Package ‘RSKC’

January 20, 2025
Type Package
Title Robust Sparse K-Means
Version 2.4.2
Date 2016-08-11
Author Yumi Kondo
Maintainer Yumi Kondo <y.kondo@stat.ubc.ca>

Description This RSKC package contains a function RSKC which runs the robust sparse K-
means clustering algorithm.

License GPL (>=2)

LazyLoad yes

LazyData yes

Repository CRAN

Depends flexclust, stats, R (>=2.14.0)
Date/Publication 2016-08-28 07:35:26

NeedsCompilation yes

Contents
CER e e 2
Clest e e 3
DBWorld e e e 4
DutchUtility o e 5
optd . . . e 7
revisedsilo 8
RSKC . . e e e 10
Sensitivity L e e 13

Index 15

2 CER

CER Classification Error Rate (CER)

Description

Compute the classification error rate of two partitions.

Usage

CER(ind, true.ind,nob=length(ind))

Arguments
ind Vector, containing the cluster labels of each case of a partition 1.
true.ind Vector, containing the cluster labels of each case of a partition 2.
nob The number of cases (the length of the vector ind and true ind)
Value

Return a CER value. CER = 0 means perfect agreement between two partitions and CER = 1 means
complete disagreement of two partitions. Note: 0 <= CER <=1

Note

This function uses comb, which generates all combinations of the elements in the vector ind. For
this reason, the function CER is not suitable for vector in a large dimension.

Author(s)

Yumi Kondo <y.kondo@stat.ubc.ca>

References

H. Chipman and R. Tibshirani. Hybrid hierarchical clustering with applications to microarray data.
Biostatistics, 7(2):286-301, 2005.

Examples

vecl<-c(1,1,1,2,3,3,3,2,2)
vec2<-c(3,3,3,1,1,2,2,1,1)
CER(vec1,vec2)

Clest 3

Clest An implementation of Clest with robust sparse K-means. CER is used
as a similarity measure.

Description

The function Clest performs Clest (Dudoit and Fridlyand (2002)) with CER as the measure of the
agreement between two partitions (in each training set). The following clustering algorithm can be
used: K-means, trimmed K-means, sparse K-means and robust sparse K-means.

Usage

Clest(d, maxK, alpha, B = 15, B0 = 5, nstart = 1000,

L1 = 6, beta = 0.1, pca = TRUE, silent=FALSE)

Arguments

d A numerical data matrix (N by p) where N is the number of cases and p is the
number of features. The cases are clustered.

maxK The maximum number of clusters that you suspect.

alpha See RSKC.

B The number of times that an observed dataset d is randomly partitioned into a
learning set and a training set. Note that each generated reference dataset is
partitioned into a learning and a testing set only once to ease the computational
cost.

B0 The number of times that the reference dataset is generated.

nstart The number of random initial sets of cluster centers at Step(a) of robust sparse
K-means clustering.

L1 See RSKC.

beta 0 <= beta <= 1: significance level. Clest chooses the number of clusters that
returns the strongest significant evidence against the hypothesis HO : K = 1.

pca Logical, if TRUE, then reference datasets are generated from a PCA reference
distribution. If FALSE, then the reference data set is generated from a simple
reference distribution.

silent Logical, if TRUE, then the number of iteration on progress is not printed.

Value
K The solution of Clest; the estimated number of clusters.

result.table A real matrix (maxK-1 by 4). Each row represents K=2,...,maxK and columns rep-
resent the test statistics (=observed CER-reference CER), observed CER, refer-
ence CER and P-value.

4 DBWorld

referenceCERs A matrix (B@ by maxK-1), containing CERs of testing datasets from generated

datasets for each K=2, ... ,maxK.
observedCERs A matrix (B by maxK-1), containing CERSs of B testing sets for eachK=2, . . . ,maxK.
call The matched call.

Author(s)

Yumi Kondo <y.kondo@stat.ubc.ca>

References

Yumi Kondo (2011), Robustificaiton of the sparse K-means clustering algorithm, MSc. Thesis,
University of British Columbia http://hdl.handle.net/2429/37093

S. Dudoit and J. Fridlyand. A prediction-based resampling method for estimating the number of
clusters in a dataset. Genome Biology, 3(7), 2002.

Examples

Not run:

little simulation function

sim <-

function(mu, f){
D<-matrix(rnorm(60*f),60,f)
D[1:20,1:501<-D[1:20,1:50]+mu
D[21:40,1:50]<-D[21:40,1:50]-mu
return(D)
}

set.seed(1)
d<-sim(1.5,100); # non contaminated dataset with noise variables

Clest with robust sparse K-means

rsk<-Clest(d,5,alpha=1/20,B=3,B0=10, beta = .05, nstart=100,pca=TRUE,L1=3,silent=TRUE);
Clest with K-means

k<-Clest(d,5,alpha=0,B=3,B0=10, beta = 0.05, nstart=100,pca=TRUE,L1=NULL,silent=TRUE);

End(Not run)

DBWorld E-mails from DBWorld mailing list

Description

The dataset contains n= 64 bodies of e-mails in binary bag-of-words representation which Filan-
nino manually collected from DBWorld mailing list. DBWorld mailing list announces conferences,
jobs, books, software and grants. Filannino applied supervised learning algorithm to classify e-
mails between “announces of conferences” and “everything else”. Out of 64 e-mails, 29 are about
conference announcements and 35 are not.

http://hdl.handle.net/2429/37093

DutchUtility 5

Every e-mail is represented as a vector containing p binary values, where p is the size of the vocab-

9% 9

ulary extracted from the entire corpus with some constraints: the common words such as “the”, “is
or “which”, so-called stop words, and words that have less than 3 characters or more than 30 chrac-
ters are removed from the dataset. The entry of the vector is 1 if the corresponding word belongs to
the e-mail and O otherwise. The number of unique words in the dataset is p=4702. The dataset is
originally from the UCI Machine Learning Repository DBWorldData.

rawDBWorld is a list of 64 objects containing the original E-mails.

Usage

data(DBWorld)
data(rawDBWorld)

Details

See Bache K, Lichman M (2013). for details of the data descriptions. The original dataset is
freely available from USIMachine Learning Repository website http://archive.ics.uci.edu/
ml/datasets/DBWorld+e-mails

Author(s)

Yumi Kondo <y.kondo@stat.ubc.ca>

References

Bache K, Lichman M (2013). UCI Machine Learning Repository." http://archive.ics.uci.
edu/ml/datasets

Filannino, M., (2011). " DBWorld e-mail classification using a very small corpus’, Project of Ma-
chine Learning course, University of Manchester.

Examples

Not run:
data(DBWorld)
data(rawDBWorld)

End(Not run)

DutchUtility Multiple Features Data Set of Robert PW. Duin.

http://archive.ics.uci.edu/ml/datasets/DBWorld+e-mails
http://archive.ics.uci.edu/ml/datasets/DBWorld+e-mails
http://archive.ics.uci.edu/ml/datasets
http://archive.ics.uci.edu/ml/datasets

6 DutchUtility

Description

This dataset consists of features of handwritten numerals (‘0°-‘9”) (K=10) extracted from a collec-
tion of Dutch utility maps. Two hundred patterns per class (for a total of 2,000 (=N) patterns) have
been digitized in binary images. Raw observations are 32x45 bitmmaps, which are divided into
nooverlapping blocks of 2x3 and the number of pixels are counted in each block. This generate
p=240 (16x15) variable, recodring the normalized counts of pixels in each block and each element
is an integer in the range 0 to 6. rownames of DutchUtility contains the true digits and colnames
of it contains the position of the block matrix, from which the normalized counts of pixels are taken.

Usage

data(DutchUtility)
showDigit(index,cex.main=1)

Arguments
index A scalar containing integers between 1 and 2000. The function ShowDigit re-
generates the sampled versions of the original images may be obtained (15x16
pixels). (the source image (32x45) dataset is lost)
cex.main Specify the size of the title text with a numeric value of length 1.
Details

The original dataset is freely available from USIMachine Learning Repository (Frank and Asuncion
(2010)) website http://archive .ics.uci.edu/ml/datasets.html.

Author(s)

Yumi Kondo <y.kondo @stat.ubc.ca>

References

Frank A, Asuncion A (2010). UCI Machine Learning Repository." http://archive.ics.uci.
edu/ml.

Examples

Not run:
data(DutchUtility)

truedigit <- rownames(DutchUtility)

(re <- RSKC(DutchUtility,ncl=10,alpha=0.1,L1=5.7,nstart=1000))
Sensitivity(re$labels,truedigit)

table(re$labels, truedigit)

Check the bitmap of the trimmed observations
showDigit(re$oW[1])

Check the features which receive zero weights
names(which(re$weights==0))

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

optd 7

End(Not run)

optd Optical Recognition of Handwritten Digits of Frank A, Asuncion A
(2010).

Description

The dataset describes n = 1797 digits from 0 to 9 (K = 10), handwritten by 13 subjects. Raw ob-
servations are 32x32 bitmaps, which are divided into nonoverlapping blocks of 4x4 and the number
of on pixels are counted in each block. This generates p = 64 (= 8x8) variable, recording the nor-
malized counts of pixels in each block and each element is an integer in the range O to 16. The row
names of the matrix optd contains the true labels (between 0 and 9), and the column names of it
contains the position of the block in original bitmap.

Usage
data(optd)
showbitmap(index)
Arguments
index A vector containing integers between 1 and 1797. Given the observation indices,
the showbitmap returns their original 32 by 32 bitmaps on R console.
Details

The original dataset is freely available from USIMachine Learning Repository (Frank and Asuncion
(2010)) website http://archive .ics.uci.edu/ml/datasets.html.

Author(s)

Yumi Kondo <y.kondo @stat.ubc.ca>

References
Frank A, Asuncion A (2010). UCI Machine Learning Repository." http://archive.ics.uci.
edu/ml.
Examples
Not run:
data(optd)
truedigit <- rownames(optd)

(re <- RSKC(optd,ncl=10,alpha=0.1,L1=5.7,nstart=1000))
Sensitivity(re$labels,truedigit)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

8 revisedsil

table(re$labels, truedigit)

Check the bitmap of the trimmed observations
showbitmap(re$oWw)

Check the features which receive zero weights
names(which(re$weights==0))

End(Not run)

revisedsil The revised silhouette

Description

This function returns a revised silhouette plot, cluster centers in weighted squared Euclidean dis-
tances and a matrix containing the weighted squared Euclidean distances between cases and each
cluster center. Missing values are adjusted.

Usage

revisedsil(d, reRSKC=NULL,CASEofINT=NULL,col1="black",
CASEofINT2 = NULL, col2="red", print.plot=TRUE,
W=NULL ,C=NULL, out=NULL)

Arguments

d A numerical data matrix, N by p, where N is the number of cases and p is the
number of features.

reRSKC A list output from RSKC function.

CASEOfINT Necessary if print.plot=TRUE. A vector of the case indices that appear in the
revised silhouette plot. The revised silhouette widths of these indices are colored
in coll if CASEofINT !=NULL. The average silhouette of each cluster printed in
the plot is computed EXCLUDING these cases.

coll See CASEOfINT.

CASEofINT2 A vector of the case indices that appear in the revised silhouette plot. The indices
are colored in col2.

col2 See CASEofINT2

print.plot If TRUE, the revised silhouette is plotted.

W Necessary if reRSKC = NULL. A positive real vector of weights of length p.

C Necessary if reRSKC = NULL. An integer vector of class labels of length N.

out Necessary if reRSKC = NULL. Vector of the case indices that should be excluded

in the calculation of cluster centers. In RSKC, cluster centers are calculated with-
out the cases that have the furthest 100*alpha % Weighted squared Euclidean
distances to their closest cluster centers. If one wants to obtain the cluster cen-
ters from RSKC output, set out = <RSKCoutput>$oW.

revisedsil 9

Value
trans.mu Cluster centers in reduced weighted dimension. See example for more detail.
WdisC N by ncl matrix, where ncl is the prespecified number of clusters. It contains
the weighted distance between each case and all cluster centers. See example
for more detail.
sil.order Silhouette values of each case in the order of the case index.
sil.i Silhouette values of cases ranked by decreasing order within clusters. The cor-
responding case index are in obs. i
Author(s)

Yumi Kondo <y.kondo@stat.ubc.ca>

References

Yumi Kondo (2011), Robustificaiton of the sparse K-means clustering algorithm, MSc. Thesis,
University of British Columbia http://hdl.handle.net/2429/37093

Examples

little simulation function

sim <-

function(mu, f){
D<-matrix(rnorm(60*f),60,f)
D[1:20,1:50]1<-D[1:20,1:50]+mu
D[21:40,1:50]<-D[21:40,1:50]-mu
return(D)
3

output trans.mu

p<-200;ncl<-3

simulate a 60 by p data matrix with 3 classes

d<-sim(2,p)

run RSKC

re<-RSKC(d,ncl,L1=2,alpha=0.05)

cluster centers in weighted squared Euclidean distances by function sil
sil.mu<-revisedsil(d,W=re$weights,C=re$labels,out=re$oW,print.plot=FALSE)$trans.mu
calculation
trans.d<-sweep(d[,re$weights!=0],2,sqrt(re$weights[re$weights!=0]),FUN="x"
class<-re$labels;class[re$oW]l<-ncl+1

MEANs<-matrix(NA,ncl,ncol(trans.d))

for (i in 1 : 3) MEANs[i,]<-colMeans(trans.d[class==i,,drop=FALSE])
sil.mu==MEANs

coincides

#i## output WdisC ###

p<-200;ncl<-3;N<-60

http://hdl.handle.net/2429/37093

10 RSKC

generate 60 by p data matrix with 3 classes

d<-sim(2,p)

run RSKC

re<-RSKC(d,ncl,L1=2,alpha=0.05)
si<-revisedsil(d,W=re$weights,C=re$labels,out=re$oW,print.plot=FALSE)
si.mu<-si$trans.mu

si.wdisc<-si$WdisC
trans.d<-sweep(d[,re$weights!=01,2,sqrt(re$weights[re$weights!=0]1),FUN="%")
WdisC<-matrix(NA,N,ncl)

for (i in 1 : ncl) WdisC[,il<-rowSums(scale(trans.d,center=si.mul[i,],scale=FALSE)*2)
WdisC and si.wdisc coincides

RSKC Robust Sparse K-means

Description

The robust sparse K-means clustering method by Kondo (2011). In this algorithm, sparse K-means
(Witten and Tibshirani (2010)) is robustified by iteratively trimming the prespecified proportion of
cases in the weighted squared Euclidean distances and the squared Euclidean distances.

Usage

RSKC(d, ncl, alpha, L1 = 12, nstart = 200,
silent=TRUE, scaling = FALSE, correlation = FALSE)

Arguments

d A numeric matrix of data, N by p, where N is the number of cases and p is the
number of features. Cases are partitioned into ncl clusters. Missing values are
accepted.

ncl The prespecified number of clusters.

alpha 0 <= alpha <=1, the proportion of the cases to be trimmed in robust sparse
K-means.
If alpha >0 and L1 >= 1 then RSKC performs robust sparse K-means.
If alpha >0 and L1 = NULL then RSKC performs trimmed K-means.
If alpha=0and L1 >=1 then RSKC performs sparse K-means (with the algorithm
of Lloyd (1982)).
If alpha =0 and L1 = NULL then RSKC performs K-means (with the algorithm of
Lloyd).
For more details on trimmed K-means, see Gordaliza (1991a), Gordaliza (1991b).

L1 A single L1 bound on weights (the feature weights). If L1 is small, then few
features will have non-zero weights. If L1 is large then all features will have
non-zero weights. If L1 = NULL then RSKC performs nonsparse clustering (see
alpha).

RSKC 11

nstart The number of random initial sets of cluster centers in every step (a) which
performs K-means or trimmed K-means.

silent If TRUE, then the processing step is not printed.

scaling If TRUE, RSKC subtracts the each entry of data matrix by the corresponding col-

umn mean and divide it by the corresponding column SD: see scale

correlation If TRUE, RSKC centers and scales the rows of data before the clustering is per-
formed. i.e., trans.d = t(scale(t(d))) The squared Euclidean distance be-
tween cases in the transformed dataset trans.d is proportional to the dissimi-
lality measure based on the correlation between the cases in the dataset d

Details

Robust sparse K-means is a clustering method that extends the sparse K-means clustering of Witten
and Tibshirani to make it resistant to oultiers by trimming a fixed proportion of observations in each
iteration. These outliers are flagged both in terms of their weighted and unweighted distances to
eliminate the effects of outliers in the selection of feature weights and the selection of a partition.
In Step (a) of sparse K-means, given fixed weights, the algorithm aims to maximize the objective
function over a partition i.e. it performs K-means on a weighted dataset. Robust sparse K-means
robustifies Step (a) of sparse K-means by performing trimmed K-means on a weighted dataset: it
trims cases in weighted squared Euclidean distances. Before Step (b), where, given a partition,
the algorithm aims to maximize objective function over weights, the robust sparse K-means has
an intermediate robustifying step, Step (a-2). At this step, it trims cases in squared Euclidean
distances. Given a partition and trimmed cases from Step (a) and Step (a-2), the objective function
is maximized over weights at Step(b). The objective function is calculated without the trimmed
cases in Step (a) and Step(a-2). The robust sparse K-means algorithm repeat Step (a), Step (a-
2) and Step (b) until a stopping criterion is satisfied. For the calculation of cluster centers in the
weighted distances, see revisedsil.

Value
N The number of cases.
p The number of features.
ncl See ncl above.
L1 See L1 above.
nstart See nstart above.
alpha See alpha above.
scaling See scaling above.
correlation See correlation above.
missing It is TRUE if at least one point is missing in the data matrix, d.
labels An integer vector of length N, set of cluster labels for each case. Note that
trimmed cases also receive the cluster labels.
weights A positive real vector of length p, containing weights on each feature.
WBSS A real vector containing the weighted between sum of squares at each Step (b).

The weighted between sum of squares is the objective function to maximize,
excluding the prespecified proportions of cases. The length of this vector is the

12

WWSS

oE
oW

Author(s)

RSKC

number of times that the algorithm iterates the process steps (a),(a-2) and (b)
before the stopping criterion is satisfied. This is returned only if L1 is numeric
and > 1.

A real number, the within cluster sum of squares at a local minimum. This is
the objective function to minimize in nonsparse methods. For robust cluster-
ing methods, this quantity is calculated without the prespecified proportions of
cases. This is returned only if L1=NULL,

Indices of the cases trimmed in squared Euclidean distances.

Indices of the cases trimmed in weighted squared Euclidean distances. If L1
=NULL, then oW are the cases trimmed in the Euclidean distance, because all the
features have the same weights, i.e., 1’s.

Yumi Kondo <y.kondo @stat.ubc.ca>

References

Y. Kondo, M. Salibian-Barrera, R.H. Zamar. RSKC: An R Package for a Robust and Sparse K-
Means Clustering Algorithm.,Journal of Statistical Software, 72(5), 1-26, 2016.

A. Gordaliza. Best approximations to random variables based on trimming procedures. Journal of
Approximation Theory, 64, 1991a.

A. Gordaliza. On the breakdown point of multivariate location estimators based on trimming pro-
cedures. Statistics & Probability Letters, 11, 1991b.

Y. Kondo (2011), Robustificaiton of the sparse K-means clustering algorithm, MSc. Thesis, Uni-
versity of British Columbia http://hdl.handle.net/2429/37093

D. M. Witten and R. Tibshirani. A framework for feature selection in clustering. Journal of the
American Statistical Association, 105(490) 713-726, 2010.

S.P. Least Squares quantization in PCM. IEEE Transactions on information theory, 28(2): 129-136,

1982.

Examples

little simulation function

sim <-
function(mu, f){

D<-matrix(rnorm(60*f),60,f)
D[1:20,1:50]<-D[1:20,1:50]+mu
D[21:40,1:50]<-D[21:40,1:50]-mu

return(D)

}

set.seed(1);do<-sim(1,500)# generate a dataset
true<-rep(1:3,each=20) # vector of true cluster labels

d<-do

ncl<-3
for (i in1

:10){

d[sample(1:60,1),sample(1:500,1)]<-rnorm(1,mean=0,sd=15)

http://hdl.handle.net/2429/37093

Sensitivity

The generated dataset looks like this...
pairs(
d[,c(1,2,3,200)],col=true,
labels=c("clustering feature 1",
"clustering feature 2","clustering feature 3",
"noise featurel”),
main="The sampling distribution of 6@ cases colored by true cluster labels”,
lower.panel=NULL)

Compare the performance of four algorithms
###3-means

ro<-kmeans(d,ncl,nstart=100)
CER(ro@$cluster, true)

###Sparse 3-means

#This example requires sparcl package
#library(sparcl)
#r1<-KMeansSparseCluster(d, ncl,wbounds=6)
Partition result

#CER(r1$Cs, true)

The number of nonzero weights
#sum(!r1gws<le-3)

###Trimmed 3-means

r2<-RSKC(d,ncl,alpha=10/60,L1=NULL,nstart=200)
CER(r2$labels, true)

###Robust Sparse 3-means
r3<-RSKC(d,ncl,alpha=10/60,L1=6,nstart=200)
Partition result

CER(r3$labels, true)

r3

RSKC works with datasets containing missing values...
add missing values to the dataset

set.seed(1)

for (iin 1 : 100)

{

d[sample(1:60,1),sample(1,500,1)]<-NA

3

r4 <- RSKC(d,ncl,alpha=10/60,L1=6,nstart=200)

13

Sensitivity Compute the sensitivities (probability of true positive) of each cluster

14 Sensitivity

Description

The sensitivity or conditional probability of the correct classification of cluster k is calculated as fol-
lows: First, the proportions of observations whose true cluster label is k are computed for each clas-
sified clusters. Then the largest proportion is selected as the conditional probability of the correct
classification. Since this calculation can return 1 for sensitivities of all clusters if all observations
belong to one cluster, we also report the observed cluster labels returned by the algorithms.

Usage
Sensitivity(labell, label2)

Arguments
label1 A vector of length N, containing the cluster labels from any clustering algo-
rithms.
label2 A vector of length N, containing the true cluster labels.
Author(s)

Yumi Kondo <y.kondo@stat.ubc.ca>

Examples

vecl<-¢(1,1,1,2,3,3,3,2,2)
vec2<-c(3,3,3,1,1,2,2,1,1)
Sensitivity(vecl,vec?2)

Index

bitmapLab (optd), 7
bitmapMat (optd), 7

CER, 2
Clest, 3

DBWorld, 4
DutchUtility, 5

optd, 7

rawDBWorld (DBWorld), 4
revisedsil, 8
RSKC, 3, 10

scale, 11

Sensitivity, 13

showbitmap (optd), 7
showDigit (DutchUtility), 5

15

	CER
	Clest
	DBWorld
	DutchUtility
	optd
	revisedsil
	RSKC
	Sensitivity
	Index

