Package ‘RandPro’

January 20, 2025
Type Package

Title Random Projection with Classification

Version 0.2.2

Author Aghila G, Siddharth R

Maintainer Siddharth R <r.siddharthcse@gmail.com>

Description Performs random projection using Johnson-
Lindenstrauss (JL) Lemma (see William B.Johnson and Joram Linden-
strauss (1984) <doi:10.1090/conm/026/737400>). Random Projection is a dimension reduc-
tion technique, where the data in the high dimensional space is projected into the low dimen-
sional space using JL transform. The original high dimensional data matrix is multi-
plied with the low dimensional projection matrix which results in reduced matrix. The projec-
tion matrix can be generated using the projection function that is independent to the origi-
nal data. Then finally apply the classification task on the projected data.

License GPL (>=2)

Depends caret

Imports stats, e1071

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.1.1

Repository CRAN

NeedsCompilation no

Date/Publication 2020-07-19 14:50:03 UTC

Contents

classify L e
dimension e e
form_matrixX e s

Index

https://doi.org/10.1090/conm/026/737400

2 classity

classify Classification Function

Description

The classify() function allows the user to combine the task of random projection based dimension
reduction and classification within a single function. The dimension of the training data and test
data was reduced by the value returned from the dimension() method. Then the projection matrix
was generated using form_matrix() function based on the input paramater "projection".Then the
training data and test data was projected into the low dimensional space by multiplying with the
projection matrix. At last the reduced matrix was given to the classifier. The confusion matrix is
the output of the classifier where we can calculate the performance of the classifier.

Usage
classify(
train_data,
test_data,
train_label,
test_label,
eps = 0.1,
projection = "gaussian”,
classifier = "knn"
)
Arguments
train_data - Training data of either matrix or data frame
test_data - Test data of either matrix or data frame
train_label - Training label of either vector or data frame
test_label - Test label of either vector or data frame
eps - Epsilon with default 0.1
projection - projection function with default "gaussian”
classifier - classifier with default "knn"
Details

The parameters train_data,test_data,train_label and test_label are mandatory arguments. The eps
is the error tolerance paramater. The value of eps must be 0.0 < eps < 1.0. The default value
of eps is 0.1 that means 10 percentage of error is acceptable during projection. The supported
projection functions are gaussian, probability, li, and achlioptas.The default projection method is
"gaussian". The complete detail of the projection function is given in form_matrix() function. The
final argument "classifier" in the function defines the classifier to train the model. The supported
classifier for classification task are

"knn" - k-nearest neighbor classification

classify 3

"svmlinear" - Support Vector Machine

"nb" - Naive Bayes Classifier

Value

Confusion Matrix

Author(s)
Aghila G
Siddharth R

References

[1] Cannings, T. I. and Samworth, R. J. "Random projection ensemble classification(2015)".

[2] Ella Bingham and Heikki Mannila, "Random projection in dimensionality reduction: Applica-
tions to image and text data(2001)".

Examples

Load Library
library(RandPro)

#lLoad Iris Data
data("iris")

#Split the data into training set and test set of 75:25 ratio.

set.seed(101)

sample <- sample.int(n = nrow(iris), size = floor(.75*nrow(iris)), replace = FALSE)
trainn <- iris[sample,]

testt <- iris[-sample,]

#Extract the train label and test label
trainl <- trainn$Species

testl <- testt$Species

typeof (trainl)

#Remove the label from training set and test set
trainn <- trainn[,1:4]
testt <- testt[,1:4]

#classify the Iris data with default K-NN Classifier.
res <- classify(trainn,testt,trainl,testl)
res

4 dimension

dimension Function to determine the required number of dimension for generat-
ing the projection matrix

Description

Johnson-Lindenstrauss (JL) lemma is the heart of random projection. The lemma states that a small
set of points in a high-dimensional space can be embedded into low dimensional space in such a way
that distances between the points are nearly preserved. The lemma has been used in dimensionality
reduction, compressed sensing, manifold learning and graph embedding. The epsilon is the error
tolerant parameter and it is inversely proportional to the accuracy of the result. The higher error
tolerant level decreases the number of dimension and also the computation complexity with the
marginal loss of accuracy.

Usage

dimension(sample, epsilon = 0.1)

Arguments

sample - number of samples

epsilon - error tolerance level with default value 0.1
Details

The function dimension() is used to find the minimum dimension required to project the data from
high dimensional space to low dimensional space. The number of sample and error tolerant level
has been passed as an input argument to the function dimension() . It will return the size of the
random subspace to guarantee a bounded distortion introduced by the random projection.

Value
minimum number of dimension required to maintain the pair wise distance between any two points
with the controlled amount of error(eps)

Author(s)

Aghila G
Siddharth R

References

[1] William B.Johnson, Joram Lindenstrauss, "Extension of Lipschitz mappings into a Hilbert space
(1984)"

[2] Sanjoy Dasgupta , Anupam Gupta "An elementary proof of a theorem of Johnson and Linden-
strauss (2003)"

form_matrix 5

See Also

Johnson-Lindenstrauss Elementary Proof

Examples

#load library
library(RandPro)

#Calculate minimum dimension using eps =0.5 for 1000000 sample
y <- dimension(1000000,0.5)

#Calculating minimum dimension using different epsilon value for 1000000 sample
d <- ¢(0.5,0.1)
x<- dimension(103260,d)

form_matrix Forms the Projection Matrix

Description

The projection function is used to generate the random projection matrix. It will form either dense or
spare projection matrix. The Package supports 4 projection functions namely gaussian, probability,
achlioptas and li. The number of rows and columns of the input sample is passed with the boolean
value JLT. If JLT is set to TRUE, the dimension of the input data is reduced to the value returned
by dimension() method. For Dense Matrix - "gaussian" method For Sparse Matrix - "probability,
achlioptas and 1i" method.

Usage

form_matrix(rows, cols, JLT, eps = @.1, projection = "gaussian”)
Arguments

rows - number of rows

cols - number of columns

JLT - Boolean to set JL transform (TRUE or FALSE)

eps - error tolerance level with default value 0.1

projection - projection function with default value "gaussian”
Details

The 4 projection functions are

1."gaussian" - The default projection function is "gaussian". In probability theory, Gaussian distri-
bution is also called as normal distribution. It is a continuous probability distribution used to repre-
sent real-valued random variables. The elements in the random matrix are drawn from N(0,1/k), N
is a Natural number and k value calculated based on JL - Lemma using dimension() function.

http://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf

6 form_matrix

2. "probability" - In this method, the matrix was generated using the equal probability distribution
with the elements [-1, 1].

3. "achlioptas" - Achlioptas matrix is easy to generate and also the 2/3rd of the matrix was filled
with zero which makes it as more sparse and cut-off the 2/3rd computation.

4. "li" - This method generalizes the achlioptas method and generate very sparse random matrix to
improve the computational speed up of random projection.

When comparing to gaussian function, the other projection functions creates sparse matrix by filling
with zero’s or one’s to reduce the computation even more.
Value

Projection Matrix

Author(s)
Aghila G
Siddharth R

References

[1] N.LLR. Ailon and B.Chazelle, "The Fast Johnson Lindenstrauss Transform and Approximate
Nearest Neighbors(2009)"

[2] Ping Li, Trevor J. Hastie, and Kenneth W. Church, "Very sparse random projections(2006)".
[3] D. Achlioptas, "Database-friendly random projections(2002)"

Examples

Load Library
library(RandPro)

Default Gaussian projection matrix without JL transform
mat <- form_matrix(600,1000,FALSE)

Default Gaussian projection matrix with JL transform of 50% Error tolerance
mat <- form_matrix(300,100000,TRUE,Q.5)

Projection matrix with probability distribution of 50% Error tolerance
mat <- form_matrix(250,1000000,TRUE,Q.5, "probability"”)

Projection matrix with 1i distribution of 50% Error tolerance
mat <- form_matrix(250,1000000,TRUE,0.5,"1i")

Projection matrix with achlioptas distribution of 50% Error tolerance
mat <- form_matrix(250,1000000,TRUE,Q.5, "achlioptas”)

Index

x Achlioptas
form_matrix, 5

+x Dimension_Reduction
dimension, 4

+ Distribution
form_matrix, 5

* Gaussian
form_matrix, 5

* Johnson-Lindenstrauss_Lemma
dimension, 4

* Li
form_matrix, 5

* Probability
form_matrix, 5

* Projection_matrix
form_matrix, 5

+* Random_projection
dimension, 4

x classification
classify, 2

* confusion_matrix
classify, 2

+ feature_extraction
classify, 2

* K-nn
classify, 2

* sparse_matrix
form_matrix, 5

* SV
classify, 2

classify, 2
dimension, 4

form_matrix, 5

	classify
	dimension
	form_matrix
	Index

