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NullObject Null Object Pattern
Description

Model a domain concept using natural lingo of the domain experts, such as “Passenger”, “Address”,
and “Money”.
Usage

Nullobject ()

See Also

Other base design patterns: Singleton, ValueObject ()

Examples

# See more examples at <https://tidylab.github.io/R6P/articles>

colnames(NullObject())
nrow(NullObject())

Repository Repository Pattern

Description

Mediates between the domain and data mapping layers using a collection-like interface for access-
ing domain objects.

Super class

R6P: :Singleton -> Repository
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Methods

Public methods:

* AbstractRepository$new()
* AbstractRepository$add()
e AbstractRepository$del ()
e AbstractRepository$get()

Method new(): Instantiate an object
Usage:
AbstractRepository$new()

Method add(): Add an element to the Repository.
Usage:
AbstractRepository$add(key, value)
Arguments:

key (character) Name of the element.
value (?) Value of the element. Note: The values in the Repository are not necessarily of the

same type. That depends on the implementation of AbstractRepository.
Method del(): Delete an element from the Repository.

Usage:
AbstractRepository$del (key)

Arguments:
key (character) Name of the element.

Method get(): Retrieve an element from the Repository.
Usage:
AbstractRepository$get (key)
Arguments:

key (character) Name of the element.

Examples
# See more examples at <https://tidylab.github.io/R6P/articles>
# The following implementation is a Repository of car models with their
# specifications.
# First, we define the class constructor, initialize, to establish a
# transient data storage.
# In this case we use a dictionary from the collections package
# <https://randy3k.github.io/collections/reference/dict.html>
# Second, we define the add, del and get functions that operate on the dictionary.
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# As an optional step, we define the NULL object. In this case, rather then
# the reserved word NULL, the NULL object is a data.frame with @ rows and
# predefined column.

TransientRepository <- R6::R6Class(
classname = "Repository”, inherit = R6P::AbstractRepository, public = list(
initialize = function() {
private$cars <- collections::dict()
3,
add = function(key, value) {
private$cars$set(key, value)
invisible(self)
1,
del = function(key) {
private$cars$remove (key)
invisible(self)
1
get = function(key) {
return(private$cars$get(key, default = private$NULL_car))
3
), private = list(
NULL_car = cbind(uid = NA_character_, datasets::mtcars)[0, 1,
cars = NULL

)
)

# Adding customised operations is also possible via the R6 set function.
# The following example, adds a query that returns all the objects in the database

TransientRepository$set(”public”, "get_all_cars”, overwrite = TRUE, function() {
result <- private$cars$values() |> dplyr::bind_rows()
if (nrow(result) == 0) {
return(private$NULL_car)
} else {
return(result)
}
»

# In this example, we use the mtcars dataset with a uid column that uniquely
# identifies the different cars in the Repository:

mtcars <- datasets::mtcars |> tibble::rownames_to_column("uid")

head(mtcars, 2)

# Here is how the caller uses the Repository:

## Instantiate a repository object
repository <- TransientRepository$new()

## Add two different cars specification to the repository
repository$add(key = "Mazda RX4", value = dplyr::filter(mtcars, uid == "Mazda RX4"))
repository$add(key = "Mazda RX4 Wag", value = dplyr::filter(mtcars, uid == "Mazda RX4 Wag"))
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## Get "Mazda RX4" specification
repository$get(key = "Mazda RX4")

## Get all the specifications in the repository
repository$get_all_cars()

## Delete "Mazda RX4" specification
repository$del(key = "Mazda RX4")

## Get "Mazda RX4" specification
repository$get(key = "Mazda RX4")

Singleton Singleton

Description

Enforces a single instance of a class and provides a global access point.

Details

This is an abstract base class. Instantiating Singleton directly triggers an error. Classes inheriting
from Singleton share a single instance.

Methods

Public methods:
e Singleton$new()

Method new(): Create or retrieve an object
Usage:
Singleton$new()

See Also

Other base design patterns: NullObject (), ValueObject()

Examples

# See more examples at <https://tidylab.github.io/R6P/articles>
address <- function(x) sub("<environment: (.*)>", "\\1", capture.output(x))

# In this example we implement a ~Counter™ that inherits the qualities of Singleton
Counter <- R6::R6Class(”"Counter”, inherit = R6P::Singleton, public = list(
count Q,
add_1 = function() {
self$count <- self$count + 1
invisible(self)

3
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))

# Whenever we call the constructor on “Counter™, we always get the exact same instance:
counter_A <- Counter$new()

counter_B <- Counter$new()

identical(counter_A, counter_B, ignore.environment = FALSE)

# The two objects are equal and located at the same address; thus, they are the same object.

# When we make a change in any of the class instances, the rest are changed as well.

# How many times has the counter been increased?
counter_A$count

# Increase the counter by 1
counter_A$add_1()

# How many times have the counters been increased?
counter_A$count
counter_B$count

ValueObject Value Object Pattern

Description

Model a domain concept using natural lingo of domain experts, such as “Passenger,” “Address,” or
“Money.”

Usage

ValueObject(given = NA_character_, family = NA_character_)

Arguments
given (character) A character vector with the given name.
family (character) A character vector with the family name.
See Also

Other base design patterns: NullObject(), Singleton
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Examples

# See more examples at <https://tidylab.github.io/R6P/articles>

# In this example we are appointing elected officials to random ministries, just
# like in real-life.

Person <- ValueObject

Person()

# Create a test for objects of type Person

# x Extract the column names of Person by using its Null Object (returned by Person())
# * Check that the input argument has all the columns that a Person has

is.Person <- function(x) all(colnames(x) %in% colnames(Person()))

# A 'Minister' is a 'Person' with a ministry title. The Minister constructor
# requires two inputs:
# 1. (CPerson”) Members of parliament
# 2. (“character™) Ministry titles
Minister <- function(member = Person(), title = NA_character_) {
stopifnot(is.Person(member), is.character(title))
stopifnot(nrow(member) == length(title) | all(is.na(title)))

member |> dplyr::mutate(title = title)
3

# Given one or more parliament members

# When appoint_random_ministries is called

# Then the parliament members are appointed to an office.

appoint_random_ministries <- function(member = Person()) {

positions <- c(

"Arts, Culture and Heritage"”, "Finance”, "Corrections”, "Racing”,
"Sport and Recreation”, "Housing"”, "Energy and Resources”, "Education”,
"Public Service”, "Disability Issues”, "Environment”, "Justice"”,
"Immigration”, "Defence”, "Internal Affairs”, "Transport”

Minister(member = member, title = sample(positions, size = nrow(member)))

}

# Listing New Zealand elected officials in 2020, we instantiate a Person object,
# appoint them to random offices, and return a Minister value object.
set.seed(2020)
parliament_members <- Person(

given = c("Jacinda"”, "Grant”, "Kelvin", "Megan”, "Chris", "Carmel"),

family = c("Ardern”, "Robertson”, "Davis”, "Woods", "Hipkins"”, "Sepuloni")

)

parliament_members
appoint_random_ministries(member = parliament_members)
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