
RankAggreg, an R package for weighted rank

aggregation

Vasyl Pihur, Somnath Datta, and Susmita Datta

Department of Bioinformatics and Biostatistics, University of Louisville
http://vpihur.com/biostat

May 9, 2020

Contents

1 Introduction 2

2 Rank aggregation as an optimization problem 3
2.1 Spearman footrule distance 4
2.2 Kendall’s tau distance . 5

3 Cross-Entropy Monte Carlo algorithm 6

4 Genetic algorithm 8

5 Examples of rank aggregation 9
5.1 Aggregation of clustering validation measures 9
5.2 Meta-analysis of microarray experiments 14

6 Discussion 18

Abstract

Rank aggregation plays an important role in our daily lives. Or-
dered lists are ubiquitous and we, consciously or unconsciously, at-
tempt to make sense of them. Unfortunately, for more complex prob-
lems, where either the number of lists is large or the lists are long or
both, the aggregation becomes more than a simple brainteaser, often
requiring advanced computational techniques. The RankAggreg pack-
age provides two methods for combining the ordered lists: the Cross-
Entropy method and the Genetic Algorithm. Two examples of rank

1

http://vpihur.com/biostat

aggregation are given in the manuscript, one a moderately large prob-
lem in the context of clustering and the other relatively difficult one in
the context of meta-analysis of microarray experiments.

1 Introduction

If you had to fill out at least one survey in your life, there is a good chance
that you were asked to rank a collection of items in the order of preference
from the most favorable to the least favorable. Certain voting schemes, par-
ticularly the ones used in the past, required voters to rank all candidates,
making the final decision based on the obtained ordered lists. Many statisti-
cal and data mining procedures applied to large amounts of biological data
usually produce a list, ordered according to some importance measure, of
biologically meaningful entities such as, for example, a list of genes from a
microarray experiment indicative of the cancer status. These are just a few
examples that illustrate the abundance of ordered lists in all aspects of our
lives, both scientific and mundane.

Franklin D. Roosevelt once said that ”there are as many opinions as
there are experts” and, thus, as many ordered lists on any given subject.
Rank aggregation techniques are indispensable tools for combining individ-
ual ordered lists into a single ”super”-list reflective of the overall preference
or importance within the population. The idea is quite simple and, ide-
ally, everyone’s opinion should be accounted for. Different rank aggregation
schemes, however, differ greatly in the underlying philosophy, as well as
mathematical complexity.

Two radically different philosophies on rank aggregation exist. The first
one is based on the majoritarian principles and attempts to accommodate
the ”majority” of individual preferences putting less or no weight on the rel-
atively infrequent ones. The final aggregate ranking is usually based on the
number of pairwise wins between items within individual lists. If item ”A” is
ranked higher than item ”B” more often than not, then item ”A” should also
be ranked higher than item ”B” in the overall list. The second philosophical
approach to rank aggregation seeks the consensus among individual ordered
lists and is usually based on some form of rank averaging. It is possible that
the two approaches will produce different aggregated lists if applied to the
same problem.

Conceptually, rank aggregation techniques range from quite simple (based
on rank average or on a number of pairwise wins) to fairly complex and may
employ advanced computational methodologies to find a solution. Simple

2

solutions are not necessarily desirable as they usually rely on ”ad hoc” prin-
ciples and lack any formal justification. Mathematical rigor brings certain
satisfaction and ”security” at the expense of increased complexity and inten-
sive computation.

In this paper, we present an R RankAggreg package which provides two
distinct algorithms for rank aggregation: the Cross-Entropy Monte Carlo
algorithm (CE) Rubinstein (1999); De Boer et al. (2005) and the Genetic
algorithm (GA) Goldenberg (1989). Both methods are available through
the main function RankAggreg. In addition, a brute force algorithm is also
provided through the BruteAggreg function which simply tries all possible
solutions and selects the one which is optimal. What is meant by ”optimal”
and how to find the ”optimal” solution will be the discussion of the next
sections.

2 Rank aggregation as an optimization problem

If we are to cast the rank aggregation in the framework of an optimization
problem, we first would need to define our objective function. In this context,
we would like to find a ”super”-list which would be as ”close” as possible to
all individual ordered lists simultaneously. This is a natural requirement
and the objective function, at least in its most abstract form, is very simple
and intuitive

Φ(δ) =
m∑
i=1

wid(δ, Li),

where δ is a proposed ordered list of length k = |Li|, wi is the importance
weight associated with list Li, d is a distance function which will be discussed
in details below, and Li is the ith ordered list Pihur et al. (2007).

The idea is to find δ∗ which would minimize the total distance between
δ∗ and Li’s

δ∗ = arg min
m∑
i=1

wid(δ, Li).

Selecting the appropriate distance function d which would measure the
”distance” between ordered lists is very important and two choices of a dis-
tance function are available: Spearman footrule distance and Kendall’s tau
distance. The two distances usually produce slightly different aggregated
lists which is mainly due to the differences in the two philosophical paradigms

3

discussed in the Introduction (1). Now let us take a closer look at how ”dis-
tances” between ordered lists are measured.

2.1 Spearman footrule distance

Before defining the two distance measures, let us introduce some necessary
notation. Let Mi(1), . . . ,Mi(k) be the scores associated with the ordered list
Li, where Mi(1) is the best (can be the largest or the smallest depending
on the context) score, Mi(2) is the second best, and so on. Let rLi(A) be
the rank of A in the list Li (1 means ”best”) if A is within the top k, and be
equal to k + 1, otherwise; rδ(A) is defined likewise.

The Spearman’s footrule distance between Li and any ordered list δ can
be defined as

S(δ, Li) =
∑

t∈Li∪δ
|rδ(t)− rLi(t)|.

It is nothing more than the summation of the absolute differences between
the ranks of all unique elements from both ordered lists combined. It is
rather a very intuitive metric for comparing two ordered lists of arbitrary
length. The smaller the value of the metric, the more similar the lists. For
Spearman’s footrule distance, the maximum value when comparing two top-
k lists is k(k + 1) which is attained when the two lists have no elements in
common.

The appeal of the Spearman footrule distance comes from its simplicity
and it is adequate in many situations when the only information available
about the individual lists is the rank order of their elements. In a case
when additional information which was used to rank the lists in the first
place is available, it would be beneficial and prudent to incorporate this
information into our aggregation scheme Pihur et al. (2007). Even though
in soccer a win is a win, a win by 5 goals is more ”convincing” than a
marginal victory secured by a penalty kick on the last minute of the game.
The qualitative difference in terms of ranks has an objective quantitative
difference underlying it. This is probably true in most cases.

Thus, we define the Weighted Spearman’s footrule distance between Li
and any ordered list δ which makes use of the quantitative information
available in many cases. It is given by this weighted sum representation

WS(δ, Li) =
∑

t∈Li∪δ
|M(rδ(t))−M(rLi(t))| × |rδ(t)− rLi(t)|.

One can intuitively think of WS(δ, Li) in terms of sum of penalties for
moving an arbitrary element of the list Li, t, from the position rδ(t) to

4

another position rLi(t) within the list (second term of the products) adjusted
by the difference in scores between the two positions (first term).

2.2 Kendall’s tau distance

The Kendall’s tau distance takes a different approach at measuring the dis-
tance between two ordered lists. It utilizes pairs of elements from the union
of two lists and is defined

K(δ, Li) =
∑

t,u∈Li∪δ
Kp
tu,

where

Kp
tu =


0 if rδ(t) < rδ(u), rLi(t) < rLi(u) or rδ(t) > rδ(u), rLi(t) > rLi(u)

1 if rδ(t) > rδ(u), rLi(t) < rLi(u) or rδ(t) < rδ(u), rLi(t) > rLi(u)

p if rδ(t) = rδ(u) = k + 1 or rLi(t) = rLi(u) = k + 1.

Here, p ∈ [0, 1] is a parameter that needs to be specified for Kendall’s tau. If
p is set to 0, the maximum value that the distance can achieve is k2 and this
happens when the intersection of the two lists compared is an empty set.
Intuitively, Kendall’s tau can be thought about in the following way. If the
two elements t and u have the same ordering in both lists, then no penalty is
incurred (a good scenario). If the element t precedes u in the first list and u
precedes t in the second list, then a penalty of 1 is imposed (a bad scenario).
A case when both t and u do not appear in either one of the lists (their
ranks are k + 1) can be handled by selecting p on a spectrum ranging from
very liberal (0) to very conservative (1). That is, if we have no knowledge
of the relative position of t and u in one of the lists, we have several choices
in the matter. We can either impose no penalty (0), full penalty (1), or a
partial penalty (0 < p < 1). The following three choices are common: 0,
1, and 0.5. It is a matter of a philosophical taste as to which option one
chooses. We use p = 0 in the internal Kendall function of the package.

Somewhat analogously to the Weighted Spearman distance, the Weighted
Kendall’s tau is defined by

WK(δ, Li) =
∑

t,u∈Li∪δ
|M(rLi(t))−M(rLi(u))| ×Kp

tu,

in which the penalty imposed is adjusted by the absolute difference in the
scores for elements t and u. Here, Kp

tu is defined identically as above.

5

Normalization of scores from each list Li before computing WS and WK
is necessary. The weights must be comparable otherwise disproportionately
large or small weights can benefit a particular list and pull the ”optimal”
list δ∗ towards it. A number of normalization schemes that map the scores
from the real line to the interval [0, 1] were considered. Unfortunately, most
of them resulted in transformed scores occupying a very narrow portion of
the interval. We settled for a simple normalization which spread the scores
”evenly” between 0 and 1

M∗i =
Mi −min(Mi)

max(Mi)−min(Mi)
, i = 1, . . . , n.

We would like to make one last comment on the reasons behind introduc-
ing weighted distance measures here. Quite obviously they are motivated
by the desire for a more efficient use of the data, in this case, the numerical
scores which underlie the rankings. But that is not their sole purpose. When
using the original Spearman and Kendall distances we noticed that in many
situations no clear winner exists as two or more ordered lists have the same
objective function score due to the discrete nature of the ranks. This brought
computational instability into the iterative aggregation process. The algo-
rithm would never converge but would simply oscillate between the two
”best” lists, understandably not knowing which one to pick. When contin-
uous weights are used to adjust the discrete ranks, the possibility of such
ties is almost eliminated and the algorithm is much more computationally
stable. In addition, we obtain a clear winner in an objective way.

3 Cross-Entropy Monte Carlo algorithm

Due to practical considerations and computational convenience, we represent
an ordered list as an (X)n×k random matrix whose entries are 0 or 1 with the
constraints of its columns summing up to 1 and its row summing to at most
1. Here, n is the total number of unique elements in all ordered lists to be
combined and k is usually the length of ordered lists (but can be smaller if
necessary). Under this setup, each realization of X, x, uniquely determines
an ordered list of size k by the position of 1’s in each column from left to
right Lin et al. (2006). For example, if the full list was (A,B,C), a 3 × 3
matrix

x =

0 1 0
0 0 1
1 0 0



6

would translate into a candidate list of (C,A,B).
Having defined X as a matrix of size n × k with the two constraints

regarding the sums of columns and rows, we thereby define the space of
solutions, X, to our minimization problem. It is of interest to find the
minimum of the objective function Φ over X and the corresponding x at
which that minimum is attained.

Assume that X comes from a pmf P (x) that is indexed by the parameter
matrix (v)n×k = ((pjr)). More precisely, we assume that the joint distribu-
tion Pv(X = x) satisfying the above two constraints is given by

Pv(x) ∝
n∏
j=1

k∏
r=1

(pjr)
xjr

×I

 k∑
r=1

xjr ≤ 1, 1 ≤ j ≤ n;
n∑
j=1

xjr = 1, 1 ≤ r ≤ k


The CE algorithm proceeds in the following fashion:

1. Initialization: Set t = 0. Set the initial parameter matrix v0 of the
random distribution of X to constant values; i.e., let each p0jr = 1/n.
Thus, at this stage, each of the n unique elements has equal chances
of being included in the overall lists of size k for which the objective
function Φ will be evaluated. This default behavior can be overrid-
den by specifying the initial probability matrix v1 in the RankAggreg
function.

2. Sampling: At each iteration t, draw a sample of size N from Pvt(x).
Find the corresponding top-k lists δi’s and the values of the objective
function Φ(δi). Sort the Φ(δi)’s in ascending order and find a ρ-quantile
yt = Φ([ρN]), where [a], for any real number a, is the integer part of a.

3. Updating: Update the parameter vector as follows

p
(t+1)
jr = (1− w)ptjr + w

∑N
i=1 I(Φ(δi) ≤ yt)xijr∑N
i=1 I(Φ(δi) ≤ yt)

,

where xijr is the value at the jrth position of the ith sample and w is a
weight parameter introduced to avoid convergence to a local maxima
(specified by the weight argument with the default value of .25).

4. Convergence: The algorithm is stopped if the optimal list does not
change in a user-specified number of iterations. The default value is 7
for the CE algorithm and it is specified by the convIn argument.

7

The CE algorithm requires users to set a number of parameters. Conver-
gence to a global optimal solution in many ways depends on the parameters
chosen. It is recommended that the number of samples N is to be set to at
least 10k2 (in case, n >> k, 10kn) and the rarity parameter ρ is to be set
to 0.01 if N is relatively large or 0.1 if N is small (less than 100).

4 Genetic algorithm

Genetic algorithms are another set of tools suitable for solving complex
combinatorial problems Goldenberg (1989). Their main advantage is their
inherent simplicity in both conceptual understanding and software imple-
mentation. In our experience, the GA perform reasonably well for the ag-
gregation problem but one has to be careful with the selection of important
parameters defining the rate at which the learning proceeds.

As implemented in this package, the GA has the following steps:

1. Initialization: Randomly select popSize ordered lists of size k which
form the initial population of possible solutions to our optimization
problem. The population size popSize is important and, obviously, the
larger the population size, the better chance of it containing, at some
point, the optimal solution. It should ideally be a function of k and
the number of unique elements in the original ordered lists Li, but
computational feasibility has to be considered here.

2. Selection: Depending on which distance is used, compute the objec-
tive function for each member of the population. Then randomly select
current members for the next generation using weighted random sam-
pling where the weights are determined by the member’s fitness (the
objective function score).

3. Cross-over: The selected members are then crossed-over with the
probability of CP (the cross-over probability), i.e. two random ordered
lists can swap their tails which start at a random position with the CP
probability. Only 1-point cross-overs are allowed.

4. Mutation: Crossing-over will allow only for the mixing of ordered lists
but a rather drastic event is required to bring radically new solutions
to the population pool. These are introduced by mutations which
happen with the probability of MP (mutation probability). Thus, any
list in the pool can randomly change one or more of its elements.

8

5. Convergence: The algorithm is stopped if the ”optimal” list remains
optimal for convIn consecutive generations (default is 30). To ensure
that the algorithm stops running eventually, the maximum number of
generations can be set in advance which will terminate the execution
regardless of the first condition being true. If neither the maximum
number of iterations has been reached nor the ”optimal” list stayed
untouched during the last convIn generations, continue to step Selec-
tion.

As was mentioned previously, the choice of the parameters popSize, CP,
and MP is crucial for the success of the GA. If one is too conservative
and selects small CP and MP probabilities, the GA will have a hard time
exploring the space of possible solutions in a reasonable time, particularly,
when the space is extremely large. On the other hand, choosing large values
for CP and MP will results in a ”haste” decision, perhaps getting stuck in a
local minimum without a chance to explore the whole search space.

5 Examples of rank aggregation

We present two rank different rank aggregation problems, one in the context
of unsupervised learning where there is an intrinsic difficulty of choosing the
best clustering algorithm for a particular problem, and the other one in the
context of meta-analysis of different microarray cancer studies where the
goal is to determine the combined set of genes indicative of cancer status.

To start using the RankAggreg package, it must be loaded into R with the
regular library() function. Package documentation, examples, and additional
information are available through help() and vignette() functions.

> library(RankAggreg)

> help(package="RankAggreg")

> vignette("RankAggreg")

5.1 Aggregation of clustering validation measures

Rank aggregation in the clustering context was introduced by Pihur et al.
(2007). Numerous clustering algorithms are available in R and other statisti-
cal and data mining software packages, each one having its relative strength
and weaknesses in terms of how successfully they can handle certain types of
data. Thus, it is often difficult to select the ”best” algorithm for a particular

9

clustering task. Validation (performance) measures come to rescue to some
extent and offer an objective way of ranking clustering algorithms accord-
ing to their assessment of what a ”good” clustering result is. If k clustering
algorithms are validated with m validation measures, m ordered lists of size
k are produced as a result. Even though desirable, the order of clustering
algorithms within each list is rarely the same. Rank aggregation is help-
ful in reconciling the ranks and producing the ”super”-list which determines
the overall winner and also ranks all clustering algorithms based on their
performance as determined by all m validation measures simultaneously.

Clustering validation is implemented in the clValid package Brock et al.
(2007). After loading the package, we bring in a mouse microarray dataset
available and select the first 100 genes from it. Assuming that those 100
genes form 5 natural clusters (this is a big assumption but it is not es-
sential for the rank aggregation demonstration), we evaluate 10 clustering
algorithms with 6 validation measures. Available clustering algorithms are:
SOTA (ST), FANNY (FN), K-Means(KM), PAM(PM), Hierarchical(HR),
Agnes(AG), CLARA(CL), Diana(DI), and Model-based(MO). Further de-
tails can be obtained from the clValid package documentation.

> options(warn = -1)

> library(clValid)

> library(mclust)

> library(kohonen)

> data(mouse)

> express <- mouse[1:100,c("M1","M2","M3","NC1","NC2","NC3")]

> rownames(express) <- mouse$ID[1:100]

> set.seed(100)

> result <- clValid(express, 5,

+ clMethods=c("hierarchical","fanny","model", "kmeans","sota","pam","clara",

+ "agnes", "diana"), validation=c("internal","stability"))

The result object contains a 7 × 9 matrix of scores which measure the
performance of the algorithms. For each validation measure, 9 clustering al-
gorithms can now be ranked based on these scores which are sorted either in
ascending or descending order depending on whether larger or smaller scores
correspond to better performance under the measure. Here, the Dunn index
and the Silhouette Width measure give higher scores with better perfor-
mance and for the other measures the smaller scores are desirable.

This is how the 7 ordered lists of 9 algorithms look like.

1 2 3 4 5 6 7 8 9

10

APN MO FN ST KM PM HR AG CL DI

AD FN KM PM CL ST DI HR AG MO

ADM FN ST MO KM CL PM DI HR AG

FOM CL KM PM FN ST DI HR AG MO

Connectivity HR AG DI KM FN CL PM MO ST

Dunn HR AG KM PM DI CL FN ST MO

Silhouette HR AG KM CL PM ST DI FN MO

The underlying validation measures’ scores are given below.

1 2 3 4 5 6 7 8 9

APN MO FN ST KM PM HR AG CL DI

AD FN KM PM CL ST DI HR AG MO

ADM FN ST MO KM CL PM DI HR AG

FOM CL KM PM FN ST DI HR AG MO

Connectivity HR AG DI KM FN CL PM MO ST

Dunn HR AG KM PM DI CL FN ST MO

Silhouette HR AG KM CL PM ST DI FN MO

We can see that K-Means and Hierarchical clustering are performing
quite well. Since the number of possible solutions is not that large in this case
(k! = 9! = 362, 880), it is feasible to use the brute force approach to find the
optimal solution. This can be done using the BruteAggreg function provided
in the package. Please note that even for this relatively small problem it
takes hours to perform the necessary computations. The approach is limited
to toy examples only and should not be attempted if k is larger than 10.

> BruteAggreg(res$ranks, 9, res$weights, "Spearman")

The best overall list as determine by trying all possible solutions with the
weighted Spearman footrule distance is KM HR AG FN PM CL DI ST
MO with the minimum objective function score of 6.378781. As expected,
Hierarchical clustering and the K-Means algorithm are the top two perform-
ers. We will now see if the CE algorithm can quickly discover the solution
without resorting to an exhaustive search.

> (CEWS <- RankAggreg(res$ranks, 9, res$weights, seed=123))

The optimal list is:

SM HR KM FN AG PM CL DI ST MO

11

Algorithm: CE

Distance: Spearman

Score: 5.552256

We get exactly the same solution in only 22 iterations and in about 40
seconds by examining mere 13000 potential candidates.

To get a visual representation of the results, a convenient plot function
is provided. It takes the object returned by the RankAggreg function as its
first argument and outputs three side-by-side plots with useful information
on the convergence properties and the final ranking.

Weighted Kendall’s tau distance can also be used, though it is much more
expensive to compute. If the verbose argument of the RankAggreg function
is set to TRUE (it is by default), R console window outputs information at
each iteration to keep the user updated. In addition, a plot similar to Figure
1 is shown and updated at each iteration to monitor convergence.

> (CEWK <- RankAggreg(res$ranks, 9, res$weights, "CE", "Kendall", seed=123, verbose=FALSE))

The optimal list is:

KM SM PM FN HR AG CL DI ST MO

Algorithm: CE

Distance: Kendall

Score: 1.241372

This time K-means is still ahead, while the Hierarchical clusters got
pushed down to number 4.

The Genetic Algorithm can also be used with both the weighted Spear-
man and Kendall distances. Unfortunately, it seems to lack the monotonicity
property that the CE algorithm exhibits to some extent. This can be seen
in the first plot of Figure 2. Due to that fact, the convergence criteria needs
to be stricter to avoid sporadic local solutions. The default value for the
convIn arguments for the GA is 30.

> (GAWS <- RankAggreg(res$ranks, 9, res$weights, "GA", "Spearman",seed=123, verbose=FALSE))

The optimal list is:

SM HR KM FN AG PM CL DI ST MO

Algorithm: GA

Distance: Spearman

Score: 5.552256

12

> plot(CEWS)

2 4 6 8 10 12

5.
6

5.
8

6.
0

6.
2

Minimum Path

Iteration

S
co

re
s

min = 5.552

Final Sample Distribution

Objective function scores

F
re

qu
en

cy
5.6 5.8 6.0 6.2 6.4

0
20

0
40

0

0
2

4
6

8
12

Rank Aggregation

Optimal List: SM HR KM FN AG PM CL DI ST MO

R
an

ks

SM HR KM FN AG PM CL DI ST MO

Data CE Mean

Figure 1: Visual Representation of the aggregation results through the plot()
function. The first plot in the top row shows the path of minimum values
of the objective function over time. The global minimum is shown in the
top right corner. The histogram of the objective function scores at the last
iteration is displayed in the second plot. Looking at these two plots, one
can get a general idea about the rate of convergence and the distribution
of candidate lists at the last iteration. The third plot at the bottom shows
the individual lists and the obtained solution along with optional average
ranking.

13

> (GAWK <- RankAggreg(res$ranks, 9, res$weights, "GA", "Kendall",seed=123, verbose=FALSE))

The optimal list is:

KM SM PM FN HR AG CL DI ST MO

Algorithm: GA

Distance: Kendall

Score: 1.241372

Both results agree with the ones obtained using the CE algorithm. Be-
sides the jaggedness of the minimum path in the first plot, it is easy to
notice that the GA algorithm takes significantly larger amount of cycles to
converge. Even given that, the population distribution of the last generation
is much more heterogeneous than that of the CE.

5.2 Meta-analysis of microarray experiments

Microarray cancer studies often attempt to identify genes related to a spe-
cific cancer. Their most common output is a list of genes ordered by cor-
responding p-values. Different studies, even the ones analyzing the same
cancer type (for example, lung cancer), almost never produce identical gene
lists. Meta-analysis of multiple microarray studies is difficult, especially if
different experimental platforms have been used. Rank aggregation, how-
ever, avoids the issue of multiple experimental conditions by dealing with
the final product: the ordered list of genes.

Recently, we have carried out the meta-analysis of 20 microarray studies
on multiple cancers using the proposed rank aggregation algorithms Pihur
et al. (2008). Our goal was to identify genes which would be important in
development of multiple cancers. Further details on the rank aggregation
details can be found in the original article.

Here, we present a smaller example described by DeConde et al. (2006)
who used three different Monte Carlo algorithms for rank aggregation of 5
prostate cancer microarray datasets. Two experiments were conducted using
the Affymetrix chip technology and the other three studies used custom
cDNA chips. Each individual study tried to identify genes which are either
up or down-regulated in prostate cancer patients, coming up with ordered
lists of upregualated genes shown in Table 1 (the lists appear in Table 4 in
DeConde et al. (2006)).

> data(geneLists)

14

> plot(GAWS)

0 100 300 500

5.
5

6.
0

6.
5

7.
0

Minimum Path

Iteration

S
co

re
s

min = 5.552

Final Sample Distribution

Objective function scores

F
re

qu
en

cy

6 7 8 9 10 11 12

0
2

4
6

8
10

0
2

4
6

8
12

Rank Aggregation

Optimal List: SM HR KM FN AG PM CL DI ST MO

R
an

ks

SM HR KM FN AG PM CL DI ST MO

Data GA Mean

Figure 2: Visual representation of rank aggregation using the GA algorithm
with the Weighted Spearman distance.

15

Luo Welsh Dhana True Singh

1 HPN HPN OGT AMACR HPN
2 AMACR AMACR AMACR HPN SLC25A6
3 CYP1B1 0ACT2 FASN NME2 EEF2
4 ATF5 GDF15 HPN CBX3 SAT
5 BRCA1 FASN UAP1 GDF15 NME2
6 LGALS3 ANK3 GUCY1A3 MTHFD2 LDHA
7 MYC KRT18 0ACT2 MRPL3 CANX
8 PCDHGC3 UAP1 SLC19A1 SLC25A6 NACA
9 WT1 GRP58 KRT18 NME1 FASN

10 TFF3 PPIB EEF2 COX6C SND1
11 MARCKS KRT7 STRA13 JTV1 KRT18
12 OS-9 NME1 ALCAM CCNG2 RPL15
13 CCND2 STRA13 GDF15 AP3S1 TNFSF10
14 NME1 DAPK1 NME1 EEF2 SERP1
15 DYRK1A TMEM4 CALR RAN GRP58
16 TRAP1 CANX SND1 PRKACA ALCAM
17 FM05 TRA1 STAT6 RAD23B GDF15
18 ZHX2 PRSS8 TCEB3 PSAP TMEM4
19 RPL36AL ENTPD6 EIF4A1 CCT2 CCT2
20 ITPR3 PPP1CA LMAN1 G3BP SLC39A6
21 GCSH ACADSB MAOA EPRS RPL5
22 DDB2 PTPLB ATP6V0B CKAP1 RPS13
23 TFCP2 TMEM23 PPIB LIG3 MTHFD2
24 TRAM1 MRPL3 FM05 SNX4 G3BP2
25 YTHDF3 SLC19A1 SLC7A5 NSMAF UAP1

Table 1: Top-25 upregulated genes from 5 prostate microarray experiments.

There are 89 unique genes in all 5 gene lists. The only gene that appears
in all of them is HPN, while genes AMACR, GDF15, and NME1 appear in
4 lists. 66 genes appear in just one list. The goal of rank aggregation is to
combine these lists into the overall top-25 gene list which hopefully would
be more accurate than any individual list by itself.

Since no p-values are reported, we will use the regular Spearman distance
for both the CE and the GA algorithms.

> top25CE <- RankAggreg(geneLists, 25, seed=100, rho=.01)

The optimal list is:

HPN AMACR GDF15 FASN NME2 UAP1 SLC25A6 0ACT2 KRT18 NME1

16

EEF2 STRA13 GRP58 CANX SND1 ALCAM MRPL3 TMEM4 CCT2

SLC19A1 PPIB FM05 ENTPD6 KRT7

Algorithm: CE

Distance: Spearman

Score: 319.6

The CE algorithm converges in 38 iterations with the minimum of 319.6.
The overall list is perhaps not surprising, putting HPN in the first place,
followed closely by the two other genes that appear in four lists. Using the
GA algorithm we get the similar results.

In case when there would be an indication that some microarray stud-
ies are more reliable than others, we could set the importance parameter
available in the RankAggreg function to reflect these beliefs. By default,
it assigns equal weights to all ordered lists, but one, for example, could set
importance=c(1,2,1,1,2) placing stronger emphasis on the Affymetrix arrays
which are considered to have higher sensitivity rates.

> top25CEw <- RankAggreg(geneLists, 25, seed=100, importance=c(1,2,1,1,2), rho=.01)

The optimal list is:

HPN AMACR 0ACT2 GDF15 FASN NME2 KRT18 SLC25A6 EEF2 UAP1

CANX NME1 GRP58 SND1 STRA13 TMEM4 ALCAM PPIB NACA CCT2

RPL5 SLC39A6 MTHFD2 MRPL3 SLC19A1

Algorithm: CE

Distance: Spearman

Score: 295.4286

This produces the combined list which is slightly different from the one
obtained treating all five studies equally. The objective function score here is
295.43, being a little smaller than 319.6. Clearly, OACT2 is ranked higher
now (3rd) due to being at the top (also 3rd) in the Welsh study which
received more weight. Similarly, the KRT18 gene moved up a couple spots
due to being present in both Welsh and Singh top lists which are both
Affymetrix.

The GA algorithm can also be applied. We increase the maximum num-
ber of iterations to allow for a longer evolution process. Increasing the convIn
(converge in) argument to 50 will assure that we do not stop the algorithm
too soon.

17

> top25GA <- RankAggreg(geneLists, 25, seed=100, method="GA", maxIter=3000, convIn=50)

The optimal list is:

HPN AMACR SLC25A6 FASN NME2 GDF15 0ACT2 UAP1 KRT18 EEF2

STRA13 NME1 MTHFD2 SND1 CANX GRP58 ALCAM TMEM4 PPIB CCT2

SLC19A1 CBX3 SAT FM05 SNX4

Algorithm: GA

Distance: Spearman

Score: 320.8

The algorithm did not converge (due to setting a rather stringent criteria)
and was stopped after 3000 generations. The final list had an objective
function score of 320.8 which is slightly worse than what we obtained using
the CE algorithm. These lists are almost identical in terms of which genes
where included in the top 25 (22 genes are the same), but they are somewhat
different in the actual ordering. This should not come as a huge surprise,
taking into consideration the enormous solution space. Both of the obtained
lists are most likely very close to the true minimum solution.

6 Discussion

The RankAggreg package provides an easy and convenient interface to handle
complex rank aggregation problems. It provides the user with two choices
of methods for aggregation as well as two different distance functions. The
brute force approach is also available for small-scale problems. A simple plot
function helps to visualize the rank aggregation problem and the obtained
solution.

We would like to stress that using either the CE or the GA algorithms
for large problems does not ”guarantee” an optimal solution. Performance of
both of these algorithms is quite sensitive to the tuning parameters, in par-
ticular the sample size N for the CE algorithm and the cross-over (CP) and
mutation (MP) probabilities for the GA algorithm. The user is encouraged
to run the RankAggreg function several times. If different optimal lists are
produced, increasing sample size is probably necessary. Tuning additional
parameters as discussed above may also prevent local minima traps. That
said, however, we are quite impressed by the ability of both algorithms, the
CE in particular, in discovering the optimal ordering of the elements in the
combined list.

18

References

G. N. Brock, V. Pihur, S. Datta, and S. Datta. clvalid, an r package for cluster
validation. Journal of Statistical Software, 25:4, 2007.

P. De Boer, D. Kroese, S. Mannor, and R. Rubinstein. A tutorial on the cross-
entropy method. Ann. Oper. Res., 134:19–67, 2005.

R. DeConde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen, and R. Etzioni. Combin-
ing results of microarray experiments: a rank aggregation approach. Stat Appl
Genet Mol Biol, 5(1):Article15, 2006.

D. E. Goldenberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley, Reading: MA, 1989.

S. Lin, J. Ding, and J. Zhou. Rank aggregation of putative microrna targets with
cross-entropy monte carlo methods. (Preprint, presented at the IBC 2006 con-
ference, Montral), 2006.

V. Pihur, S. Datta, and S. Datta. Weighted rank aggregation of cluster validation
measures: a monte carlo cross-entropy approach. Bioinformatics, 23(13):1607–
15, 2007.

V. Pihur, S. Datta, and S. Datta. Finding cancer genes through meta-analysis
of microarray experiments: Rank aggregation via the cross entropy algorithm.
Genomics, (to appear), 2008.

R. Rubinstein. The cross-entropy method for combinatorial and continuous opti-
mization. Methodology and Computing in Applied Probability, 1:127–190, 1999.

19

	Introduction
	Rank aggregation as an optimization problem
	Spearman footrule distance
	Kendall's tau distance

	Cross-Entropy Monte Carlo algorithm
	Genetic algorithm
	Examples of rank aggregation
	Aggregation of clustering validation measures
	Meta-analysis of microarray experiments

	Discussion

