How to use RandomForestsGLS

The package RandomForestsGLS fits non-linear regression models on dependent data with Generalised
Least Square (GLS) based Random Forest (RF-GLS) detailed in Saha, Basu and Datta (2020) https:
//arxiv.org/abs/2007.15421. We will start by loading the RandomForestsGLS R package.

library (RandomForestsGLS)

Next, we discuss how the RandomForestsGLS package can be used for estimation and prediction in a non-linear
regression setup under correlated errors in different scenarios.

1. Spatial Data

We consider spatial point referenced data with the following model:

yi = m(x;) +w(si) + €;

where, y;,x; respectively denotes the observed response and the covariate corresponding to the i** observed
location s;. m(x;) denotes the covariate effect, spatial random effect, w(s) accounts for spatial dependence
beyond covariates, and € accounts for the independent and identically distributed random Gaussian noise.

In the spatial mixture model setting, the package RandomForestsGLS allows for fitting m(.) using RF-GLS.
Spatial random effects are modeled using Gaussian Process as is the practice. For model fitting, we use
the computationally convenient Nearest Neighbor Gaussian Process (NNGP) (Datta, Banerjee, Finley, and
Gelfand (2016)). Along with prediction of the covariate effect (mean function) m(.) we also offer kriging
based prediction of spatial responses at new location.

Illustration

We simulate a data from the following model:

y;i = 10sin(mz;) + w(s;) + €; € ~ N(0, 7°I),72 = 0.1; w ~ exponential GP; 0% = 10;¢ = 1.

Here, the mean function is F(Y') = 10sin(7X); w accounts for the spatial correlation, which is generated as
a exponential Gaussian process with spatial variance 02 = 10 and spatial correlation decay ¢ = 1; and e is
the i.i.d random noise with variance 72 = 0.1, which is also called the nugget in spatial literature.

For illustration purposes, we simulate with n = 200:

rmvn <- function(n, mu = 0, V = matrix(1)){
p <- length(mu)
if (any(is.na(match(dim(V),p))))
stop("Dimension not right!")
D <- chol(V)
t (matrix(rnorm(n*p), ncol=p)%*/D + rep(mu,rep(n,p)))

}

set.seed(5)
n <- 200
coords <- cbind(runif(n,0,1), runif(n,0,1))

https://arxiv.org/abs/2007.15421
https://arxiv.org/abs/2007.15421

set.seed(2)

x <- as.matrix(runif(a),n,1)

sigma.sq = 10

phi = 1

tau.sq = 0.1

D <- as.matrix(dist(coords))

R <- exp(-phi*D)

w <- rmvn(l, rep(0,n), sigma.sqg*R)

y <- rnorm(n, 10*sin(pi * x) + w, sqrt(tau.sq))

Model fitting

In the package RandomForestsGLS, the working precision matrix used in the GLS-loss are NNGP approxima-
tions of precision matrices corresponding to Matérn covariance function.

In order to fit the model, the code requires:

o Coordinates (coords): an n X 2 matrix of 2-dimensional locations.

o Response (y): an n length vector of response at the observed coordinates.

o Covariates (X): an n X p matrix of the covariates in the observation coordinates.

o Covariates for estimation (Xtest): an ntest x p matrix of the covariates where we want to estimate the
function. Must have identical variables as that of X. Default is X.

e Minimum size of leaf nodes (nthsize): We recommend not setting this value too small, as that will
lead to very deep trees that takes a lot of time to be built and can produce unstable estimates. Default
value is 20.

o The parameters corresponding to the covariance function (detailed afterwards).

For the details on choice of other parameters, please refer to the help file of the code RFGLS_estimate_spatial,
which can be accessed with PRFGLS_estimate_spatial.

Known Covariance Parameters

If the covariance parameters are known, we set param_estimate = FALSE (default value); the code additionally
requires the following:

M«

o Covariance Model (cov.model): Supported keywords are: “exponential”, “matern”, “spherical”, and
“gaussian” for exponential, Matérn, spherical and Gaussian covariance function respectively. Default
value is “exponential”.

o 02 (sigma.sq): The spatial variance. Default value is 1.

e 72 (tau.sq): The nugget. Default value is 0.01.

o ¢ (phi): The spatial correlation decay parameter. Default value is 5.

e v (nu): The smoothing parameter corresponding to the Matérn covariance function. Default value is
0.5.

We can fit the model as follows:

set.seed(1)

est_known <- RFGLS_estimate_spatial(coords, y, x, ntree = 50, cov.model = "exponential",
nthsize = 20, sigma.sq = sigma.sq, tau.sq = tau.sq,
phi = phi)

The estimate of the function at the covariates Xtest is given in estimation_reult$predicted. For inter-
pretation of the rest of the outputs, please see the help file of the code RFGLS_estimate_spatial. Using
covariance models other than exponential model are in beta testing stage.

Unknown Covariance Parameters

If the covariance parameters are not known we set param_estimate = TRUE; the code additionally requires
the covariance model (cov.model) to be used for parameter estimation prior to RF-GLS fitting. We fit the
model with unknown covariance parameters as follows.

set.seed (1)
est_unknown <- RFGLS_estimate_spatial(coords, y, x, ntree = 50, cov.model = "exponential',
nthsize = 20, param_estimate = TRUE)

Prediction of mean function

Given a fitted model using RFGLS_estimate_spatial, we can estimate the mean function at new covariate
values as follows:

Xtest <- matrix(seq(0,1, by = 1/10000), 10001, 1)
RFGLS_predict_known <- RFGLS_predict(est_known, Xtest)

Performance comparison

We obtain the Mean Integrated Squared Error (MISE) of the estimate 7 from RF-GLS on [0,1] and compare
it with that corresponding to the classical Random Forest (RF) obtained using package randomForest (with
similar minimum nodesize, nodesize = 20, as default nodesize performs worse). We see that our method
has a significantly smaller MISE. Additionally, we show that the MISE obtained with unknown parameters in
RF-GLS is comparable to that of the MISE obtained with known covariance parameters.

library(randomForest)
set.seed(1)
RF_est <- randomForest(x, y, nodesize = 20)

RF_predict <- predict(RF_est, Xtest)

#RF MISE

mean((RF_predict - 10*sin(pi * Xtest))~2)
#> [1] 8.36778

#RF-GLS MISE
mean ((RFGLS_predict_known$predicted - 10*sin(pi * Xtest)) ~2)
#> [1] 0.150152

RFGLS_predict_unknown <- RFGLS_predict(est_unknown, Xtest)
#RF-GLS unknown MISE

mean ((RFGLS_predict_unknown$predicted - 10*sin(pi * Xtest)) 2)
#> [1] 0.1851928

We plot the true m(z) = 10sin(rz) along with the loess-smoothed version of estimated 72(.) obtained from
RF-GLS and RF where we show that RF-GLS estimate approximates m(x) better than that corresponding
to RF.

rfgls_loess_10 <- loess(RFGLS_predict_known$predicted ~ c(l:length(Xtest)), span=0.1)
rfgls_smoothed10 <- predict(rfgls_loess_10)

rf_loess_10 <- loess(RF_predict ~ c(1:length(RF_predict)), span=0.1)
rf_smoothedl10 <- predict(rf_loess_10)

xval <- c(10*sin(pi * Xtest), rf_smoothed10, rfgls_smoothed10)
xval_tag <- c(rep("Truth", length(10*sin(pi * Xtest))), rep("RF", length(rf_smoothed10)),
rep("RF-GLS",length(rfgls_smoothed10)))

plot_data <- as.data.frame(xval)
plot_data$Methods <- xval_tag

coval <- c(rep(seq(0,1, by = 1/10000), 3))
plot_data$Covariate <- coval

library(ggplot2)
ggplot(plot_data, aes(x=Covariate, y=xval, color=Methods)) +
geom_point() + labs(x = "x") + labs(y = "f(x)")

10-
Methods

— e RF
Ko
= e RF-GLS

5- ® Truth

0 -

0.00 0.25 0.50 0.75 1.00
X

Prediction of spatial response

Given a fitted model using RFGLS_estimate_spatial, we can predict the spatial response/outcome at new
locations provided the covariates at that location. This approach performs kriging at a new location using
the mean function estimates at the corresponding covariate values. Here we partition the simulated data into
training and test sets in 4:1 ratio. Next we perform prediction on the test set using a model fitted on the
training set.

est_known_short <- RFGLS_estimate_spatial(coords[1:160,], y[1:160],
matrix(x[1:160,],160,1), ntree = 50, cov.model = "exponential',
nthsize = 20, param_estimate = TRUE)

RFGLS_predict_spatial <- RFGLS_predict_spatial(est_known_short, coords[161:200,],

matrix(x[161:200,],40,1))

pred_mat <- as.data.frame(cbind (RFGLS_predict_spatial$prediction, y[161:200]))

colnames(pred_mat) <- c("Predicted", "Observed")
ggplot (pred_mat, aes(x=0bserved, y=Predicted)) + geom_point() +
geom_abline(intercept = 0, slope = 1, color = "blue") +

ylim(0, 16) + x1im(0, 16)

Predicted

Observed

Misspecification in covariance model

The following example considers a setting when the parameters are estimated from a misspecified covariance
model. We simulate the spatial correlation from a Matérn covariance function with smoothing parameter
v = 1.5. While fitting the RF-GLS, we estimate the covariance parameters using an exponential covariance
model (v = 0.5) and show that the obtained MISE can compare favorably to that of classical RF.

#Data simulation from matern with nu = 1.5

nu = 3/2

R1 <- (D*phi) "nu/ (2" (nu-1)*gamma(nu)) *besselK (x=D*phi, nu=nu)

diag(R1) <- 1

set.seed(2)

w <- rmvn(l, rep(O,n), sigma.sq*R1)

y <- rnorm(n, 10*sin(pi * x) + w, sqrt(tau.sq))

#RF-GLS with exponential covariance

set.seed(3)

est_misspec <- RFGLS_estimate_spatial(coords, y, x, ntree = 50, cov.model = "exponential',
nthsize = 20, param_estimate = TRUE)

RFGLS_predict_misspec <- RFGLS_predict(est_misspec, Xtest)

#RF

set.seed(4)

RF_est <- randomForest(x, y, nodesize = 20)
RF_predict <- predict(RF_est, Xtest)

#RF-GLS MISE

mean ((RFGLS_predict_misspec$predicted - 10*sin(pi * Xtest)) 2)
#> [1] 0.1380569

#RF MISE

mean((RF_predict - 10*sin(pi * Xtest)) 2)

#> [1] 2.295639

2. Autoregressive Time Series Data

RF-GLS can also be used for function estimation in a time series setting under autoregressive errors. We
consider time series data with errors from an AR(q) process as follows:

q
Yp = m(xt) + et e = Zpietfi + 0
i=1

where, y;,%; denotes the response and the covariate corresponding to the " time point, e; is an AR(q)
pprocess, 7; denotes the i.i.d. white noise and (p1,--- ,pq) are the model parameters that captures the
dependence of e; on (e4—1,- -+ ,e1—q).

In the AR time series scenario, the package RandomForestsGLS allows for fitting m(.) using RF-GLS. RF-GLS
exploits the sparsity of the closed form precision matrix of the AR process for model fitting and prediction of
mean function m(.).

Illustration

Here, we simulate from the AR(1) process as follows:

y = 10sin(mz) +e;e; = pes_1 + 0 me ~ N(0,0%);e1 = 13 p = 0.9;0% = 10.

Here, E(Y) = 10sin(7X); e which is an AR(1) process, accounts for the temporal correlation, o denotes the
variance of white noise part of the AR(1) process and p captures the degree of dependence of e; on e;_1.

For illustration purposes, we simulate with n = 200:

rho <- 0.9

set.seed (1)

b <- rho

s <- sqrt(sigma.sq)

eps = arima.sim(list(order = c(1,0,0), ar = b), n = n, rand.gen = rnorm, sd = s)
y <- c(eps + 10*sin(pi * x))

Model fitting

In case of time series data, the code requires:

o Response (y): an n length vector of response at the observed time points.

o Covariates (X): an n X p matrix of the covariates in the observation time points.

o Covariates for estimation (Xtest): an ntest x p matrix of the covariates where we want to estimate the
function. Must have identical variables as that of X. Default is X.

o Minimum size of leaf nodes (nthsize): We recommend not setting this value too small, as that will
lead to very deep trees that takes a lot of time to be built and can produce unstable estimates. Default
value is 20.

o The parameters corresponding to the AR process (detailed afterwards).

For the details on choice of other parameters, please refer to the help file of the code RFGLS_estimate_timeseries,
which can be accessed with ?7RFGLS_estimate_timeseries.

Known AR process Parameters

If the AR process parameters are known we set param_estimate = FALSE (default value); the code additionally
requires lag_params = c¢(p1,- - , Pq)-

We can fit the model as follows:

set.seed(1)
est_temp_known <- RFGLS_estimate_timeseries(y, x, ntree = 50, lag_params = rho, nthsize = 20)

Unknown AR process Parameters

If the AR process parameters are not known, we set param_estimate = TRUE; the code requires the order
of the AR process, which is obtained from the length of the lag_params input vector. Hence if we want to
estimate the parameters from a AR(q) process, lag_params should be any vector of length q. Here we fit the
model with q = 1

set.seed (1)
est_temp_unknown <- RFGLS_estimate_timeseries(y, x, ntree = 50, lag_params
nthsize = 20, param_estimate

rho,
TRUE)

Prediction of mean function

This part of time series data analysis is identical to that corresponding to the spatial data.

Xtest <- matrix(seq(0,1, by = 1/10000), 10001, 1)
RFGLS_predict_temp_known <- RFGLS_predict(est_temp_known, Xtest)

Here also, similar to the spatial data scenario, RF-GLS outperforms classical RF in terms of MISE both with
true and estimated AR process parameters.

library(randomForest)
set.seed(1)
RF_est_temp <- randomForest(x, y, nodesize = 20)

RF_predict_temp <- predict(RF_est_temp, Xtest)
#RF MISE

mean((RF_predict_temp - 10*sin(pi * Xtest)) 2)
#> [1] 7.912517

#RF-GLS MISE
mean ((RFGLS_predict_temp_known$predicted - 10*sin(pi * Xtest)) 2)
#> [1] 2.471876

RFGLS_predict_temp_unknown <- RFGLS_predict(est_temp_unknown, Xtest)
#REF-GLS unknown MISE

mean ((RFGLS_predict_temp_unknown$predicted - 10*sin(pi * Xtest)) 2)
#> [1] 0.8791857

Misspecification in AR process order

We consider a scenario where the order of autoregression used for RF-GLS model fitting is mis-specified. We
simulate the AR errors from an AR(2) process and fit RF-GLS with an AR(1) process.

#Simulation from AR(2) process
rhol <- 0.7
rho2 <- 0.2

set.seed(2)

b <- c(rhol, rho2)

s <- sqrt(sigma.sq)

eps = arima.sim(list(order = c¢(2,0,0), ar = b), n = n, rand.gen = rnorm, sd = s)
y <- c(eps + 10*sin(pi * x))

#RF-GLS with AR(1)

set.seed(3)

est_misspec_temp <- RFGLS_estimate_timeseries(y, x, ntree = 50, lag_params = 0,
nthsize = 20, param_estimate = TRUE)

RFGLS_predict_misspec_temp <- RFGLS_predict(est_misspec_temp, Xtest)

#RF

set.seed(4)

RF_est_temp <- randomForest(x, y, nodesize = 20)
RF_predict_temp <- predict(RF_est_temp, Xtest)

#RF-GLS MISE

mean ((RFGLS_predict_misspec_temp$predicted - 10*sin(pi * Xtest)) 2)
#> [1] 1.723218

#RF MISE

mean ((RF_predict_temp - 10*sin(pi * Xtest)) 2)

#> [1] 3.735003

Parallelization

For RFGLS_estimate_spatial, RFGLS_estimate_timeseries, RFGLS_predict and RFGLS_predict_spatial
one can also take the advantage of parallelization, contingent upon the availability of multiple cores. The
component h in all the functions determines the number of cores to be used. Here we demonstrate an
example with h = 2.

#simulation from exponential distribution
set.seed(5)

n <- 200

coords <- cbind(runif(n,0,1), runif(n,0,1))
set.seed(2)

x <- as.matrix(runif(a),n,1)

sigma.sq = 10

phi =1
tau.sq = 0.1
nu = 0.5

D <- as.matrix(dist(coords))

R <- exp(-phix*D)

w <- rmvn(l, rep(0,n), sigma.sq*R)

y <- rnorm(n, 10*sin(pi * x) + w, sqrt(tau.sq))

#RF-GLS model fitting and prediction with parallel computation

set.seed (1)

est_known_pl <- RFGLS_estimate_spatial(coords, y, x, ntree = 50, cov.model = "exponential",
nthsize = 20, sigma.sq = sigma.sq, tau.sq = tau.sq,
phi = phi, h = 2)

RFGLS_predict_known_pl <- RFGLS_predict(est_known_pl, Xtest, h = 2)

#MISE from single core

mean ((RFGLS_predict_known$predicted - 10*sin(pi * Xtest)) ~2)
#> [1] 0.150152

#MISE from parallel computation

mean ((RFGLS_predict_known_pl$predicted - 10*sin(pi * Xtest)) 2)
#> [1] 0.150152

For RFGLS_estimate_spatial with very small dataset (n) and small number of trees (ntree), communi-
cation overhead between the nodes for parallelization outweighs the benefits of the parallel computing
hence it is recommended to parallelize only for moderately large n and/or ntree. It is strongly
recommended that the max value of h is kept strictly less than the number of total cores available.
Parallelization for RFGLS_estimate_timeseries can be addressed identically. For RFGLS_predict and
RFGLS_predict_spatial, even for large dataset, single core performance is very fast, hence unless
ntest and ntree are very high, we do not recommend using parallelization for RFGLS_predict and

RFGLS_predict_spatial.

	1. Spatial Data
	Illustration
	Model fitting
	Known Covariance Parameters
	Unknown Covariance Parameters

	Prediction of mean function
	Performance comparison

	Prediction of spatial response
	Misspecification in covariance model

	2. Autoregressive Time Series Data
	Illustration
	Model fitting
	Known AR process Parameters
	Unknown AR process Parameters

	Prediction of mean function
	Misspecification in AR process order

	Parallelization

