 2 and 4 computed from the permu-
tated values.

If NullObject$pheno. type = "continuous”, the method from Liu et al. will be used to compute
the p-value for the continuous phenotype, but estimation.pvalue can be set at "skewness" or
"kurtosis".

If debug=TRUE, more informations about the estimated statistics moments are given.

All missing genotypes are imputed by the mean genotype.

Value
A data frame containing for each genomic region:

stat The observed statistics

p.value The p-value of the test
If get.moments = "bootstrap” or get.moments = "permutations”, additional fields are present:

p.perm The p-value computed by permutations: number of times permutated is greater
than observed statistics divided by the total number of permutations performed

p.chi2 The p-value computed by the chi-square approximation using the SKAT small
sample procedure

If debug = TRUE, the mean, standard deviation, skewness and kurtosis are also returned, as well as
for the sampling procedure:

nb.gep The number of times a permutated statistics is equal or greater than the observed
statistics stat

SKAT 53

nb.eq The number of times a permutated statistics is equal to the observed statistics
stat
nb.perms The total number of simulations performed
References

Wu et al. 2011, Rare-variant association testing for sequencing data with the sequence kernel
association test, American Journal of Human Genetics 82-93 doi:10.1016/j.ajhg.2011.05.029;

Lee et al. 2012, Optimal Unified Approach for Rare-Variant Association Testing with Application
to Small-Sample Case-Control Whole-Exome Sequencing Studies, American Journal of Human Ge-
netics, doi:10.1016/j.ajhg.2012.06.007;

Liuetal. 2008, A new chi-square approximation to the distribution of non-negative definite quadratic
forms in non-central normal variables, Computational Statistics & Data Analysis, doi:10.1016/j.csda.2008.11.025

See Also

NullObject.parameters, SKAT. theoretical, SKAT.bootstrap, SKAT.permutations

Examples

#Example on simulated data from Ravages with

#0ne group of 50 controls and

#two groups of 25 cases, each one with a prevalence of 0.01

#with 50% of causal variants, 5 genomic regions are simulated

GRR.del <- GRR.matrix(GRR = "SKAT", genes.maf = Kryukov,
n.case.groups = 2, select.gene = "R1",
GRR.multiplicative.factor=2)

x.sim <- rbm.GRR(genes.maf = Kryukov, size = c(50, 25, 25),

prev = c(0.001, 0.001), GRR.matrix.del = GRR.del,

p.causal = 0.5, p.protect = @, select.gene="R1",

same.variant = FALSE, genetic.model = "multiplicative”, replicates = 5)
#Null Model
X.sim.HO <- NullObject.parameters(x.sim@ped$pheno, RVAT = "SKAT", pheno.type = "categorical”)

#Run SKAT (here permutations as n<2000 and no covariates)

#Parameters for the sampling procedure: target = 5, max = 100

#Please increase the number of permutations for a more accurate estimation of the p-values
params.sampling = list(perm.target = 5, perm.max = 100)

SKAT(x.sim, x.sim.H@, params.sampling = params.sampling)

#Run SKAT with a random continuous phenotype

#Null Model

x.sim.H@.c <- NullObject.parameters(rnorm(100), RVAT = "SKAT", pheno.type = "continuous")
SKAT(x.sim, x.sim.H@.c, cores = 1)

#Example on 1000Genome data
#Import data in a bed matrix
X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

54

SKAT.bootstrap

#Add population
x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)

#Group variants within known genes
x <- set.genomic.region(x)

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 2.5%

#keeping only genomic regions with at least 10 SNPs

x1 <- filter.rare.variants(x, filter = "whole"”, maf.threshold = 0.025, min.nb.snps = 10)

#Simulation of a covariate + Sex as a covariate
sex <- x1@ped$sex

set.seed(1) ; u <= runif(nrow(x1))

covar <- cbind(sex, u)

#run SKAT using the 1000 genome EUR populations as "outcome”

#with very few permutations

#Please increase the permutations for a more accurate estimation of the p-values

#Fit Null model with covariate sex

x1.H@.covar <- NullObject.parameters(x1@ped$pop, RVAT = "SKAT", pheno.type = "categorical”,
data = covar, formula = ~ sex)

#Run SKAT with the covariates: use boostrap as n<2000
SKAT(x1, x1.H@.covar, params.sampling = params.sampling, get.moments = "bootstrap")

#Run SKAT using theoretical moments (discourage here as n<2000) and 1 core

#SKAT(x1, x1.H@.covar, get.moments = "theoretical”, cores = 1)
SKAT .bootstrap Multi group SKAT test using bootstrap sampling
Description

Peforms SKAT on two or more groups of individuals using bootstrap sampling

Usage

SKAT .bootstrap(x, NullObject, genomic.region = x@snps$genomic.region,
weights = (1-x@snps$maf)*x24, maf.threshold = 0.5,
perm.target = 100, perm.max = 5e4, debug = FALSE,
estimation.pvalue = "kurtosis")

SKAT.bootstrap 55

Arguments
X A bed.matrix
NullObject A list returned from NullObject.parameters
genomic.region A factor defining the genomic region of each variant
weights A vector with the weight of each variant. By default, the weight of each variant
is inversely proportionnal to its MAF, as it was computed in the original SKAT
method

maf.threshold The MAF above which variants are removed (default is to keep all variants)

perm.target The number of times to exceed the observed statistics. If not reached, perm.max
permutations will be used

perm.max The maximum number of permutations to perform to estimate the p-value, will
be used if perm. target is not reached

debug Whether to print details about the permutations (mean, standard deviation, skew-
ness, kurtosis), FALSE by default

estimation.pvalue
Whether to use the skewness ("skewness") or the kurtosis ("kurtosis") for the
chi-square approximation

Details

P-values estimation is based on bootstrap sampling and a sequential procedure: permutated statistics
are computed and each one is compared to the observed statistics. The boostrap progam stops when
either perm. target or perm.max is reached. P-values are then computed using a mixed procedure:

if perm. target is reached, the p-value is computed as : perm. target divided by the number of
permutations used to reach perm. target;

if perm.max is reached, p-values are approximated using a chi-square distributions based on the
first three moments if estimation.pvalue = "skewness"”, or on statistics’ moments 1, 2 and 4 if
estimation.pvalue = "kurtosis”.

If debug=TRUE, more informations about the estimated statistics moments are given.
This function is used by SKAT when the sample size is smaller than 2000 and covariates are present.

All missing genotypes are imputed by the mean genotype.

Value

A data frame containing for each genomic:

stat The observed statistics
p.value p.permif perm.target is reached, p.chi2 if perm.max is reached.
p.perm The p-value computed by permutations: number of times permutated is greater

than observed statistics divided by the total number of permutations performed

p.chi2 The p-value computed by the chi-square approximation using the SKAT small
sample procedure

If debug=TRUE, other informations are given about the moments estimation:

56 SKAT.bootstrap
nb.gep The number of times a permutated statistics is equal or greater than the observed
statistics stat
nb.eq The number of times a permutated statistics is equal to the observed statistics
stat
nb.perms The total number of simulations performed
mean The mean of the permutated statistics
sigma The standard deviation of the permutated statistics
skewness The skweness of the permutated statistics
kurtosis The kurtosis of the permutated statistics
References

Wu et al. 2011, Rare-variant association testing for sequencing data with the sequence kernel
association test, American Journal of Human Genetics 82-93 doi:10.1016/j.ajhg.2011.05.029;

Lee et al. 2012, Optimal Unified Approach for Rare-Variant Association Testing with Application
to Small-Sample Case-Control Whole-Exome Sequencing Studies, American Journal of Human Ge-
netics, doi:10.1016/j.ajhg.2012.06.007;

See Also

NullObject.parameters, SKAT

Examples

#Import data in a bed matrix

X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population

x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)

#Group variants within known genes
x <- set.genomic.region(x)

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 1%

#keeping only genomic regions with at least 10 SNPs

x1 <- filter.rare.variants(x, filter = "whole”, maf.threshold = ©0.01, min.nb.snps = 10)

#Simulation of a covariate + Sex as a covariate
sex <- x1@ped$sex

set.seed(1) ; u <= runif(nrow(x1))

covar <- cbind(sex, u)

#run SKAT using the 1000 genome EUR populations as "outcome”
#The maximum number of permutations used is 100,
#and the target number is 10, please increase

SKAT.continuous 57

#both values for a more accurate estimation of the p-values
#Fit Null model with covariates
x1.HO <- NullObject.parameters(x1@ped$pop, data = covar, RVAT = "SKAT", pheno.type = "categorical”)

SKAT.bootstrap(x1, x1.HQ, perm.target = 10, perm.max = 100)

SKAT . continuous Multi group SKAT test using Liu et al. approximation

Description

Peforms SKAT on a continuous phenotype using Liu et al. approximation

Usage

SKAT.continuous(x, NullObject, genomic.region = x@snps$genomic.region,
weights = (1 - x@snps$maf)**24, maf.threshold = 0.5,

estimation.pvalue = "kurtosis"”, cores = 10, debug = FALSE)
Arguments
X A bed.matrix
NullObject A list returned from NullObject.parameters

genomic.region A factor defining the genomic region of each variant

weights A vector with the weight of each variant. By default, the weight of each variant
is inversely proportionnal to its MAF, as it was computed in the original SKAT
method

maf.threshold The MAF above which variants are removed (default is to keep all variants)

estimation.pvalue
Whether to use the skewness ("skewness") or the kurtosis ("kurtosis") for the
chi-square approximation

cores How many cores to use for moments computation, set at 10 by default

debug Whether to return the mean, standard deviation, skewness and kurtosis of the
statistics. Set at FALSE by default

Details

The method from Liu et al. 2008 is used where p-values are estimated using a chi-square approxi-
mation from moment’s

If estimation.pvalue = "kurtosis”, the kurtosis is used instead of skewness in the chi-square
approximation. This is equivalent to "liu.mod" in SKAT package.

58 SKAT.continuous

Value

A data frame containing for each genomic region:

stat The observed statistics
p.value The p-value of the test

If debug = TRUE, the mean, standard deviation, skewness and kurtosis used to compute the p-value
are returned

References

Wu et al. 2011, Rare-variant association testing for sequencing data with the sequence kernel
association test, American Journal of Human Genetics 82-93 doi:10.1016/j.ajhg.2011.05.029;

Liuetal. 2008, A new chi-square approximation to the distribution of non-negative definite quadratic
forms in non-central normal variables, Computational Statistics & Data Analysis, doi:10.1016/j.csda.2008.11.025

See Also

NullObject.parameters, SKAT

Examples

#Import data in a bed matrix

X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population

x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)

#Group variants within known genes
x <- set.genomic.region(x)

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 2.5%

#keeping only genomic regions with at least 10 SNPs

x1 <- filter.rare.variants(x, filter = "whole”, maf.threshold = ©.025, min.nb.snps = 10)

#run SKAT using a random continuous phenotype
#Fit Null model
x1.H® <- NullObject.parameters(rnorm(nrow(x1)), RVAT = "SKAT", pheno.type = "continuous")

SKAT.continuous(x1, x1.H@, cores = 1)

SKAT.permutations 59
SKAT.permutations Multi group SKAT test using bootstrap sampling
Description
Peforms SKAT on two or more groups of individuals using bootstrap sampling
Usage
SKAT.permutations(x, NullObject, genomic.region = x@snps$genomic.region,
weights = (1-x@snps$maf)*x24, maf.threshold = 0.5,
perm.target = 100, perm.max = 5e4, debug = FALSE,
estimation.pvalue = "kurtosis")
Arguments
X A bed.matrix
NullObject A list returned from NullObject.parameters
genomic.region A factor defining the genomic region of each variant
weights A vector with the weight of each variant. By default, the weight of each variant

is inversely proportionnal to its MAF, as it was computed in the original SKAT

method

maf.threshold The MAF above which variants are removed (default is to keep all variants)

perm.target The number of times to exceed the observed statistics. If not reached, perm.max

permutations will be used

perm.max The maximum number of permutations to perform to estimate the p-value, will

be used if perm. target is not reached

debug Whether to print details about the permutations (mean, standard deviation, skew-

ness, kurtosis), FALSE by default
estimation.pvalue

Whether to use the skewness ("skewness") or the kurtosis ("kurtosis") for the

chi-square approximation

Details

P-values estimation is based on permutations sampling and a sequential procedure: permutated
statistics are computed and each one is compared to the observed statistics. The boostrap progam
stops when either perm. target or perm.max is reached. P-values are then computed using a mixed

procedure:

if perm. target is reached, the p-value is computed as : perm.target divided by the number of

permutations used to reach perm. target;

if perm.max is reached, p-values are approximated using a chi-square distributions based on the
first three moments if estimation.pvalue = "skewness"”, or on statistics’ moments 1, 2 and 4 if

estimation.pvalue = "kurtosis”.

60

SKAT.permutations

If debug=TRUE, more informations about the estimated statistics moments are given.

This function is used by SKAT when the sample size is smaller than 2000 and no covariates are
present.

All missing genotypes are imputed by the mean genotype.

Value

A data frame containing for each genomic:

stat The observed statistics
p.value p.permif perm.target is reached, p.chi2 if perm.max is reached.
p.perm The p-value computed by permutations: number of times permutated is greater

than observed statistics divided by the total number of permutations performed

p.chi2 The p-value computed by the chi-square approximation using the SKAT small
sample procedure

If debug=TRUE, other informations are given about the moments estimation:

nb.gep The number of times a permutated statistics is equal or greater than the observed
statistics stat

nb.eq The number of times a permutated statistics is equal to the observed statistics
stat

nb.perms The total number of simulations performed

mean The mean of the permutated statistics

sigma The standard deviation of the permutated statistics

skewness The skweness of the permutated statistics

kurtosis The kurtosis of the permutated statistics

References

Wu et al. 2011, Rare-variant association testing for sequencing data with the sequence kernel
association test, American Journal of Human Genetics 82-93 doi:10.1016/j.ajhg.2011.05.029;

Lee et al. 2012, Optimal Unified Approach for Rare-Variant Association Testing with Application
to Small-Sample Case-Control Whole-Exome Sequencing Studies, American Journal of Human Ge-
netics, doi:10.1016/j.ajhg.2012.06.007;

See Also

NullObject.parameters, SKAT

Examples

#Import data in a bed matrix

X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population

x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

SKAT.theoretical 61
#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)
#Group variants within known genes
x <- set.genomic.region(x)
#Filter of rare variants: only non-monomorphic variants with
#a MAF lower than 1%
#keeping only genomic regions with at least 10 SNPs
x1 <- filter.rare.variants(x, filter = "whole”, maf.threshold = .01, min.nb.snps = 10)

#run SKAT using the 1000 genome EUR populations as "outcome”
#The maximum number of permutations used is 100,

#and the target number is 10, please increase

#both values for a more accurate estimation of the p-values

#Fit Null model

x1.HO <- NullObject.parameters(x1@ped$pop, RVAT = "SKAT", pheno.type = "categorical”)
SKAT.permutations(x1, x1.HQ, perm.target = 10, perm.max=100)

SKAT . theoretical

Multi group SKAT test using Liu et al. approximation

Description

Peforms SKAT on two or more groups of individuals using Liu et al. approximation

Usage

SKAT.theoretical (x, NullObject, genomic.region = x@snps$genomic.region,

Arguments

X
NullObject
genomic.region
weights

maf.threshold

weights = (1 - x@snps$maf)**24, maf.threshold = 0.5,
estimation.pvalue = "kurtosis"”, cores = 10, debug = FALSE)

A bed.matrix
A list returned from NullObject.parameters
A factor defining the genomic region of each variant

A vector with the weight of each variant. By default, the weight of each variant
is inversely proportionnal to its MAF, as it was computed in the original SKAT
method

The MAF above which variants are removed (default is to keep all variants)

estimation.pvalue

cores
debug

Whether to use the skewness ("skewness") or the kurtosis ("kurtosis") for the
chi-square approximation

How many cores to use for moments computation, set at 10 by default

Whether to return the mean, standard deviation, skewness and kurtosis of the
statistics. Set at FALSE by default

62 SKAT.theoretical

Details

The method from Liu et al. 2008 is used where p-values are estimated using a chi-square approxi-
mation from moment’s statistics

If estimation.pvalue = "kurtosis”, the kurtosis is used instead of skewness in the chi-square
approximation. This is equivalent to "liu.mod" in SKAT package.

This function is used by SKAT when the sample size is larger than 2000.

All missing genotypes are imputed by the mean genotype.

Value
A data frame containing for each genomic region:

stat The observed statistics
p.value The p-value of the test

If debug = TRUE, the mean, standard deviation, skewness and kurtosis used to compute the p-value
are returned

References

Wu et al. 2011, Rare-variant association testing for sequencing data with the sequence kernel
association test, American Journal of Human Genetics 82-93 doi:10.1016/j.ajhg.2011.05.029;

Liuetal. 2008, A new chi-square approximation to the distribution of non-negative definite quadratic
forms in non-central normal variables, Computational Statistics & Data Analysis, doi:10.1016/j.csda.2008.11.025

See Also

NullObject.parameters, SKAT

Examples

#Import data in a bed matrix

X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

#Add population

x@ped[,c("pop”, "superpop”)] <- LCT.matrix.pop1000G[,c("population”, "super.population”)]

#Select EUR superpopulation
x <- select.inds(x, superpop=="EUR")
x@ped$pop <- droplevels(x@ped$pop)

#Group variants within known genes
x <- set.genomic.region(x)

#Filter of rare variants: only non-monomorphic variants with

#a MAF lower than 2.5%

#keeping only genomic regions with at least 10 SNPs

x1 <- filter.rare.variants(x, filter = "whole"”, maf.threshold = ©.025, min.nb.snps = 10)

#run SKAT using the 1000 genome EUR populations as "outcome” using one core

subregions.LCT 63

#Fit Null model
x1.H@ <- NullObject.parameters(x1@ped$pop, RVAT = "SKAT", pheno.type = "categorical”)

SKAT . theoretical(x1, x1.H@, cores = 1)

subregions.LCT Exemple of functional categories

Description

Example of arbitrary functional categories (coding or regulatory) in the LCT locus (bed format,
GRCH37). "Coding" corresponds to coding parts of the exons and "Regulatory" corresponds to
everything that falls outside these coding regions.

Data contain the Chr, the Start position, the End position and the Name of all functional regions in
the LCT locus.

Format
The data contain one dataframe with four columns:

Chr The chromosome of the gene
Start The start position of the functional region (0-based)
End The end position of the functional region (1-based)

Name The name of the gene

See Also

set.genomic.region.subregion, burden. subscores

WSS WSS genetic score

Description

Caluclates the WSS genetic score

Usage

WSS(x, genomic.region = x@snps$genomic.region)

Arguments

X A bed.matrix

genomic.region A factor containing the genomic region of each variant

64 WSS

Value
A matrix containing the WSS genetic score with one row per individual and one column per
genomic.region

References
Madsen E and Browning S. A Groupwise Association Test for Rare Mutations Using a Weighted
Sum Statistic. PLoS Genet. 2009

See Also

CAST, burden.weighted.matrix, burden.mlogit

Examples

#Import data in a bed matrix
X <- as.bed.matrix(x=LCT.matrix.bed, fam=LCT.matrix.fam, bim=LCT.snps)

Group variants within known genes
x <- set.genomic.region(x)

Filter variants with maf (computed on whole sample) < 0.025
keeping only genomic region with at least 10 SNPs
x1 <- filter.rare.variants(x, filter = "whole"”, maf.threshold = ©.025, min.nb.snps = 10)

Compute burden score WSS
score.WSS <- WSS(x1)

Index

adjustedCADD. annotation, 3, 5, 6
adjustedCADD.annotation.indels, 3,4, 6
adjustedCADD.annotation.SNVs, 3, 5, 5

bed.matrix.split.genomic.region, 6
burden, 7, 36
burden.continuous, 8, 9
burden.continuous.subscores, 11, I8
burden.mlogit, 8, 13, 20, 21, 64
burden.mlogit.subscores, 15, I8
burden.subscores, 12, 16, 17, 23, 48, 50, 63
burden.weighted.matrix, 8, 10, 14, 19, 21
64

CAST, 8, 10, 12, 14, 16, 18, 20, 20, 64

filter.adjustedCADD, 3, 5, 6, 21, 48
filter.rare.variants, 23, 23

genes.b37, 49

genes.b37 (genes.positions), 25
genes.b38, 49

genes.b38 (genes.positions), 25
genes.positions, 25
genotypic.freq, 26
GnomADgenes, 27, 27, 29, 40, 42
GRR.matrix, 27, 28, 40, 42

Jaccard, 29
Kryukov, 27, 29, 30, 40, 42

LCT.hap (LCT.haplotypes), 31
LCT.haplotypes, 31, 33
LCT.matrix, 32, 32

LCT.sample (LCT.haplotypes), 31
LCT.snps (LCT.haplotypes), 31

multinomial.asso.freq, 33

NullObject.parameters, 8, 12, 14, 16, 18,
34, 53, 56, 58, 60, 62

65

RAVA.FIRST, 3, 5, 6, 18, 23, 36, 48
rbm.GRR, 27, 29, 38, 42

rbm.GRR. power, 40, 40
rbm.haplos.fregs, 42
rbm.haplos.power, 43
rbm.haplos. thresholds, 45

set.CADDregions, 23, 47
set.genomic.region, 25, 48, 50
set.genomic.region.subregion, 49, 63
SKAT, 36, 51, 56, 58, 60

SKAT .bootstrap, 53, 54
SKAT.continuous, 57

SKAT .permutations, 53, 59

SKAT . theoretical, 53, 61
subregions.LCT, 63

WSS, 8, 10, 12, 14, 16, 18, 20, 21, 63

	adjustedCADD.annotation
	adjustedCADD.annotation.indels
	adjustedCADD.annotation.SNVs
	bed.matrix.split.genomic.region
	burden
	burden.continuous
	burden.continuous.subscores
	burden.mlogit
	burden.mlogit.subscores
	burden.subscores
	burden.weighted.matrix
	CAST
	filter.adjustedCADD
	filter.rare.variants
	genes.positions
	genotypic.freq
	GnomADgenes
	GRR.matrix
	Jaccard
	Kryukov
	LCT.haplotypes
	LCT.matrix
	multinomial.asso.freq
	NullObject.parameters
	RAVA.FIRST
	rbm.GRR
	rbm.GRR.power
	rbm.haplos.freqs
	rbm.haplos.power
	rbm.haplos.thresholds
	set.CADDregions
	set.genomic.region
	set.genomic.region.subregion
	SKAT
	SKAT.bootstrap
	SKAT.continuous
	SKAT.permutations
	SKAT.theoretical
	subregions.LCT
	WSS
	Index

