Package 'PopulationGrowthR'

January 20, 2025

Type Package

Title Linear Population Growth Scenarios

Version 0.1.1

Maintainer Biman Chakraborty <biman_c@yahoo.com>

Description

Fit linear splines to species time series to detect population growth scenarios based on Hyndman, R J and Mesgaran, M B and Cousens, R D (2015) <doi:10.1007/s10530-015-0962-8>.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports dplyr

Depends R (>= 2.10)

NeedsCompilation no

Author Philipp Robeck [aut], Biman Chakraborty [cre]

Repository CRAN

Date/Publication 2022-05-10 10:40:06 UTC

Contents

fdata	. 2
freqplot	. 2
growthplot	. 3
lagfit	. 4
raw2freqdata	. 5
rawdata	. 6
yeardata	. 6
	_
	7

Index

fdata

Description

Example Frequency and Specimens data by year for each species to be used in 'PopulationGrowthR' package

Usage

fdata

Format

An object of class data.frame with 3771 rows and 4 columns.

freqplot

Frequency plot for a lagphase fit

Description

Frequency plot for a lagphase fit

Usage

```
freqplot(
   fit1,
   fit2 = NULL,
   fit3 = NULL,
   fit4 = NULL,
   xlab = "Year",
   ylab = "Frequency",
   main = fit1$name,
   cols = 2:5,
   ...
)
```

Arguments

fit1, fit2, fit3, fit4

	"lagphase" fit objects to plot
xlab	Label for the \$x\$-axis
ylab	Label for the \$y\$-axis
main	Title of the plot
cols	Colors to be used to draw the lines
	(optional) parameters to pass to plot

growthplot

Value

Produces a plot of observed and predicted frequencies for the species against year

Examples

```
Species = unique(fdata$Species) #List of all species
fit1 = lagfit(fdata, yeardata, species=Species[1])
freqplot(fit1$fit)
```

growthplot	Produces plot of the fitted spline function after adjusting for number of Specimens
------------	---

Description

Produces plot of the fitted spline function after adjusting for number of Specimens

Usage

```
growthplot(
   fit,
   ylim = NULL,
   xlab = "Year",
   ylab = "Adjusted Frequency",
   main = fit$name,
   ...
)
```

Arguments

fit	a "lagphase" fit object to plot
ylim	vector of size 2 - limits of the \$y\$-axis
xlab	Label for the \$x\$-axis
ylab	Label for the \$y\$-axis
main	Title of the plot
	(optional) parameters to pass to plot

Value

Produces a plot of the fit with confidence bands

Examples

```
Species = unique(fdata$Species) #List of all species
fit1 = lagfit(fdata, yeardata, species=Species[1])
growthplot(fit1$fit)
```

```
lagfit
```

Description

This function fits a piecewise poisson model to the frequency data of different Species. It assumes that the data contains columns Year, Frequency and Specimens.

Usage

```
lagfit(
  data,
  yeardata,
  species = NULL,
  knots = NULL,
  zeros = TRUE,
  plotlag = FALSE,
  plotfreq = FALSE
)
```

Arguments

data	a dataframe containing the columns Species (optional), Year, Frequency and Specimens.
yeardata	a dataframe containing the columns Year and Specimens giving the total number of Specimens for each Year.
species	list of species for which the model is to be fitted. Default is NULL, which fits the model for all species in the data.
knots	a list of knots to be used for the piecewise model. Default is NULL, which chooses the optimal model with 0-4 knots.
zeros	logical. Specifies whether missing year for the species will be filled with zeros. Default is TRUE.
plotlag	logical. If TRUE a plot of the fitted model will be produced for each species.
plotfreq	logical. If TRUE frquency plots will be created for each species.

Value

If the model is fit for a single species following are returned as a list

- Species Species name
- Scene Different scenario of the fit between the knots. A sequence of 0, + or is returned. A 0 indicates constant, + indicates increasing and a indicates decreasing.
- Lag Logical. Is there a lag present or not.
- Laglength Length of the first lag. Position of the First Knot the first year for that species

- FirstYear The first year for that species for which data is available.
- EndYear The first knot position.
- fit the fitted model.

If the number of species is more than one, then a list is returned with following items:

- fitdata dataframe is returned with the items in the above list except for the fitted model.
- fitcoefs list of coefficients for the piecewise fits for each Species

Examples

```
#Run lagfit for 1 species only
Species = unique(fdata$Species) #List of all species
fit1 = lagfit(fdata, yeardata, species=Species[1])
#Run lagfit for multiple species
fit2 = lagfit(fdata, yeardata, species=Species[1:3])
fitdata = fit2$fitdata #Dataframe containing fits
fitcoefs = fit2$fitdoefs #List containing slopes of the fitted splines
## Not run:
#Run lagfit for the whole dataset
```

```
fitall = lagfit(fdata, yeardata)
```

```
## End(Not run)
```

raw2freqdata Extract Frequency and Specimen data from the raw data

Description

Extract Frequency and Specimen data from the raw data

Usage

```
raw2freqdata(rawdata, species = "species", year = "year")
```

Arguments

rawdata	a dataframe containing species, year
species	name of the column containing species names
year	name of the column containing year

Value

Retirns a list of two dataframes

- data a dataframe conatining Species, Year, Freugency and Specimens
- yeardata a dataframe containing Year and Specimens

yeardata

Examples

```
cleandata = raw2freqdata(rawdata)
fdata = cleandata$data
yeardata = cleandata$yeardata
```

rawdata

Raw GBIF Data

Description

Example raw GBIF data used in 'PopulationGrowthR' package

Usage

rawdata

Format

An object of class data.frame with 34088 rows and 50 columns.

yeardata

Total Specimens Data

Description

Example total Specimens data by year to be used in 'PopulationGrowthR' package

Usage

yeardata

Format

An object of class data.frame with 60 rows and 2 columns.

6

Index

* datasets
 fdata, 2
 rawdata, 6
 yeardata, 6

fdata, 2
freqplot, 2
growthplot, 3
lagfit, 4

raw2freqdata, 5 rawdata, 6

yeardata, <mark>6</mark>