Package ‘PoDBAY’

January 20, 2025

Type Package

Title Vaccine Efficacy Estimation Package

Version 1.4.3

Depends R (>=3.6)

Date 2021-09-20

Maintainer Julie Dudasova (MSD) <julie.dudasova@merck.com>

Description Set of functions that implement the PODBAY method, described in the publica-
tion 'A method to estimate probability of disease and vaccine efficacy from clinical trial immuno-
genicity data' by Julie Dudasova, Regina Laube, Chandni Valiathan, Matthew C. Wiener, Fer-
dous Gheyas, Pavel Fiser, Justina Ivanauskaite, Frank Liu and Jeffrey R. Sachs (NPJ Vac-
cines, 2021), <doi:10.1038/s41541-021-00377-6>.

License GPL-3

Copyright 2021 Merck Sharp & Dohme Corp. a subsidiary of Merck & Co.,
Inc., Kenilworth, NJ, USA

Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
LinkingTo Rcpp

Imports Rcpp (>=1.0.0), ggplot2 (>= 3.1.0), dplyr (>=0.8.0.1),
methods (>= 3.5.2), stats

Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation yes

Author Pavel Fiser (MSD) [aut],
Tomas Bartonek (MSD) [aut],
Julie Dudasova (MSD) [aut, cre],
Regina Laube (MSD) [aut]

Repository CRAN
Date/Publication 2021-09-21 13:10:48 UTC

https://doi.org/10.1038/s41541-021-00377-6

2 Contents

Contents
assignPoD Lo 3
BlindSampling 3
ClinicalTrial e 5
ClinicalTrialCoverage i i i i e e et e e e e e 6
CONrol e 6
CppMLE . . . e e 7
cppPoD . . e 8
diseased e 9
EfficacyCIL 9
EfficacyCICoverage o v i e 10
efficacyComputation e 11
efficacySet L e e 12
efficacySquaredError L. 12
estimatedParameters oL Lo 14
ExpectedPoD 14
ExtractDiseased L e 15
ExtractNondiseased L 16
fitPoD . . . e 17
GenerateNondiseased L 18
generatePopulation L. e 19
getDiseasedCount L e e e 20
getDiseasedTiters L 21
getNondiseasedCount L oo 21
getNondiseasedTiters L 22
getTiters e e 22
getUnknown oL 23
ImmunogenicitySubset 23
incorrectInput L. e e e 25
incorrectPopulationlnput 0oL oo 25
JitterMeano L e 26
MLE . . . e 27
nondiseased 28
numToBool 28
PmaxEstimation e 29
PoD . . e 30
PoDBAY . . . 31
PoDBAYEfficacy 32
PoDCI e 33
PoDCurvePlot 34
PoDEfficacySquaredError 35
PoDMLE e 36
PoDParamEstimation L 38
PoDParamPointEstimation o Lo 40
PoDParams e 41
PoDParamsCI e 42

PoDParamsCICoverage oo i 42

assignPoD 3

POPFUN . . L e e e 43
Population-class L 43
POPX o e e e e 44
vaccinated L L e 44
waldCL. 45
Index 46
assignPoD Assign probability of disease (PoD)
Description

Function assigns subject-level probability of disease based on PoD curve and subject level titer.

Arguments

X numeric vector - vector of estimated PoD values

Details
The input into the function is either calculated using PoD function or if the PoD curve is unknown
the same arbitrary PoD can be assigned to the whole population.

Value

Subject level probability of disease for the population

BlindSampling Immunogenicity subset: vaccinated, control, non-diseased

Description

Function creates non-diseased immunogenicity subset, and vaccinated and control immunogenicity
subsets based on chosen method. The immunogenicity subsets are provided in the form of popula-
tion class objects (see the Population-class function for more details).

Usage

BlindSampling(diseased,
nondiseased,
method = list(name = "Full”, value = NA))

4 BlindSampling

Arguments
diseased Population-class object: diseased subjects, created using ExtractDiseased
function
nondiseased Population-class object: non-diseased subjects, created using ExtractNondiseased
function
method named list: "name" possible inputs "Full", "Ratio", "Fixed";
"value" = numeric value
Details

For details about the method parameter see ImmunogenicitySubset function.

Value

* Immunogenicity Vaccinated: vaccinated subjects in the immunogenicity subset, Population-class
object (N, mean, stdDeyv, titers)

* ImmunogenicityControl: control subjects in the immunogenicity subset, Population-class
object (N, mean, stdDeyv, titers)

* ImmunogenicityNondiseased: non-diseased subjects in the immunogenicity subset, Population-class
object (N, mean, stdDeyv, titers)

Examples

Data preparation
data(diseased)
data(nondiseased)

Example 1
Creating immunogenicity subset, method = "Full”
ImmunogenicitySubsetFull <-
BlindSampling(diseased,
nondiseased,
method = list(name = "Full”,
value = NA))

Example 2
Creating of immunogenicity subset, method = "Ratio”
ImmunogenicitySubsetRatio <-
BlindSampling(diseased,
nondiseased,
method = list(name = "Ratio”,
value = 4))

Example 3
Creating of immunogenicity subset, method = "Fixed”
ImmunogenicitySubsetFixed <-
BlindSampling(diseased,
nondiseased,
method = list(name = "Fixed"”,

ClinicalTrial 5

value = 100))

ClinicalTrial Clinical trial: estimation of case-count efficacy

Description

Function assigns disease status (DS) to vaccinated and control groups and based on that calculates
the case-count efficacy. Vaccinated and control groups are provided in the form of population class
objects (see the Population-class function for more details).

Input populations need to contain information about Probability of disease (PoD) for each subject -
calculated using population$assignPoD(PoD(x)). See PoD function for further details.

Usage

ClinicalTrial(vaccinated, control, CI = 0.95)

Arguments
vaccinated Population-class object: vaccinated subjects with assigned PoD
control Population-class object: control subjects with assigned PoD
CI numeric: value from (0, 1) interval, confidence level of interest
Value

* vaccinated: vaccinated subjects with assigned DS, Population-class object
* control: control subjects with assigned DS, Population-class object
* efficacy: case-count efficacy

* confidencelnterval: case-count efficacy confidence interval calculated with waldCI () function

Examples

Loading vaccinated, control population data with PoD information
data(vaccinated)
data(control)

Estimating the disease status and case-count efficacy with 95\% confidence interval
CT <- ClinicalTrial(vaccinated, control, CI = 0.95)

CT$efficacy
CT$confidencelnterval

CT$vaccinated

6 control

ClinicalTrialCoverage Clinical trial function expanded for usage in simulations when the cal-
culation of coverage probability is needed for three confidence inter-
vals: 80%, 90%, and user-defined

Description

Function works the same way as ClinicalTrial function but it also calculates 80% and 90%
confidence intervals.

Usage

ClinicalTrialCoverage(vaccinated, control, CI = @.95)

Arguments
vaccinated Population-class object: vaccinated subjects with assigned PoD
control Population-class object: control subjects with assigned PoD
CI numeric: value from (0, 1) interval, confidence level of interest
Value

* vaccinated: vaccinated subjects with assigned DS, Population-class object

* control: control subjects with assigned DS, Population-class object

* efficacy: case-count efficacy

* confidencelnterval: confidence interval calculated with waldCI function

* confidencelnterval90: 90% confidence interval calculated with waldCI function

¢ confidencelnterval80: 80% confidence interval calculated with waldCI function

control Dataset containing the information for control subjects

Description

A dataset containing the N, mean, stdDeyv, titers of control subjects. The dataset is provided in the
form of population class object (see the Population-class function for more details).

Usage

control

cppMLE 7

Format
Population class object:
N number of subjects
mean mean of titers

stdDev standard deviation of titers

titers subject level titers

CppMLE Maximum likelihood estimation: cpp

Description

Function calculates the log likelihood value which is used after the initial guesses of the parameters
are set in the PoDMLE function.

Usage

CcppMLE (params,
nondiseasedTiters,
diseasedTiters,
adjustTiters = FALSE,
adjustFrom = log2(10),
adjustTo = log2(5))

Arguments

non

params named numeric vector: PoD curve parameters ("et50", "slope"”, "pmax")
nondiseasedTiters
numeric vector: non-diseased subjects titers

diseasedTiters numeric vector: diseased subjects titers

adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD

function
adjustFrom numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value
adjustTo numeric: value to which titers below the detection limit will be adjusted
Details

cppMLE function is used inside of PODMLE function and estimates the PoD curve paramers.

Based on the provided titers for diseased and non-diseased groups the PoD curve parameters which
maximize the log likelihood are chosen as optimal.

Difference between MLE and cppMLE is only that cppMLE use cppPoD function instead of PoD.
This step significantly improves the computation speed and provides the same results.

8 cppPoD

Value

log likelihood, numeric value

Examples

Data preparation
data(diseased)
data(nondiseased)
data(PoDParams)

MLE calculation
CppMLE (PoDParams, nondiseased$titers, diseased$titers)

cppPoD Probability of disease calculation

Description

Function calculates probability of disease (PoD) for given titers according to a PoD curve.

Usage

cppPoD(titer, pmax, et50, slope, adjustTiters = FALSE, adjustFrom = @, adjustTo = 0)

Arguments
titer numeric vector: vector of subject level titers
pmax numeric: maximum PoD
et50 numeric: titer value corresponding to pmax/2 value, PoD(et50) = pmax/2
slope numeric: slope of the PoD curve
adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD
function
adjustFrom numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value
adjustTo numeric: value to which titers below the detection limit will be adjusted
Details

See PoD function for more details. These two functions are equivalent. Usage of cppPoD signifi-
cantly improves the computation speed over the PoD function.

Value

vector of PoDs

diseased 9

diseased Dataset containing the information for diseased subjects

Description

A dataset containing the N, mean, stdDeyv, titers of diseased subjects. The dataset is provided in the
form of population class object (see the Population-class function for more details).

Usage

diseased

Format
Population class object:
N number of subjects
mean mean of titers

stdDev standard deviation of titers

titers subject level titers

EfficacyCIl PoDBAY efficacy summary: mean, median, confidence intervals

Description

Function summarizes PODBAY efficacy statistics (mean, median, confidence intervals) based on the
set of estimated efficacies and chosen condfidence level. (Set of efficacies is a vector obtained by
number of replications specified by repeatCount. These replications are performed for calculation
of a confidence interval. For more details, see the supplementary material of the article).

Usage

EfficacyCI(efficacySet, ci = 0.95)

Arguments
efficacySet numeric vector: estimated PODBAY efficacies from PoDBAYEfficacy function.
ci numeric: required confidence level

Details

Confidence intervals are calculated using quantiles of estimated efficacies.

10 EfficacyCICoverage

Value

named list: mean, median, CILow, CIHigh

Examples

Data preparation
data(efficacySet)

Example 1
EfficacyCI(efficacySet, ci = 0.95)

EfficacyCICoverage PoDBAY efficacy summary at three confidence levels

Description

Function summarizes PODBAY efficacy statistics (mean, median, confidence intervals) at 80%,
90% and user-defined confidence levels, based on the set of estimated efficacies. (Set of efficacies
is a vector obtained by number of replications specified by repeatCount. These replications are
performed for calculation of a confidence interval. For more details, see the supplementary material
of the article).

Usage
EfficacyCICoverage(efficacySet, ci = 0.95)

Arguments
efficacySet numeric vector: estimated PODBAY efficacies from PoDBAYEfficacy function.
ci numeric: value from (0, 1) interval, confidence level of interest

Details

Confidence intervals are calculated using quantiles of estimated efficacies.

Value

named list: mean, median, CILow, CIHigh

Examples

Data preparation
data(efficacySet)

Example 1
EfficacyCICoverage(efficacySet, ci = 0.95)

efficacyComputation 11

efficacyComputation PoDBAY efficacy equation

Description

Function calculates the PODBAY efficacy based on the PoD curve parameters and titer distribution
parameters (mean, sd) for vaccinated and control groups.

Usage

efficacyComputation(PoDParameters,
means = NA,
standardDeviations = NA,
adjustTiters = FALSE,
adjustFrom = NA,
adjustTo = NA)

Arguments

PoDParameters named data frame ("pmax", "slope", "et50"): PoD curve parameters
means named list ("vaccinated", "control"): mean values of vaccinated and control sub-
jects titers

standardDeviations
named list ("vaccinated", "control"): standard deviations of vaccinated and con-
trol subjects titers

adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD
function

adjustFrom numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value

adjustTo numeric: value to which titers below the detection limit will be adjusted
Details

E[PODuaccinated}

Effi =1-
ffzcacy E[PODcontrol]

E[PoD] for each group is calculated as integral from -Inf to Inf of (titer density function) * (PoD
Curve); for further details see Example2 andExpectedPoD function.

Value

efficacy: numeric value

12 efficacySquaredError

Examples

Data preparation
data(vaccinated)
data(control)
data(PoDParams)

Example 1
means <- list(vaccinated = vaccinated$mean, control = control$mean)

standardDeviations <- list(vaccinated = vaccinated$stdDev, control = control$stdDev)

efficacyComputation(PoDParams, means, standardDeviations)

efficacySet Estimated PoDBAY efficacies

Description

A dataset containing estimated set of PODBAY efficacies. (Set of efficacies is a vector obtained by
number of replications specified by repeatCount. These replications are performed for calculation
of a confidence interval. For more details, see the supplementary material of the article).

Usage

efficacySet

Format

vector

numeric vector PODBAY efficacies

efficacySquaredError Optimization objective function: efficacy squared error

Description

Function calculates squared difference between input (reference value, or for example true in the
simulation setup) efficacy and efficacy calculated based on input parameters of PoD curve and input
titer distributions of vaccinated and control groups.

efficacySquaredError

Usage

13

efficacySquaredError(params,

Arguments

params

TrueEfficacy
titerFun

adjustTiters

adjustFrom

adjustTo

Details

TrueEfficacy,
titerFun,
adjustTiters = FALSE,
adjustFrom = 0,
adjustTo = 0)

numeric vector: vector of et50 and slope; efficacy calculation is independent of
Pmax and thus Pmax is excluded

numeric value: input efficacy value
list: list of probability density functions for vaccinated and control groups

boolean: set to TRUE if titer values should be adjusted, for details see PoD
function

numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value

numeric: value to which titers below the detection limit will be adjusted

Function is used inside the PoDEfficacySquaredError function for calculation of the PoD param-

eters.

Value

Squared difference between calculated and reference efficacy

Examples

Example 1

data(vaccinated)

data(control)

data(PoDParams)

Choosing et50 and slope as the inputs
params <- list("et50" = 4, "slope"” = 6)

Using probability density function from the populations

titerFun <-
list(

function(x) {dnorm(x, mean = vaccinated$mean, sd = vaccinated$stdDev)},
function(x) {dnorm(x, mean = control$mean, sd = control$stdDev)}

)

Assigning true efficacy
TrueEfficacy <- 0.53

14 ExpectedPoD

Sgaured difference between true and calcuated efficacy
efficacySquaredError(params, TrueEfficacy, titerFun)

estimatedParameters Estimated PoD curve parameters

Description

A dataset containing estimated set of PoD curve parameters. (Set of PoD curve parameters is a vec-
tor obtained by number of replications specified by repeatCount. These replications are performed
for calculation of a confidence interval. For more details, see the supplementary material of the
article).

Usage

estimatedParameters

Format
data frame
pmax pmax: maximum PoD

et50 et50: titer value corresponding to the pmax/2

slope slope: slope of the PoD curve

ExpectedPoD Expected probability of disease

Description
Function calculates the integral of multiplication of two functions: PoD curve and titer probability
density function.

Usage

ExpectedPoD(f.pod, f.titer)

Arguments
f.pod function(x): PoD curve, estimated sigmoid function relating titers to a probabil-
ity of disease
f.titer function(x): titer probability density function, distribution of titer values in a

group.

ExtractDiseased 15

Details
Function calculates integral from -Inf to +Inf of titer probability density function multiplied by the
PoD curve.

It is used mainly in the PODBAY efficacy calculation efficacyComputation.

Value

Value of the integral of the multiplication of the two functions

Examples

Example 1
data(vaccinated)
data(control)
data(PoDParams)

Defining the PoD curve
funPoD <- function(x) PoD(x, pmax = PoDParams$pmax, et50 = PoDParams$et50, slope = PoDParams$slope)

Defining the titer distribution for vaccinated and control groups
funVaccinated <- function(x) dnorm(x, mean = vaccinated$mean, sd = vaccinated$stdDev)
funControl <- function(x) dnorm(x, mean = control$mean, sd = control$stdDev)

Calculating the expected probability of disease
aucVaccinated <- ExpectedPoD(funPoD, funVaccinated)
aucControl <- ExpectedPoD(funPoD, funControl)

PoDBAY efficacy estimation
efficacy <- 1 - aucVaccinated/aucControl

ExtractDiseased Diseased subjects extraction

Description

Function extracts diseased subjects from vaccinated and control groups if the data have assigned
disease status (for example using ClinicalTrial function). The vaccinated and control data are
provided in the form of population class objects (see the Population-class function for more
details).

Usage

ExtractDiseased(vaccinated, control)

Arguments

vaccinated Population-class object: vaccinated subjects with assigned disease status

control Population-class object: control subjects with assigned disease status

16 ExtractNondiseased

Value

diseased subjects, Population-class object: a subset of control and vaccinated subjects with
disease status = TRUE.

Examples

Example 1

Data preparation
data(vaccinated)
data(control)

Estimating the disease status and case-count efficacy with CI
ClinicalTrial(vaccinated, control, CI = 0.95)

Extracting the disease cases
ExtractDiseased(vaccinated, control)

ExtractNondiseased Non-diseased subjects extraction

Description

Function extracts non-diseased subjects from vaccinated and control groups if the data have as-
signed disease status (for example using ClinicalTrial function). The vaccinated and control
data are provided in the form of population class objects (see the Population-class function for
more details).

Usage

ExtractNondiseased(vaccinated, control)

Arguments
vaccinated Population-class object: vaccinated subjects with assigned disease status
control Population-class object: control subjects with assigned disease status
Value

non-diseased subjects, Population-class object: a subset of control and vaccinated subjects with
disease status = FALSE.

fitPoD 17

Examples

Example 1

Data preparation
data(vaccinated)
data(control)

Estimating the disease status and case-count efficacy with CI
ClinicalTrial(vaccinated, control, CI = 0.95)

Extracting the non-diseased subjects
ExtractNondiseased(vaccinated, control)

fitPoD PoD curve: fitting function

Description

Function calculates the root mean squared error (RMSE) between provided PoD values and cal-
culated PoD values. The latter are calculated using for provided titers and provided PoD curve
parameters.

By using the input titers PoDParamPointEstimation function and median of the estimated set of
PoD curve parameters (output of PoDParamEstimation function), the point estimate of PoD curve
can be obtained (for details see PoDParamPointEstimation function).

Usage

fitPoD(params, TitersInput, CurveTitersMedian)

Arguments

params named data frame ("pmax", "slope", "et50"): provided PoD curve parameters

TitersInput numeric vector: provided titers

CurveTitersMedian

numeric vector: provided PoD values
Details
N . ,
RMSE — > i (PoDuedian (titers) — PoDoptimized(titers))?
N

Value

negative RMSE

18 GenerateNondiseased

Examples

Data preparation
data(estimatedParameters)
data(PoDParams)

Example 1

grid of titers
TitersInput <- seq(from = @, to = 20, by = 0.01)

for each estimated PoD curve calculate functional values
functionValues <-
matrix(NA,
nrow = nrow(estimatedParameters$resultsPriorReset),
ncol = length(TitersInput))

for (i in 1:nrow(estimatedParameters$resultsPriorReset)) {
functionValues[i,] <- PoD(TitersInput,
pmax = estimatedParameters$resultsPriorReset[i, 1],
et50 = estimatedParameters$resultsPriorReset[i,3],
slope = estimatedParameters$resultsPriorReset[i,2], adjustTiters = FALSE)

}

functional values corresponding to the median of the estimated PoD curve parameters
CurveTitersMedian <- apply(functionValues, 2, median)

squared error of CurveTitersMedian and functional values of "params" curve
fitPoD(PoDParams, TitersInput, CurveTitersMedian)

GenerateNondiseased Generation of upsampled non-diseased subjects titers

Description

Function upsamples (by random sampling with replacement) titers from the immunogenicity subset
to the required size.

If the size of the immunogenicity subset matches the required size, nothing happens and the original
titers from the immunogenicity subset are returned.

Usage

GenerateNondiseased(blindNondiseasedTiters, nondiseasedCount)

Arguments

blindNondiseasedTiters
numeric vector: vector of non-diseased subjects titer values

generatePopulation 19

nondiseasedCount
numeric: total number of non-diseased subjects, required size of the non-diseased
population
Details

The inputs should come from immunogenicity subset. "nondiseasedCount" represents number of
all non-diseased patients in the clinical trial.

Immunogenicity subset populations are obtained from function BlindSampling. Immunogenicity
subset represents a sample from the non-diseased population.

In this function, sampling with replacement to the required "nondiseasedCount" of the immuno-
genecitry subset is performed. The function is used inside PoDParamEstimation function.

Value

nondiseasedTiters: numeric vector of all non-diseased subjects titers

Examples

Data preparation
data(nondiseased)

Example 1
Creating imunogenicity subset, method = "Full”
NondiseasedImmunogenicitySubset <-
ImmunogenicitySubset(diseased,
nondiseased,
method = list(name = "Full”,
value = "NA"))

Number of all non-diseased subjects in the clinical trial
nondiseasedGenerationCount <- nondiseased$N

Upsampling of non-diseased titers
GenerateNondiseased(NondiseasedImmunogenicitySubset$titers, nondiseasedGenerationCount)

generatePopulation Population class object generation

Description

Function generates the population class object using provided summary statistics.

Usage

generatePopulation(N, mean, stdDev, unknownDistribution = FALSE, UDFunction = NULL)

20

getDiseasedCount
Arguments
N numeric: number of subjects in the population
mean numeric: mean of titers
stdDev numeric: standard deviation of titers
unknownDistribution
logical: TRUE if there is an unknown factor affacting the shape of titer distribu-
tion
UDFunction function: function defining the unknown factor affecting the shape of titer dis-
tribution
Value

generated population class object with all its characteristics defined in the input parameters

Examples

Example 1: empty population
population® <- generatePopulation()

Example 2
populationl <- generatePopulation(N = 100,
mean = 5,
stdDev = 2)
getDiseasedCount Diseased count
Description

Function calculates the number of diseased subjects (disease status = TRUE) in the Population-class
object.

Details
Input into the function, "diseaseStatus", is taken from the Population-class object attribute. In-

formation about disease status is written into the Population-class object by the ClinicalTrial()
function.

Value

numeric: number of the diseased subjects in the Population-class object

getDiseasedTiters 21

getDiseasedTiters Diseased titers

Description

Function returns titers of diseased subjects (disease status = TRUE) in the Population-class
object.

Details

Input into the function, "diseaseStatus”, is taken from the Population-class object attribute. In-
formation about disease status is written into the Population-class object by the ClinicalTrial()
function.

Value

numeric vector: titers of diseased subjects in the Population-class object

getNondiseasedCount Non-diseased count

Description

Function calculates the number of non-diseased subjects (disease status = FALSE) in the Population-class
object.

Details

Input into the function, "diseaseStatus”, is taken from the Population-class object attribute. In-
formation about disease status is written into the Population-class object by the ClinicalTrial()
function.

Value

numeric: number of the non-diseased subjects in the Population-class object

22 getTiters

getNondiseasedTiters Non-diseased titers

Description

Function returns titers of non-diseased subjects (disease status = FALSE) in the Population-class
object.

Details

Input into the function, "diseaseStatus”, is taken from the Population-class object attribute. In-
formation about disease status is written into the Population-class object by the ClinicalTrial()
function.

Value

numeric vector: titers of non-diseased subjects in the Population-class object

getTiters Subject level titers

Description

Returns subject level titers. If titers are not yet generated, the function generates them based on
Population-class object attributes: N, mean, stdDev.

Details

Inputs into the function (N, mean, stdDev) are taken from the Population-class object attributes.

Value

Subject level titers

getUnknown 23

getUnknown Generate unknown

Description
Function generates unknown part of the titers which is eventually added to the original titers in popX
and to the original titer distribution in popFun.

Arguments

n numeric: number of subjects in the population

Details
Input into the function: UDFunction is taken from the Population-class object. UDFunction is
used for generating the unknown part of the titer distribution.

Value

unknown part of the titers

ImmunogenicitySubset Immunogenicity subset

Description

Function creates the immunogenicity subset based on the chosen method.

Usage

ImmunogenicitySubset(diseased,
nondiseased,
method = list(name = "Full”, value = NA))

Arguments
diseased Population-class object: diseased subjects with assigned vaccination status
nondiseased Population-class object: non-diseased subjects with assigned vacination sta-
tus
method named list: a selected method for creating the immunogenicity subset
method$name

* Full: subject level titer information is available for all diseased and all non-
diseased subjects, i.e. immunogenicity subset is the full clinical trial

* Ratio: subject level titer information is available for all diseased and some
non-diseased subjects.

24

Details

ImmunogenicitySubset

* Fixed: subject level titer information is available for all diseased and some
non-diseased subjects.

method$value

 Full: value = NA; immunogenicity sample is the full clinical trial (non-
diseased subset contains all non-diseased in the trial; diseased subset con-
tains all disease cases in the trial)

* Ratio: value = number of non-diseased divided by number of diseased sub-
jects; ratio of diseased vs. non-diseased subjects in the immunogenicity
subset (non-diseased subset contains only non-diseased subjects, as the se-
lection is done in the end of the study, when the disease status is known;
diseased subset contains all disease cases in the trial)

* Fixed: value = size of the immunogenicity subset, pre-defined number of
subjects assayed for titers independently of their future disease status (non-
diseased subset could rarely contain some diseased subjects, as the selection
is done at the enrollment and prior the knowledge of future disease status;
diseased subset contains all disease cases in the trial)

The total immunogenicity subset consists of the diseased immunogenicity subset and non-diseased
immunogenicity subset. For all three methods implemented, we assume that the diseased immuno-
genicity subset contains all disease cases in the trial. Based on the chosen method, the the size of
the non-diseaded immunogenicity subset can be derived as follows:

Size = number of subjects in the non-diseased immunogenicity subset

Titers = values of titers from which we want to sample in order to simulate the non-diseased im-

munogenicity subset

#Diseased = total number of diseased in the clinical trial

#Nondiseased = total number of non-diseased in the clinical trial

Value

¢ method$name = "Full"
Size = #Nondiseased
Titers = Nondiseased Titers

* method$name = "Ratio"
Size = method$value * #Diseased
Titers = Nondiseased Titers

* method$name = "Fixed"
Size = method$value
Titers = Nondiseased Titers + Diseased Titers

Immunogenicity subset with subject level information about vaccination status and disease status,
provided in the form of Population-class object

incorrectInput 25

Examples

Example 1

Data preparation
data(diseased)
data(nondiseased)

ImmunogenicitySubset(diseased,

nondiseased,
method = list(name = "Ratio”,
value = 4))
incorrectInput Error message

Description

Error meassage: the input value for "name" is incorrent

Usage

incorrectInput(name)
Arguments

name name of the input value
Value

error message: "the input value for "name" is incorrect"

incorrectPopulationInput
Population class error message

Description

Error meassage: the input value for "name" is incorrect.

Usage

incorrectPopulationInput(name)

Arguments

name name of the input value

26 JitterMean

Value

error message: "The input value for "name" is incorrect. Input needs to be a population class
object."

JitterMean Population mean jittering

Description

Function jitters the mean of the population.

Jittering is adding noise to the mean. The jittered mean is sampled from the distribution with
the population mean and population standard deviation divided by the number of subjects in the
population. The input population is provided in the form of population class objects (see the
Population-class function for more details).

Meanjirer ~ N(mean, —)

Usage

JitterMean(blindPopulation)

Arguments

blindPopulation
Population-class object with N, mean, stdDev attributes

Value

Jittered mean, numeric value

Examples

Data preparation
data(vaccinated)

Example 1
vaccinated$mean
JitterMean(vaccinated)

MLE 27

MLE Maximum Likelihood estimation

Description

Function calculates the log likelihood value which is used after the initial guesses of the parameters
are set in the PoDMLE function.

Usage
MLE (params,
nondiseasedTiters,
diseasedTiters,
adjustTiters = FALSE,
adjustFrom = log2(10),
adjustTo = log2(5))
Arguments
params named numeric vector: PoD curve parameters (et50, slope, pmax)
nondiseasedTiters

numeric vector: non-diseased subjects titers
diseasedTiters numeric vector: diseased subjects titers

adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD

function
adjustFrom numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value
adjustTo numeric: value to which titers below the detection limit will be adjusted
Details

MLE function is used inside of PODMLE function and esimates the PoD curve parameters.

Based on the provided titers for diseased and non-diseased subjects the PoD curve parameters which
maximize the log likelihood are chosen as optimal estimates of parameters.

Value

log likelihood, numeric value

Examples

Data preparation
data(diseased)
data(nondiseased)
data(PoDParams)

28 numToBool

MLE calculation
MLE (PoDParams, nondiseased$titers, diseased$titers)

nondiseased Dataset containing the information for non-diseased subjects

Description

A dataset containing the N, mean, stdDeyv, titers of non-diseased subjects. The dataset is provided
in the form of population class object (see the Population-class function for more details).

Usage

nondiseased

Format
Population class object:
N number of subjects
mean mean of titers

stdDev standard deviation of titers

titers subject level titers

numToBool Numeric to boolean

Description

Converts numeric format to boolean format.

Usage

numToBool (x)

Arguments

X numeric value (0, 1)

Details

If the function is supposed to be used on a vector, the form sapply("vector"”, numToBool) needs
to be applied.

PmaxEstimation 29

Value

boolean value (T, F)

Examples

dStatus <- c(0,0,1,1,0,1)
sapply(dStatus, numToBool)

PmaxEstimation PoD curve paramater, pmax, estimation

Description

Function finds the pmax parameter of the PoD curve using control subjects summary statistics
(mean, sd), observed incidence rate and previsouly estimated et50 and slope by PoDEfficacySquaredError

function.
Usage
PmaxEstimation(IncidenceRate,
params,
control,

adjustTiters = FALSE,
adjustFrom = NA,
adjustTo = NA)

Arguments

IncidenceRate numeric: observed incidence rate in overall (control) subjects

params numeric vector: et50 and slope

control Population-class object: control subjects (mean, sd)

adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD
function

adjustFrom numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value

adjustTo numeric: value to which titers below the detection limit will be adjusted

Value

PoD curve parameter pmax

30 PoD

Examples

Example 1
data(vaccinated)
data(control)

Assigning true efficacy
TrueEfficacy <- 0.53

PoD curve parameters (et50, slope) estimation
params <- PoDEfficacySquaredError(TrueEfficacy, vaccinated, control)

Assigning incidence rate (observed incidence rate)
IncidenceRate <- 0.2

pmax estimation
pmax <- PmaxEstimation(IncidenceRate, params, control)

combining PoD curve parameters
PoDParams <- unlist(c(params, pmax))

PoD Probability of disease calculation

Description

Function calculates probability of disease (PoD) corresponding to given titers according to a sig-
moid PoD curve.

Usage

PoD(titer, pmax, et50, slope, adjustTiters = FALSE, adjustFrom = @, adjustTo = @)

Arguments
titer numeric vector: subject level titers
pmax numeric: maximum PoD
et50 numeric: titer values corresponding to pmax/2 value, PoD(et50) = pmax/2
slope numeric: slope of the PoD curve
adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD
function
adjustFrom numeric: value specifying the detection limit, all values below the detection

limit will be adjusted to adjustTo value

adjustTo numeric: value to which titers below the detection limit will be adjusted

PoDBAY 31

Details

PoD is calculated as:

(et50)7
PoD = ppgs—e— for titers > 0
1 + (teiter)’Y
and
PoD = pmax, for titers <=0
Value

vector of PoDs

Examples

data(vaccinated)
data(PoDParams)

PoD(vaccinated$titers, pmax = PoDParams$pmax, et50 = PoDParams$et50, slope = PoDParams$slope)

PoDBAY PoDBAY

Description

PoDBAY package accompanies the article A method to estimate probability of disease and vaccine
efficacy from clinical trial immunogenicity data’. It helps to setup the workflow for vaccine efficacy
estimation and clinical trial simulation using the PODBAY method.

Details
It has two main applications:

 Estimation of vaccine efficacy using subject level immunogenicity data

e Simulation of clinical trial

Author(s)

Pavel Fiser, Tomas Bartonek, Julie Dudasova

32 PoDBAYEfficacy

PoDBAYEfficacy PoDBAY efficacy estimation

Description

Function calculates the PODBAY efficacy based on the set of PoD curve parameters calculated in
PoDParamEstimation function, vaccinated and control immunogenicity subset means and standard

deviations.
Usage
PoDBAYEfficacy(estimatedParameters,
blindVaccinated,
blindControl,

adjustTiters = FALSE,
adjustFrom = log2(10),
adjustTo = log2(5))

Arguments

estimatedParameters
named data frame ("pmax", "slope", "et50"): set of estimated PoD curve param-
eters

blindVaccinated
Population-class object: vaccinated subjects from immunogenicity subset,
containing N, mean, standard deviation information

blindControl Population-class object: control subjects from immunogenicity subset, con-
taining N, mean, standard deviation information

adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD

function
adjustFrom numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value
adjustTo numeric: value to which titers below the detection limit will be adjusted
Details

Application of efficacyComputation function to the all PoD curves (each characterized by three
PoD parameters) estimated by PoDParamEstimation function.

Inputs into the efficacyComputation are:
* PoDParameters: i’th estimated PoD parameters from PoDParamEstimation. i =1, ..., N,
where N = number of estimations in which MLE converges. See PoDMLE for details.
* means: jittered means of immunogenicity subset. See JitterMeans for details.

* standardDeviations: standard deviations of the vaccinated and control subjects from the im-
munogenicity subset.

PoDCI 33

Value

efficacySet, set of PODBAY effficacies corresponding to estimated set of PoD curve parameters

Examples

Data preparation
data(diseased)
data(nondiseased)
data(estimatedParameters)

Example 1
Creating imunogenicity subset, method = "Ratio”, value = 4
ImmunogenicitySubset <-
BlindSampling(diseased,
nondiseased,
method = list(name = "Ratio”,
value = 4))

Estimating PoD curve parameters
nondiseasedGenerationCount <- nondiseased$N

estimatedParameters <- PoDParamEstimation(diseased$titers,
ImmunogenicitySubset$ImmunogenicityNondiseased$titers,
nondiseasedGenerationCount,
repeatCount = 10)

Estimating PoDBAY efficacy

PoDBAYEfficacy(estimatedParameters$results,
ImmunogenicitySubset$ImmunogenicityVaccinated,
ImmunogenicitySubset$ImmunogenicityControl)

PoDCI PoD curve confidence ribbon

Description
Supplementary function for PoDCurvePlot function. Function calculates the confidence ribbon
around the PoD curve.

Usage
PoDCI(data, ci = 0.95)

Arguments

data numeric vector for which we the confidence intervals should be calculated

ci numeric: required confidence level

34 PoDCurvePlot

Value

lower bound of CI median value upper bound of CI

Examples

Data preparation
data <- 0:100

Example 1
PoDCI (data,
ci = 0.95)

PoDCurvePlot PoD curve: plot

Description

Supplementary function for plotting the PoD curve with the confidence ribbon (of a required level).
Input values are related to PODBAY package structure. See vignette("EfficacyEstimation”,
package = "PoDBAY") for an example of application of this function.

Usage
PoDCurvePlot(titers,
estimatedParameters,
ci = 0.95)
Arguments
titers numeric vector: grid of titers at which the confidence ribbon should be calcu-
lated
estimatedParameters
estimatedParameters named data frame (pmax, slope, et50): set of estimated
PoD curve parameters, output of PoDParamEstimation function.
ci numeric, required confidence level
Value

PoD curve plot

PoDEfficacySquaredError 35

Examples

Data preparation
library(ggplot2)
data(PoDParams)
data(estimatedParameters)

Example 1
titers for which we want calculate the confidence intervals
titers <- seq(from = @, to = 15, by = 0.01)

squared error of CurveTitersMedian and functional values of "params” curve
PoDCurvePlot(titers,

estimatedParameters,

ci = 0.95)

PoDEfficacySquaredError
Optimization function: finds PoD curve paramaters (et50, slope)

Description

Function finds PoD curve parameters (et50, slope) using population summary statistics (mean, sd)
and input (reference value, or for example true in the simulation setup) efficacy. Efficacy is inde-
pendent of pmax parameter thus pmax is estimated separately using PmaxEstimation function.

Usage
PoDEfficacySquaredError(TrueEfficacy,
vaccinated,
control,
initialSlope = 6,

adjustTiters = FALSE,
adjustFrom = NA,
adjustTo = NA)

Arguments

TrueEfficacy numeric: input reference efficacy

vaccinated Population-class object: vaccinated group (mean, sd)
control Population-class object: control group (mean, sd)
initialSlope numeric: initial slope parameter for the optimization function

adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD
function

adjustFrom numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value

adjustTo numeric: value to which titers below the detection limit will be adjusted

36 PoDMLE

Details

Function returns et50 and slope PoD curve parameters obtained using efficacySquaredError
i.e. the opimal (output) parameters et50 and slope correspond to the minimal squared difference
between input reference efficacy and calculated efficacy.

Pmax parameter is not obtained as efficacy is independent on pmax.

The optim function is used for optimization with method = "L-BFGS-B", 1000 maximum itireta-
tions, (0.1,Inf) boundaries for et50 and (-slopeBoundary, slopeBoundary) boundaries for slope.

NOTE: The reason for slope boundary settings is because from certain value of slope parameter
the shape of the PoD curve and the corresponding PoD values for given titers are almost identical.
This parameter is supposed to limit the resulting slope value and help MLE to converge to optimal
parameters. The value of "slopeBoundaries" is calculated from data according to Dunning, 2015
(https://doi.org/10.1186/s12874-015-0096-9).

Value

PoD curve parameters (et50, slope)

Examples

Example 1
data(vaccinated)
data(control)

Assigning reference efficacy
TrueEfficacy <- 0.53

PoD curve parameter estimation
PoDEfficacySquaredError(TrueEfficacy, vaccinated, control)

PoDMLE Setup for the maximum likelihood estimation (MLE)

Description

Function estimates the optimal PoD curve parameters (pmax, et50, slope) using diseased and non-
diseased titers. Initial guess of the slope parameter needs to be provided as an input to the opti-
mization, as well as the lowTiterPercent parameter, which is needed for initial guess of the pmax
parameter calculation.

Usage

PoDMLE (nondiseasedTiters,
diseasedTiters,
adjustTiters = FALSE,
adjustFrom = log2(10),
adjustTo = log2(5),

PoDMLE 37

initialSlope = 6,
lowTiterPercent = 0.2)

Arguments

nondiseasedTiters
numeric vector: non-diseased subjects titers

diseasedTiters numeric vector: diseased subjects titers

adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD
function

adjustFrom numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value

adjustTo numeric: value to which titers below the detection limit will be adjusted

initialSlope numeric: initial guess of the slope parameter for the optimization function

lowTiterPercent
numeric: value in the interval (0,1) - it represents a fraction of bottom titer
values of the whole clinical trial used for calculation of inital guess of the pmax
parameter.
Details

Initial guess of pmax = (number of diseased in the bottom titers + 0.5) / (number of non-diseased
and diseased in the bottom titers + 0.5), Initial et50 = intersection point of distributions of non-
diseased and diseased groups. If L-BFGS-B optimization fails to converge, a new et50 initial guess
is set to median value of all titers.

PoDMLE function estimates the PoD curve parameters by maximizing the likelihood value (see
MLE function for details) based on the provided titers for diseased and non-diseased groups.

The optim function is used for optimization with method = "L-BFGS-B", 500 maximum iterations,
(0.1,Inf) boundaries for et50, (1e-6,1) boundaries for pmax and (-slopeBoundary, slopeBoundary)
boundaries for slope.

NOTE: The reason for slope boundary settings is because from certain value of slope parameter
the shape of the PoD curve and the corresponding PoD values for given titers are almost identi-
cal. This parameter is expected to limit the resulting slope value and help MLE to converge to
optimal parameters. The value of "slopeBoundaries" is calculated as described by Dunning, 2015
(https://doi.org/10.1186/s12874-015-0096-9).

Value

list("et50", "slope", "pmax"), named list of PoD paraters: if MLE converges.

Null: if MLE does not converge.

Examples

EXAMPLE 1:
Data preparation
data(diseased)
data(nondiseased)

38 PoDParamEstimation

PoD curve parameter estimation
PoDMLE (nondiseased$titers,
diseased$titers)

EXAMPLE 2:
initialSlope and lowTiterPercent variables are adjusted.
PoDMLE (nondiseased$titers,

diseased$titers,

initialSlope = 5,

lowTiterPercent = 0.3)

PoDParamEstimation PoD curve parameters estimation

Description

Function estimates the PoD curve parameters (pmax, slope, et50) using PoDMLE function. Number
of PoD curves estimated equals to the repeatCount input parameter.

The estimation is performed using provided diseased and non-diseased subject level data.

Usage

PoDParamEstimation(diseasedTiters,
nondiseasedTiters,
nondiseasedGenerationCount,
repeatCount = 500,
adjustTiters = FALSE,
adjustFrom = log2(10),
adjustTo = log2(5))

Arguments

diseasedTiters numeric vector: all diseased titers, subject level data

nondiseasedTiters
numeric vector: non-diseased titers from immunogenicity subset, subject level
data

nondiseasedGenerationCount

numeric: total number of non-diseased subjects in the clinical trial

repeatCount numeric: how many times is the dataset bootstrapped and the PoD curve param-
eter estimation performed

adjustTiters boolean: set to TRUE if titer values should be adjusted, for details see PoD
function

adjustFrom numeric: value specifying the detection limit, all values below the detection
limit will be adjusted to adjustTo value

adjustTo numeric: value to which titers below the detection limit will be adjusted

PoDParamEstimation 39

Details

diseasedTiters: subject level titers of all diseased in the clinical trial

nondiseasedTiters: subject level titers of non-diseased subjects in the immunogenicity subset

There are two possible scenarios

* Full: Full information about non-diseased titers is available, i.e subject level data for all non-

diseased subjects from the clinical trial (nondiseasedGenerationCount = number of all non-
diseased subjects in the clinical trial).

* Ratio or Fixed: Information about non-diseased titers is available only for the immunogenicity

subset. In order to compensate for these missing titers we upsampling of this subset to the total
number of non-diseased (nondiseasedGenerationCount) in the trial is needed.

nondiseasedGenerationCount: number of all non-diseased subjects in the clinical trial

NOTE: Number of estimated parameters can be lower than repeatCount as MLE does not necessary
converge in all estimations; failcount (number of iterations in which MLE failed to converge) is also
returned; for details see MLE function.

Function steps

Value

Upsample non-diseased if needed (needed for methods Ratio and Fixed) - from immuno-
genicity subset size (N = NondiseasedImmunogenicitySubset$N) to the whole trial size (N =
nondiseasedGenerationCount). For details see GenerateNondiseased function.

Estimate PoD curve: resultsPriorReset

Reset disease status: the purpose is to estimate the confidence intervals of the PoD curve and
its parameters
Part of the reset disease status procedure is the non-parametric bootstrap: titers of diseased and
non-diseased subjects are pooled, and associated PoDs are calculated using their titer values
and estimated PoD curve. Based on the subject level probabilities (PoDs), the disease status
is reestimated.

Re-estimate PoD curve: new diseased and non-diseased titers are used to reestimate the PoD
curve

results: PoD curve parameters after resetting the disease status, named data.frame of estimated PoD
curve parameters (pmax, slope, et50); see details for more information

resultsPriorReset: PoD curve parameters prior to resetting the status, named data.frame of estimated
PoD curve parameters (pmax, slope, et50); see details for more information

failcount: number of iterations in which MLE failed to converge; see details for more information

Examples

Data preparation
data(diseased)
data(nondiseased)

Example 1

40

PoDParamPointEstimation

Creating imunogenicity subset, method = "Full”
NondiseasedImmunogenicitySubset <-
ImmunogenicitySubset(diseased,
nondiseased,
method = list(name = "Full”,
value = "NA"))

Number of all non-diseased subjects in the clinical trial
nondiseasedGenerationCount <- nondiseased$N

PoDParamEstimation(diseased$titers,
NondiseasedImmunogenicitySubset$titers,
nondiseasedGenerationCount,
repeatCount = 10)

Example 2
Creating imunogenicity subset, method = "Ratio”, value = 4
NondiseasedImmunogenicitySubset <-
ImmunogenicitySubset(diseased,
nondiseased,
method = list(name = "Ratio”,
value = 4))

Number of all non-diseased subjects in the clinical trial
nondiseasedGenerationCount <- nondiseased$N

PoDParamEstimation(diseased$titers,
NondiseasedImmunogenicitySubset$titers,
nondiseasedGenerationCount,
repeatCount = 10)

PoDParamPointEstimation
PoD curve point estimate

Description

Function returns PoD curve parameters corresponding to the point estimate of PoD curve.

Usage

PoDParamPointEstimation(resultsPriorReset,
titers = seq(from = @, to = 20, by = 0.01),
optim_titers = FALSE)

PoDParams 41

Arguments
resultsPriorReset
named data frame ("pmax", "slope", "et50"): set of estimated PoD curve param-
eters before resetting the disease status; for further details see PoDParamEstimation
function.
titers numeric vector: a grid of titers for PoD curve point estimate calculation

optim_titers logical: TRUE for a predefined sequence of titers

Details

For each of estimated PoD curves in resultsPriorReset, the function values (probabilities of disease,
PoD) for provided grid of titers are calculated.

Median of function values (PoDs) at each provided titer is calculated.

Subsequently, the PoD curve model is fitted to the median datapoins using fitPoD function, in order
to get PoD curve parameters close to this median curve.

Value

paramsPointEstimate: named data frame of PoD curve parameters corresponding to the PoD curve
point estimate

Examples

Data preparation
data(estimatedParameters)

Example 1
titers for which we want to optimize the functional values
titers <- seq(from = @, to = 20, by = 0.01)

Point estimate of PoD curve
PoDParamPointEstimation(estimatedParameters$resultsPriorReset, titers)

PoDParams PoD curve parameters

Description

A dataset containing PoD curve parameters

Usage

PoDParams

42 PoDParamsCICoverage

Format
data frame
pmax pmax: maximum PoD

et50 et50: titer value corresponding to the pmax/2

slope slope: slope of the PoD curve

PoDParamsCI Confidence intervals of PoD curve parameters

Description

Function calculates confidence intervals of the PoD curve parameters (pmax, et50, slope) at user-
defined confidence level.

Usage

PoDParamsCI(estimatedParameters, ci = 0.95)

Arguments
estimatedParameters
output of PoDParamEstimation function
ci numeric: value from (0, 1) interval, confidence level of interest
Value

CI of all PoD curve parameters

PoDParamsCICoverage Confidence intervals of PoD curve parameters at three confidence lev-
els

Description
Function calculates confidence intervals (80%, 90% and user-defined) of the PoD curve parameters
(pmax, et50, slope).

Usage

PoDParamsCICoverage(estimatedParameters, ci = 0.95)

popFun 43

Arguments
estimatedParameters
output of PoDParamEstimation function
ci numeric: value from (0, 1) interval, confidence level of interest
Value

CI of all PoD curve parameters

popFun Population function

Description

Function describing the titer distribution of the population: mean, standard deviation and an addi-
tional unknown factor affecting the shape of the distribution (e.g. mixture of two normals or other
shapes defined by user).

Details
Inputs into the function (mean, stdDev, Unknowndistribution) and getUnknown method are taken
from the Population-class object.

Value

Titer distribution function

Population-class Population class

Description

Population reference class which provides summary and subject level information about the popu-
lation

Fields

N numeric: number of subjects in the population
mean numeric: mean value of titers
stdDev numeric: standard deviation of titers

unknownDistribution logical: TRUE if titer distribution is not normally /log-normally distributed;
titer disrtibution function needs to be defined by user

UDFunction function: user-defined titer distribution

titers numeric: subject level titers, generated with getTiters method

44 vaccinated

PoDs numeric: subject level probability of disease (PoD), generated with assginPoD method

diseaseStatus logical: subject level disease status (TRUE if diseased), generated with ClinicilaTrial
function

popX Add noise to population titers

Description
Function adds noise to population titers accounting for an unknown factor affecting the titer disti-
bution.

Details
Inputs into the function: N, unknownDistribution and getUnknown() method are taken from the
Population-class object.

Value

subject level titers

vaccinated Dataset containing the information for vaccinated subjects

Description
A dataset containing the N, mean, stdDey, titers of vaccinated subjects. The dataset is provided in
the form of population class object (see the Population-class function for more details).

Usage

vaccinated

Format

Population class object:

N number of subjects
mean mean of titers
stdDev standard deviation of titers

titers subject level titers

waldCI 45

waldCI Wald confidence interval estimation

Description

Function calculates and returns case-count efficacy confidence intervals estimated using Wald’s
method.

Input data need to contain information about disease status on individual level.

Usage

waldCI(vaccinated, control, confLevel = @.95)

Arguments
vaccinated Population-class object: vaccinated subjects, containing information about
disease status
control Population-class object: control subjects, containing information about dis-
ease status
conflLevel numeric: value from (0, 1) interval, confidence level of interest
Details

Confidence interval of the relative risk is calculated using the Wald method. (Wald, A. Tests of sta-
tistical hypotheses concerning several parameters when the number of observations is large. Trans-
actions of the American Mathematical Society 54, 426-482 (1943)).

Value

Named list of lower and upper confidence interval bound

Examples

Loading vaccinated and control populations data with PoD information
data(vaccinated)
data(control)

Estimating the disease status and case-count efficacy with 95\% confidence interval
set.seed(1)
CT <- ClinicalTrial(vaccinated, control, CI = 0.95)

waldCI(vaccinated, control)

Index

+ datasets
control, 6
diseased, 9
efficacySet, 12

estimatedParameters, 14

nondiseased, 28
PoDParams, 41
vaccinated, 44

assignPoD, 3
BlindSampling, 3

ClinicalTrial, 5
ClinicalTrialCoverage, 6
control, 6

CppMLE, 7

cppPoD, 8

diseased, 9

EfficacyCI, 9
EfficacyCICoverage, 10
efficacyComputation, 11
efficacySet, 12
efficacySquaredError, 12
estimatedParameters, 14
ExpectedPoD, 14
ExtractDiseased, 15
ExtractNondiseased, 16

fitPoD, 17

GenerateNondiseased, 18
generatePopulation, 19
getDiseasedCount, 20
getDiseasedTiters, 21
getNondiseasedCount, 21
getNondiseasedTiters, 22
getTiters, 22
getUnknown, 23

ImmunogenicitySubset, 23
incorrectInput, 25
incorrectPopulationInput, 25

JitterMean, 26
MLE, 27

nondiseased, 28
numToBool, 28

PmaxEstimation, 29

PoD, 30

PoDBAY, 31
PoDBAYEfficacy, 32

PoDCI, 33

PoDCurvePlot, 34
PoDEfficacySquaredError, 35
PoDMLE, 36
PoDParamEstimation, 38
PoDParamPointEstimation, 40
PoDParams, 41
PoDParamsCI, 42
PoDParamsCICoverage, 42
popFun, 43

population (Population-class), 43
Population-class, 43

popX, 44

vaccinated, 44

waldCI, 45

	assignPoD
	BlindSampling
	ClinicalTrial
	ClinicalTrialCoverage
	control
	cppMLE
	cppPoD
	diseased
	EfficacyCI
	EfficacyCICoverage
	efficacyComputation
	efficacySet
	efficacySquaredError
	estimatedParameters
	ExpectedPoD
	ExtractDiseased
	ExtractNondiseased
	fitPoD
	GenerateNondiseased
	generatePopulation
	getDiseasedCount
	getDiseasedTiters
	getNondiseasedCount
	getNondiseasedTiters
	getTiters
	getUnknown
	ImmunogenicitySubset
	incorrectInput
	incorrectPopulationInput
	JitterMean
	MLE
	nondiseased
	numToBool
	PmaxEstimation
	PoD
	PoDBAY
	PoDBAYEfficacy
	PoDCI
	PoDCurvePlot
	PoDEfficacySquaredError
	PoDMLE
	PoDParamEstimation
	PoDParamPointEstimation
	PoDParams
	PoDParamsCI
	PoDParamsCICoverage
	popFun
	Population-class
	popX
	vaccinated
	waldCI
	Index

