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RANKS-package RANKS: Ranking of Nodes with Kernelized Score Functions

Description

Implementation of Kernelized score functions and other semi-supervised learning algorithms for
node label ranking in biomolecular networks.

Details

RANKS can be easily applied to a large set of different relevant problems in computational biol-
ogy, ranging from automatic protein function prediction, to gene disease prioritization and drug
repositioning, and more in general to any bioinformatics problem that can be formalized as a node
label ranking problem in a graph. The modular nature of the implementation allows to experiment
with different score functions and kernels and to easily compare the results with baseline network-
based methods such as label propagation and random walk algorithms, as well as to enlarge the
algorithmic scheme by adding novel user-defined score functions and kernels.

Author(s)

Giorgio Valentini

AnacletoLab

DI, Dipartimento di Informatica

Universita’ degli Studi di Milano
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<valentini@di.unimi.it>

Maintainer: Giorgio Valentini
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do.GBA GBA cross-validation experiments with multiple classes

Description

High level function to perform experiments with GBA. It perform a k fold CV repeated 1 time on a
given data set

Usage

do.GBA(fun = GBAsum, k = 5, stratified=TRUE, filter = TRUE, seed = 1,
data.dir, labels.dir, output.dir, data, labels)

Arguments

fun function performing GBA. it can be one of the following:
- GBAsum: it sums the edge weights connecting a node to its positive neigh-
bours
- GBAmax: it computes the maximum between the edge weights connecting a
node to its positive neighbours

k number of folds for the cross validation (def. 5)

stratified boolean. If TRUE (def.) stratified CV is performed otherwise vanilla CV is done

filter if TRUE (def) the adjacency matrix is sparsified otherwise not

seed seed of the random generator for the generation of the folds (def: 1)

data.dir relative path to directory where the adjiacency matrix is stored

labels.dir relative path to directory where the label matrix is stored
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output.dir relative path to directory where the results are stored

data name of the data set to loaded (without rda extension). It must be an .rda file con-
taining the adjiacency matrix of the graph. It assumes that it is in the "data.dir"
directory

labels name of the target labels (without rda extension). It must be an .rda file contain-
ing the label matrix of the examples. Rows correspond to examples and columns
to classes It assumes that it is in the "labels.dir" directory

Details

High level function to perform cross-validation experiments with multiple classes using GBA.

It performs a k fold CV on a given data set, and output scores, AUC and Precision at a given recall
results for multiple classes.

Graph data are read from a matrix representing the adjiacency matrix of the graph stored as a .rda
file. The labels are read from a matrix having examples as rows and classes as columns stored as
a .rda file. If M is the label matrix, then M[i,j]=1, if example i is annotated with class j, otherwise
M[i,j] = 0.

Results are included in matrices representing Scores, AUC and precision at a given recall results
stored as .rda files.

Value

3 rda files stored in the "Results" directory:

Scores results A matrix with examples on rows and classes on columns representing the com-
puted scores for each example and for each considered class

AUC results AUC results files computed through AUC.single.over.classes from the pack-
age PerfMeas

Precision at given recall results

computed through precision.at.multiple.recall.level.over.classes from
the package PerfMeas.

The name of the Score file starts with Score, of the AUC file with AUC, and of the Precision at
given recall file with PXR. Other learning parameters are appended to the name of the file. All the
results .rda files are stored in the Results directory (that must exist in advance).

See Also

GBAmax, GBAsum

Examples

# Yeast prediction of 177 FunCat classes by 5-fold cross validation using STRING data
# data obtained from the bionetdata package from CRAN
# See the AUC and Precision/recall results in the Results directory
library(bionetdata);
dd=tempdir();
rr=tempdir();
data(Yeast.STRING.data);



do.loo.RANKS 5

data(Yeast.STRING.FunCat);
save(Yeast.STRING.data, file=paste(dd,"/net.rda", sep=""));
save(Yeast.STRING.FunCat, file=paste(dd,"/labels.rda", sep=""));
do.GBA(data.dir=dd, labels.dir=dd, output.dir=rr, data="/net", labels="/labels");

do.loo.RANKS RANKS leave-one-out experiments with multiple classes

Description

High level function to perform RANKS leave one out (loo) experiments with mutliple classes.

Usage

do.loo.RANKS(score = eav.score, compute.kernel = TRUE, kernel = rw.kernel, a = 2,
k = 19, d = 2, p = 1, sparsify = FALSE, norm = FALSE, data, labels, output.name,
data.dir, labels.dir, output.dir)

Arguments

score function. It must be a kernel-based score method:
- eav.score (default)
- NN.score
- KNN.score
- WSLD.score

compute.kernel logical. If TRUE (def.) a kernel matrix is computed from data according to the
choice of the function kernel, otherwise the data matrix is used as it is.

kernel kernel method or function (def. rw.kernel)

a kernel parameter (def. 2)

k number of neighbours for KNN.score. It is meaningful only for kNN (def.19)

d integer. Coefficient of linear decay for the WSLD score. It is meaningful only
for the WSLD score (def.2)

p number of steps of the RW kernel (def. 1)

sparsify boolean. If TRUE the input matrix is sparsified using Sparsify.matrix from the
package NetpreProc (def: FALSE)

norm logical. If TRUE for each class the score is normalized in [0,1], otherwise the
raw scores are maintained (default).

data name of the network data set to be loaded (without rda extension). It must be
an .rda file containing the adjiacency matrix of the graph. By default it assumes
that it is in the data.dir directory

labels name of the target labels (without rda extension). It must be an .rda file contain-
ing the label matrix of the examples. By default it assumes that it is in the net.dir
directory
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output.name name of the output file (without rda extension). Other informations including
the learning parameters are added in the name of the file

data.dir relative path to the directory where the adjiacency matrix is stored

labels.dir relative path to directory where the label matrix is stored

output.dir relative path to directory where the results are stored. Note that data and labels
must have the same number of rows and in the same order. Moreover if any label
column corresponds to any GO root term, this is eliminated to avoid prediction
of GO root nodes.

Details

High level function to perform loo experiments with multiple classes using RANKS.

It performs a loo on a given data set, and scores, AUC and Precision at a given recall results for
multiple classes are generated.

Graph data are read from a matrix representing the adjiacency matrix of the graph stored as a .rda
file. The labels are read from a matrix having examples as rows and classes as columns stored as a
.rda file. If M is the label matrix, then M [i, j] = 1, if example i is annotated with class j, otherwise
M [i, j] = 0.

Results are included in matrices representing Scores, AUC and precision at a given recall results
stored as .rda files.

Value

3 rda files stored in the output.dir directory:

Scores results A matrix with examples on rows and classes on columns representing the com-
puted scores for each example and for each considered class

AUC results AUC results files computed through AUC.single.over.classes from the pack-
age PerfMeas

Precision at given recall results

computed through precision.at.multiple.recall.level.over.classes from
the package PerfMeas.

The name of the Score file starts with Score.loo, of the AUC file with AUC.loo, and of the Precision
at given recall file with PXR.loo. Other learning parameters are appended to the name of the file.

See Also

do.RANKS

Examples

# Yeast prediction of 177 FunCat classes by leave-one-out using STRING data
# data obtained from the bionetdata package from CRAN.
# See the AUC and Precision/recall results in the Results directory
library(bionetdata);
dd=tempdir();
rr=tempdir();
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data(Yeast.STRING.data);
data(Yeast.STRING.FunCat);
save(Yeast.STRING.data, file=paste(dd,"/net.rda", sep=""));
save(Yeast.STRING.FunCat, file=paste(dd,"/labels.rda", sep=""));
do.loo.RANKS(data.dir=dd, labels.dir=dd, output.dir=rr, data="/net",
labels="/labels", output.name="Yeast.loo");
# another leave-one-out prediction using KNN score and 2 steps random walk kernel
do.loo.RANKS(score = KNN.score, k=3, p=2, data.dir=dd, labels.dir=dd, output.dir=rr,
data="/net", labels="/labels", output.name="Yeast.loo");

do.RANKS RANKS cross-validation experiments with multiple classes

Description

High level function to perform RANKS cross-validation experiments with multiple classes.

Usage

do.RANKS(score = eav.score, kernel = rw.kernel, a = 2, p = 1, sparsify = TRUE, kk = 5,
rep = 1, stratified=TRUE, seed = 0, data.dir, labels.dir,
output.dir, data, labels, ...)

Arguments

score function. It must be a kernel-based score method:
- eav.score (default)
- NN.score
- KNN.score
- WSLD.score

kernel kernel metod or function (def. rw.kernel)

a kernel parameter (def. 2)

p number of steps of the RW kernel (def. 1)

sparsify boolean. If TRUE (def) the input matrix is sparsified using Sparsify.matrix from
the package NetpreProc

kk number of folds of the cross validation (def: 5)

rep number of repetitions of the cross validation (def: 1)

stratified boolean. If TRUE (def.) stratified CV is performed otherwise vanilla CV is done

seed initialization seed for the random generator to create folds (def:0)

data.dir relative path to directory where the adjiacency matrix is stored

labels.dir relative path to directory where the label matrix is stored

output.dir relative path to directory where the results are stored
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data name of the data set to loaded (without rda extension). It must be an .rda file
containing the adjiacency matrix of the graph. It assumes that it is in the data.dir
directory

labels name of the target labels (without rda extension). It must be an .rda file con-
taining the label matrix of the examples. It assumes that it is in the labels.dir
directory. Note that data and labels must have the same number of rows and in
the same order

... optional arguments to be passed to the function multiple.ker.score.cv that
performs the CV

Details

High level function to perform cross-validation experiments with multiple classes using RANKS.

It performs a k fold CV repeated multiple times on a given data set, and scores, AUC and Precision
at a given recall results for multiple classes are generated.

Graph data are read from a matrix representing the adjiacency matrix of the graph stored as a .rda
file. The labels are read from a matrix having examples as rows and classes as columns stored as a
.rda file. If M is the label matrix, then M [i, j] = 1, if example i is annotated with class j, otherwise
M [i, j] = 0.

Results are included in matrices representing Scores, AUC and precision at a given recall results
stored as .rda files.

Value

3 rda files stored in the output.dir directory:

Scores results A matrix with examples on rows and classes on columns representing the com-
puted scores for each example and for each considered class

AUC results AUC results files computed through AUC.single.over.classes from the pack-
age PerfMeas

Precision at given recall results

computed through precision.at.multiple.recall.level.over.classes from
the package PerfMeas.

The name of the Score file starts with Score, of the AUC file with AUC, and of the Precision at
given recall file with PXR. Other learning parameters are appended to the name of the file.

See Also

multiple.ker.score.cv, do.loo.RANKS

Examples

# Yeast prediction of 177 FunCat classes by 5-fold cross validation using STRING data
# data obtained from the bionetdata package from CRAN
# See the AUC and Precision/recall results in the Results directory
library(bionetdata);
dd=tempdir();
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rr=tempdir();
data(Yeast.STRING.data);
data(Yeast.STRING.FunCat);
save(Yeast.STRING.data, file=paste(dd,"/net.rda", sep=""));
save(Yeast.STRING.FunCat, file=paste(dd,"/labels.rda", sep=""));
do.RANKS(data.dir=dd, labels.dir=dd, output.dir=rr, data="/net", labels="/labels");

do.RW Random walk cross-validation experiments with multiple classes

Description

High level function to perform random walk cross-validation experiments with multiple classes.

Usage

do.RW(tmax = 1000, eps = 1e-10, k = 5, stratified=TRUE, filter = TRUE, seed = 1,
data.dir, labels.dir, output.dir, data, labels)

Arguments

tmax maximum number of iterations (def: 1000)

eps maximum allowed difference between the computed probabilities at the steady
state (def. 1e-10)

k number of folds for the cross validation (def. 5)

stratified boolean. If TRUE (def.) stratified CV is performed otherwise vanilla CV is done

filter if TRUE (def) the adjacency matrix is sparsified otherwise not

seed seed of the random generator for the generation of the folds (def: 1)

data.dir relative path to directory where the adjiacency matrix is stored

labels.dir relative path to directory where the label matrix is stored

output.dir relative path to directory where the results are stored

data name of the data set to loaded (without rda extension). It must be an .rda file
containing the adjacency matrix of the graph. It assumes that it is in the data.dir
directory

labels name of the target labels (without rda extension). It must be an .rda file con-
taining the label matrix of the examples. It assumes that it is in the labels.dir
directory
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Details

High level function to perform cross-validation experiments with multiple classes using RW.

It performs a k fold CV on a given data set, and output scores, AUC and Precision at a given recall
results for multiple classes.

Graph data are read from a matrix representing the adjiacency matrix of the graph stored as a .rda
file. The labels are read from a matrix having examples as rows and classes as columns stored as a
.rda file. If M is the label matrix, then M [i, j] = 1, if example i is annotated with class j, otherwise
M [i, j] = 0.

Results are included in matrices representing Scores, AUC and precision at a given recall results
stored as .rda files.

Value

3 rda files stored in the Results directory:

Scores results A matrix with examples on rows and classes on columns representing the com-
puted scores for each example and for each considered class

AUC results AUC results files computed through AUC.single.over.classes from the pack-
age PerfMeas

Precision at given recall results

computed through precision.at.multiple.recall.level.over.classes from
the package PerfMeas.

The name of the Score file starts with Score, of the AUC file with AUC, and of the Precision at
given recall file with PXR. Other learning parameters are appended to the name of the file. All the
results .rda files are stored in the Results directory (that must exist in advance).

See Also

RW, multiple.RW.cv, do.RWR

Examples

# Yeast prediction of 177 FunCat classes by 5-fold cross validation
# using 3 steps of Random walk and STRING data.
# data obtained from the bionetdata package from CRAN
# See the AUC and Precision/recall results in the Results directory
library(bionetdata);
dd=tempdir();
rr=tempdir();
data(Yeast.STRING.data);
data(Yeast.STRING.FunCat);
save(Yeast.STRING.data, file=paste(dd,"/net.rda", sep=""));
save(Yeast.STRING.FunCat, file=paste(dd,"/labels.rda", sep=""));
do.RW(tmax = 3, filter = FALSE, seed = 1, data.dir=dd, labels.dir=dd,
output.dir=rr, data="/net", labels="/labels");
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do.RWR Random walk with restart cross-validation experiments with multiple
classes

Description

High level function to perform random walk with restart cross-validation experiments with multiple
classes.

Usage

do.RWR(gamma = 0.6, tmax = 1000, eps = 1e-10, k = 5, stratified=TRUE, filter = TRUE,
seed = 1, data.dir, labels.dir, output.dir, data, labels)

Arguments

gamma restart parameter (def: 0.6)
tmax maximum number of iterations (def: 1000)
eps maximum allowed difference between the computed probabilities at the steady

state (def. 1e-10)
k number of folds for the cross validation (def. 5)
stratified boolean. If TRUE (def.) stratified CV is performed otherwise vanilla CV is done
filter if TRUE (def) the adjacency matrix is sparsified otherwise not
seed seed of the random generator for the generation of the folds (def: 1)
data.dir relative path to directory where the adjiacency matrix is stored
labels.dir relative path to directory where the label matrix is stored
output.dir relative path to directory where the results are stored
data name of the data set to loaded (without rda extension). It must be an .rda file

containing the adjiacency matrix of the graph. It assumes that it is in the data.dir
directory

labels name of the target labels (without rda extension). It must be an .rda file con-
taining the label matrix of the examples. It assumes that it is in the labels.dir
directory

Details

High level function to perform cross-validation experiments with multiple classes using RWR.

It performs a k fold CV on a given data set, and output scores, AUC and Precision at a given recall
results for multiple classes.

Graph data are read from a matrix representing the adjiacency matrix of the graph stored as a .rda
file. The labels are read from a matrix having examples as rows and classes as columns stored as a
.rda file. If M is the label matrix, then M [i, j] = 1, if example i is annotated with class j, otherwise
M [i, j] = 0.

Results are included in matrices representing Scores, AUC and precision at a given recall results
stored as .rda files.
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Value

3 rda files stored in the output.dir directory:

Scores results A matrix with examples on rows and classes on columns representing the com-
puted scores for each example and for each considered class

AUC results AUC results files computed through AUC.single.over.classes from the pack-
age PerfMeas

Precision at given recall results

computed through precision.at.multiple.recall.level.over.classes from
the package PerfMeas.

The name of the Score file starts with Score, of the AUC file with AUC, and of the Precision at
given recall file with PXR. Other learning parameters are appended to the name of the file. All the
results .rda files are stored in the Results directory (that must exist in advance).

See Also

RWR, multiple.RW.cv, do.RW

Examples

# Yeast prediction of 177 FunCat classes by 5-fold cross validation
# using 3 steps of Random walk with restart and STRING data.
# data obtained from the bionetdata package from CRAN
# See the AUC and Precision/recall results in the Results directory
library(bionetdata);
dd=tempdir();
rr=tempdir();
data(Yeast.STRING.data);
data(Yeast.STRING.FunCat);
save(Yeast.STRING.data, file=paste(dd,"/net.rda", sep=""));
save(Yeast.STRING.FunCat, file=paste(dd,"/labels.rda", sep=""));
do.RWR(tmax = 3, k = 5, filter = FALSE, seed = 1, data.dir=dd, labels.dir=dd,
output.dir=rr, data="/net", labels="/labels");
# the same experiment, but the iterations are repeated till to convergence
# (this can require a quite long time ...)
do.RWR(tmax = 1000, k = 5, eps = 1e-5, filter = FALSE, seed = 1, data.dir=dd,
labels.dir=dd, output.dir=rr, data="/net", labels="/labels");

find.optimal.thresh.cv

Function to find the optimal RANKS score thereshold

Description

Function to find the optimal quantile alpha and corresponding threshold by cross-validation with a
kernel-based score method.
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Usage

find.optimal.thresh.cv(K, ind.pos, ind.non.pos, m = 5,
alpha = seq(from = 0.05, to = 0.6, by = 0.05), init.seed = NULL,
opt.fun = compute.F, fun = KNN.score, ...)

Arguments

K matrix. Kernel matrix or any valid symmetric matrix

ind.pos indices of the positive examples. They are the indices the row of RW corre-
sponding to positive examples of the training set.

ind.non.pos indices of the non positive examples. They are the indices the row of RW corre-
sponding to non positive examples of the training set.

m number of folds (default: 5)

alpha vector of the quantiles to be tested

init.seed initial seed for the random generator. If NULL (def) no initialization is per-
formed

opt.fun Function implementing the metric to select the optimal threshold. The F-score
(compute.F) is the default. Available functions:
- compute.F: F-score (default)
- compute.acc:accuracy.
Any function having two arguments representing the vector of predicted and true
labels can be in principle used.

fun function. It must be a kernel-based score method (default KNN.score)

... optional arguments for the function fun

Details

Function to find the optimal quantile alpha and corresponding threshold by cross-validation with a
kernel-based score method. The optimality is computed with respect to a specific metric (def: F-
score). This function is used by multiple.ker.score.thresh.cv, ker.score.classifier.holdout,
ker.score.classifier.cv.

Value

A list with 3 elements:

alpha quantile corresponding to the best F-score

thresh threshold corresponding to the best F-score

pos.scores scores of the positive elements computed through CV

See Also

multiple.ker.score.thresh.cv, Kernel functions, ker.score.classifier.holdout
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Examples

# Finding the optimal threshold in the Tanimoto chemical structure similarity network
# between 1253 DrugBank drugs for the prediction of the DrugBank category Penicillins using
# the KNN-score with the random walk kernel
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
K <- rw.kernel(DD.chem.data);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
ind.non.pos <- which(labels==0);
res <- find.optimal.thresh.cv(K, ind.pos, ind.non.pos);
res

GBAmax Guilt By Association (GBA) using the maximum rule

Description

GBAmax implements a Guilt By Association (GBA) method based on the maximum of incident
edge weights

Usage

GBAmax(W, ind.positives)

Arguments

W numeric matrix representing the adjacency matrix of the graph

ind.positives indices of the "core" positive examples of the graph. They represent the indices
of W corresponding to the positive examples.

Details

GBAmax implements a Guilt By Association (GBA) method for label ranking based on the maxi-
mum between the edge weights connecting a node to its positive neighbours

Value

a list with one element:

p score associated to each node

References

Oliver, S., Guilt-by-association goes global, Nature, 403, pp. 601-603, 2000.
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See Also

GBAsum

Examples

# Application of GBAmax to the prediction of the DrugBank category Penicillins
# using the Tanimoto chemical structure similarity network
# between 1253 DrugBank drugs
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
GBAmax(DD.chem.data, ind.pos);
# Application of GBAmax to the prediction of the DrugBank category "Anti_HIV_Agents"
labels <- DrugBank.Cat[,"Anti_HIV_Agents"];
ind.pos <- which(labels==1);
GBAmax(DD.chem.data, ind.pos);

GBAsum Guilt By Association (GBA) using the sum rule

Description

GBAsum implements a Guilt By Association (GBA) method based on the sum of incident edge
weights

Usage

GBAsum(W, ind.positives)

Arguments

W numeric matrix representing the adjacency matrix of the graph

ind.positives indices of the "core" positive examples of the graph. They represent the indices
of W corresponding to the positive examples.

Details

Function that implements a Guilt By Association (GBA) method for label ranking based on the sum
of edge weights connecting a node to its positive neighbours.

Value

a list with one element:

p score associated to each node
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References

Oliver, S., Guilt-by-association goes global, Nature, 403, pp. 601-603, 2000.

See Also

GBAmax

Examples

# Application of GBAsum to the prediction of the DrugBank category Penicillins
# using the Tanimoto chemical structure similarity network
# between 1253 DrugBank drugs
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
GBAsum(DD.chem.data, ind.pos);
# Application of GBAsum to the prediction of the DrugBank category "Anti_HIV_Agents"
labels <- DrugBank.Cat[,"Anti_HIV_Agents"];
ind.pos <- which(labels==1);
GBAsum(DD.chem.data, ind.pos);

ker.score.classifier.cv

Multiple cross-validation with RANKS for classification

Description

Function to classify labels according to an external cross-validation procedure with a kernel-based
score method.

Usage

ker.score.classifier.cv(K, ind.pos, m = 5, p = 100,
alpha = seq(from = 0.05, to = 0.6, by = 0.05), init.seed = 0,
opt.fun = compute.F, fun = KNN.score, ...)

Arguments

K matrix. Kernel matrix or any valid symmetric matrix

ind.pos indices of the positive examples. They are the row indices of RW corresponding
to positive examples.

m number of folds for each cross-validation

p number of repeated cross-validations

alpha vector of the quantiles to be tested
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init.seed initial seed for the random generator (def: 0)

opt.fun : function. Function implementing the metric to choice the optimal threshold.
The F-score (compute.F) is the default. Available functions:
- compute.F: F-score (default)
- compute.acc: accuracy.
Any function having two arguments representing the vector of predicted and true
labels can be in principle used.

fun function. It must be a kernel-based score method (default KNN.score)

... optional arguments for the function fun

Details

Function to classify labels according to an external cross-validation procedure with a kernel-based
score method. The optimal threshold for a given class id found by internal cross-validation. Scores
are computed by averaging across (possibly) multiple external cross-validations. The optimal quan-
tile and corresponding threshold are selected by internal cross-validation using the F-score (default)
or the accuracy as metric.

Value

A list with 4 components:

labels vector of the predicted labels (1 represents positive, 0 negative)

av.scores a vector with the average scores across multiple cross-validations. Elements of
the vector av.scores correspond to the rows of RW

opt.alpha the optimal quantile alpha

opt.thresh the optimal threshold

a vector of the predicted scores for the test set

See Also

rw.kernel-methods, Kernel functions, ker.score.classifier.holdout

Examples

# Nodel label classification of the DrugBank category Penicillins
# on the Tanimoto chemical structure similarity network (1253 drugs)
# using 5 fold cross-validation repeated 3 times
# and NN-score with 1-step random walk kernel
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
K <- rw.kernel(DD.chem.data);
res <- ker.score.classifier.cv(K, ind.pos, m = 5, p = 3, fun = NN.score);
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ker.score.classifier.holdout

RANKS held-out procedure for a single class

Description

Functions to perform an held-out procedure for a single class with a kernel-based score method

Usage

ker.score.classifier.holdout(K, ind.pos, ind.test, m = 5, p = 10,
alpha = seq(from = 0.05, to = 0.6, by = 0.05), init.seed = 0,
opt.fun = compute.F, fun = KNN.score, ...)
ker.score.holdout (K, ind.pos, ind.test, fun=KNN.score, ...)

Arguments

K matrix. Kernel matrix or any valid symmetric matrix
ind.pos indices of the positive examples of the training set. They are the indices the row

of RW corresponding to positive examples of the training set
ind.test indices of the examples of the test set. They are the indices the row of RW

corresponding to examples of the test set
m number of folds for the cross-validation on the training set
p number of repeated cross-validations on the training set
alpha vector of the quantiles to be tested
init.seed nitial seed for the random generator (def: 0)
opt.fun Function implementing the metric to select the optimal threshold. The F-score

(compute.F) is the default. Available functions:
- compute.F: F-score (default)
- compute.acc:accuracy.
Any function having two arguments representing the vector of predicted and true
labels can be in principle used.

fun function. It must be a kernel-based score method (default KNN.score)
... optional arguments for the function fun

Details

ker.score.classifier.holdout is a function to classify labels according to an hold-out proce-
dure with a kernel-based score method. The optimal threshold for a given class is obtained by
(possibly multiple) internal cross-validation on the training set. Scores of the held-out nodes are
computed. Thresholds are computed on the training set by cross-validation and then are used to
classify the held-out nodes in the test set. The optimal quantile and corresponding threshold are
selected by internal cross-validation using the F-score as metrics. Note the test examples are given
as indices of the rows of the input matrix.

ker.score.holdout provides a ranking according to an hold-out procedure with a kernel-based
score method.
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Value

ker.score.classifier.holdout returns a list with four components: A list with 4 components:

labels vector of the predicted labels for the test set(1 represent positive, 0 negative)

av.scores a vector with the scores computed on the test set. Elements of the vector av.scores
correspond to ind.test rows of RW

opt.alpha the optimal quantile alpha

opt.thresh the optimal threshold

ker.score.holdout returns a vector of the predicted scores for the test set

See Also

rw.kernel-methods, Kernel functions, ker.score.classifier.cv

Examples

# Node label classification of the DrugBank category Penicillins
# on the Tanimoto chemical structure similarity network (1253 drugs)
# with eav-score with 1-step random walk kernel
# using held-out with 5-fold CV repeated 10 times on the training set
# to set the "optimal" threshold for classifiaction
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.test <- 1:300;
ind.train <- 301:length(labels);
ind.pos <- which(labels==1);
ind.pos <- ind.pos[ind.pos>300];
K <- rw.kernel(DD.chem.data);
res <- ker.score.classifier.holdout(K, ind.pos, ind.test, m = 5, p = 10, fun = eav.score);

ker.score.cv RANKS cross-validation for a single class

Description

Function to perform cross-validation for a single class with a kernel-based score method

Usage

ker.score.cv(RW, ind.pos, m = 5, init.seed = NULL, fun = KNN.score, ...)
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Arguments

RW matrix. It can be a kernel matrix or the adjacency matrix of a graph

ind.pos indices of the positive examples. They are the row indices of RW corresponding
to positive examples.

m number of folds (def: 5)

init.seed initial seed for the random generator to generate folds. If NULL (default) no
initialization is performed

fun function. It must be a kernel-based score method (default KNN.score)

... optional arguments for the function fun

Details

It performs a cross-validation using RANKS to predict the cross-validated scores. The cross-
validation is stratified: the folds are constructed separately for each class, to maintain an equal
ratio between classes among folds.

Value

a numeric vector with the scores computed for each example

See Also

multiple.ker.score.cv, multiple.ker.score.thresh.cv, rw.kernel-methods, Kernel functions.

Examples

# Nodel label ranking of the DrugBank category Penicillins
# on the Tanimoto chemical structure similarity network (1253 drugs)
# using 5 fold cross-validation
# and eav-score with 1-step random walk kernel
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
K <- rw.kernel(DD.chem.data);
res <- ker.score.cv(K, ind.pos, m = 5, init.seed = NULL, fun = eav.score);

kernel.functions Kernel functions

Description

Compute similarities between feature vectors according to a specific kernel function
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Usage

cauchy.kernel(W, sigma = 1)
laplacian.kernel(W, sigma = 1)
gaussian.kernel(W, sigma = 1)
inv.multiquadric.kernel(W, v = 1)
identity.kernel(W, a = 1)
linear.kernel(W, a = 1)
poly.kernel(W, degree = 2, scale = -1, v = 0)

Arguments

W a numeric matrix, Rows are examples and columns are features

sigma a real value representing the sigma parameter (def. 1) of the Cauchy, Gaussian
and Laplacian kernel

v constant factor (def. 1) of the inverse multiquadric kernel and of the polynomail
kernel; for the inverse multiquadric kernel v must be larger than 0.

a unused parameter, maintained for compatibility reasons .

degree integer corresponding to a degree of the polynomial (def. 2)

scale double: scaling factor of the polynomial kernel. If scale = −1 (def) scale is set
to 1/ncol(W );

Details

All the kernel matrices are computed by calling C code to speed-up the computation.

cauchy.kernel computes the Cauchy kernel.

laplacian.kernel computes the Lapalacian kernel.

gaussian.kernel computes the Gaussian kernel.

inv.multiquadric.kernel computes the inverse multiquadric kernel.

identity.kernel computes the identity kernel. In this case the input W represents a similarity
square matrix (obtained i.e. through the Pearson correlation) between examples.

linear.kernel computes the linear kernel.

Value

A kernel matrix representing the similarities between the examples (rows of W), according to a
specific kernel function.

See Also

rw.kernel-methods
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Examples

# computing kernels on the Tanimoto chemical structure similarity matrix
library(bionetdata);
data(DD.chem.data);
K <- identity.kernel(DD.chem.data);
K <- linear.kernel(DD.chem.data);

K <- gaussian.kernel(DD.chem.data);
K <- inv.multiquadric.kernel(DD.chem.data);
K <- poly.kernel(DD.chem.data);

label.prop Label propagation

Description

Function that implements the Label propagation algorithm of Zhu and Ghahramani

Usage

label.prop(W, ind.positives, tmax = 1000, eps = 1e-05, norm = TRUE)

Arguments

W a numeric matrix representing the adjacency matrix of the graph
ind.positives indices of the "core" positive examples of the graph. They represent the indices

of W corresponding to the positive examples
tmax maximum number of iterations (def: 1000)
eps numeric. Maximum allowed difference between the computed probabilities at

the steady state (def. 1e-5)
norm boolean. If TRUE (def) the adjacency matrix W of the graph is normalized to

M = D−1 ∗W , otherwise it is assumed that the matrix W is just normalized

Details

label.prop implements the label propagation algorithm on a given graph by performing 1 or more
steps on the graph, depending on the value of the tmax parameter. It stops also if the difference of
the norm of the scores between two consecutive steps is less than eps.

Value

A list with three elements:

p numeric vector. Scores of each node at the steady state or after tmax iterations
ind.positives indices of the "core" positive examples of the graph (it is equal to the same input

parameter)
n.iter number of performed steps/iterations
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References

Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-Supervised Learning Using Gaussian Fields and Har-
monic Functions. In: Proc. of the Twentieth International Conference on Machine Learning, Wash-
ington DC (2003) 912-919

Examples

# Application of label prop algorithm to the prediction of the DrugBank category Penicillins
# using the Tanimoto chemical structure similarity network
# between 1253 DrugBank drugs
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
label.prop(DD.chem.data, ind.pos, tmax = 10, eps = 1e-05, norm = TRUE);

multiple.ker.score.cv RANKS multiple cross-validation for a single class

Description

Function to execute multiple cross-validation with RANKS for a single class.

Usage

multiple.ker.score.cv(RW, ind.pos, m = 5, p = 100, stratified=TRUE,
init.seed = 0, fun = KNN.score, ...)

Arguments

RW matrix. Kernel matrix or any valid symmetric matrix

ind.pos indices of the positive examples. They are the row indices of RW corresponding
to positive examples.

m number of folds for each cross-validation

p number of repeated cross-validations

stratified boolean. If TRUE (def.) stratified CV is performed otherwise vanilla CV is done

init.seed initial seed for the random generator (def: 0)

fun function. It must be a kernel-based score method (default KNN.score)

... optional arguments for the function fun

Details

It performs multiple cross-validation using RANKS to predict the cross-validated scores. The cross-
validation is stratified: the folds are constructed separately for each class, to maintain an equal ratio
between classes among folds. It computes the scores by averaging across multiple cross validations.
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Value

A list with two components:

av.scores a vector with the average scores across multiple cross-validations. Elements of
the vector av.scores correspond to the rows of RW

pos.scores a vector with the scores of positive elements collected at each iteration

See Also

ker.score.cv, multiple.ker.score.thresh.cv, rw.kernel-methods, Kernel functions.

Examples

# Nodel label ranking for the DrugBank category Penicillins
# on the Tanimoto chemical structure similarity network (1253 drugs)
# using 5 fold cross-validation repeated 10 times
# and eav-score with 1-step random walk kernel
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
K <- rw.kernel(DD.chem.data);
res <- multiple.ker.score.cv(K, ind.pos, m = 5, p = 10, init.seed = 0, fun = eav.score);
# the same but using the NN-score
res <- multiple.ker.score.cv(K, ind.pos, m = 5, p = 10, init.seed = 0, fun = NN.score);

multiple.ker.score.thresh.cv

Function for RANKS multiple cross-validation and optimal threshold
finding for a single class

Description

Function to execute multiple cross-validation and to find the optimal threshold with RANKS for a
single class.

Usage

multiple.ker.score.thresh.cv(K, ind.pos, m = 5, p = 100,
alpha = seq(from = 0.05, to = 0.6, by = 0.05),
init.seed = 0, fun = KNN.score, ...)
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Arguments

K matrix. Kernel matrix or any valid symmetric matrix

ind.pos indices of the positive examples. They are the row indices of RW corresponding
to positive examples.

m number of folds for each cross-validation

p number of repeated cross-validations

alpha vector of the quantiles to be tested

init.seed initial seed for the random generator (def: 0)

fun function. It must be a kernel-based score method (default KNN.score)

... optional arguments for the function fun

Details

Function to execute multiple cross-validation with a kernel-based score method and to find the
optimal threshold for a given class by internal cross-validation.

Scores are computed by averaging across multiple external cross-validations. The optimal quantile
and corresponding threshold are selected by internal cross-validation using a specific metric (def:
F-score).

Value

A list with three components:

av.scores a vector with the average scores across multiple cross-validations. Elements of
the vector av.scores correspond to the rows of RW

opt.alpha the optimal quantile alpha

opt.thresh the optimal threshold

See Also

ker.score.cv, multiple.ker.score.cv, rw.kernel-methods, Kernel functions.

Examples

# Node label ranking and best threshold search for the DrugBank category Penicillins
# on the Tanimoto chemical structure similarity network (1253 drugs)
# using 5 fold cross-validation repeated 2 times
# and eav-score with 1-step random walk kernel
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
K <- rw.kernel(DD.chem.data);
res <- multiple.ker.score.thresh.cv (K, ind.pos, m = 5, p = 2, init.seed = 0, fun = KNN.score);
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multiple.RW.cv Random walk, GBA and labelprop multiple cross-validation for a sin-
gle class

Description

Function to execute multiple cross-validation with random walk based, labelprop and GBA methods

Usage

multiple.RW.cv(W, ind.pos, k = 5, p = 100, init.seed = 0, fun = RW, ...)

Arguments

W a numeric matrix representing the adjacency matrix of the graph. Note that if the
optional argument norm=TRUE (def.), the W matrix is normalized, otherwise it
is assumed that W is just normalized

ind.pos indices of the "core" positive examples of the graph. They represent the indices
of W corresponding to the positive examples

k number of folds (def: 5)

p number of repeated cross-validations

init.seed initial seed for the random generator. If 0 (default) no initialization is performed

fun function. It must be one of the following functions:
- RW (default)
- RWR
- label.prop
- GBAsum
- GBAmax

... optional arguments for the function fun:
- gamma : restart parameter (def: 0.6) (meaningful only for RWR)
- tmax : maximum number of iterations (def: 1000)
- eps : maximum allowed difference between the computed probabilities at the
steady state (def. 1e-10)

Details

Function to execute multiple cross-validation with random walk based, labelprop and GBA methods
for a single class. It computes the scores by averaging across multiple cross validations. It can be
used with of the following methods: RW, RWR, label.prop, GBAsum, GBAmax.

Value

a vector with the the probabilities for each example at the steady state averaged across multiple
cross-validations
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See Also

RW, RWR, label.prop, GBAsum, GBAmax, RW.cv

Examples

# Nodel label ranking of the DrugBank category Penicillins
# on the Tanimoto chemical structure similarity network (1253 drugs)
# using 5 fold cross-validation repeated 2 times
# and "vanilla" 2-step random walk
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);

res <- multiple.RW.cv(DD.chem.data, ind.pos, k = 5, p = 2, init.seed = 0, fun = GBAmax)

# the same but using the label.prop
res <- multiple.RW.cv(DD.chem.data, ind.pos, k = 5, p = 2, init.seed = 0, fun = label.prop, tmax=2)

# the same but using "vanilla" 2-step random walk
res <- multiple.RW.cv(DD.chem.data, ind.pos, k = 5, p = 2, init.seed = 0, fun = RW, tmax=2)

RW Random walk on a graph

Description

The function performs a random Walk on a given graph.

Usage

RW(W, ind.positives, tmax = 1000, eps = 1e-10, norm = TRUE)

Arguments

W a numeric matrix representing the adjacency matrix of the graph

ind.positives indices of the "core" positive examples of the graph. They represent the indices
of W corresponding to the positive examples

tmax maximum number of iterations (steps) (def: 1000)

eps maximum allowed difference between the computed probabilities at the steady
state (def. 1e-10)

norm if TRUE (def) the adjacency matrix W of the graph is normalized to M =
D−1 ∗W , otherwise it is assumed that the matrix W is just normalized
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Details

RW performs a random Walk on a given graph by performing 1 or more steps on the graph, depend-
ing on the value of the tmax parameter. It stops also if the difference of the norm of the probabilities
between two consecutive steps is less than eps.

Value

A list with three elements:

p numeric vector. Probability of each node at the steady state or after tmax itera-
tions

ind.positives indices of the "core" positive examples of the graph (it is equal to the same input
parameter)

n.iter number of performed steps/iterations

References

L. Lovasz, Random Walks on Graphs: a Survey, Combinatorics, Paul Erdos is Eighty, vol. 2, pp.
146, 1993.

See Also

RWR

Examples

# Application of the random walk to the prediction of the DrugBank category Penicillins
# using the Tanimoto chemical structure similarity network
# between 1253 DrugBank drugs
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
# 2-step random walk
res <- RW(DD.chem.data, ind.pos, tmax = 2);

# 5 steps random walk
res <- RW(DD.chem.data, ind.pos, tmax = 5);

RW.cv Random walk, GBA and labelprop cross-validation for a single class

Description

Function to execute cross-validation with random walk based, labelprop and GBA methods
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Usage

RW.cv(W, ind.pos, k = 5, stratified=TRUE, init.seed = 0, fun = RW, ...)

Arguments

W a numeric matrix representing the adjacency matrix of the graph. Note that if the
optional argument norm=TRUE (def.), the W matrix is normalized, otherwise it
is assumed that W is just normalized

ind.pos indices of the "core" positive examples of the graph. They represent the indices
of W corresponding to the positive examples

k number of folds (def: 5)

stratified boolean. If TRUE (def.) stratified CV is performed otherwise vanilla CV is done

init.seed initial seed for the random generator. If 0 (default) no initialization is performed

fun function. It must be one of the following functions:
- RW (default)
- RWR
- label.prop
- GBAsum
- GBAmax

... optional arguments for the function fun:
- gamma : restart parameter (def: 0.6) (meaningful only for RWR)
- tmax : maximum number of iterations (def: 1000)
- eps : maximum allowed difference between the computed probabilities at the
steady state (def. 1e-10)

Details

It performs a single cross-validation for a single class. It can be used with of the following methods:
RW, RWR, label.prop, GBAsum, GBAmax.

Value

a vector with the the probabilities for each example at the steady state

See Also

RW, RWR, label.prop, GBAsum, GBAmax, multiple.RW.cv

Examples

# Nodel label ranking of the DrugBank category Penicillins
# on the Tanimoto chemical structure similarity network (1253 drugs)
# using 5 fold cross-validation and GBAsum
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
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labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
res <- RW.cv(DD.chem.data, ind.pos, k = 5, init.seed = 0, fun = GBAsum);

# the same but using label.prop
res <- RW.cv(DD.chem.data, ind.pos, k = 5, init.seed = 0, fun = label.prop, tmax=2);

# the same but using "vanilla" 2-step random walk
res <- RW.cv(DD.chem.data, ind.pos, k = 5, init.seed = 0, fun = RW, tmax=2);

rw.kernel-methods Random walk kernel

Description

Methods to compute the random walk kernel (Smola and Kondor, 2003)

Usage

## S4 method for signature 'matrix'
rw.kernel(W, a = 2)
## S4 method for signature 'graph'
rw.kernel(W, a = 2)
## S4 method for signature 'graph'
p.step.rw.kernel(RW, p = 2)
## S4 method for signature 'matrix'
p.step.rw.kernel(RW, p = 2)

Arguments

W a square symmetric matrix with positive values or an object of the class graphAM
or graphNEL of the package graph

RW matrix. It must be a random walk kernel matrix
a numeric. It is correlated to the probability of remaining at the same vertex.

Larger a, larger the probability (def. 2)
p integer. Number of steps (def: p=2)

Details

rw.kernel methods computes the one step random walk kernel RW, i.e.:

RW = (a− 1)I +D− 1
2 ∗W ∗D− 1

2

where I is the identity matrix, W is the weighted adjacency matrix of an undirected graph, and D
is a diagonal matrix with Dii =

∑
j Wij

p.step.rw.kernel methods compute the p-step random walk kernel pRW, i.e.:

pRW = RW p
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Value

rw.kernel: A numeric square matrix representing a one-step random walk kernel matrix

p.step.rw.kernel: A numeric square matrix representing a p-step random walk kernel matrix

Methods

signature(W = "graph") rw.kernel computes the random walk kernel starting from a graph of
class graph (hence including objects of class graphAM and graphNEL from the package
graph)

signature(W = "matrix") rw.kernel computes the random walk kernel starting from a weighted
adjacency matrix representing the graph

signature(RW = "graph") p.step.rw.kernel computes the a p-step random walk kernel starting
from a graph of class graph (hence including objects of class graphAM and graphNEL from
the package graph)

signature(RW = "matrix") p.step.rw.kernel computes the p-step random walk kernel starting
from a one-step random walk kernel matrix

Examples

# Random walk kernel computation using Functional Interaction network data
library(bionetdata);
data(FIN.data);
W <- as.matrix(FIN.data);
K <- rw.kernel(W);
# this a 2-step random walk kernel

K2 <- p.step.rw.kernel(K, p=2);

RWR Random walk with Restart on a graph

Description

Function that performs a random Walk with restart (RWR) on a given graph

Usage

RWR(W, ind.positives, gamma = 0.6, tmax = 1000, eps = 1e-10, norm = TRUE)

Arguments

W a numeric matrix representing the adjacency matrix of the graph

ind.positives indices of the "core" positive examples of the graph. They represent the indices
of W corresponding to the positive examples

gamma restart parameter (def: 0.6)

tmax maximum number of iterations (steps) (def: 1000)
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eps maximum allowed difference between the computed probabilities at the steady
state (def. 1e-10)

norm if TRUE (def) the adjacency matrix W of the graph is normalized to M =
D−1 ∗W , otherwise it is assumed that the matrix W is just normalized

Details

RWR performs a random Walk with restart on a given graph by performing 1 or more steps on
the graph, depending on the value of the tmax parameter. The restart parameter expresses the
probability of "restarting" from a "core" node at each step of the random walk algorithm. It stops
also if the difference of the norm of the probabilities between two consecutive steps is less than eps.

Value

A list with three elements:

p numeric vector. Probability of each node at the steady state or after tmax itera-
tions

ind.positives indices of the "core" positive examples of the graph (it is equal to the same input
parameter)

n.iter number of performed steps/iterations

References

L. Lovasz, Random Walks on Graphs: a Survey, Combinatorics, Paul Erdos is Eighty, vol. 2, pp.
146, 1993.

See Also

RW

Examples

# Application of the random walk with restart to the prediction of the
# DrugBank category Penicillins
# using the Tanimoto chemical structure similarity network
# between 1253 DrugBank drugs
library(bionetdata);
data(DD.chem.data);
data(DrugBank.Cat);
labels <- DrugBank.Cat[,"Penicillins"];
ind.pos <- which(labels==1);
# 2-step RWR
res <- RWR(DD.chem.data, ind.pos, tmax = 2);

# till to convergence
res <- RWR(DD.chem.data, ind.pos, tmax = 5000, eps=1e-6);
# 5 steps and higher gamma
res <- RWR(DD.chem.data, ind.pos, tmax = 5, gamma=0.8);
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score.multiple.vertex-methods

Multiple vertex score functions

Description

Methods to compute score functions for multiple vertices of the graph

Usage

## S4 method for signature 'graph'
NN.score(RW, x, x.pos, auto = FALSE, norm = TRUE)
## S4 method for signature 'matrix'
NN.score(RW, x, x.pos, auto = FALSE, norm = TRUE)
## S4 method for signature 'graph'
KNN.score(RW, x, x.pos, k = 3, auto = FALSE, norm = TRUE)
## S4 method for signature 'matrix'
KNN.score(RW, x, x.pos, k = 3, auto = FALSE, norm = TRUE)
## S4 method for signature 'graph'
eav.score(RW, x, x.pos, auto = FALSE, norm = TRUE)
## S4 method for signature 'matrix'
eav.score(RW, x, x.pos, auto = FALSE, norm = TRUE)
## S4 method for signature 'graph'
WSLD.score(RW, x, x.pos, d = 2, auto = FALSE, norm = TRUE)
## S4 method for signature 'matrix'
WSLD.score(RW, x, x.pos, d = 2, auto = FALSE, norm = TRUE)

Arguments

RW matrix. It must be a kernel matrix or a symmetric matrix expressing the similar-
ity between nodes

x vector of integer. Indices corresponding to the elements of the RW matrix for
which the score must be computed

x.pos vector of integer. Indices of the positive elements of the RW matrix
k integer. Number of the k nearest neighbours to be considered
d integer. Coefficient of linear decay (def. 2)
auto boolean. If TRUE the components K(x, x)+K(xi, xi) are computed, otherwise

are discarded (default)
norm boolean. If TRUE (def.) the scores are normalized between 0 and 1.

Details

The methods compute the scores for multiple vertices according to NN, KNN, Empirical Average
or WSLD score (see reference for bibliographic details). Note that the argument x indicates the set
of nodes for which the score must be computed. The vector x represents the indices of the rows
of the matrix RW corresponding to the vertices for which the scores must be computed. If x =
1:nrow(RW) the scores for all the vertices of the graph are computed.
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Value

NN.score: a numeric vector with the NN scores of the vertices. The names of the vector correspond
to the indices x

KNN.score: a numeric vector with the KNN scores of the vertices. The names of the vector corre-
spond to the indices x

eav.score: a numeric vector with the Empirical Average score of the vertices. The names of the
vector correspond to the indices x

WSLD.score: a numeric vector with the Weighted Sum with Linear Decay score (WSLD) of the
vertices. The names of the vector correspond to the indices x

Methods

signature(RW = "graph") NN.score computes the NN score for multiple vertices using a graph
of class graph (hence including objects of class graphAM and graphNEL from the package
graph)
KNN.score computes the KNN score for multiple vertices using a graph of class graph (hence
including objects of class graphAM and graphNEL from the package graph)
eav.score computes the Empirical Average score for multiple verticesusing a graph of class
graph (hence including objects of class graphAM and graphNEL from the package graph)
WSLD.score computes the Weighted Sum with Linear Decay score for multiple vertices using
a graph of class graph (hence including objects of class graphAM and graphNEL from the
package graph)

signature(RW = "matrix") NN.score computes the NN score for multiple vertices using a kernel
matrix or a symmetric matrix expressing the similarity between nodes
KNN.score computes the KNN score for multiple vertices using a kernel matrix or a symmetric
matrix expressing the similarity between nodes
eav.score computes the Empirical Average score multiple for vertices using a kernel matrix
or a symmetric matrix expressing the similarity between nodes
WSLD.score computes the Weighted Sum with Linear Decay score for multiple vertices using
a kernel matrix or a symmetric matrix expressing the similarity between nodes

References

Re M, Mesiti M, Valentini G: A fast ranking algorithm for predicting gene functions in biomolecular
networks. IEEE ACM Trans Comput Biol Bioinform 2012, 9(6):1812-1818.

Insuk Lee, Bindu Ambaru, Pranjali Thakkar, Edward M. Marcotte, and Seung Y. Rhee. Nature
Biotechnology 28, 149-156, 2010

See Also

Methods for scoring a single vertex

Examples

# Computation of scores using STRING data with respect to
# the FunCat category 11.02.01 rRNA synthesis
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library(bionetdata);
data(Yeast.STRING.data);
data(Yeast.STRING.FunCat);
labels <- Yeast.STRING.FunCat[,"11.02.01"];
n <- length(labels);
ind.pos <- which(labels==1);
# NN-scores computed directly on the STRING matrix
s <- NN.score(Yeast.STRING.data, 1:n, ind.pos);

# NN-scores computed on the 1 step and 2-step random walk kernel matrix
K <- rw.kernel(Yeast.STRING.data);
sK <- NN.score(K, 1:n, ind.pos);
K2 <- p.step.rw.kernel(K, p=2);
sK2 <- NN.score(K2, 1:n, ind.pos);
# WSLD-scores computed directly on the STRING matrix
s <- WSLD.score(Yeast.STRING.data, 1:n, ind.pos);
# WSLD-scores computed on the 1 step and 2-step random walk kernel matrix
sK <- WSLD.score(K, 1:n, ind.pos);
sK2 <- WSLD.score(K2, 1:n, ind.pos);

score.single.vertex-methods

Single vertex score functions

Description

Methods to compute score functions applied to a single vertex of the graph

Usage

## S4 method for signature 'graph'
single.NN.score(RW, x, x.pos, auto = FALSE)
## S4 method for signature 'matrix'
single.NN.score(RW, x, x.pos, auto = FALSE)
## S4 method for signature 'graph'
single.KNN.score(RW, x, x.pos, k = 3, auto = FALSE)
## S4 method for signature 'matrix'
single.KNN.score(RW, x, x.pos, k = 3, auto = FALSE)
## S4 method for signature 'graph'
single.eav.score(RW, x, x.pos, auto = FALSE)
## S4 method for signature 'matrix'
single.eav.score(RW, x, x.pos, auto = FALSE)
## S4 method for signature 'graph'
single.WSLD.score(RW, x, x.pos, d = 2, auto = FALSE)
## S4 method for signature 'matrix'
single.WSLD.score(RW, x, x.pos, d = 2, auto = FALSE)
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Arguments

RW matrix. It must be a kernel matrix or a symmetric matrix expressing the similar-
ity between nodes

x integer. Index corresponding to the element of the RW matrix for which the
score must be computed

x.pos vector of integer. Indices of the positive elements of the RW matrix

k integer. Number of the k nearest neighbours to be considered

d integer. Coefficient of linear decay (def. 2)

auto boolean. If TRUE the components K(x, x)+K(xi, xi) are computed, otherwise
are discarded (default)

Details

single.NN.score computes the NN score for a single vertex:

score(x) = − min
xi∈VC

(K(x, x) +K(xi, xi)− 2K(x, xi))

where VC is the set of positive vertices.

single.KNN.score compute KNN score for a single vertex:

score(x) = −
∑

k nearest xi∈VC

(K(x, x) +K(xi, xi)− 2K(x, xi))

single.eav.score computes the Empirical Average score for a single vertex:

score(x) = −K(x, x) +
2

|VC |
∗

∑
xi∈VC

K(x, xi)

single.WSLD.score computes the WSLD score for a single vertex:

Let K(x, xjk) be the kth rank order index w.r.t. xj ∈ VC , and m = |VC |, then:

score(x) = max
xi∈VC

K(x, xi) +

m∑
k=2

[(1/(d ∗ (k − 1))) ∗K(x, xjk)]

Value

single.NN.score: the NN score of the vertex

single.KNN.score: the KNN score of the vertex

single.eav.score: the Empirical Average score of the vertex

single.WSLD.score: the Weighted Sum with Linear Decay score (WSLD) of the vertex
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Methods

signature(RW = "graph") single.NN.score computes the NN score for a single vertex using
a graph of class graph (hence including objects of class graphAM and graphNEL from the
package graph)
single.KNN.score computes the KNN score for a single vertex using a graph of class graph
(hence including objects of class graphAM and graphNEL from the package graph)
single.eav.score computes the Empirical Average score for a single vertex using a graph
of class graph (hence including objects of class graphAM and graphNEL from the package
graph)
single.WSLD.score computes the Weighted Sum with Linear Decay score for a single vertex
using a graph of class graph (hence including objects of class graphAM and graphNEL from
the package graph)

signature(RW = "matrix") single.NN.score computes the NN score for a single vertex using a
kernel matrix or a symmetric matrix expressing the similarity between nodes
single.KNN.score computes the KNN score for a single vertex using a kernel matrix or a
symmetric matrix expressing the similarity between nodes
single.eav.score computes the Empirical Average score using a kernel matrix or a sym-
metric matrix expressing the similarity between nodes
single.WSLD.score computes the Weighted Sum with Linear Decay score for a single vertex
using a kernel matrix or a symmetric matrix expressing the similarity between nodes

See Also

Methods for scoring multiple vertices

Examples

# Computation of scores using STRING data with respect to
# the FunCat category 11.02.01 rRNA synthesis
library(bionetdata);
data(Yeast.STRING.data);
data(Yeast.STRING.FunCat);
labels <- Yeast.STRING.FunCat[,"11.02.01"];
n <- length(labels);
ind.pos <- which(labels==1);
# NN-score computed directly on the STRING matrix on the first yeast gene YJR121W
s <- single.NN.score(Yeast.STRING.data, 1, ind.pos);

# NN-score computed on the 1 step and 2-step random walk kernel matrix
K <- rw.kernel(Yeast.STRING.data);
sK <- single.NN.score(K, 1, ind.pos);
K2 <- p.step.rw.kernel(K, p=2);
sK2 <- single.NN.score(K2, 1, ind.pos);

# WSLD-score computed directly on the STRING matrix on the first yeast gene YJR121W
s <- single.WSLD.score(Yeast.STRING.data, 1, ind.pos);
# WSLD-scores computed on the 1 step and 2-step random walk kernel matrix
sK <- single.WSLD.score(K, 1, ind.pos);
sK2 <- single.WSLD.score(K2, 1, ind.pos);
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Utilities Utility functions

Description

Mixed utility functions to compute accuracy, norms, labels from scores and to perform stratified
cross-validation.

Usage

compute.acc(pred, labels)
compute.F(pred, labels)
norm1(x)
Unit.sphere.norm(K)
do.stratified.cv.data(examples, positives, k = 5, seed = NULL)
do.cv.data(examples, positives, k = 5, seed = NULL)
labelsfromscores(scores, thresh)
Multiple.labels.from.scores(S, thresh.vect)
selection.test(pos.scores, av.scores, ind.positives, alpha = 0.05, thresh.pos = 0)

Arguments

pred vector of the predicted labels

labels vector of the true labels. Note that 0 stands for negative and 1 for positive. In
general the first level is negative and the second positive

x numeric vector

K a kernel matrix

examples indices of the examples (a vector of integer)

positives vector of integer. Indices of the positive examples. The indices refer to the
indices of examples

k number of folds (def = 5)

seed seed of the random generator (def=NULL). If is set to NULL no initiazitation is
performed

scores numeric. Vector of scores: each element correspond to the score of an example

thresh real value. Threshold for the classification

S numeric matrix. Matrix of scores: rows represent examples, columns classes

thresh.vect numeric vector. Vector of the thresholds for multiple classes (one threshold for
each class)

pos.scores vector with scores of positive examples. It is returned from multiple.ker.score.cv.

av.scores a vector with the average scores computed by multiple.ker.score.cv. It may be
a named vector. If not, the names attributes corresponding to the indices of the
vector are added.
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ind.positives indices of the positive examples. They are the indices of av.scores corresponding
to positive examples.

alpha quantile level (def. 0.05)

thresh.pos only values larger than thresh.pos are retained in pos.scores (def.: 0)

Details

compute.acc computes the accuracy for a single class

compute.F computes the F-score for a single class

norm1 computes the L1-norm of a numeric vector

Unit.sphere.norm normalize a kernel according to the unit sphere

do.stratified.cv.data generates data for the stratified cross-validation. In particular subdivides
the indices that refer to the rows of the data matrix in different folds (separated for positive and
negative examples)

do.cv.data generates data for the vanilla not stratified cross-validation.

labelsfromscores computes the labels of a single class from the corresponding scores

Multiple.labels.from.scores computes the labels of multiple classes from the corresponding
scores

selection.test is a non parametric test to select the most significant unlabeled examples

Value

compute.acc returns the accuracy

compute.F returns the F-score

norm1 returns the L1-norm value

Unit.sphere.norm returns the kernel normalized according to the unit sphere

do.stratified.cv.data returns a list with 2 two components:

fold.non.positives

a list with k components. Each component is a vector with the indices of the
non positive elements of the fold

fold.positives a list with k components. Each component is a vector with the indices of the
positive elements of the fold

Indices refer to row numbers of the data matrix

do.cv.data returns a list with 2 two components:

fold.non.positives

a list with k components. Each component is a vector with the indices of the
non positive elements of the fold

fold.positives a list with k components. Each component is a vector with the indices of the
positive elements of the fold
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Indices refer to row numbers of the data matrix

labelsfromscores returns a numeric vector res with 0 or 1 values. The label res[i]=1 if scores[i]>thresh,
otherwise res[i]=0

Multiple.labels.from.scores returns a binary matrix with the labels of the predictions. Rows
represent examples, columns classes. Element L[i,j] is the label of example i w.r.t. class j. L[i,j]=1
if i belongs to j, 0 otherwise.

selection.test returns a list with 5 components:

selected a named vector with the components of av.scores selected by the test
selected.labeled

a named vector with the labeled components of av.scores selected by the test
selected.unlabeled

a named vector with the unlabeled components of av.scores selected by the test

thresh the score threshold selected by the test

alpha significance level (the same value of the input)

Examples

# L1-norm of a vector
norm1(rnorm(10));
# generation of 5 stratified folds;
do.stratified.cv.data(1:100, 1:10, k = 5, seed = NULL);
# generation of labels form scores.
labelsfromscores(runif(20), thresh=0.3);

weighted.score.multiple.vertex-methods

Multiple vertex score functions - weighted version

Description

Methods to compute weighted score functions for multiple vertices of the graph

Usage

## S4 method for signature 'graph'
NN.w.score(RW, x, x.pos, w, norm = TRUE)
## S4 method for signature 'matrix'
NN.w.score(RW, x, x.pos, w, norm = TRUE)
## S4 method for signature 'graph'
KNN.w.score(RW, x, x.pos, w, k = 3, norm = TRUE)
## S4 method for signature 'matrix'
KNN.w.score(RW, x, x.pos, w, k = 3, norm = TRUE)
## S4 method for signature 'graph'
eav.w.score(RW, x, x.pos, w, auto = FALSE, norm = TRUE)
## S4 method for signature 'matrix'
eav.w.score(RW, x, x.pos, w, auto = FALSE, norm = TRUE)
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Arguments

RW matrix. It must be a kernel matrix or a symmetric matrix expressing the similar-
ity between nodes

x vector of integer. Indices corresponding to the elements of the RW matrix for
which the score must be computed

x.pos vector of integer. Indices of the positive elements of the RW matrix

k integer. Number of the k nearest neighbours to be considered

w vector of numeric. Its elements represent the initial likelihood that the nodes of
the graph belong to the class under study. The elements of w correspond to the
columns of RW and the length of w and the number of columns of RW must be
equal.

auto boolean. If TRUE the components K(x, x)+K(xi, xi) are computed, otherwise
are discarded (default)

norm boolean. If TRUE (def.) the scores are normalized between 0 and 1.

Details

The methods compute the weighted scores for multiple vertices according to the weighted version
of NN, KNN, and Empirical Average score. Note that the argument x indicates the set of nodes for
which the score must be computed. The vector x represents the indices of the rows of the matrix
RW corresponding to the vertices for which the scores must be computed. If x = 1:nrow(RW) the
scores for all the vertices of the graph are computed.

Value

NN.w.score: a numeric vector with the weighted NN scores of the vertices. The names of the
vector correspond to the indices x

KNN.score: a numeric vector with the weighted KNN scores of the vertices. The names of the
vector correspond to the indices x

eav.score: a numeric vector with the weighted Empirical Average score of the vertices. The names
of the vector correspond to the indices x

Methods

signature(RW = "graph") NN.w.score computes the weighted NN score for multiple vertices
using a graph of class graph (hence including objects of class graphAM and graphNEL from
the package graph)
KNN.w.score computes the weighted KNN score for multiple vertices using a graph of class
graph (hence including objects of class graphAM and graphNEL from the package graph)
eav.w.score computes the weighted Empirical Average score for multiple verticesusing a
graph of class graph (hence including objects of class graphAM and graphNEL from the pack-
age graph)

signature(RW = "matrix") NN.w.score computes the weighted NN score for multiple vertices
using a kernel matrix or a symmetric matrix expressing the similarity between nodes
KNN.w.score computes the weighted KNN score for multiple vertices using a kernel matrix
or a symmetric matrix expressing the similarity between nodes
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eav.w.score computes the weighted Empirical Average score multiple for vertices using a
kernel matrix or a symmetric matrix expressing the similarity between nodes

References

Giorgio Valentini, Giuliano Armano, Marco Frasca, Jianyi Lin, Marco Mesiti, and Matteo Re
RANKS: a flexible tool for node label ranking and classification in biological networks Bioin-
formatics first published online June 2, 2016 doi:10.1093/bioinformatics/btw235

Re M, Mesiti M, Valentini G: A fast ranking algorithm for predicting gene functions in biomolecular
networks. IEEE ACM Trans Comput Biol Bioinform 2012, 9(6):1812-1818.

See Also

Methods for scoring a single vertex - weighted version Methods for scoring multiple vertices

Examples

# Computation of scores using STRING data with respect to
# the FunCat category 11.02.01 rRNA synthesis
library(bionetdata);
data(Yeast.STRING.data);
data(Yeast.STRING.FunCat);
labels <- Yeast.STRING.FunCat[,"11.02.01"];
n <- length(labels);
ind.pos <- which(labels==1);
# NN-scores computed directly on the STRING matrix
s <- NN.w.score(Yeast.STRING.data, 1:n, ind.pos, w=labels);
# Weighted NN-scores computed directly on the STRING matrix
# using this time random weights for the value of positive nodes
w <- runif(n);
s <- NN.w.score(Yeast.STRING.data, 1:n, ind.pos, w=w);

# Weighted NN-scores computed on the 1 step and 2-step random walk kernel matrix
K <- rw.kernel(Yeast.STRING.data);
sK <- NN.w.score(K, 1:n, ind.pos, w);
K2 <- p.step.rw.kernel(K, p=2);
sK2 <- NN.w.score(K2, 1:n, ind.pos, w);

weighted.score.single.vertex-methods

Single vertex score functions - weighted version

Description

Methods to compute weighted score functions applied to a single vertex of the graph
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Usage

## S4 method for signature 'graph'
single.NN.w.score(RW, x, x.pos, w)
## S4 method for signature 'matrix'
single.NN.w.score(RW, x, x.pos, w)
## S4 method for signature 'graph'
single.KNN.w.score(RW, x, x.pos, w, k = 3)
## S4 method for signature 'matrix'
single.KNN.w.score(RW, x, x.pos, w, k = 3)
## S4 method for signature 'graph'
single.eav.w.score(RW, x, x.pos, w, auto = FALSE)
## S4 method for signature 'matrix'
single.eav.w.score(RW, x, x.pos, w, auto = FALSE)

Arguments

RW matrix. It must be a kernel matrix or a symmetric matrix expressing the similar-
ity between nodes

x integer. Index corresponding to the element of the RW matrix for which the
score must be computed

x.pos vector of integer. Indices of the positive elements of the RW matrix

w vector of numeric. Its elements represent the initial likelihood that the nodes of
the graph belong to the class under study. The elements of w correspond to the
columns of RW and the length of w and the number of columns of RW must be
equal.

k integer. Number of the k nearest neighbours to be considered

auto boolean. If TRUE the components K(x, x)+K(xi, xi) are computed, otherwise
are discarded (default)

Details

single.NN.w.score computes the weighted NN score for a single vertex:

score(x) = − min
xi∈VC

−2K(x, xi)) ∗ w(xi)

where VC is the set of positive vertices, and w(xi) is the weight associated to the node xi

single.KNN.w.score compute the weighted KNN score for a single vertex:

score(x) =
∑

k nearest xi∈VC

2K(x, xi) ∗ w(xi)

single.eav.score computes the weighted Empirical Average score for a single vertex:

score(x) = −K(x, x) ∗ w(x) + 2

(
∑

xi∈x.pos w(xi))
∗

∑
xi∈x.pos

K(x, xi) ∗ w(xi)
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Value

single.NN.w.score: the weighted NN score of the vertex

single.KNN.w.score: the weighted KNN score of the vertex

single.eav.w.score: the weighted Empirical Average score of the vertex

Methods

signature(RW = "graph") single.NN.w.score computes the weighted NN score for a single
vertex using a graph of class graph (hence including objects of class graphAM and graph-
NEL from the package graph)
single.KNN.w.score computes the weighted KNN score for a single vertex using a graph
of class graph (hence including objects of class graphAM and graphNEL from the package
graph)
single.eav.w.score computes the weighted Empirical Average score for a single vertex
using a graph of class graph (hence including objects of class graphAM and graphNEL from
the package graph)

signature(RW = "matrix") single.NN.w.score computes the weighted NN score for a single
vertex using a kernel matrix or a symmetric matrix expressing the similarity between nodes
single.KNN.w.score computes the weighted KNN score for a single vertex using a kernel
matrix or a symmetric matrix expressing the similarity between nodes
single.eav.score computes the weighted Empirical Average score using a kernel matrix or
a symmetric matrix expressing the similarity between nodes

See Also

Methods for scoring a single vertex Methods for scoring multiple vertices - weighted version

Examples

# Computation of scores using STRING data with respect to
# the FunCat category 11.02.01 rRNA synthesis
library(bionetdata);
data(Yeast.STRING.data);
data(Yeast.STRING.FunCat);
labels <- Yeast.STRING.FunCat[,"11.02.01"];
n <- length(labels);
ind.pos <- which(labels==1);
# NN-score computed directly on the STRING matrix on the first yeast gene YJR121W
s <- single.NN.w.score(Yeast.STRING.data, 1, ind.pos, w=labels);
# NN-score weighted computed directly on the STRING matrix on the first yeast gene YJR121W,
# using this time random weights for the value of positive nodes
w <- runif(n);
s <- single.NN.w.score(Yeast.STRING.data, 1, ind.pos, w=w);

# NN-score weighted computed on the 1 step and 2-step random walk kernel matrix
K <- rw.kernel(Yeast.STRING.data);
sK <- single.NN.w.score(K, 1, ind.pos, w);
K2 <- p.step.rw.kernel(K, p=2);
sK2 <- single.NN.w.score(K2, 1, ind.pos, w);
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