Package ‘ROracle’

January 20, 2025
Version 1.3-1.1
Date 2016-10-05
Author Denis Mukhin, David A. James and Jake Luciani
Maintainer Rajendra S. Pingte <rajendra.pingte@oracle.com>
Title OCI Based Oracle Database Interface for R

Description Oracle Database interface (DBI) driver for R.
This is a DBI-compliant Oracle driver based on the OCI.

SystemRequirements Oracle Instant Client or Oracle Database Client
LazyLoad yes

Depends methods, DBI (>= 0.2-5)

Imports utils

License LGPL

URL http://www.oracle.com

Collate dbi.R oci.R zzz.R
NeedsCompilation yes

Repository CRAN

Date/Publication 2021-11-10 12:22:19 UTC

Contents
dbCommit-methods e e 2
dbConnect-methods e 3
dbDriver-methods 8
dbGetlnfo-methods 10
dbListConnections-methods 17
dbReadTable-methods 18
dbSendQuery-methods L 27
ExtDriver-class e e 30
fetch-methods e 31
Oracle e e 32

http://www.oracle.com

2 dbCommit-methods

OraConnection-class i e e e e 35
OraDriver-class e e e 37
OraResult-class e 38
summary-methodso Lo 39
Index 41
dbCommit-methods DBMS Transaction Management
Description

Commits or roll backs the current transaction in an Oracle connection

Usage

S4 method for signature 'OraConnection'
dbCommit(conn, ...)

S4 method for signature 'OraConnection'
dbRollback(conn, ...)

Arguments
conn a OraConnection object, as produced by the function dbConnect
currently unused.
Details

dbCommit implementation saves all changes done on that connection. Changes can not be undone
once saved permanently.

dbRollback implementation undo all chnages done after last savepoint.

Side Effects

dbCommit saves changes permanently.

dbRollback undo all changes done after last save point.

References

For the Oracle Database documentaion see http://www.oracle.com/technetwork/indexes/documentation/
index.html.

See Also

Oracle, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo, dbReadTable.

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

dbConnect-methods 3

Examples
Not run:
drv <- dbDriver("Oracle”)
con <- dbConnect(drv, "scott"”, "tiger")

dbReadTable(con, "EMP")
rs <- dbSendQuery(con, "delete from emp where deptno = 10")
dbReadTable(con, "EMP")
if(dbGetInfo(rs, what = "rowsAffected”) > 1)
{
warning("dubious deletion -- rolling back transaction”)
dbRollback(con)

}
dbReadTable(con, "EMP")

End(Not run)

dbConnect-methods Create a Connection Object to an Oracle DBMS

Description

These methods are straightforward implementations of the corresponding generic functions.

Usage

S4 method for signature 'OraDriver'

dbConnect(drv, username = "", password = "", dbname = "", prefetch = FALSE,
bulk_read = 1000L, bulk_write = 1000L, stmt_cache = 0oL,
external_credentials = FALSE, sysdba = FALSE, ...)

S4 method for signature 'ExtDriver'
dbConnect(drv, prefetch = FALSE, bulk_read = 1000L,
bulk_write = 1000L, stmt_cache = oL,

external_credentials = FALSE, sysdba = FALSE, ...)
S4 method for signature 'OraConnection'
dbDisconnect(conn, ...)
Arguments
drv An object of class OraDriver or ExtDriver.
conn An OraConnection object as produced by dbConnect.
username A character string specifying a user name.
password A character string specifying a password.
dbname A character string specifying a connect identifier (for more information refer to

Chapter 8, Configuring Naming Methods, of Oracle Database Net Services Ad-
ministrator’s Guide). This is the same as part of the SQL*Plus connect string
that follows the @’ sign. If you are using Oracle Wallet to store username

prefetch

bulk_read

bulk_write

stmt_cache

dbConnect-methods

and password, then this string should be the connect string used to create the
wallet mapping (for more information, refer to Configuring Clients to Use the
External Password Store in Chapter 3 of Oracle Database Security Guide). Con-
nect identifiers for an Oracle TimesTen IMDB instance are supported via the
OCI tnsnames or easy connect naming methods. For additional information
on TimesTen connections for OCI see chapter 3, TimesTen Support for OCI,
of TimesTen In-Memory C Developer’s Guide. Examples below show various
ways to specify the connect identifier.

A logical value indicating TRUE or FALSE. When set to TRUE, ROracle will
use OCI prefetch buffers to retrieve additional data from the server thus saving
memory required in RODBI/ROOCI by allocating a single row buffer to fetch
the data from OCI. Using prefetch results in a fetch call for every row. By
default, prefetch is FALSE and array fetch is used to retrieve the data from the
server.

An integer value indicating the number of rows to fetch at a time. The default
value is 1000L. When the prefetch option is selected, memory is allocated for
prefetch buffers and OCI will fetch that many rows at a time. When prefetch
is not used (the default), memory is allocated in RODBI/ROOCI define buffers.
Setting this to a large value will result in more memory allocated based on the
number of columns in the select list and the types of columns. For a column
of type character, define buffers are allocated using the maximum width times
the NLS maximum width. Applications should adjust this value based on the
query result and a larger value will benefit queries that return a large result. An
application can tune this value as needed.

An integer value indicating the number of rows to insert, update or delete at a
time. The default value is 1000L. When the bulk_write value is given in argu-
ment, memory is allocated for buffers and OCI will write that many rows at a
time. When bulk_write argument is not given, the default value 1000 is used to
allocate memory for the bind buffers. Setting this to a large value will result in
more memory allocated based on the number of columns in the insert list and
the types of columns.

An integer value indicating the number of statements to cache. It means that
cursors are ready to be used without the need to parse the statements again. The
default value is OL. If stmt_cache value is greater than OL then prefetch value
must be set to TRUE.

external_credentials

sysdba

Details

A logical value indicating TRUE or FALSE. When set to TRUE, ROracle will
begin OCI session authenticated with external credentials on the connection.
The default value is FALSE.

A logical value indicating TRUE or FALSE. When set to TRUE, ROracle will
begin OCI session with SYSDBA privileges on the connection. The default
value is FALSE.

Currently unused.

dbConnect This connection object is used to execute operations on the database.

dbConnect-methods 5

When prefetch is set to TRUE, it allows the use of the OCI prefetch buffer to retrieve addi-
tional data from the server.

The bulk_read argument is used to set an integer value indicating the number of rows to fetch
at a time.

The bulk_write argument is used to set an integer value indicating the number of rows to
write at a time.

The stmt_cache argument is used to enable or disable the statement caching feature. Its value
specifies the statement cache size.

The external_credentials argument is used to begin OCI session authenticated with exter-
nal credentials on the connection.

The sysdba argument is used to begin OCI session with SYSDBA privileges on the connec-
tion.

When establishing a connection with an ExtDriver driver, none of the arguments specifying
credentials are used. A connection in this mode is a singleton object, that is, all calls to
dbConnect return the same connection object.

dbDisconnect This implementation disconnects the connection between R and the database server.

Value

It frees all resources used by the connection object. It frees all result sets associated with this
connection object.

dbConnect An object OraConnection whose class extends DBIConnection. This object is

used to execute SQL queries on the database.

dbDisconnect A logical value indicating whether the operation succeeded or not.

Side Effects

dbConnect Establishes a connection between R and an Oracle Database server.

dbDisconnect Frees resources used by the connection object.

References

For

the Oracle Database documentation see http://www.oracle.com/technetwork/indexes/

documentation/index.html.

See Also

Oracle, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo, dbReadTable.

Examples

##

Not run:

Create an Oracle Database instance and create one connection on the
same machine.

drv <- dbDriver("Oracle”)

Use username/password authentication.
con <- dbConnect(drv, username = "scott"”, password = "tiger")

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

dbConnect-methods

Run a SQL statement by creating first a resultSet object.
rs <- dbSendQuery(con, "select * from emp where deptno = 10")

We now fetch records from the resultSet into a data.frame.
data <- fetch(rs) ## extract all rows
dim(data)

End(Not run)
Not run:
Create an Oracle Database instance and create one connection to a
remote database using the SID in the connect string.
drv <- dbDriver("”Oracle")

Refer to Oracle Database Net Services Administator's Guide for
details on connect string specification.

host <- "myhost”

port <- 1521

sid <- "mysid”

connect.string <- paste(

" (DESCRIPTION=",
" (ADDRESS=(PROTOCOL=tcp) (HOST=", host, ")(PORT=", port, "))",
" (CONNECT_DATA=(SID=", sid, ")))", sep = "")

Use username/password authentication.
con <- dbConnect(drv, username = "scott"”, password = "tiger",
dbname = connect.string)

Run a SQL statement by creating first a resultSet object.
rs <- dbSendQuery(con, "select * from emp where deptno = 10")

We now fetch records from the resultSet into a data.frame.
data <- fetch(rs) ## extract all rows
dim(data)

End(Not run)
Not run:
Create an Oracle Database instance and create one connection to a
remote database using the service name.
drv <- dbDriver("Oracle")

Refer to Oracle Database Net Services Administator's Guide for
details on connect string specification.

host <- "myhost”

port <- 1521

svc <- "mydb.example.com”

connect.string <- paste(
" (DESCRIPTION=",
" (ADDRESS=(PROTOCOL=tcp) (HOST=", host, ")(PORT=", port, "))",
" (CONNECT_DATA=(SERVICE_NAME=", svc, ")))", sep = "")

Use username/password authentication.

con <- dbConnect(drv, username = "scott"”, password = "tiger",

dbConnect-methods

dbname = connect.string)

Run a SQL statement by creating first a resultSet object.
rs <- dbSendQuery(con, "select * from emp where deptno = 10")

We now fetch records from the resultSet into a data.frame.
data <- fetch(rs) ## extract all rows
dim(data)

End(Not run)
Not run:
Create an Oracle Database instance and create one connection.
drv <- dbDriver("Oracle")

Use Oracle Wallet authentication.
con <- dbConnect(drv, username ="", password=
dbname = "<wallet_connect_string>")

nn
’

Run a SQL statement by creating first a resultSet object.
rs <- dbSendQuery(con, "select * from emp where deptno = 10")

We now fetch records from the resultSet into a data.frame.
data <- fetch(rs) ## extract all rows
dim(data)

End(Not run)
Not run:
Create an Oracle Database instance and create one connection.
drv <- dbDriver("Oracle”)

Connect to a TimesTen IMDB instance using the easy connect

naming method where SampleDb is a direct driver TimesTen DSN.

con <- dbConnect(drv, username ="scott”, password="tiger",
dbname = "localhost/SampleDb:timesten_direct”)

Run a SQL statement by creating first a resultSet object.
rs <- dbSendQuery(con, "select * from dual")

We now fetch records from the resultSet into a data.frame.
data <- fetch(rs) ## extract all rows
dim(data)

End(Not run)
Not run:
Connect to an extproc (this assumes that the driver has already
been initialized in the embedded R code by passing an external
pointer representing the extproc context).
con <- dbConnect(Extproc())

Run a SQL statement by creating first a resultSet object.
rs <- dbSendQuery(con, "select * from dual")

We now fetch records from the resultSet into a data.frame.

8 dbDriver-methods

data <- fetch(rs) ## extract all rows
dim(data)

End(Not run)
Not run:
Create an Oracle Database instance and create one connection.
drv <- dbDriver("”Oracle")

Create connection with SYSDBA privileges.
con <- dbConnect(drv, username ="scott”, password="tiger",
sysdba = TRUE)

Run a SQL statement by creating first a resultSet object.
rs <- dbSendQuery(con, "select * from emp where deptno = 10")

We now fetch records from the resultSet into a data.frame.
data <- fetch(rs) ## extract all rows
dim(data)

End(Not run)
Not run:
Create an Oracle Database instance and create one connection.
drv <- dbDriver("Oracle”)

Use OS authentication as an example of external authentication
Make sure that databse user exist to allow an 0S authentication

Create connection authenticated with external credentials.
con <- dbConnect(drv, username ="", password="",
external_credentials = TRUE)

Above dbConnect() used 0S credentials to connect with database.

Run a SQL statement by creating first a resultSet object.
rs <- dbSendQuery(con, "select * from emp where deptno = 10")

We now fetch records from the resultSet into a data.frame.
data <- fetch(rs) ## extract all rows
dim(data)

End(Not run)

dbDriver-methods Oracle Implementation of the Database Interface (DBI) Classes and
Drivers

Description

Oracle driver initialization and closing.

dbDriver-methods 9

Usage
S4 method for signature 'OraDriver'
dbUnloadDriver(drv, ...)
S4 method for signature 'ExtDriver'
dbUnloadDriver(drv, ...)
Arguments
drv An object that inherits from OraDriver or ExtDriver as created by dbDriver.

Any other arguments to pass to the driver drvName.

Details

dbDriver This object is a singleton, that is, subsequent invocations of dbDriver return the same
initialized object.

This implementation allows you to connect to multiple host servers and run multiple connec-
tions on each server simultaneously.

When interruptible is set to TRUE, it allows for interrupting long-running queries on the
server by executing the query in a thread. Main thread checks for Ctrl-C and issues OCI-
Break/OCIReset to cancel the operation on the server. By default, interruptible is FALSE.

When unicode_as_utf8issetto FALSE, NCHAR, NVARCHAR and NCLOB data is fetched
using the character set specified by the NLS_LANG setting. By default, unicode_as_utf8is
set to TRUE.

When ora.attributes is set to TRUE, the result set from dbGetQuery and fetch contains
DBMS-specific attributes like ora.encoding, ora.type, and ora.maxlength for the corre-
sponding column.

dbUnloadDriver This implementation removes communication links between the R client and the
database. It frees all connections and all result sets associated with those connection objects.

Value

dbDriver An object OraDriver or ExtDriver whose class extends DBIDriver. This ob-
ject is used to create connections, using the function dbConnect, to one or more
Oracle Database engines.

dbUnloadDriver Free all resources occupied by the driver object.

Side Effects

dbDriver The R client part of the database communication is initialized, but note that connecting
to the database engine needs to be done through calls to dbConnect.

dbUnloadDriver Remove the communication link between the R client and the database.

References

For Oracle Database documentation, see http://www.oracle.com/technetwork/indexes/documentation/
index.html.

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

10

See Also

dbGetInfo-methods

Oracle, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo, dbListTables,
dbReadTable.

Examples

#i#

E

Not run:
first load the library
library("ROracle”)

create an Oracle instance
drv <- dbDriver("Oracle”)

con <- dbConnect(drv, "scott”, "tiger")
dbListTables(con)

fetch all results from the emp table
res <- dbGetQuery(con, "select * from emp")

dbSendQuery can be used to fetch data in chunks
as well as all of data at once

res <- dbSendQuery(con, "select * from emp")

fetch all results
fetch(res)

or a chunk at a time
fetch(res, n = 5)

describing the schema for the emp table using dbGetInfo
dbGetInfo(res, what = 'fields')

clear the result
dbClearResult(res)

disconnect from the database
dbDisconnect(con)

free the driver object
dbUnloadDriver (drv)

nd(Not run)

dbGet

Info-methods Database interface Metadata

Description

These methods are straight-forward implementations of the corresponding generic functions.

dbGetInfo-methods 11
Usage
S4 method for signature 'OraDriver'
dbGetInfo(dbObj, ...)
S4 method for signature 'ExtDriver'
dbGetInfo(dbObj, ...)
S4 method for signature 'OraConnection'
dbGetInfo(dbObj, what, ...)
S4 method for signature 'OraResult'
dbGetInfo(dbObj, what, ...)
S4 method for signature 'OraResult'
dbGetStatement(res, ...)
S4 method for signature 'OraResult'
dbGetRowCount(res, ...)
S4 method for signature 'OraResult'
dbGetRowsAffected(res, ...)
S4 method for signature 'OraResult'
dbColumnInfo(res, ...)
S4 method for signature 'OraResult'
dbHasCompleted(res)
Arguments
dbObj Any object that implements some functionality in the R interface to databases (a
driver, a connection, or a result set).
what A character string specifying an element of the output list.
res An OraResult.
Currently unused.
Details

Table, schema, and column names are case sensitive, for example, table names ABC and abc are not
the same. All database schema object names should not include double quotes as they are enclosed
in double quotes when the corresponding SQL statement is generated.

The ROracle method dbGetInfo provides following details about the driver object:

\$driverName The name of the driver, "Oracle (OCI)"

\$driverVersion The version of the ROracle driver used

\$clientVersion The version of the Oracle Client library used

\$conTotal The number of connections instantiated by the driver

\$conOpen The number of connections open currently

\$interruptible TRUE when a long-running query can be interrupted

\$unicode_as_utf8 TRUE when character data is to be fetched in UTF8 encoded format

\$ora_attributes TRUE when each column in a result set data frame has corresponding Oracle
DBMS attributes

12

dbGetInfo-methods

\$connections Information about each connection currently open, see doGetInfo of connec-
tion object for details

The ROracle method dbGetInfo provides following the details about the connection object:

\$username The name of the user on this connection

\$dbname The connect alias or the connect string used
\$serverVersion The version of the Oracle Database server
\$serverType The value "Oracle RDBMS"

\$resTotal The number of result sets on this connection
\$resOpen The number of result sets open on this connection
\$prefetch TRUE when prefetch mechanism is used to fetch data
\$bulk_read The number of rows to fetch at a time from DBMS
\$bulk_write The number of rows to write at a time to DBMS
\$stmt_cache TRUE when the statement cache is used

\$results Information about each result set currently open, see dbGetInfo of result set for
details

The ROracle method dbGetInfo provides the following details about the result set object:

\$statement SQL statement used to produce the result set object
\$isSelect TRUE when a select statement is specified
\$rowsAffected The number of rows affected by DML statment
\$rowCount The number of rows in result set currently
\$completed TRUE if there are no more rows in the result set
\$prefetch TRUE when the prefetch mechanism used to fetch data
\$bulk_read The number of rows to fetch at a time from DBMS
\$bulk_write The number of rows to write at a time to DBMS

\$fields Information about each column in the the result set, see dbColumnInfo for details

The ROracle method dbColumnInfo provides following details about each column in the result set:

\$name The name of the column
\$Sclass The R type of the object containing the data returned by the Oracle RDBMS
\$type The type of column as created in Oracle RDBMS

\$len Length of VARCHAR, CHAR and RAW column type in Oracle RDBMS. All other
columns will have NA.

\$precision The precision of number column
\$scale The scale of number column
\$nullOK TRUE when a NULL value can be present in the column

The example below shows the driver, connection, result set, and column information for a table
containing:

dbGetInfo-methods

create table foo(

number(21),

number,

char(20),

varchar(300),
binary_double,
binary_float,

clob,

blob,

bfile,

date,

timestamp,

timestamp with time zone,
timestamp with local time zone,
interval day to second,
raw(234)

QO

w 5 0 3 3@ H 0@ HhODO QO T

s

library(ROracle)
Loading required package: DBI

> # instantiate ROracle driver object

> drv <- Oracle()

> con <- dbConnect(drv, "scott"”, "tiger")

> rs <- dbSendQuery(con, "select * from foo")
> dbGetInfo(drv)

$driverName

[1] "Oracle (OCI)"

$driverVersion
1] "1.1-12"

$clientVersion
[1] "11.2.0.4.0"

$conTotal
[1] 1

$conOpen

(111

$interruptible
[1]1 FALSE

$unicode_as_utf8
[1] TRUE

$ora_attributes
[1] TRUE

14

$connections
$connections[[11]]
User name:

Connect string:
Server version:
Server type:
Results processed:
OCI prefetch:

Bulk read:

Bulk write:
Statement cache size:
Open results:

> dbGetInfo(con)
$username
[1]1 "scott”

$dbname
[1] nn

$serverVersion
[1] "11.2.0.4.0"

$serverType
[1] "Oracle RDBMS"

$resTotal
[1]11

$resOpen

(111

$prefetch
[1]1 FALSE

$bulk_read
[1]1 1000

$bulk_write
[1] 1000

$stmt_cache

[11 0

$results
$results[[1]1]

scott

11.2.0.4.0
Oracle RDBMS
1

FALSE

1000

1000

0

1

dbGetInfo-methods

dbGetInfo-methods

Statement: select * from foo
Rows affected: 0

Row count: %

Select statement: TRUE

Statement completed: FALSE

OCI prefetch: FALSE

Bulk read: 1000

Bulk write: 1000

> dbGetInfo(rs)
$statement
[1] "select * from foo”

$isSelect
[1] TRUE

$rowsAffected
[1] o

$rowCount
[1] o

$completed
[1] FALSE

$prefetch
[1] FALSE

$bulk_read
[1] 1000

$bulk_write

[1] 1000
$fields

name Sclass type len precision scale nullOK
1 A numeric NUMBER NA 21 © TRUE
2 B numeric NUMBER NA Qo -127 TRUE
3 C character CHAR 20 0 © TRUE
4 D character VARCHAR2 300 Q 0 TRUE
5 E numeric BINARY_DOUBLE NA Q 0 TRUE
6 F numeric BINARY_FLOAT NA 0 © TRUE
7 G character CLOB NA 0 © TRUE
8 H raw BLOB NA Q 0 TRUE
9 I raw BFILE NA Q 0 TRUE
10 J POSIXct DATE NA Q % TRUE
11 M POSIXct TIMESTAMP NA Q 6 TRUE

16 dbGetInfo-methods

12 N POSIXct TIMESTAMP WITH TIME ZONE NA Q 6 TRUE

13 0 POSIXct TIMESTAMP WITH LOCAL TIME ZONE NA Q 6 TRUE

14 R difftime INTERVAL DAY TO SECOND NA 2 6 TRUE

15 S raw RAW 234 Q Q TRUE
Value

Information about driver, connection or a result set object.

References
For the Oracle Database documentaion see http://www.oracle.com/technetwork/indexes/documentation/
index.html.

See Also

Oracle, dbDriver, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo, dbListTables,
dbReadTable.

Examples
Not run:
drv <- dbDriver("Oracle")
con <- dbConnect(drv, "scott"”, "tiger")

rs <- dbSendQuery(con, "select * from emp")

Get the SQL statement for the result set object rs
dbGetStatement(rs)

Are there any more rows in result set?
dbHasCompleted(rs)

Information about columns in result set rs object
dbColumnInfo(rs)

DBIDriver info
names (dbGetInfo(drv))

DBIConnection info
names (dbGetInfo(con))

DBIResult info
names (dbGetInfo(rs))

End(Not run)

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

dbListConnections-methods 17

dbListConnections-methods
List items from Oracle objects

Description

These methods are straight-forward implementations of the corresponding generic functions.

Usage
S4 method for signature 'OraDriver'
dbListConnections(drv, ...)
S4 method for signature 'ExtDriver'
dbListConnections(drv, ...)
S4 method for signature 'OraConnection'
dbListResults(conn, ...)

Arguments
drv an OraDriver or ExtDriver.
conn an OraConnection.

currently unused.

Details

dbListConnections implementation return a list of all associated connections. It shows informa-
tion about all associated connections.

dbListResults implementation return a list of all associated result sets. It shows information about
all associated result sets.

Value

dbListConnections
A list of all connections associated with driver.

dbListResults A list of all result sets associated with connection.

References

For the Oracle Database documentaion see http://www.oracle.com/technetwork/indexes/documentation/
index.html.

See Also

Oracle, dbGetInfo, dbColumnInfo, dbDriver, dbConnect, dbSendQuery

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

18 dbReadTable-methods

Examples
Not run:
drv <- dbDriver("Oracle”)
conl <- dbConnect(drv, "scott”, "tiger")

res1 <- dbSendQuery(conl, "select * from emp where deptno = 10")
res2 <- dbSendQuery(conl, "select * from emp where deptno
con2 <- dbConnect(drv, "scott”, "tiger")

res3 <- dbSendQuery(con2, "select * from dept”)

Il
N
S

-

get all active statements
for(con in dbListConnections(drv))
for (res in dbListResults(con))
print(dbGetStatement(res))

End(Not run)

dbReadTable-methods Convenience Functions for Manipulating DBMS Tables

Description

These functions mimic their R counterparts except that they generate code that gets remotely exe-
cuted in a database engine: get, assign, exists, remove, objects, and names.

Usage

S4 method for signature 'OraConnection,character'

dbReadTable(conn, name, schema = NULL, row.names = NULL, ...)

S4 method for signature 'OraConnection,character,data.frame’

dbWriteTable(conn, name, value, row.names = FALSE, overwrite = FALSE,
append = FALSE, ora.number = TRUE, schema = NULL, date = FALSE, ...)

S4 method for signature 'OraConnection,character’

dbExistsTable(conn, name, schema = NULL, ...)

S4 method for signature 'OraConnection,character'

dbRemoveTable(conn, name, purge = FALSE, schema = NULL, ...)

S4 method for signature 'OraConnection'

dbListTables(conn, schema = NULL, all = FALSE, full = FALSE, ...)

S4 method for signature 'OraConnection,character'

dbListFields(conn, name, schema = NULL, ...)

Arguments

conn An OraConnection database connection object.
name A case-sensitive character string specifying a table name.

schema A case-sensitive character string specifying a schema name (or a vector of char-
acter strings for dbListTables).

dbReadTable-methods 19

date A boolean flag to indicate whether to use date or DateTimep. By default, Date-
Time will be used instead of timestamp.

row.names In the case of dbReadTable, this argument can be a string, an index or a logical
vector specifying the column in the DBMS table to be used as row. names in the
output data.frame (a NULL specifies that no column should be used as row. names
in the output). The default is NULL.

In the case of dbWriteTable, this argument should be a logical value specifying
whether the row.names should be output to the output DBMS table; if TRUE,
an extra column whose name is "row.names” will be added to the output. The
default is FALSE.

value A data.frame containing the data to write to a table. (See Details section for
supported column types.)

overwrite A logical value specifying whether to overwrite an existing table or not. The
default is FALSE.

append A logical value specifying whether to append to an existing table in the DBMS.
The default is FALSE.

ora.number A logical value specifying whether to create a table with Oracle NUMBER or
BINARY_DOUBLE columns while writing numeric data. Specify TRUE to create
a table with Oracle NUMBER values or specify FALSE to create a table with Oracle
BINARY_DOUBLE values. The default value is TRUE. Specify FALSE if one or more
of the numeric data values are NaN.

purge A logical value specifying whether to add the PURGE option to the SQL DROP
TABLE statement.

all A logical value specifying whether to look at all schemas.

full A logical value specifying whether to generate schema names. When argument
all is TRUE, the output is a vector containing schema names followed by the
table names. Using matrix(..., ncol =2) on the output produces a matrix

where each row corresponds to a table and the columns represent the schema
names and table names respectively.

currently unused.

Details

Table, schema, and column names are case sensitive, e.g., table names ABC and abc are not the
same. All database schema object names should not include double quotes as they are enclosed in
double quotes when the corresponding SQL statement is generated.

The following attributes are used for mapping BLOB, CLOB, NCLOB, NCHAR, VARCHAR?2,
NVARCHAR2, CHAR, TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE columns correctly in dbWriteTable: 1) Attribute Name: ora. type This attribute in-
dicates the type of the underlying column and can be "CLOB", "BLOB", "CHAR", "VARCHAR?2",
or "RAW". The user can specify TIMESTAMP, DATE, TIMESTAMP WITH TIME ZONE or any
other column types supported by Oracle Database. ROacle does not parse the value; it is vali-
dated by the database. The user can provide one of the following values for ora.type: CLOB,
BLOB, CHAR, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE
and fractional_seconds_precision. 2) Attribute Name: ora.encoding When UTF-8 is specified,

dbReadTable-methods

the database uses NCLOB, NCHAR or NVARCHAR based on ora.type. 3) Attribute Name:
ora.maxlength One can specify the maximum length of CHAR, VARCHAR, NCHAR, NVAR-
CHARZ2, or RAW columns. For other data types, ora.maxlength does not apply and is ignored.
The following default values are used for certain data types when ora.maxlength is not specified.
CHAR 2000 NCHAR 1000 VARCHAR?2 4000 NVARCHAR?2 2000 RAW 2000 4) Attribute Name:
ora.fractional_seconds_precision One can specify the fractional part of the SECOND date-
time field of TIMESTAMP, TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE columns. It can be a number in the range 0 to 9. The default value is 6.

ROracle methods such as dbReadTable, dbGetQuery, fetch, and dbWriteTable use the following
mapping between R and Oracle data types:

* logical and integer map to Oracle INTEGER

* numeric maps to Oracle NUMBER if argument ora.number is TRUE or Oracle BINARY_DOUBLE
if FALSE

* character maps to Oracle CLOB if attribute ora.type is "CLOB" or Oracle NCLOB if at-
tribute ora. type is "CLOB" and ora.encoding is "UTF-8" or Oracle CHAR(ora.maxlength)
if attribute ora. type is "CHAR" or Oracle NCHAR(ora.maxlength) if attribute ora. type is
"CHAR" and ora.encoding is "UTF-8" or Oracle NVARCHAR2 (ora.maxlength) if attribute
ora.encoding is "UTF-8" or Oracle VARCHAR2 (ora.maxlength)

* Date and POSIXct map to Oracle DATE ROracle - the ROracle package R - the R application

* POSIXct mapsto Oracle TIMESTAMP WITH TIME ZONE (ora.fractional_seconds_precision)
if attribute ora. type is "TIMESTAMP WITH TIME ZONE" or Oracle TIMESTAMP WITH LOCAL TIME
ZONE (ora.fractional_seconds_precision) if attribute ora. type is "TIMESTAMP WITH LOCAL
TIME ZONE" or Oracle TIMESTAMP (ora.fractional_seconds_precision) and if Date is
FALSE

e difftime maps to Oracle INTERVAL DAY TO SECOND
* list of raw vectors map to Oracle BLOB if attribute ora. type is "BLOB" or Oracle RAW(ora.maxlength)

* other R types such as factor are converted to character

ROracle returns values from database columns that are of data type: date, time stamp, time stamp
with time zone and time stamp with local time zone data types in R’s POSIXct format. POSIXct
refers to a time that is internally stored as the number of seconds since the start of 1970 in UTC.
Number of seconds are exchanged from R and ROracle driver in floating point double format. In
POSIXct representation R uses the TZ environment variable or maps the OS time zone environment
variable to its own, therefore the date will be displayed in this time zone format.

One can insert data into columns of the four data types listed above using a string with the correct
format or POSIXct representation. String data is passed to the database directly and ROracle relies
on databse to convert it to date time representation. ROracle driver converts the POSIXct represen-
tation to a string representation using the format "%Y-%m-%d %H:%M:%0OS6" in a data frame that
is used for DML operations. Data in this format corresponds to NLS_TIMESTAMP_TZ_FORMAT
"YYYY-MM-DD HH24:MI:SSXFF" and is converted to SQLT_TIMESTAMP_LTZ to be bound to
the Oracle database. An intermediate class "datetime" is created that represents character data to
the ROracle driver internally.

Columns having a date and time stamp data type are fetched by ROracle using the SQLT_TIMESTAMP
data type. Columns having a time stamp with time zone or a time stamp with local time zone data
types are fetched using SQLT_TIMESTAMP_LTZ data type. Columns of data type time stamp with

dbReadTable-methods 21

local time zone undergo conversion to the session time zone that the R application runs in, there-
fore setting the time zone environment TZ in R will affect the data values in this column. ROracle
driver maps the TZ environment variable to the session time zone and issues an alter DDL to set the
session time zone when the connection is made to the database.

To fetch data from columns with a timestamp with time zone or a timestamp with local time zone,
the client and server must have the same time zone data file else an error will be reported.

When these data types are selected from the database, they are converted to string representation us-
ing the NLS_TIMESTAMP_TZ_FORMAT "YYYY-MM-DD HH24:MI:SSXFF" that corresponds
to "%Y-%m-%d %H:%M:%0S6" in R. An intermediate class "datetime" is created to represent this
character data in ROracle driver. ROracle driver then converts it to POSIXct using the as.POSIXct()
function. An R application sees the data in POSIXct form in the data frame.

R session time zone:
R has the concept of a time zone in which the R engine operates. The time
zone can be set to a string such as 'PST8PDT', 'America/Los_Angeles' and so on.
These strings are self-explanatory and specify the time zone in which the
session is operating.
The R session time zone can be set in one of two ways:
1. By entering the following on the Linux or Unix command line before starting
R:
setenv TZ = America/Los_Angeles on Linux/UNIX
NOTE: Do not use this option on Windows as it does not allow one to
set Oracle compatible timezone names for the environment variable TZ.
2. By entering the following at the R prompt:
Sys.setenv(TZ = "PST8PDT")

We recommend using the option 2 as the R script works without any
porting issues on Linux/Unix as well as Windows. Option 2 also allows you
to specify Oracle compatible timezone names even on Windows.

The R session time zone determines the time zone for all POSIXct time
zone unqualified date-time types. It is also the time zone to which all
qualified date-time types are converted when they are displayed by R.

The following example demonstrates this.

Sys.setenv(TZ = "PST8PDT")

dt <- c(as.POSIXct("2010/3/13", tz = "PST8PDT"),
as.POSIXct("2010/3/13 3:47:30.123456", tz = "PST8PDT"),
as.POSIXct("2010/3/22", tz = "PST8PDT"),
as.POSIXct("2010/3/22 7:02:30", tz = "PST8PDT"),
as.POSIXct("2010/3/13"),
as.POSIXct("2010/3/13 3:47:30.123456"),
as.POSIXct("2010/3/22"),
as.POSIXct("2010/3/22 7:02:30"))

dt

[1] "2010-03-13 00:00:00.000000 PST" "2010-03-13 03:47:30.123456 PST"

[3] "2010-03-22 00:00:00.000000 PDT" "2010-03-22 07:02:30.000000 PDT"

[5] "2010-03-13 00:00:00.000000 PST" "2010-03-13 03:47:30.123456 PST"

22

dbReadTable-methods

[7] "2010-03-22 00:00:00.000000 PDT" "2010-03-22 07:02:30.000000 PDT"

Note that the unqualified timestamps are also assumed to be in the R's
session time zone when they are displayed by R. Of course, R is also smart
enough to make the determination of whether the time falls into PST or PDT
based on when US Daylight savings begins, and displays PST or PDT
accordingly.

The following example makes this more obvious.

> Sys.setenv(TZ = "EST5EDT")

> dt <- c(as.POSIXct("2010/3/13", tz = "PST8PDT"),
as.POSIXct("2010/3/13 3:47:30.123456", tz = "PST8PDT"),
as.POSIXct("2010/3/22", tz = "PST8PDT"),
as.POSIXct("2010/3/22 7:02:30", tz = "PST8PDT"),
as.POSIXct("2010/3/13"),

as.POSIXct("2010/3/13 3:47:30.123456"),
as.POSIXct("2010/3/22"),

as.POSIXct("2010/3/22 7:02:30"))

+ o+ + 4+ + + o+

> dt

[1] "2010-03-13 03:00:00.000000 EST" "2010-03-13 06:47:30.123456 EST"
[3] "2010-03-22 03:00:00.000000 EDT" "2010-03-22 10:02:30.000000 EDT"
[5] "2010-03-13 00:00:00.000000 EST" "2010-03-13 03:47:30.123456 EST"
[7] "2010-03-22 00:00:00.000000 EDT" "2010-03-22 07:02:30.000000 EDT"

Note that all the time zone unqualified timestamps are assumed to be in
the session time zone. However, even the time zone qualified timestamps
are converted to session time zone and displayed. Note that all the
values are displayed by R in the R session's time zone (with the
timezone name also modified to EST or EDT to account for

daylight savings as applicable). Refer to Date-Time Classes at
http://stat.ethz.ch/R-manual/R-devel/library/base/html/DateTimeClasses.html
and timezones at:
http://stat.ethz.ch/R-manual/R-devel/library/base/html/timezones.html
for details on how R handles dates and times and time zones)

Let's take an example where we use a longer time zone name

(often referred to as an 'Olson Name') as opposed to an abbreviation.

> Sys.setenv(TZ = "America/Los_Angeles”)

> dt <- c(as.POSIXct("2010/3/13", tz = "PST8PDT"),
as.POSIXct("2010/3/13 3:47:30.123456", tz = "PST8PDT"),
as.POSIXct("2010/3/22", tz = "PST8PDT"),
as.POSIXct("2010/3/22 7:02:30", tz = "PST8PDT"),
as.POSIXct("2010/3/13"),

as.POSIXct("2010/3/13 3:47:30.123456"),
as.POSIXct("2010/3/22"),

+ as.POSIXct("2010/3/22 7:02:30"))

> dt

[1] "2010-03-13 00:00:00.000000 PST" "2010-03-13 ©3:47:30.123456 PST"

+ o+ + 4+ + o+

dbReadTable-methods

[3] "2010-03-22 00:00:00.000000 PDT" "2010-03-22 07:02:30.000000 PDT"
[5] "2010-03-13 00:00:00.000000 PST" "2010-03-13 ©3:47:30.123456 PST"
[7] "2010-03-22 00:00:00.000000 PDT" "2010-03-22 07:02:30.000000 PDT"

Note that in such a case, R doesn't use the long name when the

values are displayed, but instead still displays the values using

the abbreviations "PST"” and "PDT". This is significant because Oracle
doesn't necessarily like these abbreviations. For example, an Oracle
databse doesn't recognize "PDT"” as a valid time zone. See "R Time zone
and Oracle session time zone" for details on valid time zones.

The example below shows the effect of changing the time zone in R environment:

R> Sys.timezone()

[1]1 "PST8PDT"

Selecting data and displaying it
res <- dbGetQuery(con, selStr)

R> res[,1]
[1J1 23456
R> res[,2]

[1] "2012-06-05 00:00:00 PDT" "2012-01-05 @7:15:02 PST"
"2012-01-05 00:00:00 PST" "2011-01-05 00:00:00 PST"

[5] "2013-01-05 00:00:00 PST" "2020-01-05 00:00:00 PST"

R> res[, 3]

[1] "2012-06-05 00:00:00 PDT" "2012-01-05 07:15:03 PST"
"2012-01-05 00:00:00 PST" "2011-01-05 00:00:00 PST”

[5] "2013-01-05 00:00:00 PST" "2020-01-05 00:00:00 PST"

R> res[,4]

[1] "2012-06-05 00:00:00 PDT" "2012-01-05 07:15:03 PST"
"2012-01-05 00:00:00 PST" "2011-01-05 00:00:00 PST"

[5] "2013-01-05 00:00:00 PST" "2020-01-05 00:00:00 PST"

R> res[,5]

[1] "2012-06-05 00:00:00 PDT" "2012-01-05 @7:15:03 PST"
"2012-01-05 00:00:00 PST" "2011-01-05 00:00:00 PST"

[5] "2013-01-05 00:00:00 PST" "2020-01-05 00:00:00 PST"

R> Sys.setenv(TZ='EST5EDT"')

R> res(,1]
[111 23456
R> res[,2]

[1] "2012-06-05 03:00:00 EDT" "2012-01-05 10:15:02 EST"
"2012-01-05 03:00:00 EST" "2011-01-05 03:00:00 EST”

[5] "2013-01-05 ©3:00:00 EST" "2020-01-05 03:00:00 EST"

R> res[, 3]

[1]1 "2012-06-05 ©3:00:00 EDT" "2012-01-05 10:15:03 EST"
"2012-01-05 03:00:00 EST" "2011-01-05 03:00:00 EST”

[5] "2013-01-05 03:00:00 EST" "2020-01-05 03:00:00 EST"

R> res[,4]

[1] "2012-06-05 ©3:00:00 EDT" "2012-01-05 10:15:03 EST"
"2012-01-05 03:00:00 EST" "2011-01-05 03:00:00 EST”

23

24 dbReadTable-methods

[5] "2013-01-05 03:00:00 EST" "2020-01-05 03:00:00 EST"

R> res[,5]

[1] "2012-06-05 ©3:00:00 EDT" "2012-01-05 10:15:03 EST"
"2012-01-05 03:00:00 EST" "2011-01-05 03:00:00 EST”

[5] "2013-01-05 ©3:00:00 EST" "2020-01-05 ©03:00:00 EST"

Also dbWriteTable always auto commits a current transaction as well as the data it inserts, i.e. it
acts as a DDL statement even if appends rows to an already existing table.

Value

A data. frame in the case of dbReadTable; a vector in the case of dbListTables and dbListFields;
a logical in the case of dbExistsTable indicating whether the table exists; otherwise TRUE when
the operation was successful or an exception.

References

For the Oracle Database documentation see http://www.oracle.com/technetwork/indexes/
documentation/index.html. For Datetime Data Types and Time Zone Support in Oracle see
http://docs.oracle.com/cd/E11882_01/server.112/e10729/ch4datetime.htm.

See Also

Oracle, dbDriver, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo.

Examples
Not run:
con <- dbConnect(Oracle(), "scott"”, "tiger")

if (dbExistsTable(con, "FO00", "SCOTT"))
dbRemoveTable(con, "F00")

foo <- dbReadTable(con, "EMP")
row.names(foo) <- foo$EMPNO
foo <- fool,-1]

dbWriteTable(con, "F00", foo, row.names = TRUE)
dbWriteTable(con, "F00", foo, row.names = TRUE, overwrite = TRUE)
dbReadTable(con, "FO00", row.names = 1)

dbGetQuery(con, "delete from foo")

dbWriteTable(con, "FO00", foo, row.names = TRUE, append = TRUE)
dbReadTable(con, "FOO", row.names = 1)

dbRemoveTable(con, "FO00")

dbListTables(con)
dbListFields(con, "EMP")

if (dbExistsTable(con, "RORACLE_TEST”, "SCOTT"))
dbRemoveTable(con, "RORACLE_TEST")

Example of POSIXct usage.

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://docs.oracle.com/cd/E11882_01/server.112/e10729/ch4datetime.htm

dbReadTable-methods

A table is created using:

createTab <- "create table RORACLE_TEST(row_num number, id1 date,
id2 timestamp, id3 timestamp with time zone,
id4 timestamp with local time zone)"

dbGetQuery(con, createTab)
Insert statement.
insStr <- "insert into RORACLE_TEST values(:1, :2, :3, :4, :5)";

Select statement.
selStr <- "select * from RORACLE_TEST";

Insert time stamp without time values in POSIXct form.
x <- 1,

y <- "2012-06-05";

y <- as.POSIXct(y);

dbGetQuery(con, insStr, data.frame(x, y, v, Vv, ¥));

Insert date & times stamp with time values in POSIXct form.
<- 2;

<- "2012-01-05 07:15:02";

as.POSIXct(y);

<- "2012-01-05 07:15:03.123";

<- as.POSIXct(z);

bGetQuery(con, insStr, data.frame(x, y, z, z, z));

O N N K< X #
A
I

Insert list of date objects in POSIXct form.

x <- c(3, 4, 5, 6);

y <- ¢('2012-01-05', '2011-01-05', '2013-01-05', '2020-01-05');
y <- as.POSIXct(y);

dbGetQuery(con, insStr, data.frame(x, vy, y, v, ¥));

dbCommit (con)

Selecting data and displaying it.
res <- dbGetQuery(con, selStr)
res[,1]

res[,2]

res[, 3]

res[,4]

res[,5]

insert data in Date format
a<-as.Date("2014-01-01")
dbWriteTable(con, 'TEMP', data.frame(a), date = TRUE)

using attribute to map NCHAR, CLOB, BLOB, NCLOB columns correctly in
dbWriteTable

str1 <- paste(letters, collapse="")

1str1 <- paste(rep(stri1, 200), collapse="")

raw.lst <- vector("list”,1)

lraw.1lst <- vector("list”,1)

raw.1lst[[1L]] <- charToRaw(str1)

25

dbReadTable-methods

lraw.1st[[1L]] <- rep(charToRaw(str1), 200)

a <- as.POSIXct("2014-01-01 14:12:09.0194733")

b <- as.POSIXct("2014-01-01 14:12:09.01947")

test.df <- data.frame(char=str1, nchar=stri1, varchar=str1l, clob=lstr1,
nclob=1str1, stringsAsFactors=FALSE)

test.df$raw.typ <- raw.lst

test.df$blob <- lraw.lst

test.df$char_max <- stri

test.df$raw_max.typ <- raw.lst

test.df$nvchar <- stri

test.df$nvchar_max <- stri

test.df$date_tz <- a

test.df$date_ltz <- b

adding attributes
attr(test.df$clob, "ora.type"”) <- "CLOB"
attr(test.df$blob, "ora.type”) <- "BLOB"
attr(test.df$nclob, "ora.type") <- "CLOB"
attr(test.df$nclob, "ora.encoding"”) <- "UTF-8"
attr(test.df$char_max, "ora.maxlength") <- 3000
attr(test.df$raw_max.typ, "ora.maxlength”) <- 1000
attr(test.df$nvchar, "ora.encoding”) <- "UTF-8"
attr(test.df$nvchar_max, "ora.encoding") <- "UTF-8"
attr(test.df$nvchar_max, "ora.maxlength") <- 1500
attr(test.df$char, "ora.type") <- "CHAR"
attr(test.df$date_tz, "ora.type") <- "timestamp with time zone”
attr(test.df$date_ltz, "ora.type") <- "timestamp with local time zone”
attr(test.df$nchar, "ora.type") <- "CHAR"
attr(test.df$nchar, "ora.encoding”) <- "UTF-8"
attr(test.df$date_tz, "ora.fractional_seconds_precision”) <- 9
R> # displaying the data frame
R> test.df
char nchar
1 abcdefghijklmnopgrstuvwxyz abcdefghijklmnopgrstuvwxyz
varchar
1 abcdefghijklmnopgrstuvwxyz
clob
1 abcdefghijklmnopgrstuvwxyz. ..
nclob
1 abcdefghijklmnopgrstuvwxyz. ..
raw.typ
161, 62, 63, 64, 65, 66, 67, 68, 69, 6a, 6b, 6¢c, 6d, 6e, 6f, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 7a
blob
161, 62, 63, 64, 65, 66, 67, 68, 69, 6a, 6b, 6¢c, 6d, 6e, 6f, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 7a,...
char_max
1 abcdefghijklmnopgrstuvwxyz
raw_max.typ
161, 62, 63, 64, 65, 66, 67, 68, 69, 6a, 6b, 6¢c, 6d, 6e, 6f, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 7a
nvchar nvchar_max
1 abcdefghijklmnopgrstuvwxyz abcdefghijklmnopgrstuvwxyz

dbSendQuery-methods 27

date_tz date_ltz
1 2014-01-01 14:12:09.019473 2014-01-01 14:12:09.01946

dbWriteTable(con, name="TEST_TAB", value=test.df)
res <- dbReadTable(con, name="TEST_TAB")

R> res

char

1 abcdefghijklmnopgrstuvwxyz

nchar

1 abcdefghijklmnopgrstuvwxyz

varchar

1 abcdefghijklmnopgrstuvwxyz

clob

1 abcdefghijklmnopgrstuvwxyz. ..

nclob

1 abcdefghijklmnopgrstuvwxyz. ..

raw.typ

161, 62, 63, 64, 65, 66, 67, 68, 69, 6a, 6b, 6¢c, 6d, 6e, 6f, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 7a

blob

161, 62, 63, 64, 65, 66, 67, 68, 69, 6a, 6b, 6¢c, 6d, 6e, 6f, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 7a,...

char_max

1 abcdefghijklmnopgrstuvwxyz

raw_max. typ

161, 62, 63, 64, 65, 66, 67, 68, 69, 6a, 6b, 6¢c, 6d, 6e, 6f, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 7a

nvchar nvchar_max
1 abcdefghijklmnopgrstuvwxyz abcdefghijklmnopgrstuvwxyz
date_tz date_ltz

1 2014-01-01 14:12:09.019473 2014-01-01 14:12:09.01946

End(Not run)

Not run:
df <- data.frame(A=c(@,1,NaN,4), B=c(NA, 2,3,NaN))
con <- dbConnect(Oracle(), "scott"”, "tiger")

dbWriteTable(con,"TEST"”, df, row.names = FALSE, ora.number=FALSE)

End(Not run)

dbSendQuery-methods Execute a Statement on a Given Database Connection

Description

These methods are straight-forward implementations of the corresponding generic functions except
for the execute method, which is an ROracle specific DBI extension.

28

Usage

dbSendQuery-methods

S4 method for signature 'OraConnection,character'
dbSendQuery(conn, statement, data = NULL,

prefetch = FALSE, bulk_read = 1000L, bulk_write = 1000L, ...)
S4 method for signature 'OraConnection,character'
dbGetQuery(conn, statement, data = NULL,

prefetch = FALSE, bulk_read = 1000L, bulk_write = 1000L, ...)
S4 method for signature 'OraConnection,character'
oracleProc(conn, statement, data = NULL,

prefetch = FALSE, bulk_read = 1000L, bulk_write = 1000L, ...)

S4 method for signature 'OraResult'

dbClearResult(res, ...)

S4 method for signature 'OraConnection'

dbGetException(conn, ...)

execute(res, ...)

S4 method for signature 'OraResult’

execute(res, data = NULL, ...)

Arguments

conn An OraConnection object.

statement A character vector of length 1 with the SQL statement.

res An OraResult object.

data A data. frame specifying bind data

prefetch A logical value that specifies whether ROracle uses prefetch buffers or an array
fetch to retrieve data from the server. If TRUE, then ROracle uses OCI prefetch
buffers to retrieve additional data from the server thus saving the memory re-
quired in RODBI/ROOCI by allocating a single row buffer to fetch the data
from OCI. Using prefetch results in a fetch call for every row. If FALSE (the
default), then ROracle uses an array fetch to retrieve the data.

bulk_read An integer value indicating the number of rows to fetch at a time. The default
value is 1000L. When the prefetch option is selected, memory is allocated for
prefetch buffers and OCI fetches the specified number of rows at a time. When
prefetch is not used, which is the default, memory is allocated in RODBI/ROOCI
define buffers. Setting this to a large value results in more memory being allo-
cated based on the number of columns in the select list and the types of columns.
For a column of type character, define buffers are allocated using the maximum
width times the NLS maximum width. An application should adjust this value
based on the query result. A larger value benefits queries that return a large
result. The application can tune this value as needed.

bulk_write An integer value indicating the number of rows to write at a time. The default

value is 1000L. When a bulk_write value is specified, memory is allocated for
buffers and OCI writes that many rows at a time. If the bulk_write argument is
not used, then the default value is used to allocate memory for the bind buffers.
Setting bulk_write to a large value results in more memory being allocated
based on the number of columns in the insert list and the types of columns.

dbSendQuery-methods 29

Currently unused.

Details
dbGetQuery This function executes a query statement and fetches the result data from the database.
It should not be used for calling PL/SQL queries.

dbSendQuery This function executes a query statement and returns a result set to the application.
The application can then perform operations on the result set. It should not be used for calling
PL/SQL queries.

oracleProc This function executes a PL/SQL stored procedure or function query statement and
returns the result.

dbClearResult This function frees resources used by result set.
dbGetException This function retrieves error information.

execute This function executes the specified query statement.

Value

dbSendQuery An OraResult object whose class extends DBIResult. This object is used to
fetch data from a database, using the function fetch.

Side Effects

dbGetQuery Query statement is executed and data is fetched from database.
dbSendQuery Query statement is executed, but data needs to be fetched through calls to fetch.

oracleProc PL/SQL stored procedure or function query statement is executed and result is re-
turned.

dbClearResult Resources acquired by the result set are freed.
dbGetException Error information is retrieved and then cleaned from the driver.

execute Query statement is executed.

References

For the Oracle Database documentation see http://www.oracle.com/technetwork/indexes/
documentation/index.html.

See Also

Oracle, dbDriver, dbConnect, fetch, doCommit, dbGetInfo, dbReadTable.

Examples
Not run:
drv <- dbDriver("Oracle”)
con <- dbConnect(drv, "scott"”, "tiger")
res <- dbSendQuery(con, "select * from emp where deptno = :1",

data = data.frame(deptno = 10))
data <- fetch(res, n = -1)

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

30 ExtDriver-class

res2 <- dbSendQuery(con, "select x from emp where deptno = :1",
datal <- data.frame(deptno = 10), prefetch=TRUE,
bulk_read=2L)

datal <- fetch(res2, n = -1)

datal

res3 <- dbSendQuery(con, "select x from emp where deptno = :1",
data2 <- data.frame(deptno = 10), bulk_read=10L)

data2 <- fetch(res3, n = -1)

data2

res4 <- dbSendQuery(con, "select * from emp where deptno = :1",

data3 <- data.frame(deptno = 10), bulk_write=10L)
data3 <- fetch(res4, n = -1)
data3

res5 <- dbSendQuery(con, "select * from emp where ename = :1",
data4 <- data.frame(ename = 'SMITH'))

data4 <- fetch(res5, n = -1)

data4

End(Not run)

ExtDriver-class Class ExtDriver

Description

An Oracle extproc driver class implementing the R database interface (DBI) API.

Generators

The main generators are dbDriver and Extproc.

Extends

Class "DBIDriver", directly. Class "DBIObject”, by class "DBIDriver”, distance 2.

Methods

dbConnect signature(drv ="ExtDriver"): ...
dbGetInfo signature(dbObj = "ExtDriver”): ...
dbListConnections signature(drv = "ExtDriver"): ...
dbUnloadDriver signature(drv = "ExtDriver"): ...
summary signature(object = "ExtDriver"”): ...

show signature(object = "ExtDriver")

fetch-methods 31

See Also

DBI classes: OraConnection-class OraResult-class

Examples

Not run:
con <- dbConnect(Extproc())

End(Not run)

fetch-methods Fetch records from a previously executed query

Description

This method is a straight-forward implementation of the corresponding generic function.

Usage
S4 method for signature 'OraResult'
fetch(res, n = -1, ...)
Arguments
res an OraResult object.
n maximum number of records to retrieve per fetch. Use n=-1 to retrieve all

pending records.

currently unused.

Details

The ROracle implementations retrieves only n records, and if n is missing it returns all records.

Value

number of records fetched from database.

References
For the Oracle Database documentaion see http://www.oracle.com/technetwork/indexes/documentation/
index.html.

See Also

Oracle, dbConnect, dbSendQuery, dbGetQuery, dbClearResult, doCommit, dbGetInfo, dbReadTable.

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

32 Oracle

Examples
Not run:
drv <- dbDriver("Oracle")
con <- dbConnect(drv, "scott"”, "tiger")

res <- dbSendQuery(con, "select * from emp")

we now fetch the first 10 records from the resultSet into a data.frame
datal <- fetch(res, n = 10)

dim(datal)

dbHasCompleted(res)

let's get all remaining records
data2 <- fetch(res, n = -1)

End(Not run)

Oracle Instantiate an Oracle client from the current R session

Description

This function creates and initializes an Oracle client from the current R session. It returns an object
that allows you to connect to one or more Oracle servers.

Usage

Oracle(interruptible = FALSE, unicode_as_utf8 = TRUE,
ora.attributes = FALSE)
Extproc(extproc.ctx = NULL)

Arguments

interruptible A logical indicating whether to allow user interrupts on long-running queries.

extproc.ctx An external pointer wrapping extproc context.

unicode_as_utf8
A logical indicating whether to fetch NCHAR, NVARCHAR and NCLOB data
encoded in UTFS.

ora.attributes A logical indicating whether to include the attributes ora.encoding, ora. type,
and ora.maxlength in the data frames returned by dbGetQuery and fetch.

Details

This object is a singleton, that is, on subsequent invocations it returns the same initialized object.

This implementation allows you to connect to multiple host servers and run multiple connections
on each server simultaneously.

Oracle 33

When interruptible is set to TRUE, it allows for interrupting long-running queries on the server
by executing the query in a thread. Main thread checks for Ctrl-C and issues OCIBreak/OCIReset
to cancel the operation on the server. By default interruptible is FALSE.

When unicode_as_utf8 is set to FALSE, NCHAR, NVARCHAR and NCLOB data is fetched
using the character set using the NLS_LANG setting. By default unicode_as_utf8 is set to TRUE.

When ora.attributes is set to TRUE attributes ora.encoding, ora.type and ora.maxlength
are added in result data frame returned from dbGetQuery and fetch. It should be used with db-
WriteTable to create the same data types as in the Oracle DBMS as fetched from the source table.

Value

An object of class OraDriver for Oracle or ExtDriver for Extproc whose class extends DBIDriver.
This object is used to create connections, using the function dbConnect, to one or more Oracle
database engines.

Side Effects

The R client part of the database communication is initialized, but note that connecting to the
database engine needs to be done through calls to dbConnect.

Oracle user authentication

In order to establish a connection to an Oracle server users need to provide a user name, a password,
and possibly a connect identifier (for more information refer to chapter 8 (Configuring Naming
Methods) of Oracle Database Net Services Administrator’s Guide). This is the same as the part of
the SQL*Plus connect string that follows the @’ sign.

Connections to an Oracle TimesTen IMDB instance are established using the OCI tnsnames or easy
connect naming methods. For additional information on TimesTen connections for OCI see chapter
3 (TimesTen Support for Oracle Call Interface) of the Oracle TimesTen In-Memory C Developer’s
Guide.

Transactions

The current implementation directly supports transaction commits and rollbacks on a connection-
wide basis through calls to dbCommit and dbRollback. Save points are not yet directly imple-
mented, but you may be able to define them and rollback to them through calls to dynamic SQL
with dbGetQuery.

Notice that Oracle (and ANSI/ISO compliant DBMS) transactions are implicitly started when data
definition SQL statements are executed (create table, etc.), which helper functions like dbWriteTable
may execute behind the scenes. You may want or need to commit or roll back your work before
issuing any of these helper functions.

References

For Oracle Database documentation, see http://docs.oracle.com/en/database/.

Author(s)
David A. James and Denis Mukhin

http://docs.oracle.com/en/database/

34 Oracle

See Also

On database managers:

dbDriver dbUnloadDriver dbListConnections

On connections:

dbConnect dbDisconnect dbSendQuery dbGetQuery dbGetException dbListResults

Convenience methods: dbListTables dbReadTable dbWriteTable dbExistsTable dbRemoveTable
dbListFields

On transaction management:
dbCommit dbRollback
On queries and result objects:

fetch dbClearResult dbColumnInfo dbGetStatement dbHasCompleted dbGetRowsAffected
dbGetRowCount

On meta-data:

show summary dbGetInfo

Examples
Not run:
create a Oracle instance and create one connection.
ora <- Oracle() ## or dbDriver(”Oracle")
con <- dbConnect(ora, username = "scott"”, password = "tiger",

dbname = "inst1")

if you are connecting to a local database
con <- dbConnect(ora, username = "scott"”, password = "tiger")

execute a statement and fetch its output in chunks of no more
than 5000 rows at a time
rs <- dbSendQuery(con, "select * from emp where deptno = 10")
while (!dbHasCompleted(rs)) {

df <- fetch(rs, n = 5000)

process df

}
dbClearResult(rs) ## done with this query

execute and fetch a statement with bind data
df <- dbGetQuery(con, "select * from emp where deptno = :1",
data = data.frame(depno = 10))

create a copy of emp table
dbGetQuery(con, "create table foo as select x from emp")

execute and bind an INSERT statement

my.data = data.frame(empno = c(8001, 8002), ename = c('MUKHIN', "'ABOYOUN'))

more.data = data.frame(empno = c(8003), ename = c('JAMES'))

rs <- dbSendQuery(con, "insert into foo (empno, ename) values (:1, :2)",
data = my.data)

OraConnection-class 35

execute with more data
execute(rs, data = more.data)
dbClearResult(rs) ## done with this query

ok, everything looks fine
dbCommit (con)

a concise description of the driver
summary (ora)

done with this connection
dbDisconnect(con)

End(Not run)

OraConnection-class Class OraConnection

Description

An Oracle connection class implementing the R database interface (DBI) API.

Generators

The method dbConnect is the main generator.

Extends

Class "DBIConnection”, directly. Class "DBIObject”, by class "DBIConnection”, distance 2.

Methods

dbDisconnect signature(conn = "0raConnection”): ...

dbSendQuery signature(conn = "OraConnection”, statement = "character”, prefetch = FALSE,
bulk_read = 1000L, bulk_write = 1000L): ...

dbGetQuery signature(conn = "0OraConnection"”, statement = "character"”, prefetch = FALSE,
bulk_read = 1000L, bulk_write = 1000L): ...

dbGetException signature(conn = "0OraConnection”): ...

dbListResults signature(conn = "0OraConnection”): ...

dbListTables signature(conn = "0OraConnection”): ...

dbReadTable signature(conn = "OraConnection”, name = "character”): ...

dbWriteTable signature(conn = "OraConnection”, name = "character”, value = "data.frame"):

dbExistsTable signature(conn = "OraConnection”, name = "character"”): ...
dbRemoveTable signature(conn = "0OraConnection”, name = "character”): ...

dbListFields signature(conn = "0OraConnection”, name = "character”): ...

36 OraConnection-class

dbCommit signature(conn = "OraConnection”): ...
dbRollback signature(conn = "0raConnection"): ...
dbGetInfo signature(dbObj = "OraConnection”): ...
summary signature(object = "OraConnection”): ...

show signature(object = "OraConnection”)

See Also

DBI classes: OraDriver-class OraConnection-class OraResult-class

Examples

Not run:

ora <- dbDriver("Oracle"”)

connecting without a connect string
con <- dbConnect(ora, "scott"”, "tiger")

connecting with a connection string with SID

host <- "myhost”

port <- 1521

sid <- "mysid”

connect.string <- paste(
" (DESCRIPTION=",
" (ADDRESS=(PROTOCOL=tcp) (HOST=", host, ")(PORT=", port, "))",
" (CONNECT_DATA=(SID=", sid, ")))", sep = "")

use username/password authentication
con <- dbConnect(drv, username = "scott"”, password = "tiger",
dbname = connect.string)

connecting with a connection string with service name
host <- "myhost”

port <- 1521

svc <- "mydb.example.com”

connect.string <- paste(

" (DESCRIPTION=",
" (ADDRESS=(PROTOCOL=tcp) (HOST=", host, ")(PORT=", port, "))",
" (CONNECT_DATA=(SERVICE_NAME=", svc, ")))", sep = "")

use username/password authentication

con <- dbConnect(drv, username = "scott"”, password = "tiger",

dbname = connect.string)
Please refer to "Oracle Database Net Services Administator's Guide"”, which
has the topic "Connect Identifier and Connect Descriptor Syntax
Characteristics”

dbListTables(con)

End(Not run)

OraDriver-class 37

OraDriver-class Class OraDriver

Description

An Oracle driver class implementing the R database interface (DBI) API.

Generators

The main generators are dbDriver and Oracle.

Extends

Class "DBIDriver", directly. Class "DBIObject”, by class "DBIDriver”, distance 2.

Methods

dbConnect signature(drv ="OraDriver"): ...
dbGetInfo signature(dbObj = "OraDriver"): ...
dbListConnections signature(drv ="0OraDriver"): ...
dbUnloadDriver signature(drv = "0OraDriver"): ...
summary signature(object = "OraDriver"): ...

show signature(object = "OraDriver")

See Also

DBI classes: OraConnection-class OraResult-class

Examples

Not run:

first load the library
library("ROracle”)

ora <- dbDriver("Oracle"”)

con <- dbConnect(ora, "scott"”, "tiger")

End(Not run)

38 OraResult-class

OraResult-class Class OraResult

Description

An Oracle query results class. This class encapsulates the result of a SQL statement.

Generators

The main generator is dbSendQuery.

Extends

Class "DBIResult”, directly. Class "DBIObject”, by class "DBIResult”, distance 2.

Methods

dbClearResult signature(res = "OraResult"): ...
dbColumnInfo signature(res = "0OraResult"”): ...
dbGetInfo signature(dbObj = "OraResult”): ...
dbGetStatement signature(res = "OraResult"): ...
dbGetRowCount signature(res = "OraResult"): ...
dbGetRowsAffected signature(res = "OraResult"”): ...
dbHasCompleted signature(res = "OraResult"): ...
fetch signature(res = "0OraResult”, n="numeric"): ...
fetch signature(res = "0OraResult”, n="missing"): ...
execute signature(res = "OraResult"): ...

summary signature(object = "OraResult"”): ...

show signature(object = "OraResult")

See Also

DBI classes: OraDriver-class OraConnection-class OraResult-class

Examples
Not run:
ora <- dbDriver("Oracle"”)
con <- dbConnect(ora, "scott"”, "tiger")

res <- dbSendQuery(con, "select x from emp")
fetch(res, n = 2)

fetch(res)

dbColumnInfo(res)

dbClearResult(res)

End(Not run)

summary-methods 39

summary-methods Summarize an Oracle object

Description

These methods are straight-forward implementations of the corresponding generic functions.

Usage
S4 method for signature 'OraDriver'
summary (object, ...)
S4 method for signature 'ExtDriver'
summary (object, ...)
S4 method for signature 'OraConnection'
summary(object, ...)
S4 method for signature 'OraResult'
summary (object, ...)

Arguments
object a driver, connection or result set object.

currently unused.

Value

description of object.

References

For the Oracle Database documentaion see http://www.oracle.com/technetwork/indexes/documentation/
index.html.

See Also
Oracle, dbConnect, dbSendQuery, dbGetQuery, dbClearResult, dbCommit, dbGetInfo, dbGetInfo.

Examples
Not run:
drv <- dbDriver("Oracle")
con <- dbConnect(drv, "scott”, "tiger")

res <- dbSendQuery(con, "select x from emp"”)

summary (drv)
summary (con)
summary (res)
show(drv)
show(con)

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

40

show(res)

End(Not run)

summary-methods

Index

x classes

ExtDriver-class, 30
OraConnection-class, 35
OraDriver-class, 37
OraResult-class, 38

x database

dbCommit-methods, 2
dbConnect-methods, 3
dbDriver-methods, 8
dbGetInfo-methods, 10
dbListConnections-methods, 17
dbReadTable-methods, 18
dbSendQuery-methods, 27
ExtDriver-class, 30
fetch-methods, 31
Oracle, 32
OraConnection-class, 35
OraDriver-class, 37
OraResult-class, 38
summary-methods, 39

* interface

dbCommit-methods, 2
dbConnect-methods, 3
dbDriver-methods, 8
dbGetInfo-methods, 10
dbListConnections-methods, 17
dbReadTable-methods, 18
dbSendQuery-methods, 27
ExtDriver-class, 30
fetch-methods, 31
Oracle, 32
OraConnection-class, 35
OraDriver-class, 37
OraResult-class, 38
summary-methods, 39

* methods

dbCommit-methods, 2
dbConnect-methods, 3
dbDriver-methods, 8

41

dbGetInfo-methods, 10
dbListConnections-methods, 17
dbReadTable-methods, 18
dbSendQuery-methods, 27
fetch-methods, 31
summary-methods, 39

dbClearResult, 31, 34, 39

dbClearResult (dbSendQuery-methods), 27

dbClearResult,OraResult-method
(dbSendQuery-methods), 27

dbColumnInfo, 17, 34

dbColumnInfo (dbGetInfo-methods), 10

dbColumnInfo,OraResult-method
(dbGetInfo-methods), 10

dbCommit, 2, 5, 10, 16, 24, 29, 31, 33, 34, 39

dbCommit (dbCommit-methods), 2

dbCommit,OraConnection-method
(dbCommit-methods), 2

dbCommit-methods, 2

dbConnect, 2,5, 9, 10, 16, 17, 24, 29, 31,
33-35, 39

dbConnect (dbConnect-methods), 3

dbConnect,ExtDriver-method
(dbConnect-methods), 3

dbConnect,OrabDriver-method
(dbConnect-methods), 3

dbConnect-methods, 3

dbDisconnect, 34

dbDisconnect (dbConnect-methods), 3

dbDisconnect,OraConnection-method
(dbConnect-methods), 3

dbDriver, 16, 17, 24, 29, 30, 34, 37

dbDriver-methods, 8

dbExistsTable, 34

dbExistsTable (dbReadTable-methods), 18

dbExistsTable,OraConnection,character-method

(dbReadTable-methods), 18
dbGetException, 34
dbGetException (dbSendQuery-methods), 27

42 INDEX

dbGetException,OraConnection-method (dbListConnections-methods), 17
(dbSendQuery-methods), 27 dbListResults,OraConnection-method

dbGetInfo, 2, 5, 10, 16, 17, 24, 29, 31, 34, 39 (dbListConnections-methods), 17

dbGetInfo (dbGetInfo-methods), 10 dbListTables, 10, 16, 34

dbGetInfo,ExtDriver-method dbListTables (dbReadTable-methods), 18
(dbGetInfo-methods), 10 dbListTables,OraConnection-method

dbGetInfo,OraConnection-method (dbReadTable-methods), 18
(dbGetInfo-methods), 10 dbReadTable, 2, 5, 10, 16, 29, 31, 34

dbGetInfo,OraDriver-method dbReadTable (dbReadTable-methods), 18
(dbGetInfo-methods), 10 dbReadTable,OraConnection, character-method

dbGetInfo,OraResult-method (dbReadTable-methods), 18
(dbGetInfo-methods), 10 dbReadTable-methods, 18

dbGetInfo-methods, 10 dbRemoveTable, 34

dbGetQuery, 2, 5, 10, 16, 24, 31, 33, 34, 39 dbRemoveTable (dbReadTable-methods), 18

dbGetQuery (dbSendQuery-methods), 27 dbRemoveTable,OraConnection, character-method

dbGetQuery,OraConnection, character-method (dbReadTable-methods), 18
(dbSendQuery-methods), 27 dbRollback, 33, 34

dbGetRowCount, 34 dbRollback (dbCommit-methods), 2

dbGetRowCount (dbGetInfo-methods), 10 dbRollback,OraConnection-method

dbGetRowCount,OraResult-method (dbCommit-methods), 2
(dbGetInfo-methods), 10 dbSendQuery, 2, 5, 10, 16, 17, 24, 31, 34, 38

dbGetRowsAffected, 34 39

dbGetRowsAffected (dbGetInfo-methods), dbSendQuery (dbSendQuery-methods), 27
10 dbSendQuery,OraConnection, character-method

(dbSendQuery-methods), 27
dbSendQuery-methods, 27
dbUnloadDriver, 34
dbUnloadDriver (dbDriver-methods), 8
dbUnloadDriver,ExtDriver-method

(dbDriver-methods), 8
dbUnloadDriver,OraDriver-method

(dbDriver-methods), 8
dbWriteTable, 33, 34
dbWriteTable (dbReadTable-methods), 18
dbWriteTable,OraConnection,character,data.frame-method

(dbReadTable-methods), 18

dbGetRowsAffected,OraResult-method
(dbGetInfo-methods), 10

dbGetStatement, 34

dbGetStatement (dbGetInfo-methods), 10

dbGetStatement,OraResult-method
(dbGetInfo-methods), 10

dbHasCompleted, 34

dbHasCompleted (dbGetInfo-methods), 10

dbHasCompleted,OraResult-method
(dbGetInfo-methods), 10

dbListConnections, 34

dbListConnections
(dbListConnections-methods), 17 execute (dbSendQuery-methods), 27
dbListConnections,ExtDriver-method execute,OraResul t-method
(dbListConnections-methods), 17 (dbSendQuery-methods), 27
dbListConnections,OraDriver-method ExtDriver-class, 30
(dbListConnections-methods), 17 Extproc, 30
dbListConnections-methods, 17 Extproc (Oracle), 32
dbListFields, 34
dbListFields (dbReadTable-methods), 18 fetch, 2, 5, 10, 16, 24, 29, 34
dbListFields,OraConnection,character-method fetch (fetch-methods), 31
(dbReadTable-methods), 18 fetch,OraResult-method (fetch-methods),
dbListResults, 34 31

dbListResults fetch-methods, 31

INDEX

Oracle, 2, 5, 10, 16, 17, 24, 29, 31, 32, 37, 39

oracleProc (dbSendQuery-methods), 27

oracleProc,OraConnection,character-method
(dbSendQuery-methods), 27

OraConnection-class, 35

OraDriver-class, 37

OraResult-class, 38

show, 34
show, ExtDriver-method
(summary-methods), 39
show,OraConnection-method
(summary-methods), 39
show,OraDriver-method
(summary-methods), 39
show, OraResult-method
(summary-methods), 39
summary, 34
summary,ExtDriver-method
(summary-methods), 39
summary,OraConnection-method
(summary-methods), 39
summary,OraDriver-method
(summary-methods), 39
summary,OraResult-method
(summary-methods), 39
summary-methods, 39

	dbCommit-methods
	dbConnect-methods
	dbDriver-methods
	dbGetInfo-methods
	dbListConnections-methods
	dbReadTable-methods
	dbSendQuery-methods
	ExtDriver-class
	fetch-methods
	Oracle
	OraConnection-class
	OraDriver-class
	OraResult-class
	summary-methods
	Index

