
Package ‘PhotoGEA’
June 12, 2025

Version 1.3.3

Date 2025-06-11

Title Photosynthetic Gas Exchange Analysis

Description Read, process, fit, and analyze photosynthetic gas exchange
measurements. Documentation is provided by several vignettes; also see
Lochocki, Salesse-Smith, & McGrath (2025) <doi:10.1111/pce.15501>.

Depends R (>= 3.6.0)

Imports openxlsx, lattice, dfoptim, DEoptim

Suggests knitr, rmarkdown, plantecophys, testthat (>= 3.0.0)

VignetteBuilder knitr

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/eloch216/PhotoGEA,

https://eloch216.github.io/PhotoGEA/

Config/testthat/edition 3

NeedsCompilation no

Author Edward B. Lochocki [cre, aut] (ORCID:
<https://orcid.org/0000-0002-4912-9783>),

Coralie E. Salesse-Smith [aut] (ORCID:
<https://orcid.org/0000-0002-2856-4217>),

Justin M. McGrath [aut] (ORCID:
<https://orcid.org/0000-0002-7025-3906>),

PhotoGEA authors [cph]

Maintainer Edward B. Lochocki <eloch@illinois.edu>

Repository CRAN

Date/Publication 2025-06-12 14:30:09 UTC

1

https://doi.org/10.1111/pce.15501
https://github.com/eloch216/PhotoGEA
https://eloch216.github.io/PhotoGEA/
https://orcid.org/0000-0002-4912-9783
https://orcid.org/0000-0002-2856-4217
https://orcid.org/0000-0002-7025-3906

2 Contents

Contents
apply_gm . 4
as.data.frame.exdf . 7
barchart_with_errorbars . 8
basic_stats . 10
by.exdf . 11
c3_temperature_param_bernacchi . 12
c3_temperature_param_flat . 13
c3_temperature_param_sharkey . 15
c4_temperature_param_flat . 16
c4_temperature_param_vc . 17
calculate_ball_berry_index . 19
calculate_c3_assimilation . 20
calculate_c3_limitations_grassi . 27
calculate_c3_limitations_warren . 32
calculate_c3_variable_j . 36
calculate_c4_assimilation . 41
calculate_c4_assimilation_hyperbola . 47
calculate_gamma_star . 51
calculate_gas_properties . 56
calculate_gm_busch . 59
calculate_gm_ubierna . 64
calculate_isotope_discrimination . 68
calculate_jmax . 71
calculate_leakiness_ubierna . 78
calculate_temperature_response . 81
calculate_temperature_response_arrhenius . 84
calculate_temperature_response_gaussian . 86
calculate_temperature_response_johnson . 87
calculate_temperature_response_polynomial . 89
calculate_ternary_correction . 91
calculate_total_pressure . 93
calculate_wue . 94
cbind.exdf . 97
check_required_variables . 98
check_response_curve_data . 99
choose_input_files . 104
confidence_intervals_c3_aci . 105
confidence_intervals_c3_variable_j . 109
confidence_intervals_c4_aci . 112
confidence_intervals_c4_aci_hyperbola . 116
consolidate . 118
csv.exdf . 120
deprecated . 121
dim.exdf . 122
dimnames.exdf . 123
document_variables . 124

Contents 3

error_function_c3_aci . 125
error_function_c3_variable_j . 129
error_function_c4_aci . 134
error_function_c4_aci_hyperbola . 138
estimate_licor_variance . 140
estimate_operating_point . 142
example_data_files . 145
exclude_outliers . 147
exdf . 148
extract.exdf . 150
factorize_id_column . 152
fit_ball_berry . 153
fit_c3_aci . 156
fit_c3_variable_j . 163
fit_c4_aci . 171
fit_c4_aci_hyperbola . 178
fit_laisk . 182
fit_medlyn . 185
get_oxygen_from_preamble . 188
get_sample_valve_from_filename . 189
identifier_columns . 190
identify_c3_limiting_processes . 191
identify_common_columns . 193
identify_tdl_cycles . 194
initial_guess_c3_aci . 196
initial_guess_c3_variable_j . 201
initial_guess_c4_aci . 205
initial_guess_c4_aci_hyperbola . 209
is.exdf . 210
jmax_temperature_param_bernacchi . 211
jmax_temperature_param_flat . 212
length.exdf . 213
multi_curve_colors . 214
optimizers . 215
organize_response_curve_data . 216
pair_gasex_and_tdl . 219
pdf_print . 221
PhotoGEA . 222
PhotoGEA_example_file_path . 223
plot_ball_berry_fit . 224
plot_c3_aci_fit . 225
plot_c4_aci_fit . 227
plot_c4_aci_hyperbola_fit . 229
plot_laisk_fit . 231
print.exdf . 233
process_tdl_cycle_erml . 234
process_tdl_cycle_polynomial . 237
read_cr3000 . 240

4 apply_gm

read_gasex_file . 241
read_licor_6800_Excel . 244
read_licor_6800_plaintext . 246
remove_points . 248
residual_stats . 250
set_variable . 251
smooth_tdl_data . 253
split.exdf . 255
str.exdf . 256
xyplot_avg_rc . 257

Index 260

apply_gm Calculate CO2 concentration in the chloroplast or mesophyll

Description

Calculates CO2 concentration in the chloroplast or mesophyll, the CO2 drawdown across the stom-
ata, and the CO2 drawdown across the mesophyll. This function can accomodate alternative column
names for the variables taken from the Licor file in case they change at some point in the future.
This function also checks the units of each required column and will produce an error if any units
are incorrect.

Usage

apply_gm(
exdf_obj,
gmc_at_25 = '',
photosynthesis_type = 'C3',
calculate_drawdown = TRUE,
a_column_name = 'A',
ca_column_name = 'Ca',
ci_column_name = 'Ci',
gmc_norm_column_name = 'gmc_norm',
total_pressure_column_name = 'total_pressure',
perform_checks = TRUE,
return_exdf = TRUE

)

Arguments

exdf_obj An exdf object, typically representing data from a Licor gas exchange measure-
ment system.

gmc_at_25 The mesophyll conductance to CO2 diffusion at 25 degrees C, expressed in
mol m^(-2) s^(-1) bar^(-1). In the absence of other reliable information,
gmc_at_25 is often assumed to be infinitely large. If gmc_at_25 is not a number,
then there must be a column in exdf_obj called gmc_at_25 with appropriate

apply_gm 5

units. A numeric value supplied here will overwrite the values in the gmc_at_25
column of exdf_obj if it exists.

photosynthesis_type

A string indicating the type of photosynthesis being considered (either 'C3' or
'C4').

calculate_drawdown

A logical value indicating whether to calculate drawdown values.

a_column_name The name of the column in exdf_obj that contains the net assimilation in micromol
m^(-2) s^(-1).

ca_column_name The name of the column in exdf_obj that contains the ambient CO2 concentra-
tion in the chamber in micromol mol^(-1).

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration in micromol mol^(-1).

gmc_norm_column_name

The name of the column in exdf_obj that contains the normalized mesophyll
conductance values (with units of normalized to gmc at 25 degrees C).

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.

perform_checks A logical value indicating whether to check units for the required columns. This
should almost always be TRUE. The option to disable these checks is only in-
tended to be used when fit_c3_aci calls this function, since performing these
checks many times repeatedly slows down the fitting procedure.

return_exdf A logical value indicating whether to return an exdf object. This should almost
always be TRUE. The option to return a vector is mainly intended to be used when
fit_c3_aci calls this function, since creating an exdf object to return will slow
down the fitting procedure.

Details

For a C3 plant, the mesophyll conductance to CO2 (gmc) is said to be the conductance satisfying
the following one-dimensional flux-conductance equation:

(1) An = gmc * (PCi - PCc)

where An is the net CO2 assimilation rate, PCi is the partial pressure of CO2 in the intercellular
spaces, and PCc is the partial pressure of CO2 in the chloroplast. A key underlying assumption for
this equation is that the flow of CO2 has reached a steady state; in this case, the flow across the
stomata is equal to the flow across the mesophyll.

This equation can be rearranged to calculate PCc:

(2) PCc = PCi - An / gmc

This version of the equation can be found in many places, for example, as Equation 4 in Sharkey et
al. "Fitting photosynthetic carbon dioxide response curves for C3 leaves" Plant, Cell & Environment
30, 1035–1040 (2007) [doi:10.1111/j.13653040.2007.01710.x].

It is common to express the partial pressures in microbar and the assimilation rate in micromol
m^(-2) s^(-1); in this case, the units of mesophyll conductance become mol m^(-2) s^(-1)
bar^(-1).

https://doi.org/10.1111/j.1365-3040.2007.01710.x

6 apply_gm

Licor measurement systems provide CO2 levels as relative concentrations with units of parts per
million (ppm), or equivalently, micromol mol^(-1). Concentrations and partial pressures are related
by the total gas pressure according to:

(3) partial_pressure = total_pressure * relative_concentration

Thus, it is also possible to calculate the CO2 concentration in the choloroplast (Cc) using the fol-
lowing equation:

(4) Cc = Ci - An / (gmc * P)

where Ci is the intercellular CO2 concentration and P is the total pressure. In this function, Equation
(4) is used to calculate Cc, where the total pressure is given by the sum of the atmospheric pressure
and the chamber overpressure.

When a plant is photosynthesizing, it draws CO2 into its chloroplasts, and this flow is driven by a
concentration gradient. In other words, as CO2 flows from the ambient air across the stomata to the
intercellular spaces and then across the mesophyll into the chloroplast, there is a decrease in CO2
concentration at each step. Sometimes it is useful to calculate these changes, which are usually
referred to as "CO2 drawdown" values. So, in addition to Ci, this function (optionally) calculates
the drawdown of CO2 across the stomata (drawndown_cs = Ca - Ci) and the drawdown of CO2
across the mesophyll (drawdown_cm = Ci - Cc).

Note: mesophyll conductance is not specified in typical Licor files, so it usually must be added
using set_variable before calling apply_gm.

For a C4 plant, mesophyll conductance instead refers to the conductance associated with the flow
of CO2 from the intercellular spaces into the mesophyll (rather than into the chloroplast). In this
case, the equations above just require a small modification where Pcc and Cc are replaced by PCm
and Cm, the partial pressure and concentration of CO2 in the mesophyll.

Value

The return value depends on the value of return_exdf:

• If return_exdf is TRUE, the return value is an exdf object based on exdf_obj with the fol-
lowing columns, calculated as described above: Pci and Ci (for C3 plants) or PCm and Cm (for
C4 plants), drawndown_s, and drawdown_cm. The category for each of these new columns is
apply_gm to indicate that they were created using this function.

• If return_exdf is FALSE, the return value is a list with a single named element (internal_c),
which contains values of Cc or Cm as a numeric vector.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent parameter values, including gmc_norm
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_sharkey)

as.data.frame.exdf 7

Calculate Cc and drawdowns assuming a mesophyll conductance of
1 mol / m^2 / s / bar at 25 degrees C
licor_file <- apply_gm(licor_file, 1)

licor_file$units$Cc # View the units of the new `Cc` column
licor_file$categories$Cc # View the category of the new `Cc` column
licor_file[, 'Cc'] # View the values of the new `Cc` column

as.data.frame.exdf Convert an exdf object to a data frame

Description

Converts an exdf object to a data frame by appending the units and categories to the top of each
column in the exdf object’s main_data data frame. Typically this function is used for displaying
the contents of an exdf object; in fact, it is used internally by View, write.csv, and other func-
tions. The main_data of an exdf object x can be accessed directly (without including the units and
categories in the first row) via x[['main_data']] as with any other list element.

Usage

S3 method for class 'exdf'
as.data.frame(x, ...)

Arguments

x An exdf object.

... Unused.

Value

A data frame formed from x.

See Also

exdf

Examples

simple_exdf <- exdf(data.frame(A = 1), data.frame(A = 'u'), data.frame(A = 'c'))
as.data.frame(simple_exdf) # Includes units and categories in the first rows
simple_exdf[['main_data']] # Just returns the main data

8 barchart_with_errorbars

barchart_with_errorbars

Barcharts with error bars

Description

barchart_with_errorbars is a wrapper for lattice::barchart that includes error bars on the
chart, while bwplot_wrapper is a simple wrapper for lattice::bwplot that gives it the same
function signature as barchart_with_errorbars.

Usage

barchart_with_errorbars(
Y,
X,
eb_width = 0.2,
eb_lwd = 1,
eb_col = 'black',
na.rm = TRUE,
remove_outliers = FALSE,
...

)

bwplot_wrapper(Y, X, ...)

Arguments

Y A numeric vector.

X A vector with the same length as Y that can be used as a factor to split Y into one
or more distinct subsets.

eb_width The width of the error bars.

eb_lwd The line width (thickness) of the error bars.

eb_col The color of the error bars.

na.rm A logical value indicating whether or not to remove NA values before calculat-
ing means and standard errors.

remove_outliers

A logical value indicating whether or not to remove outliers using exclude_outliers
before calculating means and standard errors.

... Additional arguments to be passed to lattice::barchart or lattice::bwplot.

Details

The barchart_with_errorbars function uses tapply to calculate the mean and standard error for
each subset of Y as determined by the values of X. In other words, means <- tapply(Y, X, mean),

barchart_with_errorbars 9

and similar for the standard errors. The mean values are represented as bars in the final plot, while
the standard error is used to create error bars located at mean +/- standard_error.

The bwplot_wrapper function is a simple wrapper for lattice::bwplot that gives it the same in-
put arguments as barchart_with_errorbars. In other words, the same X and Y vectors can be used
to create a barchart using barchart_with_errorbars or a box-whisker plot with bwplot_wrapper.

Value

A trellis object created by lattice::barchart or lattice::bwplot.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

Plot the average assimilation value for each species. (Note: this is not a
meaningful calculation since we are combining assimilation values measured
at different PPFD.)
barchart_with_errorbars(

licor_file[, 'A'],
licor_file[, 'species'],
ylim = c(0, 50),
xlab = 'Species',
ylab = paste0('Net assimilation (', licor_file$units$A, ')')

)

Make a box-whisker plot using the same data. (Note: this is not a meaningful
plot since we are combining assimilation values measured at different PPFD.)
bwplot_wrapper(

licor_file[, 'A'],
licor_file[, 'species'],
ylim = c(0, 50),
xlab = 'Species',
ylab = paste0('Net assimilation (', licor_file$units$A, ')')

)

Another way to create the plots. This method illustrates the utility of the
bwplot_wrapper function.
plot_parameters <- list(

Y = licor_file[, 'A'],
X = licor_file[, 'species'],
ylim = c(0, 50),
xlab = 'Species',
ylab = paste0('Net assimilation (', licor_file$units$A, ')')

)
do.call(barchart_with_errorbars, plot_parameters)
do.call(bwplot_wrapper, plot_parameters)

10 basic_stats

basic_stats Calculate basic stats (mean and standard error)

Description

Calculates basic stats (mean and standard error) for each applicable column in an exdf object split
up according to the values of one or more identifier columns.

Usage

basic_stats(
exdf_obj,
identifier_columns,
na.rm = TRUE

)

Arguments

exdf_obj An exdf object.
identifier_columns

The name(s) of one or more columns in a vector or list that can be used to split
exdf_obj into chunks.

na.rm A logical value indicating whether or not to remove NA values before calculat-
ing means and standard errors.

Details

This function first splits up exdf_obj into chunks according to the values of the identifier_columns.
For each chunk, columns that have a single unique value are identified and excluded from the statis-
tical calculations. For the remaining numeric columns, the mean and standard error are calculated.

Value

An exdf object including the mean and standard error for each applicable column, where each row
represents one value of the identifier_columns. The column names are determined by appending
'_avg' and '_stderr' to the original names.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

Calculate the average assimilation and stomatal conductance values for each
species. (Note: this is not a meaningful calculation!)
basic_stats(

licor_file[, c('species', 'K', 'A', 'gsw'), TRUE],

by.exdf 11

'species'
)

by.exdf Apply a function to an exdf object split by one or more factors

Description

Divides an exdf object into groups defined by one or more factors and applies a function to each
group.

Usage

S3 method for class 'exdf'
by(data, INDICES, FUN, ...)

Arguments

data An exdf object.

INDICES A factor or a list of factors.

FUN A function whose first input argument is an exdf object.

... Additional arguments to be passed to FUN.

Value

Splits data into chunks x by the values of the INDICES and calls FUN(x, ...) for each chunk;
returns a list where each element is the output from each call to FUN.

See Also

exdf

Examples

Read a Licor file, split it into chunks according to the `species` column,
and count the number of measurements for each species
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

by(licor_file, licor_file[, 'species'], nrow)

12 c3_temperature_param_bernacchi

c3_temperature_param_bernacchi

C3 temperature response parameters from Bernacchi et al.

Description

Parameters describing the temperature response of important C3 photosynthetic parameters, in-
tended to be passed to the calculate_temperature_response function.

Usage

c3_temperature_param_bernacchi

Format

List with 12 named elements that each represent a variable whose temperature-dependent value
can be calculated using an Arrhenius equation, Johnson-Eyring-Williams equation, or a polynomial
equation:

• Gamma_star_at_25: The value of chloroplastic CO2 concentration at which CO2 gains from
Rubisco carboxylation are exactly balanced by CO2 losses from Rubisco oxygenation (Gamma_star)
at 25 degrees C.

• Gamma_star_norm: Gamma_star normalized to its value at 25 degrees C.

• gmc_norm: The mesophyll conductance to CO2 diffusion (gmc) normalized to its value at 25
degrees C.

• J_norm: The electron transport rate (J) normalized to its value at 25 degrees C.

• Kc_at_25: The Michaelis-Menten constant for rubisco carboxylation (Kc) at 25 degrees C.

• Kc_norm: Kc normalized to its value at 25 degrees C.

• Ko_at_25: The Michaelis-Menten constant for rubisco oxygenation (Ko) at 25 degrees C.

• Ko_norm: Ko normalized to its value at 25 degrees C.

• RL_norm: The rate of non-photorespiratory CO2 release in the light (RL) normalized to its
value at 25 degrees C.

• Tp_norm: The maximum rate of triose phosphate utilization (Tp) normalized to its value at 25
degrees C.

• Vcmax_norm: The maximum rate of rubisco carboxylation (Vcmax) normalized to its value at
25 degrees C.

• Vomax_norm: The maximum rate of rubisco oxygenation (Vomax) normalized to Vcmax at 25
degrees C.

In turn, each of these elements is a list with at least 2 named elements:

• type: the type of temperature response

• units: the units of the corresponding variable.

c3_temperature_param_flat 13

Source

Many of these parameters are normalized to their values at 25 degrees C. Vomax is normalized to
the value of Vcmax at 25 degrees C. These variables include _norm in their names to indicate this.

Arrhenius parameters for J were obtained from Bernacchi et al. (2003). Here, we use the values
determined from chlorophyll fluorescence measured from plants grown at 25 degrees C (Table 1).
Although Bernacchi et al. (2003) reports values of Jmax, here we assume that both Jmax and the
light-dependent values of J follow the same temperature response function and refer to it as J for
compatibility with c3_temperature_param_sharkey.

Johnson-Eyring-Williams parameters for gmc were obtained from Bernacchi et al. (2002).

The Bernacchi papers from the early 2000s do not specify a temperature response for Tp, so we
instead use the Johnson-Eyring-Williams response from Sharkey et al. (2007). Another option
would be to use a flat temperature response; in other words, to assume that Tp is constant with
temperature. This could be done with the following code, which takes the flat response parameters
from c3_temperature_param_flat: within(c3_temperature_param_bernacchi, {Tp_norm =
c3_temperature_param_flat$Tp_norm})

The Arrhenius parameters for the other variables were obtained from Bernacchi et al. (2001).

References:

• Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Jr, A. R. P. & Long, S. P. "Improved tempera-
ture response functions for models of Rubisco-limited photosynthesis" Plant, Cell & Environ-
ment 24, 253–259 (2001) [doi:10.1111/j.13653040.2001.00668.x].

• Bernacchi, C. J., Portis, A. R., Nakano, H., von Caemmerer, S. & Long, S. P. "Temperature
Response of Mesophyll Conductance. Implications for the Determination of Rubisco Enzyme
Kinetics and for Limitations to Photosynthesis in Vivo" Plant Physiology 130, 1992–1998
(2002) [doi:10.1104/pp.008250].

• Bernacchi, C. J., Pimentel, C. & Long, S. P. "In vivo temperature response functions of pa-
rameters required to model RuBP-limited photosynthesis" Plant, Cell & Environment 26,
1419–1430 (2003) [doi:10.1046/j.00168025.2003.01050.x].

• Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. "Fitting photosynthetic
carbon dioxide response curves for C3 leaves" Plant, Cell & Environment 30, 1035–1040
(2007) [doi:10.1111/j.13653040.2007.01710.x].

c3_temperature_param_flat

C3 temperature response parameters for a flat response

Description

Parameters that specify a flat temperature response (in other words, no dependence on temperature)
for important C3 photosynthetic parameters, intended to be passed to the calculate_temperature_response
function.

Usage

c3_temperature_param_flat

https://doi.org/10.1111/j.1365-3040.2001.00668.x
https://doi.org/10.1104/pp.008250
https://doi.org/10.1046/j.0016-8025.2003.01050.x
https://doi.org/10.1111/j.1365-3040.2007.01710.x

14 c3_temperature_param_flat

Format

List with 11 named elements that each represent a variable whose temperature-dependent value can
be calculated using an Arrhenius equation or a polynomial equation:

• Gamma_star_at_25: The value of chloroplastic CO2 concentration at which CO2 gains from
Rubisco carboxylation are exactly balanced by CO2 losses from Rubisco oxygenation (Gamma_star)
at 25 degrees C.

• Gamma_star_norm: Gamma_star normalized to its value at 25 degrees C.

• gmc_norm: The mesophyll conductance to CO2 diffusion (gmc) normalized to its value at 25
degrees C.

• J_norm: The electron transport rate (J) normalized to its value at 25 degrees C.

• Kc_at_25: The Michaelis-Menten constant for rubisco carboxylation (Kc) at 25 degrees C.

• Kc_norm: Kc normalized to its value at 25 degrees C.

• Ko_at_25: The Michaelis-Menten constant for rubisco oxygenation (Ko) at 25 degrees C.

• Ko_norm: Ko normalized to its value at 25 degrees C.

• RL_norm: The rate of non-photorespiratory CO2 release in the light (RL) normalized to its
value at 25 degrees C.

• Tp_norm: The maximum rate of triose phosphate utilization (Tp) normalized to its value at 25
degrees C.

• Vcmax_norm: The maximum rate of rubisco carboxylation (Vcmax) normalized to its value at
25 degrees C.

In turn, each of these elements is a list with at least 2 named elements:

• type: the type of temperature response

• units: the units of the corresponding variable.

Source

Many of these parameters are normalized to their values at 25 degrees C. These variables include
_norm in their names to indicate this.

Here, the activation energy values (Ea) are all set to 0, which means that the values will not depend
on temperature. Some parameters are specified at 25 degrees C; these values were obtained from
Sharkey et al. (2007). (See c3_temperature_param_sharkey.)

References:

• Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. "Fitting photosynthetic
carbon dioxide response curves for C3 leaves" Plant, Cell & Environment 30, 1035–1040
(2007) [doi:10.1111/j.13653040.2007.01710.x].

https://doi.org/10.1111/j.1365-3040.2007.01710.x

c3_temperature_param_sharkey 15

c3_temperature_param_sharkey

C3 temperature response parameters from Sharkey et al.

Description

Parameters describing the temperature response of important C3 photosynthetic parameters, in-
tended to be passed to the calculate_temperature_response function.

Usage

c3_temperature_param_sharkey

Format

List with 11 named elements that each represent a variable whose temperature-dependent value can
be calculated using an Arrhenius equation or a polynomial equation:

• Gamma_star_at_25: The value of chloroplastic CO2 concentration at which CO2 gains from
Rubisco carboxylation are exactly balanced by CO2 losses from Rubisco oxygenation (Gamma_star)
at 25 degrees C.

• Gamma_star_norm: Gamma_star normalized to its value at 25 degrees C.

• gmc_norm: The mesophyll conductance to CO2 diffusion (gmc) normalized to its value at 25
degrees C.

• J_norm: The electron transport rate (J) normalized to its value at 25 degrees C.

• Kc_at_25: The Michaelis-Menten constant for rubisco carboxylation (Kc) at 25 degrees C.

• Kc_norm: Kc normalized to its value at 25 degrees C.

• Ko_at_25: The Michaelis-Menten constant for rubisco oxygenation (Ko) at 25 degrees C.

• Ko_norm: Ko normalized to its value at 25 degrees C.

• RL_norm: The rate of non-photorespiratory CO2 release in the light (RL) normalized to its
value at 25 degrees C.

• Tp_norm: The maximum rate of triose phosphate utilization (Tp) normalized to its value at 25
degrees C.

• Vcmax_norm: The maximum rate of rubisco carboxylation (Vcmax) normalized to its value at
25 degrees C.

In turn, each of these elements is a list with at least 2 named elements:

• type: the type of temperature response

• units: the units of the corresponding variable.

16 c4_temperature_param_flat

Source

Many of these parameters are normalized to their values at 25 degrees C. These variables include
_norm in their names to indicate this.

Response parameters were obtained from Sharkey et al. (2007). In this publication, gas concentra-
tions are expressed as partial pressures (in Pa or kPa) rather than mole fractions (micromol / mol or
mmol / mol). However, for consistency with c3_temperature_param_bernacchi, here we prefer
to use mole fractions.

To convert a concentration expressed as a partial pressure (P; in Pa) to a concentration expressed as
a mole fraction (C; in micromol / mol), we need a value for atmospheric pressure; we will use the
typical value of 101325 Pa. Then C = P / 101325 * 1e6 or C = P * cf, where cf = 1e6 / 101325 is a
conversion factor. The same correction can be used to convert kPa to mmol / mol. The value of cf
can be accessed using PhotoGEA:::c_pa_to_ppm.

References:

• Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. "Fitting photosynthetic
carbon dioxide response curves for C3 leaves" Plant, Cell & Environment 30, 1035–1040
(2007) [doi:10.1111/j.13653040.2007.01710.x].

c4_temperature_param_flat

C4 temperature response parameters for a flat response

Description

Parameters that specify a flat temperature response (in other words, no dependence on temperature)
for important C4 photosynthetic parameters, intended to be passed to the calculate_temperature_response
function.

Usage

c4_temperature_param_flat

Format

List with 10 named elements that each represent a variable whose temperature-dependent value can
be calculated using either an Arrhenius or Gaussian equation:

• Vcmax_norm: The maximum rate of rubisco carboxylation (Vcmax) normalized to its value at
25 degrees C.

• Vpmax_norm: The maximum rate of PEP carboxylase activity (Vpmax) normalized to its value
at 25 degrees C.

• RL_norm: The respiration rate (RL) normalized to the value of Vcmax at 25 degrees C.

• Kc: The Michaelis-Menten constant for rubisco carboxylation.

• Ko: The Michaelis-Menten constant for rubisco oxygenation.

https://doi.org/10.1111/j.1365-3040.2007.01710.x

c4_temperature_param_vc 17

• Kp: The Michaelis-Menten constant of PEP carboxylase.

• gamma_star: Half the reciprocal of rubisco specificity.

• ao: The ratio of solubility and diffusivity of O2 to CO2.

• gmc_norm: The mesophyll conductance to CO2 diffusion normalized to its value at 25 degrees
C.

• J_norm: The electron transport rate J normalized to its value at 25 degrees C.

Each of these is a list with 4 named elements:

• type: the type of temperature response ('Arrhenius')

• c: the (dimensionless) Arrhenius scaling factor.

• Ea: the activation energy in kJ / mol.

• units: the units of the corresponding variable.

Source

Some of these parameters (Vcmax, Vpmax, RL, gmc, and J) are normalized to their values at 25
degrees C. These variables include _norm in their names to indicate this.

The remaining parameters (Kc, Ko, Kp, gamma_star, ao, and gmc) are not normalized because they
are assumed to not vary significantly between species.

Here, the activation energy values (Ea) are all set to 0, which means that the values will not depend
on temperature. The Arrhenius scaling factors c are chosen to reproduce the parameter values at 25
degrees C as specified in von Caemmerer (2021). (See c4_temperature_param_vc.)

References:

• von Caemmerer, S. "Updating the steady-state model of C4 photosynthesis" Journal of Exper-
imental Botany 72, 6003–6017 (2021) [doi:10.1093/jxb/erab266].

c4_temperature_param_vc

C4 temperature response parameters from von Caemmerer

Description

Temperature response parameters describing the temperature response of important C4 photosyn-
thetic parameters, intended to be passed to the calculate_temperature_response function.

Usage

c4_temperature_param_vc

https://doi.org/10.1093/jxb/erab266

18 c4_temperature_param_vc

Format

List with 10 named elements that each represent a variable whose temperature-dependent value can
be calculated using either an Arrhenius or Gaussian equation:

• Vcmax_norm: The maximum rate of rubisco carboxylation (Vcmax) normalized to its value at
25 degrees C.

• Vpmax_norm: The maximum rate of PEP carboxylase activity (Vpmax) normalized to its value
at 25 degrees C.

• RL_norm: The respiration rate (RL) normalized to the value of Vcmax at 25 degrees C.

• Kc: The Michaelis-Menten constant for rubisco carboxylation.

• Ko: The Michaelis-Menten constant for rubisco oxygenation.

• Kp: The Michaelis-Menten constant of PEP carboxylase.

• gamma_star: Half the reciprocal of rubisco specificity.

• ao: The ratio of solubility and diffusivity of O2 to CO2.

• gmc_norm: The mesophyll conductance to CO2 diffusion normalized to its value at 25 degrees
C.

• J_norm: The electron transport rate J normalized to its value at 25 degrees C.

The J_norm parameter is calculated using a Gaussian function and hence its corresponding list
element is itself a list with 4 named elements:

• type: the type of temperature response ('Gaussian')

• optimum_rate: the largest value this parameter can take.

• t_opt: the temperature where the optimum occurs in degrees C.

• sigma: the width of the Gaussian in degrees C.

• units: the units of the corresponding variable.

Each of the remaining elements is a list with 4 named elements:

• type: the type of temperature response ('Arrhenius')

• c: the (dimensionless) Arrhenius scaling factor.

• Ea: the activation energy in kJ / mol.

• units: the units of the corresponding variable.

Source

Some of these parameters (Vcmax, Vpmax, RL, gmc, and J) are normalized to their values at 25
degrees C. These variables include _norm in their names to indicate this.

The remaining parameters (Kc, Ko, Kp, gamma_star, and ao) are not normalized because they are
assumed to not vary significantly between species.

Here, the Arrhenius scaling factors (c; dimensionless) and activation energy values (Ea; kJ / mol)
are obtained from von Caemmerer (2021). In that publication, the overall scaling for each parameter
is specified by its value at 25 degrees C; the scaling factors are determined from this information as
described in the documentation for calculate_temperature_response_arrhenius.

calculate_ball_berry_index 19

The Gaussian parameters (t_opt and sigma) for J_norm are also obtained from von Caemmerer
(2021), assuming that J and Jmax follow the same temperature response. The value of optimum_rate
is chosen such that J_norm is equal to 1 at a temperature of 25 degrees C.

References:

• von Caemmerer, S. "Updating the steady-state model of C4 photosynthesis" Journal of Exper-
imental Botany 72, 6003–6017 (2021) [doi:10.1093/jxb/erab266].

calculate_ball_berry_index

Calculate the Ball-Berry index

Description

Calculates the Ball-Berry index. This function can accomodate alternative column names for the
variables taken from the Licor file in case they change at some point in the future. This function
also checks the units of each required column and will produce an error if any units are incorrect.

Usage

calculate_ball_berry_index(
data_table,
a_column_name = 'A',
rhleaf_column_name = 'RHleaf',
csurface_column_name = 'Csurface'

)

Arguments

data_table A table-like R object such as a data frame or an exdf.

a_column_name The name of the column in data_table that contains the net assimilation in
micromol m^(-2) s^(-1).

rhleaf_column_name

The name of the column in data_table that contains the relative humidity at
the leaf surface in %.

csurface_column_name

The name of the column in data_table that contains the CO2 concentration at
the leaf surface in micromol mol^(-1).

Details

The Ball-Berry index is defined as A * h_s / c_s, where A is the net assimilation rate, h_s is the
relative humidity at the leaf surface, and c_s is the CO2 concentration at the leaf surface. This
variable is a key part of the Ball-Berry model, which assumes that stomatal conductance is linearly
related to the Ball-Berry index. For more information, please see the original publication describing
the model: Ball, J. T., Woodrow, I. E. and Berry, J. A. "A Model Predicting Stomatal Conductance

https://doi.org/10.1093/jxb/erab266

20 calculate_c3_assimilation

and its Contribution to the Control of Photosynthesis under Different Environmental Conditions."
in "Progress in Photosynthesis Research: Volume 4" (1986) [doi:10.1007/9789401705196_48].

Typically, the relative humidity and CO2 concentration at the leaf surface are not included in Licor
output files. Instead, the output files only include the relative humidity and CO2 concentration in
the sample chamber, and conditions at the leaf surface may be slightly different. These required
inputs can be calculated using the calculate_gas_properties function.

Value

An object based on data_table that includes the Ball-Berry index as a new column called bb_index.

If data_table is an exdf object, the category of this new column will be calculate_ball_berry_index
to indicate that it was created using this function.

Examples

Read an example Licor file included in the PhotoGEA package, calculate the
total pressure, calculate additional gas properties, and finally calculate the
Ball-Berry index.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_total_pressure(licor_file)

licor_file <- calculate_gas_properties(licor_file)

licor_file <- calculate_ball_berry_index(licor_file)

licor_file$units$bb_index # View the units of the new `bb_index` column
licor_file$categories$bb_index # View the category of the new `bb_index` column
licor_file[,'bb_index'] # View the values of the new `bb_index` column

calculate_c3_assimilation

Calculate C3 assimilation rates

Description

Calculates C3 assimilation rates based on the Farquhar-von-Caemmerer-Berry model. This function
can accomodate alternative colum names for the variables taken from Licor files in case they change
at some point in the future. This function also checks the units of each required column and will
produce an error if any units are incorrect.

Usage

calculate_c3_assimilation(
data_table,
alpha_g,

https://doi.org/10.1007/978-94-017-0519-6_48

calculate_c3_assimilation 21

alpha_old,
alpha_s,
alpha_t,
Gamma_star_at_25,
J_at_25,
Kc_at_25,
Ko_at_25,
RL_at_25,
Tp_at_25,
Vcmax_at_25,
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
cc_column_name = 'Cc',
gamma_star_norm_column_name = 'Gamma_star_norm',
j_norm_column_name = 'J_norm',
kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
hard_constraints = 0,
perform_checks = TRUE,
return_table = TRUE,
...

)

Arguments

data_table A table-like R object such as a data frame or an exdf.

alpha_g A dimensionless parameter where 0 <= alpha_g <= 1, representing the propor-
tion of glycolate carbon taken out of the photorespiratory pathway as glycine.
alpha_g is often assumed to be 0. If alpha_g is not a number, then there
must be a column in data_table called alpha_g with appropriate units. A
numeric value supplied here will overwrite the values in the alpha_g column of
data_table if it exists.

alpha_old A dimensionless parameter where 0 <= alpha_old <= 1, representing the frac-
tion of remaining glycolate carbon not returned to the chloroplast after account-
ing for carbon released as CO2. alpha_old is often assumed to be 0. If
alpha_old is not a number, then there must be a column in data_table called
alpha_old with appropriate units. A numeric value supplied here will overwrite
the values in the alpha_old column of data_table if it exists.

alpha_s A dimensionless parameter where 0 <= alpha_s <= 0.75 * (1 - alpha_g) rep-
resenting the proportion of glycolate carbon taken out of the photorespiratory
pathway as serine. alpha_s is often assumed to be 0. If alpha_s is not a
number, then there must be a column in data_table called alpha_s with ap-
propriate units. A numeric value supplied here will overwrite the values in the

22 calculate_c3_assimilation

alpha_s column of data_table if it exists.
alpha_t A dimensionless parameter where 0 <= alpha_t <= 1 representing the propor-

tion of glycolate carbon taken out of the photorespiratory pathway as CH2-THF.
alpha_t is often assumed to be 0. If alpha_t is not a number, then there
must be a column in data_table called alpha_t with appropriate units. A
numeric value supplied here will overwrite the values in the alpha_t column of
data_table if it exists.

Gamma_star_at_25

The chloroplastic CO2 concentration at which CO2 gains from Rubisco car-
boxylation are exactly balanced by CO2 losses from Rubisco oxygenation, at
25 degrees C, expressed in micromol mol^(-1). If Gamma_star_at_25 is not a
number, then there must be a column in data_table called Gamma_star_at_25
with appropriate units. A numeric value supplied here will overwrite the values
in the Gamma_star_at_25 column of data_table if it exists.

J_at_25 The electron transport rate at 25 degrees C, expressed in micromol m^(-2)
s^(-1). Note that this is _not_ Jmax, and in general will depend on the inci-
dent photosynthetically active flux density. If J_at_25 is not a number, then
there must be a column in data_table called J_at_25 with appropriate units.
A numeric value supplied here will overwrite the values in the J_at_25 column
of data_table if it exists.

Kc_at_25 The Michaelis-Menten constant for Rubisco carboxylation at 25 degrees C, ex-
pressed in micromol mol^(-1). If Kc_at_25 is not a number, then there must
be a column in data_table called Kc_at_25 with appropriate units. A nu-
meric value supplied here will overwrite the values in the Kc_at_25 column of
data_table if it exists.

Ko_at_25 The Michaelis-Menten constant for Rubisco oxygenation at 25 degrees C, ex-
pressed in mmol mol^(-1). If Ko_at_25 is not a number, then there must be
a column in data_table called Ko_at_25 with appropriate units. A numeric
value supplied here will overwrite the values in the Ko_at_25 column of data_table
if it exists.

RL_at_25 The respiration rate at 25 degrees C, expressed in micromol m^(-2) s^(-1). If
RL_at_25 is not a number, then there must be a column in data_table called
RL_at_25 with appropriate units. A numeric value supplied here will overwrite
the values in the RL_at_25 column of data_table if it exists.

Tp_at_25 The maximum rate of triphosphate utilization at 25 degrees C, expressed in
micromol m^(-2) s^(-1). If Tp_at_25 is not a number, then there must be
a column in data_table called Tp_at_25 with appropriate units. A numeric
value supplied here will overwrite the values in the Tp_at_25 column of data_table
if it exists.

Vcmax_at_25 The maximum rate of rubisco carboxylation at 25 degrees C, expressed in micromol
m^(-2) s^(-1). If Vcmax_at_25 is not a number, then there must be a column in
data_table called Vcmax_at_25 with appropriate units. A numeric value sup-
plied here will overwrite the values in the Vcmax_at_25 column of data_table
if it exists.

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration.

calculate_c3_assimilation 23

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration.

cc_column_name The name of the column in data_table that contains the chloroplastic CO2
concentration in micromol mol^(-1).

gamma_star_norm_column_name

The name of the column in data_table that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

j_norm_column_name

The name of the column in data_table that contains the normalized J values
(with units of normalized to J at 25 degrees C).

kc_norm_column_name

The name of the column in data_table that contains the normalized Kc values
(with units of normalized to Kc at 25 degrees C).

ko_norm_column_name

The name of the column in data_table that contains the normalized Ko values
(with units of normalized to Ko at 25 degrees C).

oxygen_column_name

The name of the column in data_table that contains the concentration of O2
in the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

rl_norm_column_name

The name of the column in data_table that contains the normalized RL values
(with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in data_table that contains the total pressure in bar.
tp_norm_column_name

The name of the column in data_table that contains the normalized Tp values
(with units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in data_table that contains the normalized Vcmax
values (with units of normalized to Vcmax at 25 degrees C).

hard_constraints

An integer numerical value indicating which types of hard constraints to place
on the values of input parameters; see below for more details.

perform_checks A logical value indicating whether to check units for the required columns. This
should almost always be TRUE. The option to disable these checks is only in-
tended to be used when fit_c3_aci calls this function, since performing these
checks many times repeatedly slows down the fitting procedure.

return_table A logical value indicating whether to return an exdf object. This should almost
always be TRUE. The option to return a vector is mainly intended to be used when
fit_c3_aci calls this function, since creating an exdf object to return will slow
down the fitting procedure.

... Optional arguments; see below.

24 calculate_c3_assimilation

Details

The Busch et al. (2018) and Busch (2020) model:
This function generally follows the Farquhar-von-Caemmerer-Berry model as described in Busch
et al. (2018) and Busch (2020) with a few modifications described below. In this formulation, the
steady-state net CO2 assimilation rate An is calculated according to

An = (1 - Gamma_star_agt / PCc) * Vc - RL,

where Gamma_star is the CO2 compensation point in the absence of non-photorespiratory CO2
release, Gamma_star_agt is the effective value of Gamma_star accounting for glycolate carbon re-
maining in the cytosol, PCc is the partial pressure of CO2 in the chloroplast, Vc is the RuBP carboxy-
lation rate, and RL is the rate of non-photorespiratory CO2 release in the light. Gamma_star_agt is
given by

Gamma_star_agt = (1 - alpha_g + 2 * alpha_t) * Gamma_star,

where alpha_g and alpha_t are the fractions of glycolate carbon leaving the photorespiratory
pathway as glycine and CH2-THF, respectively.

The model considers three potential values of Vc that correspond to limitations set by three differ-
ent processes: Rubisco activity, RuBP regeneration, and triose phopsphate utilization (TPU). The
Rubisco-limited carboxylation rate Wc is given by

Wc = PCc * Vcmax / (PCc + Kc * (1.0 + POc / Ko)),

where Vcmax is the maximum rate of Rubisco carboxylation, Kc is the Michaelis-Menten constant
for CO2, Ko is the Michaelis-Menten constant for O2, and POc is the partial pressure of O2 in the
chloroplast.

The RuBP-regeneration-limited carboxylation rate Wj is given by

Wj = PCc * J / (4 * PCc + Gamma_star_agt * (8 + 16 * alpha_g - 8 * alpha_t + 8 * alpha_s)),

where J is the potential electron transport rate at a given light intensity and alpha_s is the fraction
of glycolate carbon leaving the photorespiratory pathway as serine.

The TPU-limited carboxylation rate is given by

Wp = PCc * 3 * Tp / (PCc - Gamma_star_agt * (1 + 3 * alpha_g + 6 * alpha_t + 4 * alpha_s)),

where Tp is the maximum rate of triose phosphate utilization. Note that this equation only applies
when PCc > Gamma_star_agt * (1 + 3 * alpha_g + 6 * alpha_t + 4 * alpha_s); for smaller val-
ues of PCc, TPU cannot limit the RuBP carboxylation rate and Wp = Inf. (Lochocki & McGrath,
under review).

The actual carboxylation rate is typically chosen to be the smallest of the three potential rates:

Vc = min{Wc, Wj, Wp}.

In the equations above, several of the variables depend on the leaf temperature. In particular, the
leaf-temperature-adjusted values of Gamma_star, J, Kc, Ko, RL, Tp, and Vcmax are determined from
their base values at 25 degrees C and a temperature-dependent multiplicative factor.

Also note that PCc is calculated from the chloroplastic CO2 concentration Cc using the total pressure
(ambient pressure + chamber overpressure).

In addition to the carboxylation and assimilation rates already mentioned, it is also possible to
calculate the net CO2 assimilation rates determined by Rubisco activity, RuBP regeneration, and
TPU as follows:

Ac = (1 - Gamma_star_agt / PCc) * Wc - RL

calculate_c3_assimilation 25

Aj = (1 - Gamma_star_agt / PCc) * Wj - RL

Ap = (1 - Gamma_star_agt / PCc) * Wp - RL

The Busch model with nitrogen restrictions:

Note that the implementation as described above does not currently facilitate the inclusion of nitro-
gen limitations (Equations 15-21 in Busch et al. (2018)).

The "old" model:
In an older version of the model, alpha_g, alpha_s, and alpha_t are replaced with a single param-
eter alpha_old. Most publications refer to this simply as alpha, but here we follow the notation
of Busch et al. (2018) for clarity. In this version, there is no disctinction between Gamma_star_agt
and Gamma_star. Other differences are described below.

The RuBP-regeneration-limited carboxylation rate Wj is given by

Wj = PCc * J / (Wj_coef_C * PCc + Wj_coef_Gamma_star * Gamma_star),

Here we have allowed Wj_coef_C and Wj_coef_Gamma_star to be variables rather than taking
fixed values (as they do in many sources). This is necessary because not all descriptions of the
FvCB model use the same values, where the different values are due to different assumptions about
the NADPH and ATP requirements of RuBP regeneration.

The TPU-limited carboxylation rate is given by

Wp = PCc * 3 * Tp / (PCc - Gamma_star * (1 + 3 * alpha_old)),

Note that this equation only applies when PCc > Gamma_star * (1 + 3 * alpha_old); for smaller
values of PCc, TPU cannot limit the RuBP carboxylation rate and Wp = Inf. (Lochocki & McGrath,
under review).

Using either version of the model:
When using calculate_c3_assimilation, it is possible to use either version of the model. Setting
alpha_g, alpha_s, and alpha_t to zero is equivalent to using the older version of the model, while
setting alpha_old = 0 is equivalent to using the newer version of the model. If all alpha parameters
are zero, there is effectively no difference between the two versions of the model. Attempting to
set a nonzero alpha_old if either alpha_g, alpha_s, or alpha_t is nonzero is forbidden since it
would represent a mix between the two models; if such values are passed as inputs, then an error
will be thrown.

Hard constraints:
Most input parameters to the FvCB model have hard constraints on their values which are set by
their biochemical or physical interpretation; for example, Vcmax cannot be negative and alpha_g
must lie between 0 and 1. Yet, because of measurement noise, sometimes it is necessary to use
values outside these ranges when fitting an A-Ci curve with fit_c3_aci or fit_c3_variable_j.
To accomodate different potential use cases, it is possible to selectively apply these hard constraints
by specifying different values of the hard_constraints input argument:

• hard_constraints = 0: Constraints are only placed on inputs that are user-supplied and can-
not be fit, such as oxygen.

• hard_constraints = 1: Includes the same constraints as when hard_constraints is 0, with
the additional constraint that all Cc values must be non-negative.

• hard_constraints = 2: Includes the same constraints as when hard_constraints is 1,
which additional constraints on the parameters that can be fitted. For example, Vcmax_at_25
must be non-negative and alpha_g must lie between 0 and 1.

26 calculate_c3_assimilation

If any input values violate any of the specified constraints, an error message will be thrown.

Optional arguments:

• use_min_A: If an input argument called use_min_A is supplied and its value is TRUE, then
the "minimum assimilation" variant of the FvCB model will be used. In this case, An will
be calculated as An = min{Ac, Aj, Ap}. In general, using this variant is not recommended.It
should only be used to investigate errors that may occur when using the minimal assimilation
rate rather than the minimal carboxylation rate.

• TPU_threshold: If an input argument called TPU_threshold is supplied and its numeric
value is not NULL, then TPU limitations will only be allowed for values of Cc above this
threshold. This threshold will be used in place of the values discussed in the equations above.
In general, using this option is not recommended. It should only be used to investigate errors
that may occur when using a fixed TPU threshold.

• use_FRL: If an input argument called use_FRL is supplied and its value is TRUE, then An will
always be set to Ac for Cc < Gamma_star_agt. This "forced Rubisco limitation" can only be
used along with the "minimum assimilation" variant (use_min_A = TRUE).

• consider_depletion: If an input argument called consider_depletion is supplied and its
value is TRUE, then RuBP depletion will be considered to be an additional potential limit-
ing process. In this case, Vc will be calculated as Vc = min{Wc, Wj, Wp, Wd}, where Wd is
zero when Cc < Gamma_star and Inf otherwise. Note that the value of Wd (and Ad = (1 -
Gamma_star / PCc) * Wd - RL) will always be returned, regardless of whether RuBP deple-
tion is considered when calculating An.

References:

• Busch, Sage, & Farquhar, G. D. "Plants increase CO2 uptake by assimilating nitrogen via the
photorespiratory pathway." Nature Plants 4, 46–54 (2018) [doi:10.1038/s414770170065x].

• Busch "Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and metabolism."
The Plant Journal 101, 919–939 (2020) [doi:10.1111/tpj.14674].

• von Caemmerer, S. "Biochemical Models of Leaf Photosynthesis" (CSIRO Publishing, 2000)
[doi:10.1071/9780643103405].

• Lochocki & McGrath "Widely Used Variants of the Farquhar-von-Caemmerer-Berry Model
Can Cause Errors in Parameter Estimates and Simulations." submitted.

Value

The return value depends on the value of return_table:

• If return_table is TRUE, the return value is an exdf object with the following columns,
calculated as described above: Tp_tl, Vcmax_tl, RL_tl, J_tl, Ac, Aj, Ap, An, Vc, and others.
The category for each of these new columns is calculate_c3_assimilation to indicate that
they were created using this function.

• If return_table is FALSE, the return value is a list with the following named elements: An,
Ac, Aj, Ap, and J_tl. Each element is a numeric vector.

If data_table is not an exdf object, then the return value will be a data frame, and units and
categories will not be reported.

https://doi.org/10.1038/s41477-017-0065-x
https://doi.org/10.1111/tpj.14674
https://doi.org/10.1071/9780643103405

calculate_c3_limitations_grassi 27

Examples

Simulate a C3 A-Cc curve with specified leaf temperature and photosynthetic
parameters and plot the net assimilation rate along with the different
enzyme-limited rates
inputs <- exdf(data.frame(

Cc = seq(1, 601, by = 6),
Tleaf = 30,
total_pressure = 1,
oxygen = 21

))

inputs <- document_variables(
inputs,
c('', 'Cc', 'micromol mol^(-1)'),
c('', 'Tleaf', 'degrees C'),
c('', 'total_pressure', 'bar'),
c('', 'oxygen', 'percent')

)

inputs <- calculate_temperature_response(inputs, c3_temperature_param_sharkey, 'Tleaf')

assim <- calculate_c3_assimilation(inputs, 0, 0, 0, 0, '', 150, '', '', 1, 12, 120)

lattice::xyplot(
Ac + Aj + Ap + An ~ inputs[, 'Cc'],
data = assim$main_data,
type = 'l',
grid = TRUE,
auto = TRUE,
xlab = paste0('Chloroplast CO2 concentration (', inputs$units$Cc, ')'),
ylab = paste0('Assimilation rate (', assim$units$An, ')')

)

calculate_c3_limitations_grassi

Estimate the relative limiting factors to C3 photosynthesis

Description

Uses the method from Grassi & Magnani (2005) to estimate the relative limitations to C3 photosyn-
thesis due to stomatal conductance, mesophyll conductance, and biochemistry. This function can
accomodate alternative column names for the variables taken from the data file in case they change
at some point in the future. This function also checks the units of each required column and will
produce an error if any units are incorrect.

Usage

calculate_c3_limitations_grassi(
exdf_obj,

28 calculate_c3_limitations_grassi

Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
cc_column_name = 'Cc',
gamma_star_column_name = 'Gamma_star_tl',
gmc_column_name = 'gmc_tl',
gsc_column_name = 'gsc',
kc_column_name = 'Kc_tl',
ko_column_name = 'Ko_tl',
oxygen_column_name = 'oxygen',
total_pressure_column_name = 'total_pressure',
vcmax_column_name = 'Vcmax_tl',
j_column_name = NULL

)

Arguments

exdf_obj An exdf object representing gas exchange data.
Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose

value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

cc_column_name The name of the column in exdf_obj that contains the chloroplastic CO2 con-
centration in micromol mol^(-1). Typically these are values that are automati-
cally calculated by fit_c3_aci.

gamma_star_column_name

The name of the column in exdf_obj that contains the Gamma_star values in
micromol mol^(-1). Typically these are the leaf-temperature dependent values
that are automatically calculated by fit_c3_aci.

gmc_column_name

The name of the column in exdf_obj that contains the mesophyll conduc-
tance to CO2 in mol m^(-2) s^(-1) bar^(-1). Typically these are the leaf-
temperature adjusted values that are automatically calculated by fit_c3_aci.

gsc_column_name

The name of the column in exdf_obj that contains the stomatal conductance to
CO2 in mol m^(-2) s^(-1). Typically this column is calculated using calculate_gas_properties.

kc_column_name The name of the column in exdf_obj that contains the Michaelis-Menten con-
stant for rubisco carboxylation in micromol mol^(-1). Typically these are the
leaf-temperature dependent values that are automatically calculated by fit_c3_aci.

ko_column_name The name of the column in exdf_obj that contains the Michaelis-Menten con-
stant for rubisco oxygenation in mmol mol^(-1). Typically these are the leaf-
temperature dependent values that are automatically calculated by fit_c3_aci.

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

calculate_c3_limitations_grassi 29

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.
Typically this is calculated using calculate_total_pressure.

vcmax_column_name

The name of the column in exdf_obj that contains values of the maximum Ru-
bisco carboxylation rate (Vcmax) in micromol m^(-2) s^(-1). Typically these
are the leaf-temperature adjusted values that are automatically calculated by
fit_c3_aci.

j_column_name The name of the column in exdf_obj that contains values of the RuBP re-
generation rate (J) in micromol m^(-2) s^(-1). Typically these are the leaf-
temperature adjusted values that are automatically calculated by fit_c3_aci.

Details

When analyzing or interpreting C3 gas exchange data, it is often useful to estimate the relative
limitations to assimilation that are due to stomatal conductance, mesophyll conductance, and bio-
chemistry. This can be done using a framework first introduced by Grassi & Magnani (2005). In
this framework, the relative limitation due to stomatal conductance (ls) is

ls = [(g_t / g_sc) * (dAdC)] / [g_t + dAdC],

the relative limitation due to mesophyll conductance (lm) is

lm = [(g_t / g_mc) * (dAdC)] / [g_t + dAdC],

and the relative limitation due to biochemistry (lb) is

ln = [g_t] / [g_t + dAdC],

where g_sc is the stomatal conductance to CO2, g_mc is the mesophyll conductance to CO2, gt =
1 / (1 / g_mc + 1 / g_sc) is the total conductance to CO2, and dAdC is the partial derivative of the
net CO2 assimilation rate (An) with respect to the chloroplast CO2 concentration (Cc). These can
be found in Equation 7 from Grassi & Magnani (2005).

These equations were derived by assuming that CO2 assimilation is limited by Rubisco activity; in
other words, that the net CO2 assimilation rate is given by

Ac = Vcmax * (Cc - Gamma_star) / (Cc + Km) - RL,

where Vcmax is the maximum Rubisco carboxylation rate, Gamma_star is the CO2 compensation
point in the absence of day respiration, RL is the day respiration rate, Km is the effective Michaelis-
Menten constant for Rubisco carboxylation. In turn, Km is given by Km = Kc * (1 + O / Ko), where
Kc is the Michaelis-Menten constant for carboxylation, Ko is the Michaelis-Menten constant for
oxygenation, and O is the oxygen concentration in the chloroplast.

Under this assumption, it is possible to analytically determine the partial derivative dAdC:

dAdC_rubisco = Vcmax * (Gamma_star + Km) / (Cc + Km)^2

In this case, the limitation due to "biochemistry" actually refers to limitation due to the value of
Vcmax. Note that sometimes this derivative is estimated from the initial slope of a measured A-Ci
curve rather than calculated analytically. (See, for example, Pathare et al. (2023).) However, we
do not take that approach here. Also note that the value of Vcmax can be estimated using different
approaches. For example, Xiong (2023) uses single-point gas exchange measurements. When
possible, it would be better to use an estimate from fitting an entire A-Ci curve, as shown in the
example below.

30 calculate_c3_limitations_grassi

To understand the meaning of these limiting factors, note that simultaneously making small frac-
tional increases to g_sc, g_mc, and Vcmax will generally cause an associated small fractional in-
crease in An. The limiting factors describe the fraction of the increase in An that can be attributed
to each of g_sc, g_mc, and Vcmax. For example, ls = 0.2, lm = 0.3, lb = 0.5 would mean that 20
percent of the increase in An would be due to an increase in stomatal conductance, 30 percent due
to an increase in mesophyll conductance, and 50 percent due to an increase in Vcmax. Note that ls,
lm, and lb always add up to 1.

Thus, when one of the factors is large, changes in the related parameter produce relatively larger
changes in the assimilation rate. In that case, it can be said that that parameter is setting a large
limit on the assimilation rate. On the other hand, if a factor is small, small changes in the related
parameter produce relatively small changes in An, and therefore that parameter is not setting a large
limit on the assimilation rate.

It is also possible to calculate dAdC when assimilation is limited by RuBP regeneration. In this case,
we have

Aj = J * (Cc - Gamma_star) / (4 * Cc + 8 * Gamma_star) - RL,

where J is the RuBP regeneration rate, and the limitation due to "biochemistry" actually refers to
limitation due to the value of J (rather than Vcmax. The same equations as before can be used to
calculate the limiting factors (ls, lm, lb), but the partial derivative is now given by

dAdC_j = J * Gamma_star * 12 / (4 * Cc + 8 * Gamma_star)^2.

Most users will want the limitations assuming Rubisco-limited assimilation. However, if j_column_name
is not NULL, values of J will be used to calculate the limiting factors assuming RuBP-regeneration-
limited assimilation. For an example of how these additional factors can be used, see Sakoda et al.
(2021).

References:

Grassi, G. & Magnani, F. "Stomatal, mesophyll conductance and biochemical limitations to photo-
synthesis as affected by drought and leaf ontogeny in ash and oak trees." Plant, Cell & Environment
28, 834–849 (2005) [doi:10.1111/j.13653040.2005.01333.x].

Pathare, V. S. et al. "Altered cell wall hydroxycinnamate composition impacts leaf- and canopy-
level CO2 uptake and water use in rice." Plant Physiology kiad428 (2023) [doi:10.1093/plphys/
kiad428].

Xiong, D. "Leaf anatomy does not explain the large variability of mesophyll conductance across C3
crop species." The Plant Journal 113, 1035–1048 (2023) [doi:10.1111/tpj.16098].

Sakoda, K., Yamori, W., Groszmann, M. & Evans, J. R. "Stomatal, mesophyll conductance, and
biochemical limitations to photosynthesis during induction." Plant Physiology 185, 146–160 (2021)
[doi:10.1093/plphys/kiaa011].

Value

This function returns an exdf object based on exdf_obj but with several new columns representing
the partial derivatives and limiting factors discussed above: dAdC_rubisco, ls_rubisco_grassi,
lm_rubisco_grassi, and lb_rubisco_grassi. If j_column_name is not NULL, the output will
also include dAdC_j, ls_j_grassi, lm_j_grassi, and lb_j_grassi.

https://doi.org/10.1111/j.1365-3040.2005.01333.x
https://doi.org/10.1093/plphys/kiad428
https://doi.org/10.1093/plphys/kiad428
https://doi.org/10.1111/tpj.16098
https://doi.org/10.1093/plphys/kiaa011

calculate_c3_limitations_grassi 31

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate additional gas properties
licor_file <- calculate_gas_properties(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

Fit all curves in the data set. Here we use a faster optimizer than the
default one to ensure the example runs quickly.
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c3_aci,
Ca_atmospheric = 420,
optim_fun = optimizer_nmkb(1e-7),
fit_options = list(gmc_at_25 = 0.5)

))

Get a subset of fitting results corresponding to the first measured point
in each curve (where CO2_r_sp = 400 ppm)
aci_fit_subset <- aci_results$fits[aci_results$fits[, 'CO2_r_sp'] == 400, , TRUE]

Calculate limiting factors
aci_fit_subset <- calculate_c3_limitations_grassi(aci_fit_subset)

View the limiting factors for each species / plot
col_to_keep <- c(

'species', 'plot', # identifiers
'ls_rubisco_grassi', 'lm_rubisco_grassi', 'lb_rubisco_grassi' # limitation info

)

aci_fit_subset[, col_to_keep, TRUE]

32 calculate_c3_limitations_warren

One of these fits has NA for all the limiting factors, which causes problems
when making bar charts with some versions of the `lattice` package, so we
exclude that curve for plotting
data_for_barchart <-

aci_fit_subset$main_data[aci_fit_subset$main_data$species_plot != 'tobacco - 2',]

Display as a bar chart
lattice::barchart(

ls_rubisco_grassi + lm_rubisco_grassi + lb_rubisco_grassi ~ species_plot,
data = data_for_barchart,
stack = TRUE,
auto = TRUE,
ylab = 'Factors limiting assimilation'

)

calculate_c3_limitations_warren

Estimate the relative limiting factors to C3 photosynthesis

Description

Uses the method from Warren et al. (2003) to estimate the relative limitations to C3 photosynthesis
due to stomatal conductance and mesophyll conductance. This function can accomodate alternative
column names for the variables taken from the data file in case they change at some point in the
future. This function also checks the units of each required column and will produce an error if any
units are incorrect.

Usage

calculate_c3_limitations_warren(
exdf_obj,
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
ca_column_name = 'Ca',
cc_column_name = 'Cc',
ci_column_name = 'Ci',
gamma_star_norm_column_name = 'Gamma_star_norm',
j_norm_column_name = 'J_norm',
kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
hard_constraints = 0,
...

)

calculate_c3_limitations_warren 33

Arguments

exdf_obj An exdf object representing gas exchange data. Typically this should be an
exdf object returned from fit_c3_aci; it will be expected to have columns for
alpha_g, Gamma_star, J_at_25, RL_at_25, Tp, and Vcmax_at_25.

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

ca_column_name The name of the column in exdf_obj that contains the ambient CO2 concentra-
tion in micromol mol^(-1).

cc_column_name The name of the column in exdf_obj that contains the chloroplastic CO2 con-
centration in micromol mol^(-1). Typically these are values that are automati-
cally calculated by fit_c3_aci.

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration in micromol mol^(-1).

gamma_star_norm_column_name

The name of the column in exdf_obj that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C). Typically
these are the leaf-temperature dependent values calculated using calculate_temperature_response.

j_norm_column_name

The name of the column in exdf_obj that contains the normalized J values
(with units of normalized to J at 25 degrees C). Typically these are the leaf-
temperature dependent values calculated using calculate_temperature_response.

kc_norm_column_name

The name of the column in exdf_obj that contains the normalized Kc values
(with units of normalized to Kc at 25 degrees C). Typically these are the leaf-
temperature dependent values calculated using calculate_temperature_response.

ko_norm_column_name

The name of the column in exdf_obj that contains the normalized Ko values
(with units of normalized to Ko at 25 degrees C). Typically these are the leaf-
temperature dependent values calculated using calculate_temperature_response.

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

rl_norm_column_name

The name of the column in exdf_obj that contains the normalized RL values
(with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.
Typically this is calculated using calculate_total_pressure.

34 calculate_c3_limitations_warren

tp_norm_column_name

The name of the column in exdf_obj that contains the normalized Tp values
(with units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in exdf_obj that contains the normalized Vcmax values
(with units of normalized to Vcmax at 25 degrees C).

hard_constraints

To be passed to calculate_c3_assimilation; see that function for more de-
tails.

... Additional arguments to be passed to calculate_c3_assimilation.

Details

When analyzing or interpreting C3 gas exchange data, it is often useful to estimate the relative
limitations to assimilation that are due to stomatal conductance or mesophyll conductance. This
can be done using a framework first introduced by Warren et al. (2003). In this framework, the
relative limitation due to stomatal conductance (ls) is

ls = (An_inf_gsc - A_modeled) / An_inf_gsc

and the relative limitation due to mesophyll conductance (lm) is

lm = (An_inf_gmc - A_modeled) / An_inf_gmc. These are equations 10 and 11 in Warren et al.
(2003).

In these equations A_modeled is the net assimilation rate calculated using the Farquhar-von-Caemmerer-
Berry (FvCB) model at the measured value of the chloroplast CO2 concentration (Cc). The other
two assimilation rates (An_inf_gsc and An_inf_gmc) are also calculated using the FvCB model,
but under different assumptions: An_inf_gsc assumes that stomatal conductance is infinite while
mesophyll conductance is as measured, while An_inf_gmc assumes that mesophyll conductance is
infinite while stomatal conductance is as measured.

In other words, ls expresses the observed assimilation rate as a fractional decrease relative to a
hypothetical plant with infinite stomatal conductance, while lm expresses the observed assimilation
rate as a fractional decrease relative to a hypothetical plant with infinite mesophyll conductance.

For example, if lm = 0.4, this means that the observed assimilation rate is 40 percet lower than a
hypothetical plant with infinite mesophyll conductance. If mesophyll conductance were to increase
(all else remaining the same), then lm would decrease. This is not the case with other estimations
of limiting factors, such as the one used in calculate_c3_limitations_grassi. (See Leverett &
Kromdijk for more details.)

To actually calculate An_inf_gsc and An_inf_gmc, it is first necessary to estimate the correspond-
ing values of Cc that would occur with infinite stomatal or mesophyll conductance. This can be
done with a 1D diffusion equation expressed using drawdown values:

Cc = Ca - drawdown_cs - drawdown_cm,

where drawdown_cs = Ca - Ci is the drawdown of CO2 across the stomata (assuming infinite bound-
ary layer conductance) and drawdown_cm = Ci - Cc is the drawdown of CO2 across the mesophyll.
If one conductance is infinite, the corresponding drawdown becomes zero. Thus, we have:

Cc_inf_gsc = Ca - 0 - (Ci - Cc) = Ca - Ci + Cc

and

Cc_inf_gmc = Ca - (Ca - Ci) - 0 = Ci,

calculate_c3_limitations_warren 35

where Cc_inf_gsc is the value of Cc that would occur with infinite stomatal conductance and the
measured mesophyll conductance, and Cc_inf_gmc is the value of Cc that would occur with infinite
mesophyll conductance and the measured stomatal conductance.

Once values of Cc, Cc_inf_gsc, and Cc_inf_gmc, the corresponding assimilation rates are cal-
culated using calculate_c3_assimilation, and then the limitation factors are calculated as de-
scribed above.

References:

Warren, C. R. et al. "Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii
(Mirb.)Franco) canopies." Plant, Cell & Environment 26, 1215–1227 (2003) [doi:10.1046/j.1365-
3040.2003.01044.x].

Leverett, A. & Kromdijk, J. "The long and tortuous path towards improving photosynthesis by
engineering elevated mesophyll conductance." [doi:10.22541/au.170016201.13513761/v1].

Value

This function returns an exdf object based on exdf_obj but with several new columns representing
the quantities discussed above: Cc_inf_gsc, Cc_inf_gmc, An_inf_gsc, An_inf_gmc, ls_warren,
and lm_warren.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate additional gas properties
licor_file <- calculate_gas_properties(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

Fit all curves in the data set. Here we use a faster optimizer than the
default one to ensure the example runs quickly.
aci_results <- consolidate(by(

https://doi.org/10.1046/j.1365-3040.2003.01044.x
https://doi.org/10.1046/j.1365-3040.2003.01044.x
https://doi.org/10.22541/au.170016201.13513761/v1

36 calculate_c3_variable_j

licor_file,
licor_file[, 'species_plot'],
fit_c3_aci,
Ca_atmospheric = 420,
optim_fun = optimizer_nmkb(1e-7)

))

Get a subset of fitting results corresponding to the first measured point
in each curve (where CO2_r_sp = 400 ppm)
aci_fit_subset <- aci_results$fits[aci_results$fits[, 'CO2_r_sp'] == 400, , TRUE]

Calculate limiting factors
aci_fit_subset <- calculate_c3_limitations_warren(aci_fit_subset)

View the limiting factors for each species / plot
col_to_keep <- c(

'species', 'plot', # identifiers
'ls_warren', 'lm_warren' # limitation info

)

aci_fit_subset[, col_to_keep, TRUE]

calculate_c3_variable_j

Calculate C3 variable J

Description

Calculates values of mesophyll conductance and chloroplast CO2 concentration using the "variable
J" equation, as originally described in Harley et al. (1992) and modified in Moualeu-Ngangue,
Chen, & Stutzel (2016). This function can accomodate alternative colum names for the variables
taken from Licor files in case they change at some point in the future. This function also checks the
units of each required column and will produce an error if any units are incorrect.

Usage

calculate_c3_variable_j(
exdf_obj,
alpha_g,
alpha_s,
alpha_t,
Gamma_star_at_25,
RL_at_25,
tau,
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
a_column_name = 'A',
ci_column_name = 'Ci',
gamma_star_norm_column_name = 'Gamma_star_norm',

calculate_c3_variable_j 37

phips2_column_name = 'PhiPS2',
qin_column_name = 'Qin',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
hard_constraints = 0,
perform_checks = TRUE,
return_exdf = TRUE

)

Arguments

exdf_obj An exdf object.

alpha_g A dimensionless parameter where 0 <= alpha_g <= 1, representing the propor-
tion of glycolate carbon taken out of the photorespiratory pathway as glycine.
alpha_g is often assumed to be 0. If alpha_g is not a number, then there must be
a column in exdf_obj called alpha_g with appropriate units. A numeric value
supplied here will overwrite the values in the alpha_g column of exdf_obj if it
exists.

alpha_s A dimensionless parameter where 0 <= alpha_s <= 0.75 * (1 - alpha_g) rep-
resenting the proportion of glycolate carbon taken out of the photorespiratory
pathway as serine. alpha_s is often assumed to be 0. If alpha_s is not a num-
ber, then there must be a column in exdf_obj called alpha_s with appropriate
units. A numeric value supplied here will overwrite the values in the alpha_s
column of exdf_obj if it exists.

alpha_t A dimensionless parameter where 0 <= alpha_t <= 1 representing the propor-
tion of glycolate carbon taken out of the photorespiratory pathway as CH2-THF.
alpha_t is often assumed to be 0. If alpha_t is not a number, then there must be
a column in exdf_obj called alpha_t with appropriate units. A numeric value
supplied here will overwrite the values in the alpha_t column of exdf_obj if it
exists.

Gamma_star_at_25

The chloroplastic CO2 concentration at which CO2 gains from Rubisco car-
boxylation are exactly balanced by CO2 losses from Rubisco oxygenation, at
25 degrees C, expressed in micromol mol^(-1). If Gamma_star_at_25 is not
a number, then there must be a column in exdf_obj called Gamma_star_at_25
with appropriate units. A numeric value supplied here will overwrite the values
in the Gamma_star_at_25 column of exdf_obj if it exists.

RL_at_25 The respiration rate at 25 degrees C, expressed in micromol m^(-2) s^(-1).
If RL_at_25 is not a number, then there must be a column in exdf_obj called
RL_at_25 with appropriate units. A numeric value supplied here will overwrite
the values in the RL_at_25 column of exdf_obj if it exists.

tau The proportionality factor used to calculate the RuBP regeneration rate from
chlorophyll fluorescence measurements (dimensionless). If tau is not a number,
then there must be a column in exdf_obj called tau with appropriate units.
A numeric value supplied here will overwrite the values in the tau column of
exdf_obj if it exists.

38 calculate_c3_variable_j

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

a_column_name The name of the column in exdf_obj that contains the net assimilation in micromol
m^(-2) s^(-1).

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration in micromol mol^(-1).

gamma_star_norm_column_name

The name of the column in exdf_obj that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

phips2_column_name

The name of the column in exdf_obj that contains values of the operating effi-
ciency of photosystem II (dimensionless).

qin_column_name

The name of the column in exdf_obj that contains values of the incident pho-
tosynthetically active flux density in micromol m^(-2) s^(-1).

rl_norm_column_name

The name of the column in exdf_obj that contains the normalized RL values
(with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.
hard_constraints

An integer numerical value indicating which types of hard constraints to place
on the values of input parameters; see below for more details.

perform_checks A logical value indicating whether to check units for the required columns. This
should almost always be TRUE. The option to disable these checks is only in-
tended to be used when fit_c3_variable_j calls this function, since perform-
ing these checks many times repeatedly slows down the fitting procedure.

return_exdf A logical value indicating whether to return an exdf object. This should almost
always be TRUE. The option to return a vector is mainly intended to be used when
fit_c3_variable_j calls this function, since creating an exdf object to return
will slow down the fitting procedure.

Details

The "Variable J" method is a way to estimate the chloroplast CO2 concentration Cc and the mes-
ophyll conductance to CO2 gmc from combined gas exchange and chlorophyll fluorescence mea-
surements, and was originally described in Harley et al. (1992). The main idea is that along with
Cc, the net CO2 assimilation rate (An), day respiration rate (RL), and CO2 compensation point in the
absence of day respiration (Gamma_star) determine the actual RuBP regeneration rate (J_actual)
required to support the Calvin-Benson cycle:

J_actual = (A + RL) * (4 * Cc + 8 * Gamma_star) / (Cc - Gamma_star)

calculate_c3_variable_j 39

This is Equation 6 in Harley et al. (1992). (Note: this equation can be derived by solving the
equation for Aj from the FvCB model for J. However, this relationship holds true even when CO2
assimilation is not limited by RuBP regeneration. Hence, we distinguish between the actual regen-
eration rate J_actual and the maximum regeneration rate for a given incident light level J.)

This equation can be rewritten by using a 1D diffusion equation to replace Cc with Cc = Ci - An /
gmc and then solving for the mesophyll conductance. The result is Equation 7 in Harley et al. (1992),
which we do not reproduce here. The importance of Equation 7 is that it calculates gmc from several
quantities that can be measured using gas exchange (Ci, An, and RL), a quantity whose values can
be known beforehand (Gamma_star), and J_actual (which can be estimated from chlorophyll flu-
orescence measurements). Here we update Equation 7 to include alpha_g and alpha_s following
Busch et al. (2018) (also see calculate_c3_assimilation.)

The actual RuBP regeneration rate is related to the incident photosynthetically active flux density
Qin and the operating efficiency of photosystem II PhiPSII according to:

J_actual = alpha_g * beta * Qin * PhiPSII,

where alpha_g is the leaf absorptance and beta is the fraction of absorbed light energy directed to
photosystem II. Qin is set by the measurement conditions, while PhiPSII can be estimated from
chlorophyll fluorescence. However, the values of alpha_g and beta are generally unknown; beta
in particular is difficult or impossible to measure and is often assumed to be 0.5. Thus, while
Equation 7 from Harley et al. (1992) can be used to estimate gmc, there is a practical uncertainty
associated with determining a value of J_actual to be used in Equation 7.

Moualeu-Ngangue, Chen, & Stutzel (2016) developed a way to address this issue. The method from
that paper replaces the product of alpha_g and beta by a single new parameter tau, and uses it to
estimate the actual RuBP regeneration from fluoresence (J_F):

J_F = tau * Qin * PhiPSII.

This new parameter tau is assumed to be constant across an A-Ci curve, and is treated as an un-
known whose value will be determined during a fitting procedure.

In this function, the supplied values of Qin, PhiPSII, and tau are used to calculate values of J_F.
Then, the values of J_F are used along with Equation 7 from Harley et al. (1992) to calculate gmc.
Finally, a 1D diffusion equation is used to calculate Cc.

Hard constraints:

Most input parameters to the Variable J equations have hard constraints on their values which are
set by their biochemical or physical interpretation; for example, RL cannot be negative and tau
must lie between 0 and 1. Yet, because of measurement noise, sometimes it is necessary to use
values outside these ranges when fitting an A-Ci curve with fit_c3_variable_j. To accomodate
different potential use cases, it is possible to selectively apply these hard constraints by specifying
different values of the hard_constraints input argument:

• hard_constraints = 0: Constraints are only placed on inputs that are user-supplied and can-
not be fit, such as Qin.

• hard_constraints = 1: Includes the same constraints as when hard_constraints is 0, with
the additional constraint that all Ci values must be non-negative.

• hard_constraints = 2: Includes the same constraints as when hard_constraints is 1,
which additional constraints on the parameters that can be fitted. For example, RL_at_25
must be non-negative and tau must lie between 0 and 1.

40 calculate_c3_variable_j

If any input values violate any of the specified constraints, an error message will be thrown.

References:

• Harley, P. C., Loreto, F., Di Marco, G. & Sharkey, T. D. "Theoretical Considerations when
Estimating the Mesophyll Conductance to CO2 Flux by Analysis of the Response of Photo-
synthesis to CO2" Plant Physiology 98, 1429–1436 (1992) [doi:10.1104/pp.98.4.1429].

• Moualeu-Ngangue, D. P., Chen, T.-W. & Stutzel, H. "A new method to estimate photosyn-
thetic parameters through net assimilation rate-intercellular space CO2 concentration (A-Ci)
curve and chlorophyll fluorescence measurements" New Phytologist 213, 1543–1554 (2017)
[doi:10.1111/nph.14260].

• Busch, Sage, & Farquhar, G. D. "Plants increase CO2 uptake by assimilating nitrogen via the
photorespiratory pathway." Nature Plants 4, 46–54 (2018) [doi:10.1038/s414770170065x].

Value

The return value depends on the value of return_exdf:

• If return_exdf is TRUE, the return value is an exdf object with the following columns, cal-
culated as described above: J_F, gmc, Cc, tau, and RL_tl. The category for each of these new
columns is calculate_c3_variable_j to indicate that they were created using this function.

• If return_exdf is FALSE, the return value is a list with the following named elements: gmc,
Cc, and J_F. Each element is a numeric vector.

Examples

Read an example Licor file included in the PhotoGEA package. This file
includes gas exchange and chlorophyll fluorescence data.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

Calculate values of J_F, gmc, and Cc assuming alpha_g = alpha_s = alpha_t = 0,
RL_at_25 = 1.5, and tau = 0.55.
vj_res <- calculate_c3_variable_j(licor_file, 0, 0, 0, '', 1.5, 0.55)

Plot mesophyll conductance against Cc. Note: this information is not very
meaningful since the values of Gamma_star, tau and RL used above are
arbitrary.
lattice::xyplot(

gmc ~ Cc | licor_file[, 'species_plot'],
data = vj_res$main_data,

https://doi.org/10.1104/pp.98.4.1429
https://doi.org/10.1111/nph.14260
https://doi.org/10.1038/s41477-017-0065-x

calculate_c4_assimilation 41

type = 'b',
pch = 16,
auto = TRUE,
xlab = paste0('Chloroplast CO2 concentration (', vj_res$units$Cc, ')'),
ylab = paste0('Mesophyll conductance to CO2 (', vj_res$units$gmc, ')')

)

calculate_c4_assimilation

Calculate C4 assimilation rates

Description

Calculates C4 assimilation rates based on the von Caemmerer (2000) model. This function can
accomodate alternative colum names for the variables taken from Licor files in case they change
at some point in the future. This function also checks the units of each required column and will
produce an error if any units are incorrect.

Usage

calculate_c4_assimilation(
exdf_obj,
alpha_psii,
gbs,
J_at_25,
RL_at_25,
Rm_frac,
Vcmax_at_25,
Vpmax_at_25,
Vpr,
x_etr = 0.4,
ao_column_name = 'ao',
gamma_star_column_name = 'gamma_star',
j_norm_column_name = 'J_norm',
kc_column_name = 'Kc',
ko_column_name = 'Ko',
kp_column_name = 'Kp',
oxygen_column_name = 'oxygen',
pcm_column_name = 'PCm',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
vcmax_norm_column_name = 'Vcmax_norm',
vpmax_norm_column_name = 'Vpmax_norm',
hard_constraints = 0,
perform_checks = TRUE,
return_exdf = TRUE

)

42 calculate_c4_assimilation

Arguments

exdf_obj An exdf object.
alpha_psii The fraction of photosystem II activity in the bundle sheath (dimensionless).

If alpha_psii is not a number, then there must be a column in exdf_obj called
alpha_psii with appropriate units. A numeric value supplied here will over-
write the values in the alpha_psii column of exdf_obj if it exists.

gbs The bundle sheath conductance to CO2 in mol m^(-2) s^(-1) bar^(-1). If
gbs is not a number, then there must be a column in exdf_obj called gbs with
appropriate units. A numeric value supplied here will overwrite the values in the
gbs column of exdf_obj if it exists.

J_at_25 The electron transport rate at 25 degrees C, expressed in micromol m^(-2)
s^(-1). Note that this is _not_ Jmax, and in general will depend on the inci-
dent photosynthetically active flux density. If J_at_25 is not a number, then
there must be a column in exdf_obj called J_at_25 with appropriate units. A
numeric value supplied here will override the values in the J_at_25 column of
exdf_obj if it exists.

RL_at_25 The total rate of mitochondrial respiration across the mesophyll and bundle
sheath at 25 degrees C, expressed in micromol m^(-2) s^(-1). If RL_at_25
is not a number, then there must be a column in exdf_obj called RL_at_25 with
appropriate units. A numeric value supplied here will overwrite the values in the
RL_at_25 column of exdf_obj if it exists.

Rm_frac The fraction of the total mitochondrial respiration that occurs in the mesophyll.
If Rm_frac is not a number, then there must be a column in exdf_obj called
Rm_frac with appropriate units. A numeric value supplied here will overwrite
the values in the Rm_frac column of exdf_obj if it exists.

Vcmax_at_25 The maximum rate of rubisco carboxylation at 25 degrees C, expressed in micromol
m^(-2) s^(-1). If Vcmax_at_25 is not a number, then there must be a column
in exdf_obj called Vcmax_at_25 with appropriate units. A numeric value sup-
plied here will overwrite the values in the Vcmax_at_25 column of exdf_obj if
it exists.

Vpmax_at_25 The maximum rate of PEP carboxylase activity at 25 degrees C, expressed in
micromol m^(-2) s^(-1). If Vpmax_at_25 is not a number, then there must be
a column in exdf_obj called Vpmax_at_25 with appropriate units. A numeric
value supplied here will overwrite the values in the Vpmax_at_25 column of
exdf_obj if it exists.

Vpr The rate of PEP carboxylase regeneration, expressed in micromol m^(-2) s^(-1).
If Vpr is not a number, then there must be a column in exdf_obj called Vpr with
appropriate units. A numeric value supplied here will overwrite the values in the
Vpr column of exdf_obj if it exists.

x_etr The fraction of whole-chain electron transport occurring in the mesophyll (di-
mensionless). See Equation 29 from S. von Caemmerer (2021).

ao_column_name The name of the column in exdf_obj that contains the dimensionless ratio of
solubility and diffusivity of O2 to CO2.

gamma_star_column_name

The name of the column in exdf_obj that contains the dimensionless gamma_star
values.

calculate_c4_assimilation 43

j_norm_column_name

The name of the column in exdf_obj that contains the normalized Jmax values
(with units of normalized to Jmax at 25 degrees C).

kc_column_name The name of the column in exdf_obj that contains the Michaelis-Menten con-
stant for rubisco carboxylation in microbar.

ko_column_name The name of the column in exdf_obj that contains the Michaelis-Menten con-
stant for rubisco oxygenation in mbar.

kp_column_name The name of the column in exdf_obj that contains the Michaelis-Menten con-
stant for PEP carboxylase carboxylation in microbar.

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

pcm_column_name

The name of the column in exdf_obj that contains the partial pressure of CO2
in the mesophyll, expressed in microbar.

rl_norm_column_name

The name of the column in exdf_obj that contains the normalized RL values
(with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.
vcmax_norm_column_name

The name of the column in exdf_obj that contains the normalized Vcmax values
(with units of normalized to Vcmax at 25 degrees C).

vpmax_norm_column_name

The name of the column in exdf_obj that contains the normalized Vpmax values
(with units of normalized to Vpmax at 25 degrees C).

hard_constraints

An integer numerical value indicating which types of hard constraints to place
on the values of input parameters; see below for more details.

perform_checks A logical value indicating whether to check units for the required columns. This
should almost always be TRUE. The option to disable these checks is only in-
tended to be used when fit_c4_aci calls this function, since performing these
checks many times repeatedly slows down the fitting procedure.

return_exdf A logical value indicating whether to return an exdf object. This should almost
always be TRUE. The option to return a vector is mainly intended to be used when
fit_c4_aci calls this function, since creating an exdf object to return will slow
down the fitting procedure.

Details

General Description of the Model
This function generally follows Sections 4.2.1 and 4.2.2 from S. von Caemmerer (2000), which pro-
vides equations for calculating the enzyme-limited net assimilation rate Ac, the light- and electron-
transport limited rate Aj, and the overall net assimilation rate An in a C4 leaf. (These equations are
also reproduced in S. von Caemmerer (2021), although we use the equation numbers from the 2000

44 calculate_c4_assimilation

textbook here. Also note there is a typo in Equation 22 from the 2021 paper.) The enzyme-limited
assimilation rate in this model is calculated according to Equation 4.21:

Ac = (-b - sqrt(b^2 - 4 * a * c)) / (2 * a)

where the parameters a, b, and c are determined by Equations 4.22, 4.23, and 4.24, respectively.
These equations are fairly long, so we do not reproduce them here. Similarly, the light-limited rate
Aj is also calculated according to a quadratic equation. Finally, the overall rate is calculated as the
smaller of Ac and Aj:

An = min(Ac, Aj)

An Approximation to the Full Equations

The complicated equations above can be approximiated by simpler ones. For Ac, we can use Equa-
tion 4.25:

Ac = min(Vp + gbs * PCm - RLm, Vcmax - RL)

where Vp is the rate of PEP carboxylation, gbs is the bundle sheath conductance to CO2, PCm is the
partial pressure of CO2 in the mesophyll, RLm is the rate of mitochondrial respiration occuring in the
mesophyll, Vcmax is the maximum rate of Rubisco carboxylation, and RL is the rate of mitochondrial
respiration occurring in the bundle sheath and mesophyll. Essentially, the first term in the equation
above (Vp + gbs * PCm - RLm) can be thought of as a PEP-carboxylase-limited assimilation rate Ap,
while the second term (Vcmax - RL) is a Rubisco-limited rate Ar.

The PEP carboxylation rate Vp is calculated according to Equation 4.19:

Vp = min(Pcm * Vpmax / (PCm + Kp), Vpr)

where Vpmax is the maximum rate of PEP carboxylation, Kp is a Michaelis-Menten constant for
PEP carboxylation, and Vpr is the carboxylation rate when PEP carboxylase activity is limited by
regeneration rather than carbon availability. Thus, we can see that the approximation above actually
calculates the enzyme-limited rate as the smaller of three separate assimilation rates:

Ac = min(Apc, Apr, Ar)

where Apc = Pcm * Vpmax / (PCm + Kp) + gbs * PCm - RLm is the rate due to carbon-limited PEP car-
boxylation, Apr = Vpr + gbs * PCm - RLm is the rate due to regeneration-limited PEP carboxylation,
and Ar = Vcmax - RL is the rate due to Rubisco-limited assimilation.

In the example at the end of this documentation page, we compare Apc, Apr, and Ar to Ac as calcu-
lated by Equation 4.21. From this example, it is clear that the approximation Ac = min(Apc, Apr,
Ar) is quite accurate for low values of PCm, but introduces significant errors as PCm increases. Thus,
while the approximation can be helpful for gaining an intuitive understanding of C4 photosynthesis,
it should not be used for realistic calculations.

To be more precise, the approximation is only reliable when Vcmax is much larger than gbs * Kc
* (1 + POm / Ko), which is rarely the case; otherwise, the limiting value of An at high PCm will be
smaller than Ar = Vcmax - RL. Conversely, if gbs and alpha_psii are both set to zero, then the
approximation is exact.

For Aj, the simplified version is Equation 4.45:

Aj = min(x_etr * J / 2 - RLm + gbs * PCm, (1 - x_etr) * J / 3 - RL)

where x_etr is the fraction of whole-chain electron transport occurring in the mesophyll and J is
the electron transport rate. We can therefore think of this equation as

Aj = min(Ajm, Ajbs)

calculate_c4_assimilation 45

where Ajm is the mesophyll light-limited rate and Ajbs is the bundle sheath light-limited rate. These
are given by Ajm = x_etr * J / 2 - RLm + gbs * PCm and (1 - x_etr) * J / 3 - RL As in the case
with Ac, this approximation is not exact.

Combining these two simplifications, we can see that the overall net assimilation rate can be ap-
proximated as the smallest of five potential rates:

An = min(Apc, Apr, Ar, Ajm, Ajbs).

Here it is very important to note that some of these potential rates have identical or similar depen-
dence on PCm. More specifically, Apr and Ajm have identical dependence, as do Ar and Ajbs. If
gbs is zero, all four of these rates have no dependence on PCm. Thus, from a fitting point of view,
it is not usually possible to distinguish between these potential limiting states. For this reason, it
is not advisable to fit more than one of Vcmax, Vpr, and Jmax when estimating parameters from an
experimentally measured curve.

Limiting Cases of the Approximate Equation
The bundle sheath conductance gbs is generally very small and can be ignored in a simple analysis
of the above equations. In that case, when Pcm is very high, the approximate equation for Ac
simplifies further to:

Ac = min(Vpmax - RLm, Vpr - RLm, Vcmax - RL)

Since respiration costs are also generally much smaller than the maximum enzyme activity and re-
generation rates, the enzyme-limited assimilation rate at high levels of CO2 is therefore determined
by the smaller of Vpmax, Vpr, and Vcmax. As shown in Table 4.1 of the textbook, Vpmax is typi-
cally much larger than the other two rates, so light- and CO2-saturated assimilation in C4 leaves
is usually limited by either Vpr or Vcmax. The exact limiting factor can depend on many possible
variables, such as the temperature. For example, see Wang (2008).

At lower values of PCm, enzyme-limited net assimilation is determined by CO2-limited PEP car-
boxylation according to:

An = PCm * Vpmax / Kp - RLm

where we have approximated gbs * PCm = 0 and PCm + Kp = Kp, as appropriate for small values of
Pcm. Thus, we can see that for low CO2 levels, assimilation is linearly related to PCm with a slope
of Vpmax / Kp and intercept of -RLm.

Respiration
Table 4.1 from von Caemmerer (2000) suggests that RL = 0.01 * Vcmax and RLm = 0.5 * RL. To
allow more flexibility, we allow RL to be specified independently of Vcmax, and we also consider
the ratio of RLm / RL = Rm_frac to be a variable (so that RLm is calculated from RL according to RLm
= Rm_frac * RL). If Rm_frac is set to 1, then there is no distinction between RL and RLm.

Hard constraints:
Most input parameters to the C4 assimilation model have hard constraints on their values which
are set by their biochemical or physical interpretation; for example, Vcmax cannot be negative and
alpha_psii must lie between 0 and 1. Yet, because of measurement noise, sometimes it is neces-
sary to use values outside these ranges when fitting an A-Ci curve with fit_c4_aci. To accomodate
different potential use cases, it is possible to selectively apply these hard constraints by specifying
different values of the hard_constraints input argument:

• hard_constraints = 0: Constraints are only placed on inputs that are user-supplied and can-
not be fit, such as Kc.

46 calculate_c4_assimilation

• hard_constraints = 1: Includes the same constraints as when hard_constraints is 0, with
the additional constraint that all PCm values must be non-negative.

• hard_constraints = 2: Includes the same constraints as when hard_constraints is 1,
which additional constraints on the parameters that can be fitted. For example, Vcmax_at_25
must be non-negative and alpha_psii must lie between 0 and 1.

If any input values violate any of the specified constraints, an error message will be thrown.

References

• von Caemmerer, S. "Biochemical Models of Leaf Photosynthesis" (CSIRO Publishing, 2000)
[doi:10.1071/9780643103405].

• von Caemmerer, S. "Updating the steady-state model of C4 photosynthesis." Journal of Ex-
perimental Botany 72, 6003–6017 (2021) [doi:10.1093/jxb/erab266].

• Wang, D., Portis, A. R., Jr., Moose, S. P. & Long, S. P. "Cool C4 Photosynthesis: Pyru-
vate Pi Dikinase Expression and Activity Corresponds to the Exceptional Cold Tolerance
of Carbon Assimilation in Miscanthus × giganteus." Plant Physiology 148, 557–567 (2008)
[doi:10.1104/pp.108.120709].

Value

The return value depends on the value of return_exdf:

• If return_exdf is TRUE, the return value is an exdf object with the following columns:
alpha_psii, gbs, J_at_25, Jmax_tl, J_tl, Rm_frac, Vcmax_tl, Vpmax_tl, RL_tl, RLm_tl,
Vpc, Vpr, Vp, Apc, Apr, Ap, Ar, Ajm, Ajbs, Ac, Aj, An, and c4_assimilation_msg. Most
of these are calculated as described above, while several are copies of the input arguments
with the same name. The c4_assimilation_msg is usually blank but may contain infor-
mation about any issues with the inputs. The category for each of these new columns is
calculate_c4_assimilation to indicate that they were created using this function.

• If return_exdf is FALSE, the return value is a numeric vector containing the calculated values
of An.

Examples

Simulate a C4 A-Cm curve with specified leaf temperature and photosynthetic
parameters and plot the net assimilation rate.
npts <- 101

inputs <- exdf(data.frame(
PCm = seq(0, 500, length.out = npts),
Tleaf = 25,
Qin = 1800,
total_pressure = 1,
oxygen = 21

))

inputs <- document_variables(
inputs,
c('', 'PCm', 'microbar'),

https://doi.org/10.1071/9780643103405
https://doi.org/10.1093/jxb/erab266
https://doi.org/10.1104/pp.108.120709

calculate_c4_assimilation_hyperbola 47

c('', 'Tleaf', 'degrees C'),
c('', 'Qin', 'micromol m^(-2) s^(-1)'),
c('', 'total_pressure', 'bar'),
c('', 'oxygen', 'percent')

)

inputs <- calculate_temperature_response(inputs, c4_temperature_param_vc, 'Tleaf')

assim <- calculate_c4_assimilation(inputs, 0, 0.003, 250, 1, 0.5, 40, 200, 80)

Now we can plot Ac, Apr, Apc, and Ar. From this plot, we can see that
replacing the complicated quadratic equation with a simple minimum yields
very different results. Although this approximation is helpful for
understanding C4 photosythesis, it should not be used for calculations.
lattice::xyplot(

Apr + Apc + Ar + Ac ~ inputs[, 'PCm'],
data = assim$main_data,
type = 'l',
grid = TRUE,
auto = TRUE,
ylim = c(-5, 100),
xlab = paste0('Partial pressure of CO2 in the mesophyll (', inputs$units$PCm, ')'),
ylab = paste0('Net CO2 assimilation rate (', assim$units$An, ')')

)

Likewise, we can look at Ajm, Ajbs, and Aj
lattice::xyplot(

Ajm + Ajbs + Aj ~ inputs[, 'PCm'],
data = assim$main_data,
type = 'l',
grid = TRUE,
auto = TRUE,
ylim = c(-5, 45),
xlab = paste0('Partial pressure of CO2 in the mesophyll (', inputs$units$PCm, ')'),
ylab = paste0('Net CO2 assimilation rate (', assim$units$An, ')')

)

Finally, we can see whether enzyme activity or light limits overall
assimilation. In this case, assimilation is always enzyme-limited.
lattice::xyplot(

Ac + Aj + An ~ inputs[, 'PCm'],
data = assim$main_data,
type = 'l',
grid = TRUE,
auto = TRUE,
ylim = c(-5, 40),
xlab = paste0('Partial pressure of CO2 in the mesophyll (', inputs$units$PCm, ')'),
ylab = paste0('Net CO2 assimilation rate (', assim$units$An, ')')

)

48 calculate_c4_assimilation_hyperbola

calculate_c4_assimilation_hyperbola

Calculate C4 assimilation rates using a hyperbola

Description

Calculates C4 assimilation rates based on an empirical hyperbolic model. This function can acco-
modate alternative colum names for the variables taken from Licor files in case they change at some
point in the future. This function also checks the units of each required column and will produce an
error if any units are incorrect.

Usage

calculate_c4_assimilation_hyperbola(
exdf_obj,
c4_curvature,
c4_slope,
rL,
Vmax,
ci_column_name = 'Ci',
hard_constraints = 0,
perform_checks = TRUE,
return_exdf = TRUE

)

Arguments

exdf_obj An exdf object.

c4_curvature The empirical curvature parameter of the hyperbola (dimensionless). If c4_curvature
is not a number, then there must be a column in exdf_obj called c4_curvature
with appropriate units. A numeric value supplied here will overwrite the values
in the c4_curvature column of exdf_obj if it exists.

c4_slope The empirical slope parameter of the hyperbola (mol m^(-2) s^(-1)). If c4_slope
is not a number, then there must be a column in exdf_obj called c4_slope with
appropriate units. A numeric value supplied here will overwrite the values in the
c4_slope column of exdf_obj if it exists.

rL The respiration rate, expressed in micromol m^(-2) s^(-1). If rL is not a num-
ber, then there must be a column in exdf_obj called rL with appropriate units.
A numeric value supplied here will overwrite the values in the rL column of
exdf_obj if it exists.

Vmax The maximum gross assimilation rate, expressed in micromol m^(-2) s^(-1).
If Vmax is not a number, then there must be a column in exdf_obj called Vmax
with appropriate units. A numeric value supplied here will overwrite the values
in the Vmax column of exdf_obj if it exists.

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration, expressed in micromol mol^(-1).

calculate_c4_assimilation_hyperbola 49

hard_constraints

An integer numerical value indicating which types of hard constraints to place
on the values of input parameters; see below for more details.

perform_checks A logical value indicating whether to check units for the required columns. This
should almost always be TRUE. The option to disable these checks is only in-
tended to be used when fit_c4_aci_hyperbola calls this function, since per-
forming these checks many times repeatedly slows down the fitting procedure.

return_exdf A logical value indicating whether to return an exdf object. This should almost
always be TRUE. The option to return a vector is mainly intended to be used
when fit_c4_aci_hyperbola calls this function, since creating an exdf object
to return will slow down the fitting procedure.

Details

General Description of the Model
In contrast to the mechanistic model implemented in calculate_c4_assimilation, this is a sim-
ple empirical model for C4 assimilation based on a four-parameter hyperbola. In this model, the net
CO2 assimilation rate (An) is given by

An = Ag - rL,

where Ag is the gross assimilation rate and rL is the respiration rate. In turn, Ag is given by the
smaller root of the following quadratic equation:

curvature * Ag^2 - (Vinitial + Vmax) * Ag + Vinitial * Vmax = 0,

where 0 <= curvature <= 1 is an empirical curvature factor, Vmax is the maximum gross assimi-
lation rate, and Vinitial represents the initial response of Ag to increases in the intercellular CO2
concentration (Ci):

Vinitial = slope * Ci.

Here the slope is another empirical factor.

By including the respiration offset, it is also possible to define two other quantities: the maximum
net CO2 assimilation rate (Amax) and the initial net CO2 assimilation rate (Ainitial). These are
given by

Amax = Vmax - rL

and

Ainitial = Vinitial - rL.

Overall, this model exhibits a linear response of An to Ci at low Ci, a flat plateau of An at high
Ci, and a smooth transition between these regions. The sharpess of the transition is set by the
curvature. When curvature = 1, the model simplifies to

An = min{Vinitial, Vmax} - rL = min{Ainitial, Amax}.

As the curvature increases to 1, the transition becomes smoother. When the curvature is not
zero, An approaches Amax asymptotically, and may not reach Amax at a reasonable value of Ci.

Code implementation
In this function, curvature and slope above are referred to as c4_curvature and c4_slope to
avoid any potential ambiguity with other models that may also have curvature and slope parameters.

Temperature response

50 calculate_c4_assimilation_hyperbola

Because this model does not represent any photosynthetic mechanisms, temperature response func-
tions are not applied.

Hard constraints

Most input parameters to the this model have hard constraints on their values which are set by their
interpretation; for example, Vmax cannot be negative and c4_curvature must lie between 0 and 1.
Yet, because of measurement noise, sometimes it is necessary to use values outside these ranges
when fitting an A-Ci curve with fit_c4_aci_hyperbola. To accomodate different potential use
cases, it is possible to selectively apply these hard constraints by specifying different values of the
hard_constraints input argument:

• hard_constraints = 0: No constraints are applied.

• hard_constraints = 1: Checks whether all Ci values are non-negative.

• hard_constraints = 2: Includes the same constraints as when hard_constraints is 1,
which additional constraints on the parameters that can be fitted. For example, Vmax must
be non-negative and c4_curvature must lie between 0 and 1.

If any input values violate any of the specified constraints, an error message will be thrown.

Value

The return value depends on the value of return_exdf:

• If return_exdf is TRUE, the return value is an exdf object with the following columns: Ag,
Ainitial, Amax, An, c4_curvature, c4_slope, rL, Vinitial, Vmax, and c4_assimilation_hyperbola_msg.
Most of these are calculated as described above, while several are copies of the input argu-
ments with the same name. The c4_assimilation_hyperbola_msg is usually blank but may
contain information about any issues with the inputs. The category for each of these new
columns is calculate_c4_assimilation_hyperbola to indicate that they were created us-
ing this function.

• If return_exdf is FALSE, the return value is a numeric vector containing the calculated values
of An.

Examples

Simulate a C4 A-Ci curve and plot the net assimilation rate.
npts <- 101

inputs <- exdf(data.frame(
Ci = seq(0, 1000, length.out = npts),
total_pressure = 1

))

inputs <- document_variables(
inputs,
c('', 'Ci', 'micromol mol^(-1)'),
c('', 'total_pressure', 'bar')

)

assim <- calculate_c4_assimilation_hyperbola(inputs, 0.8, 0.5, 1.0, 55)

calculate_gamma_star 51

lattice::xyplot(
Ainitial + Amax + An ~ inputs[, 'Ci'],
data = assim$main_data,
type = 'l',
grid = TRUE,
auto = TRUE,
ylim = c(-5, 65),
xlab = paste0('Intercellular CO2 concentration (', inputs$units$Ci, ')'),
ylab = paste0('Net CO2 assimilation rate (', assim$units$An, ')')

)

calculate_gamma_star Calculate Gamma_star from Rubisco specificity

Description

Calculates the CO2 compensation point in the absence of non-photorespiratory CO2 release (Gamma_star)
from the Rubisco specificity (on a molarity basis), the oxygen concentration (as a percentage), and
the temperature-dependent solubilities of CO2 and O2 in H2O.

Usage

calculate_gamma_star(
exdf_obj,
alpha_pr = 0.5,
oxygen_column_name = 'oxygen',
rubisco_specificity_column_name = 'rubisco_specificity_tl',
tleaf_column_name = 'TleafCnd'

)

Arguments

exdf_obj An exdf object.

alpha_pr The number of CO2 molecules released by the photorespiratory cycle following
each RuBP oxygenation.

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

rubisco_specificity_column_name

The name of the column in exdf_obj that contains the Rubisco specificity S_aq
at the leaf temperature; the units must be M / M, where the molarity M is moles of
solute per mole of solvent.

tleaf_column_name

The name of the column in exdf_obj that contains the leaf temperature in
degrees C.

52 calculate_gamma_star

Details

The CO2 compensation point in the absence of non-photorespiratory CO2 release (Gamma_star) is
the partial pressure of CO2 in the chloroplast at which CO2 gains from Rubisco carboxylation are
exactly balanced by CO2 losses from Rubisco oxygenation; this quantity plays a key role in many
photosynthesis calculations. One way to calculate its value is to use its definition, which can be
found in many places, such as Equation 2.17 from von Caemmerer (2000):

Gamma_star = alpha_pr * O / S,

where O is the partial pressure (or mole fraction) of oxygen in the chloroplast, S is the Rubisco
specificity on a gas basis, and alpha_pr is the number of CO2 molecules released by the photores-
piratory cycle following each RuBP oxygenation (usually assumed to be 0.5).

The Rubisco specificity is often measured from an aqueous solution where the concentrations of
O2 and CO2 are specified as molarities (moles of dissolved CO2 or O2 per mole of H2O). In this
context, the equation above becomes

Gamma_star_aq = alpha_pr * O_aq / S_aq,

where Gamma_star_aq and O_aq are the molarities of CO2 and O2 corresponding to Gamma_star
and O under the measurement conditions and S_aq is the specificity on a molarity basis.

Henry’s law can be used to relate these two versions of the equation; Henry’s law states that the
concentration of dissolved gas is proportional to the partial pressure of that gas outside the solu-
tion. The proportionality factor H is called Henry’s constant (or sometimes the solubility), and its
value depends on the temperature, gas species, and other factors. Using Henry’s law, we can write
Gamma_star_aq = Gamma_star_aq * H_CO2 and O = O_aq * H_O2, where H_CO2 is Henry’s constant
for CO2 dissolved in H2O and H_O2 is Henry’s constant for O2 dissolved in H2O. With these re-
placements, we can re-express the equation above as:

Gamma_star / H_CO2 = alpha_pr * (O / H_O2) / S_aq

Solving for Gamma_star, we see that:

Gamma_star = (alpha_pr * O / S_aq) * (H_CO2 / H_O2).

In other words, both the Rubisco specificity (as measured on a molarity basis) and the ratio of the
two Henry’s constants (H_CO2 / H_O2) play a role in determining Gamma_star. This equation also
shows that it is possible to relate S (the specificity on a gas concentration basis) and S_aq as S =
S_aq * H_O2 / H_CO2.

The values of H_O2 and H_CO2 can be calculated from the temperature using Equation 18 from
Tromans (1998) and Equation 4 from Carroll et al. (1991), respectively.

In calculate_gamma_star, it is assumed that the value of specificity S_aq was was measured
or otherwise determined at the leaf temperature; the leaf temperature is only used to determine
the values of the two Henry’s constants. Sometimes it is necessary to calculate the temperature-
dependent value of the specificity using an Arrhenius equation; this can be accomplished via the
calculate_temperature_response_arrhenius function from PhotoGEA.

Finally, it is important to note that Gamma_star can also be directly calculated using an Arrhenius
equation, rather than using the oxygen concentration and the specificity. The best approach for
determining a value of Gamma_star in any particular situation will generally depend on the available
information and the measurement conditions.

References:

von Caemmerer, S. "Biochemical Models of Leaf Photosynthesis." (CSIRO Publishing, 2000)
[doi:10.1071/9780643103405].

https://doi.org/10.1071/9780643103405

calculate_gamma_star 53

Carroll, J. J., Slupsky, J. D. and Mather, A. E. "The Solubility of Carbon Dioxide in Water at Low
Pressure." Journal of Physical and Chemical Reference Data 20, 1201–1209 (1991) [doi:10.1063/
1.555900].

Tromans, D. "Temperature and pressure dependent solubility of oxygen in water: a thermodynamic
analysis." Hydrometallurgy 48, 327–342 (1998) [doi:10.1016/S0304386X(98)000073].

Value

An exdf object based on exdf_obj that includes the following additional columns, calculated as
described above: Gamma_star_tl (the value of Gamma_star at the leaf temperature), H_CO2, H_O2,
and specificity_gas_basis. There are many choices for expressing Henry’s constant values;
here we express them as molalities per unit of pressure: (mol solute / kg H2O) / Pa. The category
for each of these new columns is calculate_gamma_star to indicate that they were created using
this function.

Examples

Example 1: Calculate Gamma_star for each point in a gas exchange log file
licor_data <- read_gasex_file(

PhotoGEA_example_file_path('licor_for_gm_site11.xlsx'),
)

licor_data <- get_oxygen_from_preamble(licor_data)

licor_data <- set_variable(
licor_data,
'rubisco_specificity_tl',
'M / M',
value = 90

)

licor_data <- calculate_gamma_star(licor_data)

licor_data[, c('specificity_gas_basis', 'oxygen', 'Gamma_star_tl'), TRUE]

Example 2: Calculate Gamma_star at 21% and 2% oxygen for a Rubisco whose
specificity was measured to be 100 M / M at 25 degrees C.

exdf_obj <- calculate_gamma_star(
exdf(
data.frame(

oxygen = c(2, 21),
rubisco_specificity_tl = c(100, 100),
TleafCnd = c(25, 25)

),
data.frame(

oxygen = 'percent',
rubisco_specificity_tl = 'M / M',
TleafCnd = 'degrees C',
stringsAsFactors = FALSE

)

https://doi.org/10.1063/1.555900
https://doi.org/10.1063/1.555900
https://doi.org/10.1016/S0304-386X%2898%2900007-3

54 calculate_gamma_star

)
)

exdf_obj[, c('specificity_gas_basis', 'oxygen', 'Gamma_star_tl'), TRUE]

Example 3: Here we recreate Figure 1 from Long, S. P. "Modification of the
response of photosynthetic productivity to rising temperature by atmospheric
CO2 concentrations: Has its importance been underestimated?" Plant, Cell and
Environment 14, 729–739 (1991). This is a fairly complicated example where
Arrhenius constants for Rubisco parameters are determined by fitting
published data and then used to determine the Rubisco specificity across a
range of temperatures.

Specify leaf temperature and oxygen concentration
leaf_temp <- seq(0, 50, by = 0.1)

exdf_obj <- exdf(
data.frame(
oxygen = rep_len(21, length(leaf_temp)),
TleafCnd = leaf_temp

),
data.frame(

oxygen = 'percent',
TleafCnd = 'degrees C',
stringsAsFactors = FALSE

)
)

Get Arrhenius constants for Rubisco parameters using data from Table 2 of
Jordan, D. B. and Ogren, W. L. "The CO2/O2 specificity of ribulose
1,5-bisphosphate carboxylase/oxygenase" Planta 161, 308–313 (1984).
rubisco_info <- data.frame(

temperature = c(7, 12, 15, 25, 30, 35),
Vc = c(0.13, 0.36, 0.63, 1.50, 1.90, 2.90),
Kc = c(2, 3, 4, 11, 14, 19),
Ko = c(550, 510, 510, 500, 600, 540),
Vo = c(0.24, 0.48, 0.69, 0.77, 1.1, 1.3)

)

rubisco_info$x <- 1 / (8.314e-3 * (rubisco_info$temperature + 273.15))

lm_Vc <- stats::lm(log(Vc) ~ x, data = rubisco_info)
lm_Kc <- stats::lm(log(Kc) ~ x, data = rubisco_info)
lm_Ko <- stats::lm(log(Ko) ~ x, data = rubisco_info)
lm_Vo <- stats::lm(log(Vo) ~ x, data = rubisco_info)

arrhenius_info <- list(
Vc = list(

c = as.numeric(lm_Vc$coefficients[1]),
Ea = -as.numeric(lm_Vc$coefficients[2]),
units = 'micromol / mg / min'

),
Kc = list(

calculate_gamma_star 55

c = as.numeric(lm_Kc$coefficients[1]),
Ea = -as.numeric(lm_Kc$coefficients[2]),
units = 'microM'

),
Ko = list(
c = as.numeric(lm_Ko$coefficients[1]),
Ea = -as.numeric(lm_Ko$coefficients[2]),
units = 'microM'

),
Vo = list(
c = as.numeric(lm_Vo$coefficients[1]),
Ea = -as.numeric(lm_Vo$coefficients[2]),
units = 'micromol / mg / min'

)
)

Get temperature-dependent values of Rubisco parameters using Arrhenius
equations
exdf_obj <- calculate_temperature_response_arrhenius(

exdf_obj,
arrhenius_info

)

Calculate temperature-dependent specificity values
exdf_obj <- set_variable(

exdf_obj,
'rubisco_specificity_tl',
units = 'M / M',
value = exdf_obj[, 'Vc'] * exdf_obj[, 'Ko'] /

(exdf_obj[, 'Vo'] * exdf_obj[, 'Kc'])
)

Calculate Gamma_star and Henry constants
exdf_obj <- calculate_gamma_star(exdf_obj)

Make a plot similar to Figure 1 from Long (1991)
lattice::xyplot(

rubisco_specificity_tl + H_CO2 / H_O2 ~ TleafCnd,
data = exdf_obj$main_data,
auto = TRUE,
grid = TRUE,
type = 'l',
xlim = c(0, 50),
ylim = c(0, 250),
xlab = "Temperature [degrees C]",
ylab = "Rubisco specificity or ratio of Henry's constants (H_CO2 / H_O2)\n[dimensionless]"

)

We can also make a plot of Gamma_star across this range
lattice::xyplot(

Gamma_star_tl ~ TleafCnd,
data = exdf_obj$main_data,
auto = TRUE,

56 calculate_gas_properties

grid = TRUE,
type = 'l',
xlim = c(0, 50),
ylim = c(0, 120),
xlab = "Temperature [degrees C]",
ylab = paste('Gamma_star at leaf temperature [', exdf_obj$units$Gamma_star_tl, ']')

)

calculate_gas_properties

Calculate gas properties that are typically not included in Licor files

Description

Calculates gas properties that are typically not included in Licor files. This function can accomodate
alternative column names for the variables taken from the Licor file in case they change at some
point in the future. This function also checks the units of each required column and will produce an
error if any units are incorrect.

Usage

calculate_gas_properties(
licor_exdf,
a_column_name = 'A',
ca_column_name = 'Ca',
total_pressure_column_name = 'total_pressure',
e_column_name = 'E',
gbw_column_name = 'gbw',
gsw_column_name = 'gsw',
h2o_s_column_name = 'H2O_s',
tleaf_column_name = 'TleafCnd'

)

Arguments

licor_exdf An exdf object representing data from a Licor gas exchange measurement sys-
tem.

a_column_name The name of the column in licor_exdf that contains the net assimilation in
micromol m^(-2) s^(-1).

ca_column_name The name of the column in licor_exdf that contains the ambient CO2 concen-
tration in the chamber in micromol mol^(-1).

total_pressure_column_name

The name of the column in licor_exdf that contains the total pressure in bar.

e_column_name The name of the column in licor_exdf that contains the transpiration rate in
mol m^(-2) s^(-1).

calculate_gas_properties 57

gbw_column_name

The name of the column in licor_exdf that contains the boundary layer con-
ductance to water vapor in mol m^(-2) s^(-1).

gsw_column_name

The name of the column in licor_exdf that contains the stomatal conductance
to water vapor in mol m^(-2) s^(-1).

h2o_s_column_name

The name of the column in licor_exdf that contains the sample cell H2O con-
centration in mmol mol^(-1).

tleaf_column_name

The name of the column in licor_exdf that contains the leaf temperature in
degrees C.

Details

By default, a Licor file provides the following gas concentrations and conductances:

• Water vapor conductance to diffusion through the stomata (gsw).

• Water vapor conductance to diffusion through the boundary layer (gbw).

• Water vapor conductance to diffusion from the leaf’s intercellular spaces to the ambient air;
in other words, the total conductance to water vapor (gtw).

• Water vapor concentration in the sample cell (H2O_s).

• CO2 conductance to diffusion from the leaf’s intercellular spaces to the ambient air; in other
words, the total conductance to CO2 (gtc).

• CO2 concentration in the sample cell, corrected for any chamber leaks (Ca).

• CO2 concentration in the leaf’s intercellular spaces (Ci).

However, it is sometimes helpful to know the "missing" conductances and concentrations, for exam-
ple, when calculating mesophyll conductances or Ball-Berry parameters. This function adds these
missing values, along with a few related water vapor properties:

• Water vapor concentration at the sample surface (H2O_surf).

• Water vapor concentration in the leaf’s intercellular spaces (H2O_i).

• Saturation water vapor pressure at the leaf temperature (SVPleaf).

• Relative humidity at the leaf surface (RHleaf).

• CO2 conductance to diffusion through the stomata (gsc).

• CO2 conductance to diffusion through the boundary layer (gbc).

• CO2 concentration at the leaf surface (Cs).

Equations used for these calculations

The equations used to calculate these quantities can be found in the Licor Li-6800 manual (Ap-
pendix C), which relies heavily on Appendix 2 of the following paper: von Caemmerer, S. & Far-
quhar, G. D. "Some relationships between the biochemistry of photosynthesis and the gas exchange
of leaves" Planta 153, 376–387 (1981) [doi:10.1007/BF00384257]

Equation C-79 in the Licor manual describes the total flow of water vapor from the leaf interior to
the ambient air using gtw, H2O_i, H2O_s, and the transpiration rate E:

https://doi.org/10.1007/BF00384257

58 calculate_gas_properties

(1) gtw = E * (1000 - (H2O_i + H2O_s) / 2) / (H2O_i - H2O_s)

In steady-state conditions, the flux of H2O molecules across any portion of the gas flow is identical
to E, so we can also apply this equation to the flow of water vapor from the leaf surface to the
ambient air:

(2) gbw = E * (1000 - (H2O_surf + H2O_s) / 2) / (H2O_surf - H2O_s)

Equation (2) can be solved for H2O_surf:

(3) H2O_surf = (E * (1000 - H2O_s / 2) + gbw * H2O_s) / (gbw + E / 2)

Equation C-70 in the Licor manual describes how to calculate saturation water vapor pressure from
air temperature. At the leaf surface, the air temperature should be the same as the leaf temperature
(Tleaf; in degrees C), so we can determine SVPleaf using Equation C-70 as follows:

(4) SVPleaf = 0.6135 * e^((17.502 * Tleaf) / (240.97 + Tleaf))

For gas exchange measurements, we assume that water vapor is saturated in the leaf’s intecellular
spaces, so we can determine H2O_i from SVPleaf and the relationship between partial pressure and
molar gas concentration:

(5) H2O_i = SVPleaf / Pcham = SVPleaf / (Pa + deltaPcham)

where Pcham is th total pressure in the sample chamber, Pa is the atmospheric pressure, and deltaPcham
is the chamber overpressure. These are related by Pcham = Pa + deltaPcham.

The relative humidity at the leaf surface RHleaf can be determined from H2O_surf and SVPleaf
using the definitions of relative humidity and partial pressure:

(6) RHleaf = Pwl / SVPleaf = H2O_surf * (Pa + deltaPcham) / SVPleaf

where Pwl, the partial pressure of H2O at the leaf surface, is given by H2O_surf * Pcham.

The CO2 conductances through the stomata and boundary layer can be determined from the cor-
responding H2O conductances using the ratios of molecular diffusivities for the two molecules, as
explained in the vicinty of Equation C-106 in the Licor manual:

(7) gsc = gsw / 1.6

(8) gbc = gbw / 1.37

Equation C-105 in the Licor manual describes the flow of CO2 from the ambient air to the intercel-
lular spaces:

(9) C_i = ((gtc - E / 2) * Ca - A) / (gtc + E / 2)

where we have replaced C_s (the CO2 concentration in the sample chamber) with Ca for clarity. In
steady state conditions, the flows of H2O and CO2 are identical to E and A, respectively, so we can
also apply this equation to the flow of CO2 from the ambient air to the leaf surface:

(10) Csurface = ((gbc - E / 2) * Ca - A) / (gbc + E / 2)

This function uses Equations (3)-(8) and (10) to calculate the desired values.

Value

An exdf object based on licor_exdf that includes the following additional columns, calculated as
described above: H2O_surf, SVPleaf, H2O_i, RHleaf, gsc, gbc, and Csurface. The category for
each of these new columns is calculate_gas_properties to indicate that they were created using
this function.

calculate_gm_busch 59

Examples

Read an example Licor file included in the PhotoGEA package, calculate the
total pressure, and calculate additional gas properties.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_total_pressure(licor_file)

licor_file <- calculate_gas_properties(licor_file)

licor_file$units$RHleaf # View the units of the new `RHleaf` column
licor_file$categories$RHleaf # View the category of the new `RHleaf` column
licor_file[,'RHleaf'] # View the values of the new `RHleaf` column

calculate_gm_busch Calculate mesophyll conductance to CO2 diffusion

Description

Calculates mesophyll conductance to CO2 diffusion (gmc) from combined gas exchange and isotope
discrimination measurements as described in Busch et al. (2020). This function can accomodate
alternative colum names for the variables taken from exdf_obj; it also checks the units of each
required column and will produce an error if any units are incorrect.

Usage

calculate_gm_busch(
exdf_obj,
e = -3,
f = 11,
e_star_equation = 20,
gm_type = 'dis',
a_bar_column_name = 'a_bar',
a_column_name = 'A',
ci_column_name = 'Ci',
co2_s_column_name = 'CO2_s',
csurface_column_name = 'Csurface',
delta_c13_r_column_name = 'delta_C13_r',
delta_obs_growth_column_name = 'Delta_obs_growth',
delta_obs_tdl_column_name = 'Delta_obs_tdl',
gamma_star_column_name = 'Gamma_star_tl',
rl_column_name = 'RL',
total_pressure_column_name = 'total_pressure',
t_column_name = 't'

)

60 calculate_gm_busch

Arguments

exdf_obj An exdf object.

e The isotopic fractionation during day respiration in ppt.

f The isotopic fractionation during photorespiration in ppt.
e_star_equation

The equation from Busch et al. (2020) to use for calculating e_star; must be
19 or 20.

gm_type Determines whether day respiration is assumed to be isotopically connected to
the CBB cycle (gm_type = 'con') or isotopically disconnected from the CBB
cycle (gm_type = 'dis'). This choice will determine which equations are used
to calculate mesophyll conductance; when gm_type is 'con', Equations 2 and
21 will be used; otherwise, Equations 13 and 22 will be used.

a_bar_column_name

The name of the column in exdf_obj that contains the weighted isotopic frac-
tionation across the boundary layer and stomata in ppt. Values of a_bar are
typically calculated using calculate_ternary_correction.

a_column_name The name of the column in exdf_obj that contains the net CO2 assimilation rate
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration in micromol mol^(-1).

co2_s_column_name

The name of the column in exdf_obj that contains the CO2 concentration in the
sample line (outgoing air) in micromol mol^(-1).

csurface_column_name

The name of the column in exdf_obj that contains the CO2 concentration at the
leaf surface in micromol mol^(-1). Values of Csurface are typically calculated
using calculate_gas_properties.

delta_c13_r_column_name

The name of the column in exdf_obj that contains the CO2 isotope ratio in the
reference line (incoming air) in ppt.

delta_obs_growth_column_name

The name of the column in exdf_obj that contains the observed discrimina-
tion under the typical CO2 concentration in the plant’s environment during its
growth (in ppt). This is only required when using Equation 20 for e_star (see
e_star_equation).

delta_obs_tdl_column_name

The name of the column in exdf_obj that contains the observed isotope dis-
crimination values in ppt.

gamma_star_column_name

The name of the column in exdf_obj that contains the chloroplastic CO2 con-
centration at which CO2 gains from Rubisco carboxylation are exactly balanced
by CO2 losses from Rubisco oxygenation, at leaf temperature, expressed in
micromol mol^(-1). Values of Gamma_star at leaf temperature are typically
calculated using calculate_gamma_star or calculate_temperature_response.

calculate_gm_busch 61

rl_column_name The name of the column in exdf_obj that contains the rate of non-photorespiratory
CO2 release in the light, in micromol m^(-2) s^(-1).

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.

t_column_name The name of the column in exdf_obj that contains the ternary correction factor
(dimensionless). Values of t are typically calculated using calculate_ternary_correction

Details

This function uses a model for photosynthetic discrimination against 13C in C3 plants to determine
mesophyll conductance values as described in Busch et al. (2020). That paper provides two alternate
ways to calculate e_star, and two alternate ways to calculate mesophyll conductance gmc; this
function allows the user to choose between them. In more detail:

• Isotopic fractionation due to day respiration (e_prime = e + e_star) is calculated with e_star
given by either Equation 19 or 20 depending on the value of e_star_equation.

• Isotopic discrimination assuming infinite mesophyll conductance (Delta_i) is calculated by
setting Cc = Ci in either Equation 2 or 13, depending on the value of gm_type.

• Mesophyll conductance to CO2 (gmc) is calculated using either Equation 21 or 22, depending
on the value of gm_type.

Note 1: Setting e_star_equation = 19 and gm_type = 'con' should produce identical or similar
results to calculate_gm_ubierna.

Note 2: Using e_star_equation = 20 and gm_type = 'dis' is expected to be more accurate,
as discussed in Busch et al. (2020); however, be aware that this method requires a value for
Delta_obs_growth, which may not always be available unless it is intentionally measured.

References:

Busch, F. A., Holloway-Phillips, M., Stuart-Williams, H. and Farquhar, G. D. "Revisiting carbon
isotope discrimination in C3 plants shows respiration rules when photosynthesis is low." Nat. Plants
6, 245–258 (2020) [doi:10.1038/s4147702006066].

Value

An exdf object based on exdf_obj that includes the following additional columns, calculated as
described above: e_prime, e_star, Delta_i, and gmc, as well as the values of a few intermediate
calculations such as Delta_i_term_1 and Delta_i_term_2. The category for each of these new
columns is calculate_gm_busch to indicate that they were created using this function.

Examples

In this example we load gas exchange and TDL data files, calibrate the TDL
data, pair the data tables together, and then calculate mesophyll conductance

Read the TDL data file, making sure to interpret the time zone as US Central
time
tdl_data <- read_gasex_file(

PhotoGEA_example_file_path('tdl_for_gm.dat'),
'TIMESTAMP',

https://doi.org/10.1038/s41477-020-0606-6

62 calculate_gm_busch

list(tz = 'America/Chicago')
)

Identify cycles within the TDL data
tdl_data <- identify_tdl_cycles(

tdl_data,
valve_column_name = 'valve_number',
cycle_start_valve = 20,
expected_cycle_length_minutes = 2.7,
expected_cycle_num_valves = 9,
timestamp_colname = 'TIMESTAMP'

)

Use reference tanks to calibrate the TDL data
processed_tdl <- consolidate(by(

tdl_data,
tdl_data[, 'cycle_num'],
process_tdl_cycle_erml,
noaa_valve = 2,
calibration_0_valve = 20,
calibration_1_valve = 21,
calibration_2_valve = 23,
calibration_3_valve = 26,
noaa_cylinder_co2_concentration = 294.996,
noaa_cylinder_isotope_ratio = -8.40,
calibration_isotope_ratio = -11.505

))

Read the gas exchange data, making sure to interpret the time stamp in the US
Central time zone
licor_data <- read_gasex_file(

PhotoGEA_example_file_path('licor_for_gm_site11.xlsx'),
'time',
list(tz = 'America/Chicago')

)

Get TDL valve information from Licor file name; for this TDL system, the
reference valve is 12 when the sample valve is 11
licor_data <- get_sample_valve_from_filename(licor_data, list('11' = 12))

Get oxygen info from the Licor file preamble (needed for calculate_gamma_star)
licor_data <- get_oxygen_from_preamble(licor_data)

Pair the Licor and TDL data by locating the TDL cycle corresponding to each
Licor measurement
licor_data <- pair_gasex_and_tdl(licor_data, processed_tdl$tdl_data)

Calculate total pressure (needed for calculate_gas_properties)
licor_data <- calculate_total_pressure(licor_data)

Calculate Csurface (needed for calculate_ternary_correction)
licor_data <- calculate_gas_properties(licor_data)

calculate_gm_busch 63

Calculate ternary correction
licor_data <- calculate_ternary_correction(licor_data)

Set Rubisco specificity (needed for calculate_gamma_star)
licor_data <- set_variable(

licor_data,
'rubisco_specificity_tl',
'M / M',
value = 90

)

Calculate Gamma_star (needed for calculate_gm_busch)
licor_data <- calculate_gamma_star(licor_data)

Calculate isotope discrimination (needed for calculate_gm_busch)
licor_data <- calculate_isotope_discrimination(licor_data)

Set Delta_obs_growth to the average of Delta_obs_tdl over the first 6 points,
where the ambient CO2 concentration was set to the atmospheric value (420 ppm)
(needed for calculate_gm_busch).
licor_data <- set_variable(

licor_data,
'Delta_obs_growth',
'ppt',
value = mean(licor_data[1:6, 'Delta_obs_tdl'])

)

Set respiration (needed for calculate_gm_busch)
licor_data <- set_variable(

licor_data,
'RL',
'micromol m^(-2) s^(-1)',
value = 1.2

)

Calculate mesophyll conductance
licor_data <- calculate_gm_busch(licor_data)

Calculate Cc using the new values of mesophyll conductance
licor_data <- calculate_temperature_response(

licor_data,
c3_temperature_param_flat['gmc_norm']

)

licor_data <- set_variable(
licor_data,
'gmc_at_25',
units = licor_data$units$gmc,
value = licor_data[, 'gmc']

)

licor_data <- apply_gm(licor_data)

64 calculate_gm_ubierna

View some of the results
licor_data[, c('replicate', 'CO2_s', 'Delta_obs_tdl', 'e_prime', 'gmc', 'Ci', 'Cc')]

calculate_gm_ubierna Calculate mesophyll conductance to CO2 diffusion

Description

Calculates mesophyll conductance to CO2 diffusion (gmc) from combined gas exchange and isotope
discrimination measurements as described in Ubierna et al. (2018). This function can accomodate
alternative colum names for the variables taken from exdf_obj; it also checks the units of each
required column and will produce an error if any units are incorrect.

Usage

calculate_gm_ubierna(
exdf_obj,
e = -3,
f = 11,
a_bar_column_name = 'a_bar',
a_column_name = 'A',
ci_column_name = 'Ci',
co2_s_column_name = 'CO2_s',
csurface_column_name = 'Csurface',
delta_c13_r_column_name = 'delta_C13_r',
delta_obs_tdl_column_name = 'Delta_obs_tdl',
gamma_star_column_name = 'Gamma_star_tl',
rl_column_name = 'RL',
total_pressure_column_name = 'total_pressure',
t_column_name = 't'

)

Arguments

exdf_obj An exdf object.

e The isotopic fractionation during day respiration in ppt.

f The isotopic fractionation during photorespiration in ppt.
a_bar_column_name

The name of the column in exdf_obj that contains the weighted isotopic frac-
tionation across the boundary layer and stomata in ppt. Values of a_bar are
typically calculated using calculate_ternary_correction.

a_column_name The name of the column in exdf_obj that contains the net CO2 assimilation rate
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration in micromol mol^(-1).

calculate_gm_ubierna 65

co2_s_column_name

The name of the column in exdf_obj that contains the CO2 concentration in the
sample line (outgoing air) in micromol mol^(-1).

csurface_column_name

The name of the column in exdf_obj that contains the CO2 concentration at the
leaf surface in micromol mol^(-1). Values of Csurface are typically calculated
using calculate_gas_properties.

delta_c13_r_column_name

The name of the column in exdf_obj that contains the CO2 isotope ratio in the
reference line (incoming air) in ppt.

delta_obs_tdl_column_name

The name of the column in exdf_obj that contains the observed isotope dis-
crimination values in ppt.

gamma_star_column_name

The name of the column in exdf_obj that contains the chloroplastic CO2 con-
centration at which CO2 gains from Rubisco carboxylation are exactly balanced
by CO2 losses from Rubisco oxygenation, at leaf temperature, expressed in
micromol mol^(-1). Values of Gamma_star at leaf temperature are typically
calculated using calculate_gamma_star or calculate_temperature_response.

rl_column_name The name of the column in exdf_obj that contains the rate of non-photorespiratory
CO2 release in the light, in micromol m^(-2) s^(-1).

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.

t_column_name The name of the column in exdf_obj that contains the ternary correction factor
(dimensionless). Values of t are typically calculated using calculate_ternary_correction

Details

This function uses the comprehensive model for photosynthetic discrimination against 13C in C3
plants to calculate mesophyll conductance, as described in Ubierna et al. (2018). In particular, the
following equations from that source are implemented in the code:

• Isotopic fractionation due to day respiration (e_prime) is calculated using Equations 28 and
30.

• Isotopic discrimination due to photorespiration (Delta_f), due to day respiration (Delta_e),
and that would occur if Ci = Cc in the absence of any respiratory fractionation (Delta_i) are
calculated using Equations 34, 33, and 31, respectively.

• Mesophyll conductance to CO2 diffusion (gmc) is calculated using Equation 44. This equa-
tion is broken up into two factors called Delta_difference and equation_top which are
separately returned in the output from calculate_gm_ubierna.

For an alternative method for calculating gmc, see calculate_gm_busch.

References:

Ubierna, N., Holloway-Phillips, M.-M. and Farquhar, G. D. "Using Stable Carbon Isotopes to Study
C3 and C4 Photosynthesis: Models and Calculations." in Photosynthesis: Methods and Protocols
(ed. Covshoff, S.) 155–196 (Springer, 2018) [doi:10.1007/9781493977864_10].

https://doi.org/10.1007/978-1-4939-7786-4_10

66 calculate_gm_ubierna

Value

An exdf object based on exdf_obj that includes the following additional columns, calculated as
described above: e_prime, Delta_i, Delta_e, Delta_f, Delta_difference, equation_top, and
gmc. The category for each of these new columns is calculate_gm_ubierna to indicate that they
were created using this function.

Examples

In this example we load gas exchange and TDL data files, calibrate the TDL
data, pair the data tables together, and then calculate mesophyll conductance

Read the TDL data file, making sure to interpret the time zone as US Central
time
tdl_data <- read_gasex_file(

PhotoGEA_example_file_path('tdl_for_gm.dat'),
'TIMESTAMP',
list(tz = 'America/Chicago')

)

Identify cycles within the TDL data
tdl_data <- identify_tdl_cycles(

tdl_data,
valve_column_name = 'valve_number',
cycle_start_valve = 20,
expected_cycle_length_minutes = 2.7,
expected_cycle_num_valves = 9,
timestamp_colname = 'TIMESTAMP'

)

Use reference tanks to calibrate the TDL data
processed_tdl <- consolidate(by(

tdl_data,
tdl_data[, 'cycle_num'],
process_tdl_cycle_erml,
noaa_valve = 2,
calibration_0_valve = 20,
calibration_1_valve = 21,
calibration_2_valve = 23,
calibration_3_valve = 26,
noaa_cylinder_co2_concentration = 294.996,
noaa_cylinder_isotope_ratio = -8.40,
calibration_isotope_ratio = -11.505

))

Read the gas exchange data, making sure to interpret the time stamp in the US
Central time zone
licor_data <- read_gasex_file(

PhotoGEA_example_file_path('licor_for_gm_site11.xlsx'),
'time',
list(tz = 'America/Chicago')

)

calculate_gm_ubierna 67

Get TDL valve information from Licor file name; for this TDL system, the
reference valve is 12 when the sample valve is 11
licor_data <- get_sample_valve_from_filename(licor_data, list('11' = 12))

Get oxygen info from the Licor file preamble (needed for calculate_gamma_star)
licor_data <- get_oxygen_from_preamble(licor_data)

Pair the Licor and TDL data by locating the TDL cycle corresponding to each
Licor measurement
licor_data <- pair_gasex_and_tdl(licor_data, processed_tdl$tdl_data)

Calculate total pressure (needed for calculate_gas_properties)
licor_data <- calculate_total_pressure(licor_data)

Calculate Csurface (needed for calculate_ternary_correction)
licor_data <- calculate_gas_properties(licor_data)

Calculate ternary correction
licor_data <- calculate_ternary_correction(licor_data)

Set Rubisco specificity (needed for calculate_gamma_star)
licor_data <- set_variable(

licor_data,
'rubisco_specificity_tl',
'M / M',
value = 90

)

Calculate Gamma_star (needed for calculate_gm_ubierna)
licor_data <- calculate_gamma_star(licor_data)

Calculate isotope discrimination (needed for calculate_gm_ubierna)
licor_data <- calculate_isotope_discrimination(licor_data)

Set respiration (needed for calculate_gm_ubierna)
licor_data <- set_variable(

licor_data,
'RL',
'micromol m^(-2) s^(-1)',
value = 1.2

)

Calculate mesophyll conductance
licor_data <- calculate_gm_ubierna(licor_data)

Calculate Cc using the new values of mesophyll conductance
licor_data <- calculate_temperature_response(

licor_data,
c3_temperature_param_flat['gmc_norm']

)

licor_data <- set_variable(
licor_data,

68 calculate_isotope_discrimination

'gmc_at_25',
units = licor_data$units$gmc,
value = licor_data[, 'gmc']

)

licor_data <- apply_gm(licor_data)

View some of the results
licor_data[, c('replicate', 'CO2_s', 'Delta_obs_tdl', 'gmc', 'Ci', 'Cc')]

calculate_isotope_discrimination

Calculate photosynthetic isotope discrimination

Description

Calculates photosynthetic carbon isotope discrimination from combined gas exchange and tunable
diode laser absorption spectroscopy measurements.

Usage

calculate_isotope_discrimination(
exdf_obj,
co2_r_column_name = 'CO2_r',
co2_s_column_name = 'CO2_s',
delta_C13_r_column_name = 'delta_C13_r',
delta_C13_s_column_name = 'delta_C13_s',
h2o_r_column_name = 'H2O_r',
h2o_s_column_name = 'H2O_s',
tdl_12C_r_column_name = 'calibrated_12c_r',
tdl_12C_s_column_name = 'calibrated_12c_s'

)

Arguments

exdf_obj An exdf object representing combined data from a gas exchange + isotope dis-
crimination measurement system. Typically exdf_obj is produced by calling
pair_gasex_and_tdl.

co2_r_column_name

The name of the column in exdf_obj that contains the CO2 concentration in
the gas exchange reference line (incoming air) as measured by the gas exchange
system in micromol mol^(-1).

co2_s_column_name

The name of the column in exdf_obj that contains the CO2 concentration in the
gas exchange sample line (outgoing air) in micromol mol^(-1).

delta_C13_r_column_name

The name of the column in exdf_obj that contains the CO2 isotope ratio in the
gas exchange reference line (incoming air) in ppt.

calculate_isotope_discrimination 69

delta_C13_s_column_name

The name of the column in exdf_obj that contains the CO2 isotope ratio in the
gas exchange sample line (outgoing air) in ppt.

h2o_r_column_name

The name of the column in exdf_obj that contains the H2O concentration in
the gas exchange reference line (incoming air) as measured by the gas exchange
system in mmol mol^(-1).

h2o_s_column_name

The name of the column in exdf_obj that contains the H2O concentration in
the gas exchange sample line (outgoing air) as measured by the gas exchange
system in mmol mol^(-1).

tdl_12C_r_column_name

The name of the column in exdf_obj that contains the 12CO2 concentration in
the gas exchange reference line (incoming air) as measured by the TDL in ppm.

tdl_12C_s_column_name

The name of the column in exdf_obj that contains the 12CO2 concentration in
the gas exchange sample line (outgoing air) as measured by the TDL in ppm.

Details

As described in Ubierna et al. (2018), photosynthetic 13C discrimination can be determined from
combined gas exchange and tunable diode laser (TDL) absorption spectroscopy measurements ac-
cording to:

Delta_obs = xsi * (delta_out - delta_in) / (1 + delta_out - xsi * (delta_out - delta_in)),

where Delta_obs is the observed discrimination, delta_in and delta_out are the carbon isotope
ratios in dry air flowing in and out of the leaf chamber. xsi is given by

xsi = C_in / (C_in - C_out),

where C_in and C_out are the mole fractions of 12CO2 in dry air flowing in and out of the leaf
chamber. (See equations 5 and 6 in Ubierna et al. (2018)).

In practice, there are multiple options for calculating Delta_obs and xsi because CO2 concentra-
tions are measured by both the gas exchange system and the TDL. For example, we can alternately
calculate xsi as xsi_tdl = C_in_tdl / (C_in_tdl - C_out_tdl) or xsi_gasex = C_in_gasex /
(C_in_gasex - C_out_gasex). Likewise, we can also calculate Delta_obs_tdl using xsi_tdl or
Delta_obs_gasex using xsi_gasex. The TDL values are typically preferred in subsequent calcu-
lations, but it can be useful to compare the two different versions as a consistency check; the TDL
and gas exchange values should be similar to each other.

There are two subtelties associated with xsi_gasex. One is that the gas exchange system generally
measures the total CO2 concentration, not just the 12CO2 concentration. Typically there is much
less 13CO2 than 12CO2 so this is usually not a large source of error.

The other issue is that the gas exchange system generally measures CO2 concentrations in wet air.
Thus, it is important to use "corrected" values of CO2 concentrations that account for the "dilution
effect" due to water vapor in the air. This effect is described in the Licor LI-6400 manual: "This is
a correction we don’t do, at least when computing CO2 concentration in the LI-6400. The dilution
effect is simply this: as you add molecules of a gas (water vapor, for example) to a mixture, the
fraction of that mixture that is made up of something else (mole fraction of CO2, for instance) has
to decrease, since the total number of molecules in the mixture has increased. Now for an airsteam

70 calculate_isotope_discrimination

flowing though a chamber containing a transpiring leaf (or in a chamber sitting on moist soil), there
very definitely is dilution. However, we ignore that effect when computing CO2 concentration, but
account for it when computing photosynthetic rate (or soil CO2 efflux). Thus, the LI-6400 IRGA is
always indicating the actual CO2 concentration, not what the CO2 concentration would be if there
were no water vapor in it."

To account for the dilution effect, we define a "corrected" CO2 concentration as CO2_corrected
= CO2 / (1 - H2O), where H2O is the water vapor concentration in the air. Note: the TDL always
measures concentrations in dry air, so no correction is required.

References:

Ubierna, N., Holloway-Phillips, M.-M. and Farquhar, G. D. "Using Stable Carbon Isotopes to Study
C3 and C4 Photosynthesis: Models and Calculations." in Photosynthesis: Methods and Protocols
(ed. Covshoff, S.) 155–196 (Springer, 2018) [doi:10.1007/9781493977864_10].

Value

An exdf object based on exdf_obj that includes several new columns: CO2_r_corrected, CO2_s_corrected,
Delta_obs_gasex, Delta_obs_tdl, xsi_gasex, and xsi_tdl.

Examples

In this example we load gas exchange and TDL data files, calibrate the TDL
data, pair the data tables together, and then calculate isotope
discrimination

Read the TDL data file, making sure to interpret the time zone as US Central
time
tdl_data <- read_gasex_file(

PhotoGEA_example_file_path('tdl_for_gm.dat'),
'TIMESTAMP',
list(tz = 'America/Chicago')

)

Identify cycles within the TDL data
tdl_data <- identify_tdl_cycles(

tdl_data,
valve_column_name = 'valve_number',
cycle_start_valve = 20,
expected_cycle_length_minutes = 2.7,
expected_cycle_num_valves = 9,
timestamp_colname = 'TIMESTAMP'

)

Use reference tanks to calibrate the TDL data
processed_tdl <- consolidate(by(

tdl_data,
tdl_data[, 'cycle_num'],
process_tdl_cycle_erml,
noaa_valve = 2,
calibration_0_valve = 20,
calibration_1_valve = 21,
calibration_2_valve = 23,

https://doi.org/10.1007/978-1-4939-7786-4_10

calculate_jmax 71

calibration_3_valve = 26,
noaa_cylinder_co2_concentration = 294.996,
noaa_cylinder_isotope_ratio = -8.40,
calibration_isotope_ratio = -11.505

))

Read the gas exchange data, making sure to interpret the time stamp in the US
Central time zone
licor_data <- read_gasex_file(

PhotoGEA_example_file_path('licor_for_gm_site11.xlsx'),
'time',
list(tz = 'America/Chicago')

)

Get TDL valve information from Licor file name; for this TDL system, the
reference valve is 12 when the sample valve is 11
licor_data <- get_sample_valve_from_filename(licor_data, list('11' = 12))

Pair the Licor and TDL data by locating the TDL cycle corresponding to each
Licor measurement
licor_data <- pair_gasex_and_tdl(licor_data, processed_tdl$tdl_data)

Calculate isotope discrimination
licor_data <- calculate_isotope_discrimination(licor_data)

View some of the results
licor_data[, c('A', 'xsi_gasex', 'xsi_tdl', 'Delta_obs_gasex', 'Delta_obs_tdl')]

calculate_jmax Calculate maximum electron transport rate

Description

Calculates maximum electron transport rates (Jmax) from estimates of the electron transport rate
(J) at particular values of incident light (Qin).

This function is typically used after fit_c3_aci, fit_c3_variable_j, or fit_c4_aci is used to
estimate values of J.

Usage

calculate_jmax(
data_table,
alpha_j_at_25 = 'column',
theta_j_at_25 = 'column',
alpha_j_norm_column_name = 'alpha_j_norm',
qin_column_name = 'Qin_avg',
theta_j_norm_column_name = 'theta_j_norm',
tleaf_column_name = 'TleafCnd_avg',
...

)

72 calculate_jmax

Arguments

data_table A table-like R object such as a data frame or an exdf.

alpha_j_at_25 The apparent quantum efficiency of electron transport alpha_j at 25 degrees C
(dimensionless). If alpha_j_at_25 is not a number, then there must be a col-
umn in data_table called alpha_j_at_25 with appropriate units. A numeric
value supplied here will overwrite the values in the alpha_j_at_25 column of
data_table if it exists.

theta_j_at_25 The empirical curvature parameter theta_j_at_25 at 25 degrees C (dimen-
sionless). If theta_j_at_25 is not a number, then there must be a column
in data_table called theta_j_at_25 with appropriate units. A numeric value
supplied here will overwrite the values in the theta_j_at_25 column of data_table
if it exists.

alpha_j_norm_column_name

The name of the column in data_table that contains the normalized alpha_j
values (with units of normalized to alpha_j at 25 degrees C).

qin_column_name

The name of the column in data_table that contains values of the incident
photosynthetically active flux density in micromol m^(-2) s^(-1).

theta_j_norm_column_name

The name of the column in data_table that contains the normalized theta_j
values (with units of normalized to theta_j at 25 degrees C).

tleaf_column_name

The name of the column in data_table that contains the leaf temperature in
units of degrees C.

... Optional arguments; see below.

Details

Basic Requirements:
This function requires that data_table contains columns called J_at_25 and J_tl_avg, as would
be included in the output from one of the PhotoGEA fitting functions (fit_c3_aci, fit_c3_variable_j,
and fit_c4_aci). These will be used to calculate values of Jmax at 25 degrees C and at leaf tem-
perature.

If any columns for the J confidence intervals are included in data_table (J_at_25_upper, J_at_25_lower,
J_tl_avg_upper, or J_tl_avg_lower), the corresponding confidence intervals for Jmax will also
be calculated.

By default, this function will take values of alpha_j and theta_j from columns of data_table
with the same names.

If data_table is an exdf object, units will be checked for any columns used in the calculations.

Overview of Jmax Calculations:
The potential electron transport rate going to support RuBP regeneration (J) depends on the avail-
able light energy. J quickly increases with the incident photosynthetically active photon flux den-
sity (Qin) at low light levels, gradually reaching a plateau at high values of Qin. Although other
mathematical representations have been used (Walker et al. 2021), this dependence is typically
represented as a non-rectangular hyperbola:

calculate_jmax 73

J = (I2 + Jmax - sqrt[(I2 + Jmax)^2 - 4 * theta_j * I2 * Jmax]) / (2 * theta_j), (Eq. 1)

where Jmax is the maximum value of J that would be achieved at infinitely large Qin, 0 < theta_j
<= 1 is an empirical curvature parameter, and I2 is the useful energy absorbed by photosystem II.
In turn, I2 is calculated by

I2 = alpha_j * Qin,

where alpha_j is the apparent quantum efficiency of electron transport. alpha_j is often defined
as

alpha_j = absorptance * phi_psii,max * beta_psii,

where absorptance is the leaf absorptance, phi_psii,max is the maximum quantum yield of pho-
tosytem II, and beta_psii is the fraction of light energy partitioned to photosystem II.

Equation 1 can be understood as a "smooth minimum" of two potential rates of electron transport:
I2 (which increases linearly with Qin) and Jmax (which is independent of Qin). For lower light
levels, I2 is the smaller rate, and J is approximately equal to I2; for very high light levels, Jmax is
the smaller rate, and J is approximately equal to Jmax. For intermediate values of Qin, J smoothly
transitions from I2 to Jmax.

This equation is often solved for Jmax, and thus it is necessary to consider the conditions for which
the solution is appropriate. One key property of Equation 1 is that the largest possible value of J
at a given Qin is I2, which only occurs when Jmax is much larger than I2. In other words, when
considered as a function of Jmax, the range of the function in Equation 1 is 0 <= J <= I2.

Equation 1 can be solved for Jmax, enabling calculations of Jmax from estimates of J:

Jmax = J * (I2 - theta_j * J) / (I2 - J) (Eq. 2)

Because the range of the function in Equation 1 is 0 <= J <= I2, the domain of its inverse function
(defined in Equation 2) is also 0 <= J <= I2. In other words, Jmax can only be calculated using
Equation 2 when J < I2. Otherwise, there is no value of Jmax that can reproduce the value of J for
the given value of alpha_j. This restriction can also be derived more rigorously; see the Detailed
algebra section below for more information.

If J >= I2, the calculate_jmax function will return NA for the value of Jmax. This behavior can
be bypassed by setting the optional input argument ignore_restriction to TRUE, but this is not
recommended outside of pedagogical purposes. See Example 2 below for a demonstration of what
goes wrong when Equation 2 is used for J >= I2.

Note that this issue is more significant at lower light levels. For example, assuming a typical value
of alpha_j (0.293), I2 for Qin = 1800 micromol / m^2 / s would be 527.4 micromol / m^2 / s.
Values of J are typically smaller than this, so an estimate of Jmax can almost always be made.
But if a curve were measured at Qin = 300, I2 would only be 87.9 micromol / m^2 / s, placing a
stronger restriction on the values of J where Jmax can be estimated. Say the best-fit value of J was
88.9 micromol / m^2 / s for a curve measured with Qin = 300 micromol / m^2 / s; in this case, it
would not be possible to estimate Jmax, potentially indicating that the assumed value of alpha_j
was not correct.

Typical values:
According to von Caemmerer (2000), typical values of absorptance, phi_psii,max, and beta_psii
are 0.85, 1 - 0.15, and 0.5, respectively, leading to alpha_j = 0.36125, and the curvature parameter
theta_j is typically 0.7.

Bernacchi et al. (2003) reports that phi_psii,max is 0.6895 for light-adapted leaves at 25 degrees
C, while theta_j at 25 degrees C is 0.97875. Using this value of of phi_psii,max with typical
values of absorptance and beta_psii results in an alpha_j estimate of 0.2930375.

74 calculate_jmax

It is not clear whether the temperture response defined in Bernacchi et al. (2003) is applicable to
C4 leaves. For C4 leaves, it may be better to use the temperature-independent estimates from von
Caemmerer (2000).

PhotoGEA provides two Jmax parameter lists that can be passed to calculate_temperature_response:
jmax_temperature_param_bernacchi (implements the Bernacchi et al. 2003 values) and jmax_temperature_param_flat
(implements the von Caemmerer 2000 values). Each of these parameter lists will calculate values
of alpha_j_at_25, alpha_j_norm, theta_j_at_25, and theta_j_norm.

Absorbed light basis:

Values of Jmax can also be estimated from the absorbed photosynthetically active photon flux den-
sity (Qabs). In that case, we can regroup the terms in the definition of I2 as follows:

I2 = (Qin * absorptance) * (phi_psii,max * beta_psii) = Qabs * alpha_j_abs,

where alpha_j_abs is given by phi_psii,max * beta_psii. When working in this basis, the de-
fault value of alpha_j at 25 degrees C should be divided by the assumed absorptance (0.85). For
example, the default value of alpha_j_at_25 used with the Bernacchi et al. (2003) parameters is
0.2930375, so dividing this by 0.95 would yielding an alpha_j_abs value of about 0.345. This
value could be passed directly to calculate_jmax via the alpha_j_at_25 input argument, over-
riding the default value. Along with this change, it would also be necessary to change the name of
the light column, likely to Qabs_avg.

Why PhotoGEA Uses a Separate Function for Jmax:

In principle, values of Jmax could be estimated by the fitting functions that estimate J: fit_c3_aci,
fit_c3_variable_j, and fit_c4_aci. Instead, PhotoGEA requires users to use a separate func-
tion (calculate_jmax) to estimate Jmax. This serves several purposes:

• It highlights that estimates of Jmax are made using the same equations for C3 and C4 leaves.

• It leaves open the possibility of other estimates of Jmax, such as those based on a rectangular
hyperbola instead of the non-rectangular hyperbola used here.

• It emphasizes that sometimes it is not possible to provide an estimate for Jmax, depending on
the values of Qin, alpha_j, and J, because of the requirement that J < I2 = alpha_j * Qin.

The last point is especially important. If Jmax were varied during the fitting process, and J was
estimated from Jmax using Equation 1, there would be a restriction on the possible values of J that
could be obtained: J < alpha_j * Qin. This could potentially bias the fitting results, since it may
be the case that the best fit would be found for J outside this range.

In other words, keeping estimates of Jmax separate from the fitting process ensures that the values
of alpha_j and theta_j have no influence on the fits or best-fit values of J. This is important since
the true values of these parameters for a particular leaf are difficult or impossible to determine.

Detailed algebra:

Here we will solve Equation 1 for Jmax, arriving at Equation 2. This algebra is reproduced here to
highlight the important restriction that J < I2.

First, multiply both sides of Equation 1 by 2 * theta_j:

2 * theta_j * J = I2 + Jmax - sqrt[(I2 + Jmax)^2 - 4 * theta_j * I2 * Jmax]. (Eq. 3)

Next, isolate the square root term on one side:

I2 + Jmax - 2 * theta_j * J = sqrt[(I2 + Jmax)^2 - 4 * theta_j * I2 * Jmax]. (Eq. 4)

calculate_jmax 75

A key point here is that the right hand side cannot be negative, since the square root of a real number
is never negative. Thus, the left hand side also cannot be negative. In other words,

I2 + Jmax - 2 * theta_j * J >= 0. (Eq. 5)

We will return to this restriction later. For now, we square both sides of Equation 4:

(I2 + Jmax)^2 - 4 * theta_j * J * (I2 + Jmax) + 4 * theta_j^2 * J^2 = (I2 + Jmax)^2 - 4 * theta_j
* I2 * Jmax. (Eq. 6)

The term (I2 + Jmax)^2 appears on both sides of Equation 6 and can therefore be cancelled out.
Grouping the remaining terms that contain Jmax on one side, we have:

4 * theta_j * Jmax * (I2 - J) = 4 * theta_j * J * (I2 - theta_j * J) (Eq. 7)

Finally, provided that I2 - J is not zero (in other words, that I2 is not equal to J), we can divide
both sides of Equation 7 by 4 * theta_j * (I2 - J) to obtain Equation 2 above.

Now, we can use this expression (Equation 2) to replace Jmax in Equation 5:

I2 + J * (I2 - theta_j * J) / (I2 - J) - 2 * theta_j * J >= 0. (Eq. 8)

This can be converted to a single ratio as follows:

[(I2 - 2 * theta_j * J) * (I2 - J) + J * (I2 - theta_j * J)] / (I2 - J) >= 0. (Eq. 9)

Multiplying out the factors in the numerator and collecting like terms, Equation 9 becomes

[I2^2 - 2 * theta_j * I2 * J + theta_j * J^2] / (I2 - J) >= 0. (Eq. 10)

Because theta_j must lie between 0 and 1, theta_j^2 is always less than or equal to theta_j.
This allows us to place a lower bound on the value of the numerator of the left hand side of Equation
10:

I2^2 - 2 * theta_j * I2 * J + theta_j * J^2 >= I2^2 - 2 * theta_j * I2 * J + theta_j^2 * J^2.
(Eq. 11)

The right hand side of Equation 11 can be refactored:

I2^2 - 2 * theta_j * I2 * J + theta_j * J^2 >= (I2 - theta_j J)^2. (Eq. 12)

The right hand side of Equation 12 can never be negative, so from this we can also conclude that
the numerator of the left hand side of Equation 10 can also never be negative. Thus, the inequality
in Equation 10 is satisfied whenever its denominator is positive. In other words, whenever I2 - J >
0, or, equivalently, J < I2.

Thus, we have shown that Equation 2 holds whenever J < I2, since, when this inequality is satisfied,
Equation 5 is also satisfied.

Although we do not do so here, it can be shown that when I2 < J, the value of Jmax that would be
calculated by Equation 2 is the inverse of

J = (I2 + Jmax + sqrt[(I2 + Jmax)^2 - 4 * theta_j * I2 * Jmax]) / (2 * theta_j) (Eq. 13)

rather than the inverse of Equation 1. Note the difference: in Equation 13, the square root term
is added to I2 + Jmax rather than subtracted. This is a "smooth maximum" function, rather than
a smooth minimum. In fact, whenever I2 > Jmax, Equation 13 would predict J > Jmax, clearly a
nonsensical result. Likewise, the inverse of the function in Equation 13 would predict some values
of Jmax that are smaller than J. Example 2 below shows that it can even return negative values of
Jmax, which is clearly not reasonable from a biological perspective.

References:

76 calculate_jmax

• von Caemmerer, S. "Biochemical Models of Leaf Photosynthesis" (CSIRO Publishing, 2000)
[doi:10.1071/9780643103405].

• Walker, A. P. et al. "Multi-hypothesis comparison of Farquhar and Collatz photosynthesis
models reveals the unexpected influence of empirical assumptions at leaf and global scales."
Global Change Biology 27, 804–822 (2021) [doi:10.1111/gcb.15366].

• Bernacchi, C. J., Pimentel, C. & Long, S. P. "In vivo temperature response functions of pa-
rameters required to model RuBP-limited photosynthesis" Plant, Cell & Environment 26,
1419–1430 (2003) [doi:10.1046/j.00168025.2003.01050.x].

Value

The return value is a table based on data_table that includes several new columns: I2_at_25,
Jmax_at_25, Jmax_at_25_msg, I2_tl, Jmax_tl, and Jmax_tl_msg. The _msg columns indicate
when the error condition J >= I2 has occurred.

If J confidence intervals were provided in the inputs, then there will be correspoding columns for
the related Jmax, and msg values; for example, Jmax_at_25_lower and Jmax_at_25_lower_msg.

Examples

Example 1: Estimating Jmax after fitting several C3 A-Ci curves

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data; we will need average values of leaf temperature and
incident PPFD in order to calculate Jmax later
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp',
columns_to_average = c('TleafCnd', 'Qin')

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

For these examples, we will use a faster (but sometimes less reliable)
optimizer so they run faster
optimizer <- optimizer_nmkb(1e-7)

Fit all curves in the data set (it is more common to do this)

https://doi.org/10.1071/9780643103405
https://doi.org/10.1111/gcb.15366
https://doi.org/10.1046/j.0016-8025.2003.01050.x

calculate_jmax 77

aci_results <- consolidate(by(
licor_file,
licor_file[, 'species_plot'],
fit_c3_aci,
Ca_atmospheric = 420,
optim_fun = optimizer

))

Calculate temperature-dependent values of Jmax-related parameters
aci_results$parameters <- calculate_temperature_response(

aci_results$parameters,
jmax_temperature_param_bernacchi,
'TleafCnd_avg'

)

Calculate Jmax
aci_results$parameters <- calculate_jmax(aci_results$parameters)

Print a few columns
col_to_view <- c('species_plot', 'J_at_25', 'J_tl_avg', 'Jmax_at_25', 'Jmax_tl')

print(aci_results$parameters[, col_to_view, TRUE])

Example 2: Illustrating the importance of requiring I2 > J

Define a data frame with input values
npts <- 200
J_seq <- seq_len(npts)

jmax_df <- data.frame(
J_at_25 = J_seq,
J_tl_avg = J_seq,
alpha_j_norm = 1,
Qin_avg = 300,
theta_j_norm = 1,
TleafCnd_avg = 25

)

Calculate Jmax values, overriding the default behavior so that values of Jmax
are returned even when I2 < J.
jmax_df <- calculate_jmax(

jmax_df, alpha_j_at_25 = 0.293, theta_j_at_25 = 0.979,
ignore_restriction = TRUE

)

Plot the Jmax values, distinguishing between cases where J < I2 and where
J > I2. Here we can see that when J > I2, values of Jmax are smaller than J,
and can even be negative, which is clearly unreasonable from a biological
perspective. To highlight these considerations, J = I2 is plotted as a dashed
black line, Jmax = J is plotted as a black long-dashed line, and Jmax = 0 is
plotted as a solid black line.
ymin <- -50
ymax <- 250

78 calculate_leakiness_ubierna

xmin <- min(J_seq)
xmax <- max(J_seq)

I2 <- jmax_df$I2_at_25[1]

jmax_df$Jmax_at_25_msg[jmax_df$Jmax_at_25_msg == ''] <- 'J < I2'

lattice::xyplot(
Jmax_at_25 ~ J_at_25,
group = Jmax_at_25_msg,
data = jmax_df,
auto = TRUE,
type = 'l',
xlim = c(xmin, xmax),
ylim = c(ymin, ymax),
xlab = 'J (micromol / m^2 / s)',
ylab = 'Jmax (micromol / m^2 / s)',
panel = function(x, y, ...) {

lattice::panel.lines(c(0, 0) ~ c(xmin, xmax), lty = 1, col = 'black')
lattice::panel.lines(c(ymin, ymax) ~ c(I2, I2), lty = 2, col = 'black')
lattice::panel.lines(J_seq ~ J_seq, lty = 5, col = 'black')
lattice::panel.xyplot(x, y, ...)

}
)

calculate_leakiness_ubierna

Calculate leakiness

Description

Calculates leakiness (phi) from combined gas exchange and isotope discrimination measurements
as described in Ubierna et al. (2013). This function can accomodate alternative colum names for the
variables taken from exdf_obj; it also checks the units of each required column and will produce
an error if any units are incorrect.

Usage

calculate_leakiness_ubierna(
exdf_obj,
e = -3,
a_bar_column_name = 'a_bar',
a_column_name = 'A',
ci_column_name = 'Ci',
co2_s_column_name = 'CO2_s',
csurface_column_name = 'Csurface',
delta_c13_r_column_name = 'delta_C13_r',
delta_obs_tdl_column_name = 'Delta_obs_tdl',

calculate_leakiness_ubierna 79

rl_column_name = 'RL',
t_column_name = 't'

)

Arguments

exdf_obj An exdf object.

e The isotopic fractionation during day respiration in ppt.
a_bar_column_name

The name of the column in exdf_obj that contains the weighted isotopic frac-
tionation across the boundary layer and stomata in ppt. Values of a_bar are
typically calculated using calculate_ternary_correction.

a_column_name The name of the column in exdf_obj that contains the net CO2 assimilation rate
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration in micromol mol^(-1).

co2_s_column_name

The name of the column in exdf_obj that contains the CO2 concentration in the
sample line (outgoing air) in micromol mol^(-1).

csurface_column_name

The name of the column in exdf_obj that contains the CO2 concentration at the
leaf surface in micromol mol^(-1). Values of Csurface are typically calculated
using calculate_gas_properties.

delta_c13_r_column_name

The name of the column in exdf_obj that contains the CO2 isotope ratio in the
reference line (incoming air) in ppt.

delta_obs_tdl_column_name

The name of the column in exdf_obj that contains the observed isotope dis-
crimination values in ppt.

rl_column_name The name of the column in exdf_obj that contains the rate of day respiration in
micromol m^(-2) s^(-1).

t_column_name The name of the column in exdf_obj that contains the ternary correction factor
(dimensionless). Values of t are typically calculated using calculate_ternary_correction

Details

This function uses the model for photosynthetic discrimination against 13C in C4 plants to deter-
mine leakiness values, as described in Ubierna et al. (2013). In particular, the following equations
from that source are implemented in the code:

• Isotopic fractionation due to day respiration (e_prime) is calculated using Equation 21.

• Leakiness including respiratory and photorespiratory fractionations under high light (phi_i)
is calculated using Equation 16.

• Leakiness including respiratory and photorespiratory fractionations and Cs under high light
(phi_is) is calculated using Equation 15.

80 calculate_leakiness_ubierna

• Leakiness ignoring respiratory and photorespiratory fractionations and Cs (phi_sim) is calcu-
lated using Equation 17.

References:

Ubierna, N., Sun, W., Kramer, D. M. and Cousins, A. B. "The efficiency of C4 photosynthesis
under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis." Plant, Cell
& Environment 36, 365–381 (2013) [doi:10.1111/j.13653040.2012.02579.x].

Value

An exdf object based on exdf_obj that includes the following additional columns, calculated as
described above: e_prime, phi_i, phi_is, and phi_sim. The category for each of these new
columns is calculate_leakiness_ubierna to indicate that they were created using this function.

Examples

In this example we load gas exchange and TDL data files, calibrate the TDL
data, pair the data tables together, and then calculate leakiness. The
results from this example are not meaningful because these measurements
were not collected from C4 plants.

Read the TDL data file, making sure to interpret the time zone as US Central
time
tdl_data <- read_gasex_file(

PhotoGEA_example_file_path('tdl_for_gm.dat'),
'TIMESTAMP',
list(tz = 'America/Chicago')

)

Identify cycles within the TDL data
tdl_data <- identify_tdl_cycles(

tdl_data,
valve_column_name = 'valve_number',
cycle_start_valve = 20,
expected_cycle_length_minutes = 2.7,
expected_cycle_num_valves = 9,
timestamp_colname = 'TIMESTAMP'

)

Use reference tanks to calibrate the TDL data
processed_tdl <- consolidate(by(

tdl_data,
tdl_data[, 'cycle_num'],
process_tdl_cycle_erml,
noaa_valve = 2,
calibration_0_valve = 20,
calibration_1_valve = 21,
calibration_2_valve = 23,
calibration_3_valve = 26,
noaa_cylinder_co2_concentration = 294.996,
noaa_cylinder_isotope_ratio = -8.40,
calibration_isotope_ratio = -11.505

https://doi.org/10.1111/j.1365-3040.2012.02579.x

calculate_temperature_response 81

))

Read the gas exchange data, making sure to interpret the time stamp in the US
Central time zone
licor_data <- read_gasex_file(

PhotoGEA_example_file_path('licor_for_gm_site11.xlsx'),
'time',
list(tz = 'America/Chicago')

)

Get TDL valve information from Licor file name; for this TDL system, the
reference valve is 12 when the sample valve is 11
licor_data <- get_sample_valve_from_filename(licor_data, list('11' = 12))

Get oxygen info from the Licor file preamble (needed for calculate_gamma_star)
licor_data <- get_oxygen_from_preamble(licor_data)

Pair the Licor and TDL data by locating the TDL cycle corresponding to each
Licor measurement
licor_data <- pair_gasex_and_tdl(licor_data, processed_tdl$tdl_data)

Calculate total pressure (needed for calculate_gas_properties)
licor_data <- calculate_total_pressure(licor_data)

Calculate Csurface (needed for calculate_ternary_correction)
licor_data <- calculate_gas_properties(licor_data)

Calculate ternary correction
licor_data <- calculate_ternary_correction(licor_data)

Calculate isotope discrimination (needed for calculate_leakiness_ubierna)
licor_data <- calculate_isotope_discrimination(licor_data)

Set respiration (needed for calculate_leakiness_ubierna)
licor_data <- set_variable(

licor_data,
'RL',
'micromol m^(-2) s^(-1)',
value = 1.2

)

Calculate leakiness
licor_data <- calculate_leakiness_ubierna(licor_data)

View some of the results
licor_data[, c('replicate', 'CO2_s', 'Delta_obs_tdl', 'phi_i', 'phi_sim')]

calculate_temperature_response

Calculate temperature-dependent parameter values

82 calculate_temperature_response

Description

Calculate leaf-temperature-dependent values of various parameters using various temperature re-
sponse functions.

Usage

calculate_temperature_response(
exdf_obj,
temperature_response_parameters,
tleaf_column_name = 'TleafCnd'

)

Arguments

exdf_obj An exdf object representing data from a Licor gas exchange measurement sys-
tem.

temperature_response_parameters

A list, where each element describes the temperature response of a parameter
value. The name of each element must be the name of the parameter. Each ele-
ment must be a list itself, whose named elements must include the type of tem-
perature response function to use (type), thee units of the parameter (units),
and the values of necessary temperature response parameters. See below for
more details.

tleaf_column_name

The name of the column in exdf_obj that contains the leaf temperature in units
of degrees C.

Details

Some key photosynthetic parameters are known to vary with temperature according to well-established
temperature response functions such as the Arrhenius equation. The calculate_temperature_response
function can be used to calculate such temperature-dependent parameter values at leaf temperature.

Depending on the type value supplied in each element of temperature_response_parameters,
one of several possible functions will be used to calculate the temperature response:

• When type is 'Arrhenius', the calculate_temperature_response_arrhenius function
will be used.

• When type is 'Gaussian', the calculate_temperature_response_gaussian function will
be used.

• When type is 'Johnson', the calculate_temperature_response_johnson function will
be used.

• When type is 'Polynomial', the calculate_temperature_response_polynomial func-
tion will be used.

Values of type are not case-sensitive.

It is rare to directly specify these parameters; instead, it is more typical to use one of the pre-set
values such as those included in c3_temperature_param_sharkey.

calculate_temperature_response 83

Value

An exdf object based on exdf_obj that includes one new column for each element of temperature_response_parameters,
where the temperature-dependent values of these new columns are determined using the temperature
values specified by the tleaf_column_name column. The category of each of these new columns
is calculate_temperature_response to indicate that they were created using this function.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

In this example we will calculate temperature-dependent values of two
parameters:
#
- The `Kc` parameter (in units of `micromol mol^(-1)`) will be calculated
using an Arrhenius function with scaling constant `c` = 38.05 and activation
energy `Ea` = 79.43 kJ / mol.
#
- The `Jmax` parameter (in units of `micromol m^(-2) s^(-1)) will be
using a Gaussian function with optimal temperature `t_opt` = 43 degrees C
and width `sigma` = 16 degrees C.
#
So the `temperature_response_parameters` list will contain two elements,
defined as follows:

trp <- list(
Kc = list(
type = 'Arrhenius',
c = 38.05,
Ea = 79.43,
units = 'micromol mol^(-1)'

),
Jmax = list(
type = 'Gaussian',
optimum_rate = 4,
t_opt = 43,
sigma = 16,
units = 'micromol m^(-2) s^(-1)'

)
)

Now we can calculate the values of Kc and Jmax at the measured leaf
temperatures recorded in the log file
licor_file <- calculate_temperature_response(licor_file, trp)

licor_file$units$Kc # View the units of the new `Kc` column
licor_file$categories$Kc # View the category of the new `Kc` column
licor_file[,'Kc'] # View the values of the new `Kc` column

licor_file$units$Jmax # View the units of the new `Jmax` column

84 calculate_temperature_response_arrhenius

licor_file$categories$Jmax # View the category of the new `Jmax` column
licor_file[,'Jmax'] # View the values of the new `Jmax` column

calculate_temperature_response_arrhenius

Calculate temperature-dependent values using Arrhenius equations

Description

Calculate leaf-temperature-dependent values of various parameters using Arrhenius equations. It is
rare for users to call this function directly; instead, it is used internally by calculate_temperature_response.

Usage

calculate_temperature_response_arrhenius(
exdf_obj,
arrhenius_parameters,
tleaf_column_name = 'TleafCnd'

)

Arguments

exdf_obj An exdf object representing data from a Licor gas exchange measurement sys-
tem.

arrhenius_parameters

A list of named lists. Each list element should describe the Arrhenius scaling
factor (c), activation energy in kJ / mol (Ea), and units (units) for a variable
that follows an Arrhenius temperature dependence. The name of each list ele-
ment should be the corresponding name of the variable.

tleaf_column_name

The name of the column in exdf_obj that contains the leaf temperature in units
of degrees C.

Details

The Arrhenius equation is often used to calculate the temperature dependence of the rate of a chem-
ical reaction. It is often stated as follows:

(1) rate = A * exp(-Ea / (R * T))

where A is the "pre-exponential factor" that sets the overall scaling, Ea is the activation energy, R is
the ideal gas constant, and T is the temperature in Kelvin. See, for example, the Wikipedia page for
the equation.

In photosynthesis research, it is common to use an alternative form of the equation, where the pre-
exponential factor A is rewritten as an exponent A = exp(c), where c is a "scaling factor" whose
value can be calculated from A according to c = ln(A)). In this formulation, the equation becomes:

(2) rate = exp(c) * exp(-Ea / (R * T)) = exp(c - Ea / (R * T))

https://en.wikipedia.org/wiki/Arrhenius_equation
https://en.wikipedia.org/wiki/Arrhenius_equation

calculate_temperature_response_arrhenius 85

The advantage of this version is that the natural logarithm of the rate is equal to c - Ea / (R *
T). This means that the Arrhenius paramerer values can be easily determined from a linear fit of
log(rate) against 1 / (R * T); c is the y-intercept and -Ea is the slope.

In calculate_temperature_response_arrhenius, the scaling factor (c), activation energy (Ea),
and units (units) for a variable must be specified as elements of a list, which itself is a named ele-
ment of arrhenius_parameters. For example, if a variable called Kc has c = 38.05, Ea = 79.43,
and units of micromol mol^(-1), the arrhenius_parameters argument could be specified as fol-
lows: list(Kc = list(c = 38.05, Ea = 79.43, units = 'micromol mol^(-1)')).

It is rare to directly specify the Arrhenius parameters; instead, it is more typical to use one of the
pre-set values such as those included in c3_temperature_param_sharkey.

Sometimes a publication will specify the value of a variable at 25 degrees C instead of the Arrhenius
scaling factor c. In this case, there is a "trick" for determining the value of c. For example, if the
Arrhenius exponent should be X at 25 degrees C, then we have the following: X = exp(c - Ea / (R
* (25 + 273.15))), which we can solve algebraically for c as follows: c = ln(X) + Ea / f, where
f = R * (25 + 273.15). As a special case, for parameters normalized to 1 at 25 degrees C, we have
c = Ea / f. The value of f can be accessed as PhotoGEA:::f.

Another common scenario is that we may wish to convert the units of a variable defined by Ar-
rhenius exponents. For example, let’s say Y is determined by an Arrhenius exponent, i.e., that Y =
exp(c - Ea / (R * T)), and we want to convert Y to different units via a multiplicative conversion
factor cf. Then, in the new units, Y becomes Y_new = cf * Y = cf * exp(c - (R * T)). Through al-
gebra, it is possible to combine cf with the original value of c as c_new = c + ln(cf). Then we can
continue calculating Y_new using an Arrhenius factor as Y_new = exp(c_new - Ea / (R * T)).

Value

An exdf object based on exdf_obj that includes one new column for each element of arrhenius_parameters,
where the temperature-dependent values of these new columns are determined using the temperature
values specified by the tleaf_column_name column. The category of each of these new columns
is calculate_temperature_response_arrhenius to indicate that they were created using this
function.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_temperature_response_arrhenius(
licor_file,
list(Kc_norm = c3_temperature_param_sharkey$Kc_norm)

)

licor_file$units$Kc_norm # View the units of the new `Kc_norm` column
licor_file$categories$Kc_norm # View the category of the new `Kc_norm` column
licor_file[,'Kc_norm'] # View the values of the new `Kc_norm` column

86 calculate_temperature_response_gaussian

calculate_temperature_response_gaussian

Calculate temperature-dependent values using Gaussian equations

Description

Calculate leaf-temperature-dependent values of various parameters using Gaussian equations. It is
rare for users to call this function directly; instead, it is used internally by calculate_temperature_response.

Usage

calculate_temperature_response_gaussian(
exdf_obj,
gaussian_parameters,
tleaf_column_name = 'TleafCnd'

)

Arguments

exdf_obj An exdf object representing data from a Licor gas exchange measurement sys-
tem.

gaussian_parameters

A list of named lists. Each list element should describe the optimal temperature
in degrees C (t_opt), the "width" in degrees C (sigma), and the units (units)
for a variable that follows a peaked Gaussian temperature dependence. The
name of each list element should be the corresponding name of the variable.

tleaf_column_name

The name of the column in exdf_obj that contains the leaf temperature in units
of degrees C.

Details

A Gaussian equation is sometimes used to model the temperature dependence of a biochemical rate
parameter. Typically this is expressed by

rate = optimal_rate * exp(-(T - T_opt)^2 / sigma^2)

where optimal_rate is the highest rate which occurs at the optimal temperature T_opt, T is the
current temperature, and sigma represents the "width" of the peak. More technically, it can be
described as the difference in temperature away from the optimal value at which the rate falls to 37
percent (1/e) of its maximum.

In calculate_temperature_response_gaussian, the optimal rate (optimal_rate), optimal tem-
perature (t_opt), width (sigma), and units (units) for a variable must be specified as elements
of a list, which itself is a named element of gaussian_parameters. For example, if a variable
called Jmax has optimal_rate = 1, t_opt = 43, sigma = 26, and units of micromol mol^(-1), the
gaussian_parameters argument could be specified as follows: list(Jmax = list(optimal_rate
= 1, t_opt = 43, sigma = 26, units = 'micromol mol^(-1)')).

It is rare to specify these parameters directly; instead, it is more typical to use one of the pre-set
values such as those included in c4_temperature_param_vc.

calculate_temperature_response_johnson 87

Value

An exdf object based on exdf_obj that includes one new column for each element of gaussian_parameters,
where the temperature-dependent values of these new columns are determined using the temperature
values specified by the tleaf_column_name column. The category of each of these new columns is
calculate_temperature_response_gaussian to indicate that they were created using this func-
tion.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_temperature_response_gaussian(
licor_file,
list(J_norm = c4_temperature_param_vc$J_norm)

)

licor_file$units$J_norm # View the units of the new `J_norm` column
licor_file$categories$J_norm # View the category of the new `J_norm` column
licor_file[,'J_norm'] # View the values of the new `J_norm` column

calculate_temperature_response_johnson

Calculate temperature-dependent values using Johnson-Eyring-
Williams equations

Description

Calculate leaf-temperature-dependent values of various parameters using Johnson-Eyring-Williams
equations. It is rare for users to call this function directly; instead, it is used internally by calculate_temperature_response.

Usage

calculate_temperature_response_johnson(
exdf_obj,
johnson_parameters,
tleaf_column_name = 'TleafCnd'

)

Arguments

exdf_obj An exdf object representing data from a Licor gas exchange measurement sys-
tem.

88 calculate_temperature_response_johnson

johnson_parameters

A list of named lists. Each list element should describe the scaling factor (c),
enthalpy of activation in kJ / mol (Ha), enthalpy of deactivation in kJ / mol
(Hd), entropy in kJ / K / mol (S), and units (units) for a variable that follows a
Johnson-Eyring-Williams temperature dependence. The name of each list ele-
ment should be the corresponding name of the variable.

tleaf_column_name

The name of the column in exdf_obj that contains the leaf temperature in units
of degrees C.

Details

The Johnson-Eyring-Williams equation is often used to calculate the temperature dependence of the
rate of a chemical reaction. It can be stated as follows:

rate = exp(c - Ha / (R * T)) / (1 + exp(S / R - Hd / (R * T)))

where c is the scaling factor that sets the overall magnitude of the rate, Ha is the enthalpy of acti-
vation, Hd is the enthalpy of deactivation, S is the entropy, R is the ideal gas constant, and T is the
temperature in Kelvin.

This equation exhibits a peak; in other words, there is a particular temperature (the optimal tem-
perature) where the rate is maximized. Thus, it is often used in place of an Arrhenius equation
(see calculate_temperature_response_arrhenius) for photosynthetic parameters that exhibit
a decrease at high temperatures.

This equation was originally published in Johnson, Eyring, & Williams (1942) and has been used
to model the temperature dependence of key photosynthetic parameters, as in Harley et al. (1992),
Bernacchi et al. (2003), Sharkey et al. (2007), and others.

In calculate_temperature_response_johnson, the scaling factor (c), enthalpy of activation
(Ha), enthalpy of deactivation (Hd), entopy (S), and units (units) for a variable must be specified as
elements of a list, which itself is a named element of johnson_parameters. For example, if a vari-
able called Tp has c = 21.46, Ha = 53.1, Hd = 201.8, S = 0.65, and units of micromol mol^(-1),
the johnson_parameters argument could be specified as follows: list(Tp = list(c = 21.46, Ha
= 53.1, Hd = 201.8, S = 0.65, units = 'micromol mol^(-1)')).

It is rare to directly specify these parameters; instead, it is more typical to use one of the pre-set
values such as those included in c3_temperature_param_sharkey.

References:

• Johnson, F. H., Eyring, H. & Williams, R. W. "The nature of enzyme inhibitions in bacterial
luminescence: Sulfanilamide, urethane, temperature and pressure." Journal of Cellular and
Comparative Physiology 20, 247–268 (1942) [doi:10.1002/jcp.1030200302].

• Harley, P. C., Thomas, R. B., Reynolds, J. F. & Strain, B. R. "Modelling photosynthesis of
cotton grown in elevated CO2." Plant, Cell & Environment 15, 271–282 (1992) [doi:10.1111/
j.13653040.1992.tb00974.x].

• Bernacchi, C. J., Pimentel, C. & Long, S. P. "In vivo temperature response functions of pa-
rameters required to model RuBP-limited photosynthesis." Plant, Cell & Environment 26,
1419–1430 (2003) [doi:10.1046/j.00168025.2003.01050.x].

• Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. "Fitting photosynthetic
carbon dioxide response curves for C3 leaves." Plant, Cell & Environment 30, 1035–1040
(2007) [doi:10.1111/j.13653040.2007.01710.x].

https://doi.org/10.1002/jcp.1030200302
https://doi.org/10.1111/j.1365-3040.1992.tb00974.x
https://doi.org/10.1111/j.1365-3040.1992.tb00974.x
https://doi.org/10.1046/j.0016-8025.2003.01050.x
https://doi.org/10.1111/j.1365-3040.2007.01710.x

calculate_temperature_response_polynomial 89

Value

An exdf object based on exdf_obj that includes one new column for each element of johnson_parameters,
where the temperature-dependent values of these new columns are determined using the temperature
values specified by the tleaf_column_name column. The category of each of these new columns is
calculate_temperature_response_johnson to indicate that they were created using this func-
tion.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_temperature_response_johnson(
licor_file,
list(Tp_norm = c3_temperature_param_sharkey$Tp_norm)

)

licor_file$units$Tp_norm # View the units of the new `Tp_norm` column
licor_file$categories$Tp_norm # View the category of the new `Tp_norm` column
licor_file[,'Tp_norm'] # View the values of the new `Tp_norm` column

calculate_temperature_response_polynomial

Calculate temperature-dependent values using polynomial equations

Description

Calculate leaf-temperature-dependent values of various parameters using polynomial equations. It
is rare for users to call this function directly; instead, it is used internally by calculate_temperature_response.

Usage

calculate_temperature_response_polynomial(
exdf_obj,
polynomial_parameters,
tleaf_column_name = 'TleafCnd'

)

Arguments

exdf_obj An exdf object representing data from a Licor gas exchange measurement sys-
tem.

polynomial_parameters

A list of named lists. Each list element should describe the polynomial coeffi-
cients (coef) and units (units) for a variable that follows a polynomial temper-
ature dependence. The name of each list element should be the corresponding
name of the variable.

90 calculate_temperature_response_polynomial

tleaf_column_name

The name of the column in exdf_obj that contains the leaf temperature in units
of degrees C.

Details

Polynomial equations are often used to calculate the temperature dependence of the rates of chemi-
cal reactions. For example, a second-order polynomial could be given as follows:

(1) rate = R_0 + R_1 * T + R_2 * T^2

where R_0, R_1, and R_2 are the zeroth, first, and second order coefficients and T is the temperature.
Higher order polynomials can also be defined, where an order-N polynomial is given by

(2) rate = R_0 + R_1 * T + R_2 * T^2 + ... + R_N * T^N

In general, an order-N polynomial has N coefficients, although some of them may be zero.

In calculate_temperature_response_polynomial, the coefficients (coef) and units (units) for
a variable must be specified as elements of a list, which itself is a named element of polynomial_parameters.
The coefficients must be specified as a numeric vector, where the ith element represents the ith co-
efficient. For example, if a dimensionless variable called theta is calculated according to theta
= 0.352 + 0.022 * T - 3.4e-4 * T^2, the polynomial_parameters argument could be supplied as
follows: list(theta = list(coef = c(0.352, 0.022, -3.4e-4), units = 'dimensionless')).

It is rare to directly specify the polynomial parameters; instead, it is more typical to use one of the
pre-set values such as those included in jmax_temperature_param_bernacchi.

Value

An exdf object based on exdf_obj that includes one new column for each element of polynomial_parameters,
where the temperature-dependent values of these new columns are determined using the temperature
values specified by the tleaf_column_name column. The category of each of these new columns
is calculate_temperature_response_polynomial to indicate that they were created using this
function.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_temperature_response_polynomial(
licor_file,
list(theta = list(coef = c(0.352, 0.022, -3.4e-4), units = 'dimensionless'))

)

licor_file$units$theta # View the units of the new `theta` column
licor_file$categories$theta # View the category of the new `theta` column
licor_file[,'theta'] # View the values of the new `theta` column

calculate_ternary_correction 91

calculate_ternary_correction

Calculate ternary correction factor

Description

Calculates the ternary correction factor t that is used in many carbon isotope discrimination calcu-
lations.

Usage

calculate_ternary_correction(
exdf_obj,
ci_column_name = 'Ci',
co2_s_column_name = 'CO2_s',
csurface_column_name = 'Csurface',
e_column_name = 'E',
gtc_column_name = 'gtc'

)

Arguments

exdf_obj An exdf object containing photosynthetic gas exchange data.

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration in micromol mol^(-1).

co2_s_column_name

The name of the column in exdf_obj that contains the sample line (incoming
air) CO2 concentration in micromol mol^(-1).

csurface_column_name

The name of the column in exdf_obj that contains the CO2 concentration at the
leaf surface in micromol mol^(-1). This is typically calculated using calculate_gas_properties.

e_column_name The name of the column in exdf_obj that contains the leaf transpiration rate in
mol m^(-2) s^(-1).

gtc_column_name

The name of the column in exdf_obj that contains the total conductance to CO2
diffusion across the boundary layer and stomata in series in mol m^(-2) s^(-1).

Details

During photosynthetic gas exchange, there are separate fluxes of CO2 and H2O flowing in and out
of the leaf. These gases interact with each other and with air, forming a ternary mixture. These
interactions must be taken into account when modeling carbon isotope discrimination. Typically
this is done via t, a ternary correction factor first introduced by Farquhar and Cernusak (2012).
Here we calculate t as described in Equations 9 and 10 from Ubierna et al. (2018):

t = alpha_ac * E / (2 * g_ac)

92 calculate_ternary_correction

and

a_bar = (a_b * (C_a - C_s) + a_s * (C_s - C_i)) / (C_a - C_i),

where E is the transpiration rate, g_ac is the total conductance to CO2 diffusion across the boundary
layer and stomata in series, a_bar is the weighted fractionation across the boundary layer and
stomata in series, a_b is the fractionation during diffusion through the boundary layer, a_s is the
fractionation during diffusion through the stomata, C_a is the ambient CO2 concentration (in wet
air), C_s is the CO2 concentration (in wet air) at the leaf surface, and C_i is the CO2 concentration
(in wet air) in the intercellular spaces.

alpha_ac is the overall fractionation during diffusion through air; alpha_ac and a_bar are related
according to an un-numbered equation in Ubierna et al. (2018) that appears just after Equation 9:

alpha_ac = 1 + a_bar

References:

Farquhar, G. D. and Cernusak, L. A. "Ternary effects on the gas exchange of isotopologues of carbon
dioxide." Plant, Cell & Environment 35, 1221–1231 (2012) [doi:10.1111/j.13653040.2012.02484.x].

Ubierna, N., Holloway-Phillips, M.-M. and Farquhar, G. D. "Using Stable Carbon Isotopes to Study
C3 and C4 Photosynthesis: Models and Calculations." in Photosynthesis: Methods and Protocols
(ed. Covshoff, S.) 155–196 (Springer, 2018) [doi:10.1007/9781493977864_10].

Value

An exdf object based on exdf_obj that includes values of t, a_bar, and alpha_ac calculated
as described above. The category of each new column is calculate_ternary_correction to
indicate that it was created using this function.

Examples

In this example we load a gas exchange data file and then calculate the
ternary correction factor

Read the gas exchange data
licor_data <- read_gasex_file(

PhotoGEA_example_file_path('licor_for_gm_site11.xlsx'),
'time'

)

Calculate total pressure (needed for calculate_gas_properties)
licor_data <- calculate_total_pressure(licor_data)

Calculate Csurface (needed for calculate_ternary_correction)
licor_data <- calculate_gas_properties(licor_data)

Calculate ternary correction
licor_data <- calculate_ternary_correction(licor_data)

View some of the results
licor_data[, c('replicate', 'A', 'E', 'Csurface', 't', 'a_bar', 'alpha_ac')]

https://doi.org/10.1111/j.1365-3040.2012.02484.x
https://doi.org/10.1007/978-1-4939-7786-4_10

calculate_total_pressure 93

calculate_total_pressure

Calculate the total pressure in bar

Description

Calculates the total pressure in bar. Licor gas exchange measurement systems report both the
abient air pressure (Pa) and the chamber overpressure (DeltaPcham) in kPa; the total pressure in
the chamber is therefore given by the sum of these two columns. This function can accomodate
alternative column names for the variables taken from Licor log files in case they change at some
point in the future. This function also checks the units of each required column and will produce an
error if any units are incorrect.

Usage

calculate_total_pressure(
exdf_obj,
pa_column_name = 'Pa',
deltapcham_column_name = 'DeltaPcham'

)

Arguments

exdf_obj An exdf object that contains pressure measurements.

pa_column_name The name of the column in exdf_obj that contains the ambient air pressure in
kPa.

deltapcham_column_name

The name of the column in exdf_obj that contains the chamber overpressure in
kPa.

Details

If deltapcham_column_name is NA, this function will simply convert the values in the pa_column_name
to units of bar. Otherwise, the values from the pa_column_name and deltapcham_column_name
columns will be added together and converted to bar.

Value

An exdf object based on exdf_obj that includes the total pressure values in a new column called
total_pressure. The category of this new column is calculate_total_pressure to indicate
that it was created using this function.

Examples

Read an example Licor file included in the PhotoGEA package and calculate the
total pressure.
licor_file <- read_gasex_file(

94 calculate_wue

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_total_pressure(licor_file)

licor_file$units$total_pressure # View the units of the new `total_pressure` column
licor_file$categories$total_pressure # View the category of the new `total_pressure` column
licor_file[, 'total_pressure'] # View the values of the new `total_pressure` column

calculate_wue Calculate intrinsic water use efficiency

Description

Calculates the intrinsic water use efficiency (iWUE). This function can accomodate alternative col-
umn names for the variables taken from the data file in case they change at some point in the future.
This function also checks the units of each required column and will produce an error if any units
are incorrect.

Usage

calculate_wue(
exdf_obj,
calculate_c3 = FALSE,
a_column_name = 'A',
ca_column_name = 'Ca',
cc_column_name = 'Cc',
ci_column_name = 'Ci',
e_column_name = 'E',
gmc_column_name = 'gmc_tl',
gsw_column_name = 'gsw',
h2o_a_column_name = 'H2O_s',
h2o_i_column_name = 'H2O_i',
total_pressure_column_name = 'total_pressure'

)

Arguments

exdf_obj An exdf object.

calculate_c3 A logical variable indicating whether to calculate additional variables that can
be useful for C3 plants (g_ratio and drawdown_ct). Note that these quantities
require values of mesophyll conductance and Cc, so it is not always possible to
calculate them.

a_column_name The name of the column in exdf_obj that contains the net CO2 assimilation rate
in micromol m^(-2) s^(-1).

ca_column_name The name of the column in exdf_obj that contains the ambient CO2 concentra-
tion in micromol mol^(-1).

calculate_wue 95

cc_column_name The name of the column in exdf_obj that contains the chloroplastic CO2 con-
centration in micromol mol^(-1). Typically these are calculated using apply_gm.

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration in micromol mol^(-1).

e_column_name The name of the column in licor_exdf that contains the transpiration rate in
mol m^(-2) s^(-1).

gmc_column_name

The name of the column in licor_exdf that contains the mesophyll conduc-
tance to CO2 at leaf temperature in mol m^(-2) s^(-1) bar^(-1).

gsw_column_name

The name of the column in licor_exdf that contains the stomatal conductance
to water vapor in mol m^(-2) s^(-1).

h2o_a_column_name

The name of the column in exdf_obj that contains the water vapor concentration
in the air surrounding the leaf (i.e., the ambient water vapor concentration) in
mmol mol^(-1).

h2o_i_column_name

The name of the column in exdf_obj that contains the water vapor concentration
in the leaf’s intercellular air spaces in mmol mol^(-1). Typically this value is
calculated using calculate_gas_properties.

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.
Typically this value is calculated using calculate_total_pressure.

Details

Leaf-level water use efficiency (lWUE) is defined as the ratio of net CO2 assimilation (An) to tran-
spiration (E):

lWUE = An / E.

This quantity can also be expressed in terms of water and CO2 concentrations:

lWUE = 0.6 * Ca * (1 - Ci / Ca) / (H2Oi - H2Oa).

Here, Ca and Ci are the atmospheric and intercellular CO2 concentrations, and H2Oa and H2Oi are
the atmospheric and intercellular water vapor concentrations. If differences in lWUE are measured
between different groups of plants, it can be helpful to separately investigate Ci / Ca and H2Oi -
H2Oa to see which factor is driving the differences.

The intrinsic water use efficiency iWUE is a measure of leaf-level water use efficiency, and it is
defined to be the ratio An and the stomatal conductance to H2O diffusion (gsw):

iWUE = An / gsw.

For C3 plants, iWUE can be reexpressed as

iWUE = (gmc / gsw) / (1 + (gmc / gsw)) * (Ca - Cc),

where gmc is the mesophyll conductance to CO2 diffusion and Cc is the chloroplast CO2 concen-
tration. If differences in iWUE are measured between different groups of plants, it can be helpful to
separately investigate gmc / gsw and Ca - Cc to see which factor is driving the differences.

96 calculate_wue

Note: both measures of water use efficiency depend directly or indirectly on stomatal conductance.
Stomata are notoriously slow to reach steady-state, but water use efficiency is only reliable at steady-
state. For this reason, it is recommended to only analyze water use efficiency for gas exchange
measurements where stomatal conductance has stabilized. For an A-Ci or A-Q curve, only the first
measured point has typically reached steady-state stomatal conductance. On the other hand, for a
Ball-Berry curve, all measured points should have reached steady-state stomatal conductance.

For more details about these quantities, see Leakey et al. "Water Use Efficiency as a Constraint and
Target for Improving the Resilience and Productivity of C3 and C4 Crops." Annual Review of Plant
Biology 70 (1): 781–808 (2019) [doi:10.1146/annurevarplant042817040305].

In this function, the following variables are calculated:

• lWUE, given by iWUE = An / E

• Cia_ratio, given by Cia_ratio = Ci / Ca

• drawdown_sw, given by drawdown_sw = H2Oi - H2Oa (this is the drawdown of water vapor
across the stomata)

• iWUE, given by iWUE = An / gsw

• g_ratio, given by g_ratio = gmc / gsw

• drawdown_ct, given by drawdown_ct = Ca - Cc (this is the total drawdown of CO2 from the
ambient air to the chloroplast)

Note: g_ratio and drawdown_ct are only calculated if calculate_c3 is TRUE.

Value

An exdf object based on exdf_obj that includes the quantities listed above, along with their units.
The category of each of these new columns is calculate_wue to indicate that it was created using
this function.

Examples

Read an example Licor file included in the PhotoGEA package and calculate the
water use efficiency.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_total_pressure(licor_file)

licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_sharkey)

licor_file <- calculate_gas_properties(licor_file)

licor_file <- apply_gm(licor_file, gmc_at_25 = 0.5)

licor_file <- calculate_wue(licor_file, calculate_c3 = TRUE)

licor_file$units$iWUE # View the units of the new `iWUE` column
licor_file$categories$iWUE # View the category of the new `iWUE` column
licor_file[, 'iWUE'] # View the values of the new `iWUE` column

https://doi.org/10.1146/annurev-arplant-042817-040305

cbind.exdf 97

cbind.exdf Combine exdf objects by columns or rows

Description

Combines one or more exdf objects by the columns or rows of their main_data. For rbind, errors
will occur if column names are not the same in all of the exdf objects, and if all units and categories
are not identical.

Usage

S3 method for class 'exdf'
cbind(..., deparse.level = 1)

S3 method for class 'exdf'
rbind(

...,
deparse.level = 1,
make.row.names = TRUE,
stringsAsFactors = FALSE

)

Arguments

... Two or more exdf objects.

deparse.level See associated documentation for the generic versions of cbind and rbind.

make.row.names See associated documentation for the generic version of rbind.
stringsAsFactors

See associated documentation for the generic version of rbind.

Value

Returns a new exdf object.

See Also

exdf

Examples

Make some simple exdf objects. 1 and 2 have the same number of rows but
different columns, while 1 and 3 have the same columns but different rows.
simple_exdf_1 <- exdf(data.frame(A = 1), data.frame(A = 'au'), data.frame(A = 'ac'))
simple_exdf_2 <- exdf(data.frame(B = 2), data.frame(B = 'bu'), data.frame(B = 'bc'))
simple_exdf_3 <- exdf(data.frame(A = 2), data.frame(A = 'au'), data.frame(A = 'ac'))

cbind(simple_exdf_1) # will just return simple_exdf_1

98 check_required_variables

cbind(simple_exdf_1, simple_exdf_2)

rbind(simple_exdf_1) # will just return simple_exdf_1
rbind(simple_exdf_1, simple_exdf_3)

check_required_variables

Make sure required variables exist

Description

Checks whether the input table has the required variables.

Usage

check_required_variables(x, required_variables, check_NA = TRUE)

S3 method for class 'data.frame'
check_required_variables(x, required_variables, check_NA = TRUE)

S3 method for class 'exdf'
check_required_variables(x, required_variables, check_NA = TRUE)

Arguments

x A table-like R object such as a data frame or an exdf.
required_variables

A set of variables that must each be included in x as columns.

check_NA A logical value indicating whether to check for columns that are all NA; see
below.

Details

check_required_variables is generic, with methods defined for data frames and exdf objects.

When x is an exdf, the required_variables input argument must be a list of named strings,
where the name of each element specifies the name of a column that must be included in x, while
the value of each column specifies the corresponding units for that column. If the value is NA, no
unit checking will be performed.

When x is a data.frame, the required_variables input argument can be specified as a list (as
if x were an exdf object) or as a character vector specifying the names of columns that should be
included in x.

The required variables will be checked as follows:

• If any required variable columns are missing from the table, an informative error message will
be thrown.

check_response_curve_data 99

• If check_NA is TRUE and any required variable columns are entirely NA, an informative error
message will be thrown.

• If any required variable colums have incorrect units, an informative error message will be
thrown. (Only applies to exdf objects.)

Otherwise, check_required_variables will have no output and produce no messages.

This function is used internally by many other functions from the PhotoGEA package to check
for important columns and make sure they have the correct units. For example, see the code for
apply_gm by typing PhotoGEA::apply_gm in the R terminal.

Value

The check_required_variables function does not return anything.

See Also

exdf

Examples

Create a simple exdf object
simple_exdf <- exdf(

data.frame(A = c(3, 2, 7, 9), B = c(4, 5, 1, 8)),
data.frame(A = 'm', B = 's', stringsAsFactors = FALSE),
data.frame(A = 'Cat1', B = 'Cat2', stringsAsFactors = FALSE)

)

Confirm that columns named `A` and `B` are in the object, and that they have
units of `m` and `s`, respectively.
check_required_variables(simple_exdf, list(A = 'm', B = 's'))

Confirm that columns named `A` and `B` are in the object, but only check units
for the `A` column.
check_required_variables(simple_exdf, list(A = 'm', B = NA))

Use the data frame method on `simple_exdf$main_data` to confirm that columns
named `A` and `B` are present
check_required_variables(simple_exdf$main_data, c('A', 'B'))

check_response_curve_data

Check response curve data for common issues

Description

Checks to make sure an exdf object representing multiple response curves meets basic expectations.

100 check_response_curve_data

Usage

check_response_curve_data(
exdf_obj,
identifier_columns,
expected_npts = 0,
driving_column = NULL,
driving_column_tolerance = 1.0,
col_to_ignore_for_inf = 'gmc',
constant_col = list(),
error_on_failure = TRUE,
print_information = TRUE

)

Arguments

exdf_obj An exdf object representing multiple response curves.
identifier_columns

A vector or list of strings representing the names of columns in exdf_obj that,
taken together, uniquely identify each curve. This often includes names like
plot, event, replicate, etc.

expected_npts A numeric vector of length 1 or 2 specifying conditions for the number of points
in each curve. If expected_npts is set to a negative number, then this check
will be skipped. See below for more details.

driving_column The name of a column that is systematically varied to produce each curve; for ex-
ample, in a light response curve, this would typically by Qin. If driving_column
is NULL, then this check will be skipped.

driving_column_tolerance

An absolute tolerance for the deviation of each value of driving_column away
from its mean across all the curves; the driving_column_tolerance can be set
to Inf to disable this check.

col_to_ignore_for_inf

Any columns to ignore while checking for infinite values. Mesophyll conduc-
tance (gmc) is often set to infinity intentionally so should be ignored when per-
forming this check. To completely disable this check, set col_to_ignore_for_inf
to NULL.

constant_col A list of named numeric elements, where the name indicates a column of exdf_obj
that should be constant, and the value indicates whether the column’s values
must be identical or whether they must lie within a specified numeric range. If
constant_col is an empty list, then this check will be skipped. See below for
more details.

error_on_failure

A logical value indicating whether to send an error message when an issue is
detected. See details below.

print_information

A logical value indicating whether to print additional information to the R ter-
minal when an issue is detected. See details below.

check_response_curve_data 101

Details

Basic Behavior:

This function makes a few basic checks to ensure that the response curve data includes the expected
information and does not include any mistakes. If no problems are detected, this function will be
silent with no return value. If a problem is detected, then the user will be notified in one or more
ways:

• If error_on_failure is TRUE, then this function will throw an error with a short message.
If print_information is also TRUE, then additional information will be printed to the R
terminal.

• If error_on_failure is FALSE and print_information is also FALSE, then this function will
throw a warning with a short message.

• If error_on_failure is FALSE and print_information is true, information about the prob-
lem will be printed to the R terminal.

This function will (optionally) perform several checks:

• Checking for infinite values: If col_to_ignore_for_inf is not NULL, no numeric columns in
exdf_obj should have infinite values, with the exception of columns designated in col_to_ignore_for_inf.

• Checking required columns: All elements of identifier_columns should be present as
columns in exdf_obj. If driving_column is not NULL, it should also be present as a col-
umn in exdf_obj. If constant_col is not empty, then these columns must also be present in
exdf_obj.

• Checking the number of points in each curve: The general idea is to ensure that each curve has
the expected number of points. Several options can be specified via the value of expected_npts,
as discussed below.

• Checking the driving column: If driving_column is not NULL, then each curve should have the
same sequence of values in this column. To allow for small variations, a nonzero driving_column_tolerance
can be specified.

• Checking the constant columns: If constant_col is not empty, then each specified column
should either be constant, or only vary by a specified amount. See details below.

By default, most of these are not performed (except the simplest ones like checking for infinite
values or checking that key columns are present). This enables an "opt-in" use style, where users
can specify just the checks they wish to make.

More Details:

There are several options for checking the number of points in each curve:

• If expected_npts is a single negative number, no check will be performed.

• If expected_npts is 0, then each curve is expected to have the same number of points.

• If expected_npts is a single positive number, then each curve is expected to have that many
points. For example, if expected_npts is 7, then each curve must have 7 points.

• If expected_npts is a pair of positive numbers, then each curve is expected to have a number
of points lying within the range defined by expected_npts. For example, if expected_npts
is c(6, 8), then each curve must have no fewer than 6 points and no more than 8 points.

102 check_response_curve_data

• If expected_npts is a pair of numbers, one of which is zero and one of which is positive,
then the positive number specifies a range; each curve must differ from the average number
of points by less than the range. For example, if expected_npts is c(0, 3), then every curve
must have a number of points within 3 of the average number of points.

There are two options for checking columns that should be constant:

• A value of NA indicates that all values of that column must be exactly identical; this check
applies for numeric and character columns.

• A numeric value indicates that the range of values of that column must be smaller than the
specified range; this range applies for numeric columns only.

For example, setting constant_col = list(species = NA, Qin = 10) means that each curve must
have only a single value of the species column, and that the value of the Qin column cannot vary
by more than 10 across each curve.

Use Cases:
Using check_response_curve_data is not strictly necessary, but it can be helpful both to you and
to anyone else reading your analysis code. Here are a few typical use cases:

• Average response curves: It is common to calculate and plot average response curves, either
manually or by using xyplot_avg_rc. But, it only makes sense to do this if each curve fol-
lowed the same sequence of the driving variable. In this case, check_response_curve_data
can be used to confirm that each curve used the same values of CO2_r_sp (for an A-Ci curve)
or Qin (for an A-Q curve).

• Removing recovery points: It is common to wish to remove one or more recovery points
from a set of curves. The safest way to do this is to confirm that all the curves use the same
sequence of setpoints; then you can be sure that, for example, points 9 and 10 are the recovery
points in every curve.

• Making a statement of expectations: If you measured a set of A-Ci curves where each curve
has 16 points and used the same sequence of CO2_r setpoints, you could record this somewhere
in your notes. But it would be even more meaningful to use check_response_curve_data
in your script with expected_npts set to 16. If this check passes, then it means not only that
your claim is correct, but also that the identifier columns are being interpreted properly.

• Checking identifiers: If the data set includes some identifying metadata, such as a species or
location, it may be helpful to confirm that each curve has a single value of these "identifier"
columns. Otherwise, the data set may be difficult to interpret.

• Checking measurement conditions: If the response curves are expected to be measured un-
der constant temperature, humidity, light, or other environmental variables, it may be helpful
to confirm that these variables do not vary too much across each individual curve. Otherwise,
parameter values estimated from the curves may not be meaningful.

Sometimes the response curves in a large data set were not all measured with the same sequence
of setpoints. If only a few different sequences were used, it is possible to split them into groups
and separately run check_response_curve_data on each group. This scenario is discussed in the
Frequently Asked Questions vignette.

Even if none of the above situations are relevant to you, it may still be helpful to run run check_response_curve_data
but with expected_npts set to 0 and error_on_failure set to FALSE. With these settings, if there
are curves with different numbers of points, the function will print the number of points in each

check_response_curve_data 103

curve to the R terminal, but won’t stop the rest of the script from running. This can be useful for de-
tecting problems with the curve_identifier column. For example, if the longest curves in the set
are known to have 17 points, but check_response_curve_data identifies a curve with 34 points,
it is clear that the same identifier was accidentally used for two different curves.

Value

The check_response_curve_data function does not return anything.

Examples

Read an example Licor file included in the PhotoGEA package and check it.
This file includes several 7-point light-response curves that can be uniquely
identified by the values of its 'species' and 'plot' columns. Since these are
light-response curves, each one follows a pre-set sequence of `Qin` values.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

Make sure there are no infinite values and that all curves have the same
number of points
check_response_curve_data(licor_file, c('species', 'plot'))

Make sure there are no inifinite values and that all curves have 7 points
check_response_curve_data(licor_file, c('species', 'plot'), expected_npts = 7)

Make sure there are no infinite values, that all curves have 7 points, and
that the values of the `Qin` column follow the same sequence in all curves
(to within 1.0 micromol / m^2 / s)
check_response_curve_data(

licor_file,
c('species', 'plot'),
expected_npts = 7,
driving_column = 'Qin',
driving_column_tolerance = 1.0

)

Make sure that there are no infinite values and that all curves have between
8 and 10 points; this will intentionally fail
check_response_curve_data(

licor_file,
c('species', 'plot'),
expected_npts = c(8, 10),
error_on_failure = FALSE

)

Split the data set by `species` and make sure all curves have similar numbers
of points (within 3 of the mean value); this will intentionally fail
check_response_curve_data(

licor_file,
'species',
expected_npts = c(0, 3),

104 choose_input_files

error_on_failure = FALSE
)

Split the data set by `species` and make sure all curves have a constant value
of `plot` and a limited range of `TLeafCnd`; this will intentionally fail
check_response_curve_data(

licor_file,
'species',
constant_col = list(plot = NA, TleafCnd = 0.001),
error_on_failure = FALSE

)

choose_input_files Choosing input files

Description

Tools for choosing input files via dialog windows.

Usage

choose_input_files()

choose_input_licor_files()

choose_input_tdl_files()

Details

These functions are only available in interactive sessions; moreover, choose_input_licor_files
and choose_input_tdl_files are only available in Microsoft Windows.

• choose_input_files will prompt the user to select a single file, and will return full file paths
for all files in the same directory that have the same extension.

• choose_input_licor_files can be used to select one or more Microsoft Excel files (with
extension *.xlsx) or plaintext files (with no extension).

• choose_input_tdl_files can be used to select one or more TDL data files (with extension
*.dat).

The outputs from these functions are typically passed to read_gasex_file via lapply.

Value

A character vector of full file paths.

confidence_intervals_c3_aci 105

Examples

Interactively select a single file and get full file paths to all
other files in the same directory that have the same extension
if (interactive()) {

file_paths <- choose_input_files()
}

Interactively select one or more Licor Excel files and read each one to create
a list of exdf objects
if (interactive() && .Platform$OS.type == "windows") {

lapply(choose_input_licor_files(), function(fname) {
read_gasex_file(fname, 'time')

})
}

Interactively select one or more TDL data files and read each one to create a
list of exdf objects
if (interactive() && .Platform$OS.type == "windows") {

lapply(choose_input_tdl_files(), function(fname) {
read_gasex_file(fname, 'TIMESTAMP')

})
}

confidence_intervals_c3_aci

Calculate confidence intervals for C3 A-Ci fitting parameters

Description

Calculates confidence intervals for parameters estimated by a C3 A-Ci curve fit. It is rare for users
to call this function directly, because it can be automatically applied to each curve when calling
fit_c3_aci.

Usage

confidence_intervals_c3_aci(
replicate_exdf,
best_fit_parameters,
lower = list(),
upper = list(),
fit_options = list(),
sd_A = 1,
relative_likelihood_threshold = 0.147,
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
a_column_name = 'A',
ci_column_name = 'Ci',

106 confidence_intervals_c3_aci

gamma_star_norm_column_name = 'Gamma_star_norm',
gmc_norm_column_name = 'gmc_norm',
j_norm_column_name = 'J_norm',
kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
cj_crossover_min = NA,
cj_crossover_max = NA,
hard_constraints = 0,
...

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.
best_fit_parameters

An exdf object representing best-fit parameters for the CO2 response curve in
replicate_exdf, as calculated by fit_c3_aci.

lower The same value that was passed to fit_c3_aci when generating best_fit_parameters.

upper The same value that was passed to fit_c3_aci when generating best_fit_parameters.

fit_options The same value that was passed to fit_c3_aci when generating best_fit_parameters.

sd_A The same value that was passed to fit_c3_aci when generating best_fit_parameters.
relative_likelihood_threshold

The threshold value of relative likelihood used to define the boundaries of the
confidence intervals; see details below.

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

gamma_star_norm_column_name

The name of the column in replicate_exdf that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

gmc_norm_column_name

The name of the column in replicate_exdf that contains the normalized mes-
ophyll conductance values (with units of normalized to gmc at 25 degrees C).

confidence_intervals_c3_aci 107

j_norm_column_name

The name of the column in replicate_exdf that contains the normalized J
values (with units of normalized to J at 25 degrees C).

kc_norm_column_name

The name of the column in replicate_exdf that contains the normalized Kc
values (with units of normalized to Kc at 25 degrees C).

ko_norm_column_name

The name of the column in replicate_exdf that contains the normalized Ko
values (with units of normalized to Ko at 25 degrees C).

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

rl_norm_column_name

The name of the column in replicate_exdf that contains the normalized RL
values (with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in replicate_exdf that contains the total pressure in
bar.

tp_norm_column_name

The name of the column in replicate_exdf that contains the normalized Tp
values (with units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vcmax
values (with units of normalized to Vcmax at 25 degrees C).

cj_crossover_min

The minimum value of Cc (in ppm) where Aj is allowed to become the overall
rate-limiting factor. If cj_crossover_min is set to NA, this restriction will not
be applied.

cj_crossover_max

The maximim value of Cc (in ppm) where Wj is allowed to be smaller than Wc.
If cj_crossover_max is set to NA, this restriction will not be applied.

hard_constraints

To be passed to calculate_c3_assimilation; see that function for more de-
tails.

... Additional arguments to be passed to calculate_c3_assimilation.

Details

In maximum likelihood fitting, each set of parameter values has an associated likelihood value. If
the maximum likelihood is known, then it is also possible to define a relative likelihood p according
to p = L / L_max. The set of all parameter values where p exceeds a threshold value p_0 defines a re-
gion in parameter space called like a "relative likelihood region." When taking one-dimensional cuts
through parameter space, the boundaries of the relative likelihood region define a relative likelihood
interval.

Here we calculate the upper and lower limits of the relative likelihood intervals for each param-
eter. This is done by fixing the other parameters to their best-fit values, and varying a single pa-
rameter to find the interval where the relative likelihood is above the threshold value (set by the

108 confidence_intervals_c3_aci

relative_likelihood_threshold input argument). If the threshold is set to 0.147, then these in-
tervals are equivalent to 95% confidence intervals in most situations. See the Wikipedia page about
relative likelihood for more information.

Internally, this function uses error_function_c3_aci to calculate the negative logarithm of the
likelihood (-ln(L)). It varies each fitting parameter independendently to find values where ln(L)
- ln(p_0) - ln(L_max) = 0.

If the upper limit of a confidence interval is found to exceed ten times the upper limit specified when
fitting that parameter, then the upper limit of the condfidence interval is taken to be infinity.

Value

An exdf object based on best_fit_parameters that contains lower and upper bounds for each
parameter; for example, if Vcmax_at_25 was fit, best_fit_parameters will contain new columns
called Vcmax_at_25_lower and Vcmax_at_25_upper.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

Fit just one curve from the data set
one_result <- fit_c3_aci(

licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE],
calculate_confidence_intervals = FALSE

)

Calculate confidence limits for the fit parameters
parameters_with_limits <- confidence_intervals_c3_aci(

licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE],
one_result$parameters

)

https://en.wikipedia.org/wiki/Relative_likelihood

confidence_intervals_c3_variable_j 109

View confidence limits and best estimate for Vcmax_at_25
parameters_with_limits[, c('Vcmax_at_25_lower', 'Vcmax_at_25', 'Vcmax_at_25_upper')]

confidence_intervals_c3_variable_j

Calculate confidence intervals for C3 Variable J fitting parameters

Description

Calculates confidence intervals for parameters estimated by a C3 A-Ci curve fit. It is rare for users
to call this function directly, because it can be automatically applied to each curve when calling
fit_c3_variable_j.

Usage

confidence_intervals_c3_variable_j(
replicate_exdf,
best_fit_parameters,
lower = list(),
upper = list(),
fit_options = list(),
sd_A = 1,
relative_likelihood_threshold = 0.147,
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
a_column_name = 'A',
ci_column_name = 'Ci',
gamma_star_norm_column_name = 'Gamma_star_norm',
j_norm_column_name = 'J_norm',
kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
phips2_column_name = 'PhiPS2',
qin_column_name = 'Qin',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
cj_crossover_min = NA,
cj_crossover_max = NA,
hard_constraints = 0,
require_positive_gmc = 'positive_a',
gmc_max = Inf,
check_j = TRUE,
...

)

110 confidence_intervals_c3_variable_j

Arguments

replicate_exdf An exdf object representing one CO2 response curve.
best_fit_parameters

An exdf object representing best-fit parameters for the CO2 response curve in
replicate_exdf, as calculated by fit_c3_variable_j.

lower The same value that was passed to fit_c3_variable_j when generating best_fit_parameters.

upper The same value that was passed to fit_c3_variable_j when generating best_fit_parameters.

fit_options The same value that was passed to fit_c3_variable_j when generating best_fit_parameters.

sd_A The same value that was passed to fit_c3_variable_j when generating best_fit_parameters.
relative_likelihood_threshold

The threshold value of relative likelihood used to define the boundaries of the
confidence intervals; see details below.

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

gamma_star_norm_column_name

The name of the column in replicate_exdf that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

j_norm_column_name

The name of the column in replicate_exdf that contains the normalized J
values (with units of normalized to J at 25 degrees C).

kc_norm_column_name

The name of the column in replicate_exdf that contains the normalized Kc
values (with units of normalized to Kc at 25 degrees C).

ko_norm_column_name

The name of the column in replicate_exdf that contains the normalized Ko
values (with units of normalized to Ko at 25 degrees C).

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

phips2_column_name

The name of the column in replicate_exdf that contains values of the operat-
ing efficiency of photosystem II (dimensionless).

qin_column_name

The name of the column in replicate_exdf that contains values of the incident
photosynthetically active flux density in micromol m^(-2) s^(-1).

confidence_intervals_c3_variable_j 111

rl_norm_column_name

The name of the column in replicate_exdf that contains the normalized RL
values (with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in replicate_exdf that contains the total pressure in
bar.

tp_norm_column_name

The name of the column in replicate_exdf that contains the normalized Tp
values (with units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vcmax
values (with units of normalized to Vcmax at 25 degrees C).

cj_crossover_min

To be passed to error_function_c3_variable_j.

cj_crossover_max

To be passed to error_function_c3_variable_j.

hard_constraints

To be passed to calculate_c3_assimilation and calculate_c3_variable_j;
see those functions for more details.

require_positive_gmc

To be passed to error_function_c3_variable_j.

gmc_max To be passed to error_function_c3_variable_j.

check_j To be passed to error_function_c3_variable_j.

... Additional arguments to be passed to calculate_c3_assimilation.

Details

In maximum likelihood fitting, each set of parameter values has an associated likelihood value. If
the maximum likelihood is known, then it is also possible to define a relative likelihood p according
to p = L / L_max. The set of all parameter values where p exceeds a threshold value p_0 defines a re-
gion in parameter space called like a "relative likelihood region." When taking one-dimensional cuts
through parameter space, the boundaries of the relative likelihood region define a relative likelihood
interval.

Here we calculate the upper and lower limits of the relative likelihood intervals for each param-
eter. This is done by fixing the other parameters to their best-fit values, and varying a single pa-
rameter to find the interval where the relative likelihood is above the threshold value (set by the
relative_likelihood_threshold input argument). If the threshold is set to 0.147, then these in-
tervals are equivalent to 95% confidence intervals in most situations. See the Wikipedia page about
relative likelihood for more information.

Internally, this function uses error_function_c3_variable_j to calculate the negative logarithm
of the likelihood (-ln(L)). It varies each fitting parameter independendently to find values where
ln(L) - ln(p_0) - ln(L_max) = 0.

If the upper limit of a confidence interval is found to exceed ten times the upper limit specified when
fitting that parameter, then the upper limit of the condfidence interval is taken to be infinity.

https://en.wikipedia.org/wiki/Relative_likelihood

112 confidence_intervals_c4_aci

Value

An exdf object based on best_fit_parameters that contains lower and upper bounds for each
parameter; for example, if Vcmax_at_25 was fit, best_fit_parameters will contain new columns
called Vcmax_at_25_lower and Vcmax_at_25_upper.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

Fit just one curve from the data set, using a less reliable optimizer so the
example runs faster
one_result <- fit_c3_variable_j(

licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE],
optim_fun = optimizer_nmkb(1e-7),
calculate_confidence_intervals = FALSE

)

Calculate confidence limits for the fit parameters
parameters_with_limits <- confidence_intervals_c3_variable_j(

licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE],
one_result$parameters

)

View confidence limits and best estimate for Vcmax_at_25
parameters_with_limits[, c('Vcmax_at_25_lower', 'Vcmax_at_25', 'Vcmax_at_25_upper')]

confidence_intervals_c4_aci

Calculate confidence intervals for C4 A-Ci fitting parameters

confidence_intervals_c4_aci 113

Description

Calculates confidence intervals for parameters estimated by a C4 A-Ci curve fit. It is rare for users
to call this function directly, because it can be automatically applied to each curve when calling
fit_c4_aci.

Usage

confidence_intervals_c4_aci(
replicate_exdf,
best_fit_parameters,
lower = list(),
upper = list(),
fit_options = list(),
sd_A = 1,
relative_likelihood_threshold = 0.147,
x_etr = 0.4,
a_column_name = 'A',
ao_column_name = 'ao',
ci_column_name = 'Ci',
gamma_star_column_name = 'gamma_star',
gmc_norm_column_name = 'gmc_norm',
j_norm_column_name = 'J_norm',
kc_column_name = 'Kc',
ko_column_name = 'Ko',
kp_column_name = 'Kp',
oxygen_column_name = 'oxygen',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
vcmax_norm_column_name = 'Vcmax_norm',
vpmax_norm_column_name = 'Vpmax_norm',
hard_constraints = 0

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.
best_fit_parameters

An exdf object representing best-fit parameters for the CO2 response curve in
replicate_exdf, as calculated by fit_c4_aci.

lower The same value that was passed to fit_c4_aci when generating best_fit_parameters.

upper The same value that was passed to fit_c4_aci when generating best_fit_parameters.

fit_options The same value that was passed to fit_c4_aci when generating best_fit_parameters.

sd_A The same value that was passed to fit_c4_aci when generating best_fit_parameters.
relative_likelihood_threshold

The threshold value of relative likelihood used to define the boundaries of the
confidence intervals; see details below.

114 confidence_intervals_c4_aci

x_etr The fraction of whole-chain electron transport occurring in the mesophyll (di-
mensionless). See Equation 29 from S. von Caemmerer (2021).

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ao_column_name The name of the column in replicate_exdf that contains the dimensionless
ratio of solubility and diffusivity of O2 to CO2.

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

gamma_star_column_name

The name of the column in replicate_exdf that contains the dimensionless
gamma_star values.

gmc_norm_column_name

The name of the column in replicate_exdf that contains the normalized mes-
ophyll conductance values (with units of normalized to gmc at 25 degrees C).

j_norm_column_name

The name of the column in exdf_obj that contains the normalized Jmax values
(with units of normalized to Jmax at 25 degrees C).

kc_column_name The name of the column in replicate_exdf that contains the Michaelis-Menten
constant for rubisco carboxylation in microbar.

ko_column_name The name of the column in replicate_exdf that contains the Michaelis-Menten
constant for rubisco oxygenation in mbar.

kp_column_name The name of the column in replicate_exdf that contains the Michaelis-Menten
constant for PEP carboxylase carboxylation in microbar.

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

rl_norm_column_name

The name of the column in replicate_exdf that contains the normalized RL
values (with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.
vcmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vcmax
values (with units of normalized to Vcmax at 25 degrees C).

vpmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vpmax
values (with units of normalized to Vpmax at 25 degrees C).

hard_constraints

To be passed to calculate_c4_assimilation; see that function for more de-
tails.

Details

In maximum likelihood fitting, each set of parameter values has an associated likelihood value. If
the maximum likelihood is known, then it is also possible to define a relative likelihood p according

confidence_intervals_c4_aci 115

to p = L / L_max. The set of all parameter values where p exceeds a threshold value p_0 defines a re-
gion in parameter space called like a "relative likelihood region." When taking one-dimensional cuts
through parameter space, the boundaries of the relative likelihood region define a relative likelihood
interval.

Here we calculate the upper and lower limits of the relative likelihood intervals for each param-
eter. This is done by fixing the other parameters to their best-fit values, and varying a single pa-
rameter to find the interval where the relative likelihood is above the threshold value (set by the
relative_likelihood_threshold input argument). If the threshold is set to 0.147, then these in-
tervals are equivalent to 95% confidence intervals in most situations. See the Wikipedia page about
relative likelihood for more information.

Internally, this function uses error_function_c4_aci to calculate the negative logarithm of the
likelihood (-ln(L)). It varies each fitting parameter independendently to find values where ln(L)
- ln(p_0) - ln(L_max) = 0.

If the upper limit of a confidence interval is found to exceed ten times the upper limit specified when
fitting that parameter, then the upper limit of the condfidence interval is taken to be infinity.

Value

An exdf object based on best_fit_parameters that contains lower and upper bounds for each
parameter; for example, if Vcmax_at_25 was fit, best_fit_parameters will contain new columns
called Vcmax_at_25_lower and Vcmax_at_25_upper.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate temperature-dependent values of C4 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c4_temperature_param_vc)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Fit just one curve from the data set
one_result <- fit_c4_aci(

licor_file[licor_file[, 'species_plot'] == 'maize - 5', , TRUE],

https://en.wikipedia.org/wiki/Relative_likelihood

116 confidence_intervals_c4_aci_hyperbola

calculate_confidence_intervals = FALSE
)

Calculate confidence limits for the fit parameters
parameters_with_limits <- confidence_intervals_c4_aci(

licor_file[licor_file[, 'species_plot'] == 'maize - 5', , TRUE],
one_result$parameters

)

View confidence limits and best estimate for Vcmax_at_25
parameters_with_limits[, c('Vcmax_at_25_lower', 'Vcmax_at_25', 'Vcmax_at_25_upper')]

confidence_intervals_c4_aci_hyperbola

Calculate confidence intervals for C4 A-Ci hyperbola fitting parame-
ters

Description

Calculates confidence intervals for parameters estimated by a C4 A-Ci curve fit. It is rare for users
to call this function directly, because it can be automatically applied to each curve when calling
fit_c4_aci_hyperbola.

Usage

confidence_intervals_c4_aci_hyperbola(
replicate_exdf,
best_fit_parameters,
lower = list(),
upper = list(),
fit_options = list(),
sd_A = 1,
relative_likelihood_threshold = 0.147,
a_column_name = 'A',
ci_column_name = 'Ci',
hard_constraints = 0

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.
best_fit_parameters

An exdf object representing best-fit parameters for the CO2 response curve in
replicate_exdf, as calculated by fit_c4_aci_hyperbola.

lower The same value that was passed to fit_c4_aci_hyperbola when generating
best_fit_parameters.

upper The same value that was passed to fit_c4_aci_hyperbola when generating
best_fit_parameters.

confidence_intervals_c4_aci_hyperbola 117

fit_options The same value that was passed to fit_c4_aci_hyperbola when generating
best_fit_parameters.

sd_A The same value that was passed to fit_c4_aci_hyperbola when generating
best_fit_parameters.

relative_likelihood_threshold

The threshold value of relative likelihood used to define the boundaries of the
confidence intervals; see details below.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration, expressed in micromol mol^(-1).

hard_constraints

To be passed to calculate_c4_assimilation_hyperbola; see that function
for more details.

Details

In maximum likelihood fitting, each set of parameter values has an associated likelihood value. If
the maximum likelihood is known, then it is also possible to define a relative likelihood p according
to p = L / L_max. The set of all parameter values where p exceeds a threshold value p_0 defines a re-
gion in parameter space called like a "relative likelihood region." When taking one-dimensional cuts
through parameter space, the boundaries of the relative likelihood region define a relative likelihood
interval.

Here we calculate the upper and lower limits of the relative likelihood intervals for each param-
eter. This is done by fixing the other parameters to their best-fit values, and varying a single pa-
rameter to find the interval where the relative likelihood is above the threshold value (set by the
relative_likelihood_threshold input argument). If the threshold is set to 0.147, then these in-
tervals are equivalent to 95% confidence intervals in most situations. See the Wikipedia page about
relative likelihood for more information.

Internally, this function uses error_function_c4_aci_hyperbola to calculate the negative loga-
rithm of the likelihood (-ln(L)). It varies each fitting parameter independendently to find values
where ln(L) - ln(p_0) - ln(L_max) = 0.

If the upper limit of a confidence interval is found to exceed ten times the upper limit specified when
fitting that parameter, then the upper limit of the condfidence interval is taken to be infinity.

Value

An exdf object based on best_fit_parameters that contains lower and upper bounds for each
parameter; for example, if Vmax was fit, best_fit_parameters will contain new columns called
Vmax_lower and Vmax_upper.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

https://en.wikipedia.org/wiki/Relative_likelihood

118 consolidate

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Fit just one curve from the data set
one_result <- fit_c4_aci_hyperbola(

licor_file[licor_file[, 'species_plot'] == 'maize - 5', , TRUE],
calculate_confidence_intervals = FALSE

)

Calculate confidence limits for the fit parameters
parameters_with_limits <- confidence_intervals_c4_aci_hyperbola(

licor_file[licor_file[, 'species_plot'] == 'maize - 5', , TRUE],
one_result$parameters

)

View confidence limits and best estimate for Vmax
parameters_with_limits[, c('Vmax_lower', 'Vmax', 'Vmax_upper')]

consolidate Consolidate a list of lists

Description

Consolidates a list of lists into a regular list by combining like-named elements.

Usage

consolidate(x)

S3 method for class 'data.frame'
consolidate(x)

S3 method for class 'exdf'
consolidate(x)

Arguments

x A list of lists list_1, list_2, . . . , list_N, where each sub-list list_i has
elements named name_1, name_2, . . . , name_M.

consolidate 119

Details

consolidate is generic, with methods defined for nested lists of data frames and exdf objects.

Value

A list with elements named name_1, name_2, . . . , name_M, where each element was created by
combining all elements of x with the same name using rbind; for example, the element with name
name_1 will be created by calling rbind(list_1$name_1, list_2$name_1, ..., list_N$name_1).
Before calling rbind, each element will be limited to the columns that are common to all elements
with the same name.

See Also

exdf

Examples

Example 1: Create a nested list of data frames and then consolidate them into
a regular list by combining the like-named elements
nested_df_list <- list(

list_1 = list(
name_1 = data.frame(A = c(1, 2), B = c(0, 0)),
name_2 = data.frame(A = c(3, 4), B = c(0, 0)),
name_3 = data.frame(A = c(5, 6), B = c(0, 0))

),
list_2 = list(

name_1 = data.frame(A = c(7, 8), B = c(0, 0)),
name_2 = data.frame(A = c(9, 10), B = c(0, 0)),
name_3 = data.frame(A = c(11, 12), B = c(0, 0))

),
list_3 = list(

name_1 = data.frame(A = c(13, 14), B = c(0, 0)),
name_2 = data.frame(A = c(15, 16), B = c(0, 0)),
name_3 = data.frame(A = c(17, 18), B = c(0, 0))

)
)

str(nested_df_list)

consolidated_df_list <- consolidate(nested_df_list)

str(consolidated_df_list)

Example 2: Create a nested list of `exdf` objects and then consolidate them
into a regular list by combining the like-named elements. Here, some of the
elements have columns not present in the others (for example,
`nested_exdf_list$list_3$name_1`). However, these "extra" columns are removed
before calling `rbind` and they do not appear in `consolidated_exdf_list`.
nested_exdf_list <- list(

list_1 = list(
name_1 = exdf(data.frame(A = c(1, 2), B = c(0, 0))),

120 csv.exdf

name_2 = exdf(data.frame(A = c(3, 4), B = c(0, 0))),
name_3 = exdf(data.frame(A = c(5, 6), B = c(0, 0)))

),
list_2 = list(

name_1 = exdf(data.frame(A = c(7, 8), B = c(0, 0))),
name_2 = exdf(data.frame(A = c(9, 10), B = c(0, 0))),
name_3 = exdf(data.frame(A = c(11, 12), B = c(0, 0)))

),
list_3 = list(

name_1 = exdf(data.frame(A = c(13, 14), B = c(0, 0), C = c(-1, -2))),
name_2 = exdf(data.frame(A = c(15, 16), B = c(0, 0), C = c(-1, -2))),
name_3 = exdf(data.frame(A = c(17, 18), B = c(0, 0), C = c(-1, -2)))

)
)

str(nested_exdf_list)

consolidated_exdf_list <- consolidate(nested_exdf_list)

str(consolidated_exdf_list)

csv.exdf Read and write CSV files representing an exdf object

Description

Functions for reading and writing CSV files that represent an exdf object.

Usage

read.csv.exdf(file, ...)

write.csv.exdf(x, file, ...)

Arguments

file The name of the file which the data are to be read from; to be passed to read.csv.

... Additional arguments to be passed to read.csv or write.csv. Note that some
arguments cannot be specified; an error message will be sent if a used attempts
to set one of these forbidden arguments.

x An exdf object to be written to a CSV file.

Details

An exdf object can be written to a CSV file by directly calling write.csv, but this approach causes
some column names to be unintentionally modified. For example, any spaces will be replaced by
periods. This can potentially cause problems when reloading the data from the CSV file.

deprecated 121

Instead, it is preferred to use write.csv.exdf, which will not modify any column names. When
writing the CSV file, it is saved with the column names in the first row, the categories in the second
row, the units in the third row, and the data in the remaining rows.

The resulting file can be read using read.csv.exdf. Here, the names, categories, and units are read
from the first three rows of the specified file, and the data values from the remaining rows. An exdf
object is then created from this information.

Value

The write.csv.exdf function does not return anything. The read.csv.exdf function returns an
exdf object representing the contents of file.

Examples

Read a CSV file included with the PhotoGEA package; this file was created
using `write.csv.exdf`.
licor_file <- read.csv.exdf(

PhotoGEA_example_file_path('ball_berry_1.csv')
)

Now rewrite this to a temporary CSV file
tf <- tempfile(fileext = ".csv")
tf

write.csv.exdf(licor_file, tf)

deprecated Deprecated functions

Description

Deprecated functions that will be fully removed in future releases. Each of these functions will
produce an error when called that will redirect the user to a suitable replacement.

Usage

read_tdl_file(...)

read_licor_file(...)

check_licor_data(...)

calculate_arrhenius(...)

calculate_peaked_gaussian(...)

Arguments

... Additional arguments; currently unused.

122 dim.exdf

Value

None of the deprecated functions return anything.

Examples

These functions all throw errors, so we will wrap them in `tryCatch` here

tryCatch(
read_tdl_file(),
error = function(e) {print(e)}

)

tryCatch(
read_licor_file(),
error = function(e) {print(e)}

)

tryCatch(
check_licor_data(),
error = function(e) {print(e)}

)

tryCatch(
calculate_arrhenius(),
error = function(e) {print(e)}

)

tryCatch(
calculate_peaked_gaussian(),
error = function(e) {print(e)}

)

dim.exdf Retrieve the dimension of an exdf object

Description

Returns the dimensions of an exdf object’s main_data. Also enables nrow and ncol for exdf
objects.

Usage

S3 method for class 'exdf'
dim(x)

Arguments

x An exdf object.

dimnames.exdf 123

Value

Returns dim(x[['main_data']]).

See Also

exdf

Examples

simple_exdf <- exdf(data.frame(A = 1), data.frame(A = 'u'), data.frame(A = 'c'))

dim(simple_exdf)
dim(simple_exdf[['main_data']]) # An equivalent command

nrow(simple_exdf)
ncol(simple_exdf)

dimnames.exdf Retrieve or set the dimension names of an exdf object

Description

Returns or sets the dimension names of an exdf object’s main_data. When setting names, the
column names of the exdf object’s units and categories are also set. Also enables colnames
and rownames for exdf objects.

Usage

S3 method for class 'exdf'
dimnames(x)

S3 replacement method for class 'exdf'
dimnames(x) <- value

Arguments

x An exdf object.

value A possible value for dimnames(x)

Value

Returns dimnames(x[['main_data']]).

See Also

exdf

124 document_variables

Examples

simple_exdf <- exdf(data.frame(A = 1), data.frame(A = 'u'), data.frame(A = 'c'))

dimnames(simple_exdf)
dimnames(simple_exdf[['main_data']]) # An equivalent command

colnames(simple_exdf) <- "B"
rownames(simple_exdf) <- 2

colnames(simple_exdf)
rownames(simple_exdf)

document_variables Document exdf columns by specifying units and categories

Description

Adds new columns to a table-like object, and sets/modifies the units or categories of columns in an
exdf object.

Usage

document_variables(x, ...)

S3 method for class 'data.frame'
document_variables(x, ...)

S3 method for class 'exdf'
document_variables(x, ...)

Arguments

x A table-like R object such as a data frame or an exdf.

... Each optional argument should be a character vector with three elements that de-
scribe a column, where the first element is the category, the second is the name,
and the third is the units. For example, c('GasEx', 'A', 'micromol m^(-2)
s^(-1)') specifies that the category and units for the A column are GasEx and
micromol m^(-2) s^(-1), respectively. If the column name is not in x, it will
be added with all values initialized to NA. Categories and units will be ignored
when x is a data frame.

Value

An object based on x with new and/or modified columns.

See Also

exdf

error_function_c3_aci 125

Examples

Create a simple exdf object with two columns (`A` and `B`) and default values
for its units and categories.
simple_exdf <- exdf(data.frame(A = c(3, 2, 7, 9), B = c(4, 5, 1, 8)))

print(simple_exdf)

Specify units and categories for the `A` and `B` columns, and add a new `C`
column.
document_variables(

simple_exdf,
c('cat1', 'A', 'm'), # The category of `A` is `cat1` and its units are `m`
c('cat2', 'B', 's'), # The category of `B` is `cat2` and its units are `s`
c('cat3', 'C', 'g') # The category of `C` is `cat3` and its units are `g`

)

Do the same but for a data frame; in this case columns A and B will not be
altered, but a new column C will be added (and initialized to NA)
document_variables(

simple_exdf$main_data,
c('cat1', 'A', 'm'), # The category of `A` is `cat1` and its units are `m`
c('cat2', 'B', 's'), # The category of `B` is `cat2` and its units are `s`
c('cat3', 'C', 'g') # The category of `C` is `cat3` and its units are `g`

)

error_function_c3_aci Generate an error function for C3 A-Ci curve fitting

Description

Creates a function that returns an error value (the negative of the natural logarithm of the likeli-
hood) representing the amount of agreement between modeled and measured An values. When this
function is minimized, the likelihood is maximized.

Internally, this function uses apply_gm to calculate Cc, and then uses link{calculate_c3_assimilation}
to calculate assimilation rate values that are compared to the measured ones.

Usage

error_function_c3_aci(
replicate_exdf,
fit_options = list(),
sd_A = 1,
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
a_column_name = 'A',
ci_column_name = 'Ci',
gamma_star_norm_column_name = 'Gamma_star_norm',
gmc_norm_column_name = 'gmc_norm',

126 error_function_c3_aci

j_norm_column_name = 'J_norm',
kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
cj_crossover_min = NA,
cj_crossover_max = NA,
hard_constraints = 0,
debug_mode = FALSE,
...

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.

fit_options A list of named elements representing fit options to use for each parameter. Val-
ues supplied here override the default values (see details below). Each element
must be 'fit', 'column', or a numeric value. A value of 'fit' means that the
parameter will be fit; a value of 'column' means that the value of the parame-
ter will be taken from a column in replicate_exdf of the same name; and a
numeric value means that the parameter will be set to that value. For example,
fit_options = list(alpha_g = 0, Vcmax_at_25 = 'fit', Tp_at_25 = 'column')
means that alpha_g will be set to 0, Vcmax_at_25 will be fit, and Tp_at_25 will
be set to the values in the Tp_at_25 column of replicate_exdf.

sd_A The standard deviation of the measured values of the net CO2 assimilation rate,
expressed in units of micromol m^(-2) s^(-1). If sd_A is not a number, then
there must be a column in replicate_exdf called sd_A with appropriate units.
A numeric value supplied here will overwrite the values in the sd_A column of
replicate_exdf if it exists.

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

gamma_star_norm_column_name

The name of the column in replicate_exdf that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

error_function_c3_aci 127

gmc_norm_column_name

The name of the column in replicate_exdf that contains the normalized mes-
ophyll conductance values (with units of normalized to gmc at 25 degrees C).

j_norm_column_name

The name of the column in replicate_exdf that contains the normalized J
values (with units of normalized to J at 25 degrees C).

kc_norm_column_name

The name of the column in replicate_exdf that contains the normalized Kc
values (with units of normalized to Kc at 25 degrees C).

ko_norm_column_name

The name of the column in replicate_exdf that contains the normalized Ko
values (with units of normalized to Ko at 25 degrees C).

oxygen_column_name

The name of the column in replicate_exdf that contains the concentration of
O2 in the ambient air, expressed as a percentage (commonly 21% or 2%); the
units must be percent.

rl_norm_column_name

The name of the column in replicate_exdf that contains the normalized RL
values (with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in replicate_exdf that contains the total pressure in
bar.

tp_norm_column_name

The name of the column in replicate_exdf that contains the normalized Tp
values (with units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vcmax
values (with units of normalized to Vcmax at 25 degrees C).

cj_crossover_min

The minimum value of Cc (in ppm) where Aj is allowed to become the overall
rate-limiting factor. If cj_crossover_min is set to NA, this restriction will not
be applied.

cj_crossover_max

The maximim value of Cc (in ppm) where Wj is allowed to be smaller than Wc.
If cj_crossover_max is set to NA, this restriction will not be applied.

hard_constraints

To be passed to calculate_c3_assimilation; see that function for more de-
tails.

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about the guess is printed each time the error func-
tion is called; this can be helpful when troubleshooting issues with an optimizer.

... Additional arguments to be passed to calculate_c3_assimilation.

Details

When fitting A-Ci curves using a maximum likelihood approach, it is necessary to define a func-
tion that calculates the likelihood of a given set of alpha_g, alpha_old, alpha_s, alpha_t,

128 error_function_c3_aci

Gamma_star_at_25, gmc_at_25, J_at_25, Kc_at_25, Ko_at_25, RL_at_25, Tp_at_25, and Vcmax_at_25
values by comparing a model prediction to a measured curve. This function will be passed to an
optimization algorithm which will determine the values that produce the largest likelihood.

The error_function_c3_aci returns such a function, which is based on a particular A-Ci curve
and a set of fitting options. It is possible to just fit a subset of the available fitting parameters; by
default, the fitting parameters are alpha_old, J_at_25, RL_at_25, Tp_at_25, and Vcmax_at_25.
This behavior can be changed via the fit_options argument.

For practical reasons, the function actually returns values of -ln(L), where L is the likelihood.
The logarithm of L is simpler to calculate than L itself, and the minus sign converts the problem
from a maximization to a minimization, which is important because most optimizers are designed
to minimize a value.

Sometimes an optimizer will choose biologically unreasonable parameter values that neverthe-
less produce good fits to the supplied assimilation values. A common problem is that the fit re-
sult may not indicate Ac-limited assimilation at low CO2 values, which should be the case for
any A-Ci curves measured at saturating light. In this case, the optional cj_crossover_min and
cj_crossover_max can be used to constrain the range of Cc values (in ppm) where Aj is allowed
to be the overall rate limiting factor. If the crossover from Rubisco-limited to RuBP-regeneration
limited assimilation occurs outside these bounds (when they are supplied), a heavy penalty will be
added to the error function, preventing the optimizer from choosing those parameter values.

A penalty is also added for any parameter combination where An is not a number, or where calculate_c3_assimilation
produces an error.

Value

A function with one input argument guess, which should be a numeric vector representing values of
the parameters to be fitted (which are specified by the fit_options input argument.) Each element
of guess is the value of one parameter (arranged in alphabetical order.) For example, with the
default settings, guess should contain values of alpha_old, J_at_25, RL_at_25, Tp_at_25, and
Vcmax_at_25 (in that order).

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

error_function_c3_variable_j 129

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

Define an error function for one curve from the set
error_fcn <- error_function_c3_aci(

licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE]
)

Evaluate the error for:
alpha_old = 0
J_at_25 = 236
RL_at_25 = 4e-8
Tp_at_25 = 22.7
Vcmax_at_25 = 147
error_fcn(c(0, 236, 4e-8, 22.7, 147))

Make a plot of likelihood vs. Vcmax when other parameters are fixed to the
values above.
vcmax_error_fcn <- function(Vcmax) {error_fcn(c(0, 236, 4e-8, 22.7, Vcmax))}
vcmax_seq <- seq(135, 152, length.out = 41)

lattice::xyplot(
exp(-sapply(vcmax_seq, vcmax_error_fcn)) ~ vcmax_seq,
type = 'b',
xlab = 'Vcmax_at_25 (micromol / m^2 / s)',
ylab = 'Negative log likelihood (dimensionless)'

)

error_function_c3_variable_j

Generate an error function for C3 Variable J curve fitting

Description

Creates a function that returns an error value (the negative of the natural logarithm of the likeli-
hood) representing the amount of agreement between modeled and measured An values. When this
function is minimized, the likelihood is maximized.

Internally, this function uses link{calculate_c3_variable_j} and link{calculate_c3_assimilation}
to calculate assimilation rate values that are compared to the measured ones.

Usage

error_function_c3_variable_j(
replicate_exdf,
fit_options = list(),
sd_A = 1,

130 error_function_c3_variable_j

Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
a_column_name = 'A',
ci_column_name = 'Ci',
gamma_star_norm_column_name = 'Gamma_star_norm',
j_norm_column_name = 'J_norm',
kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
phips2_column_name = 'PhiPS2',
qin_column_name = 'Qin',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
cj_crossover_min = NA,
cj_crossover_max = NA,
hard_constraints = 0,
require_positive_gmc = 'positive_a',
gmc_max = Inf,
check_j = TRUE,
debug_mode = FALSE,
...

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.

fit_options A list of named elements representing fit options to use for each parameter. Val-
ues supplied here override the default values (see details below). Each element
must be 'fit', 'column', or a numeric value. A value of 'fit' means that the
parameter will be fit; a value of 'column' means that the value of the parame-
ter will be taken from a column in replicate_exdf of the same name; and a
numeric value means that the parameter will be set to that value. For example,
fit_options = list(alpha_g = 0, Vcmax_at_25 = 'fit', Tp_at_25 = 'column')
means that alpha_g will be set to 0, Vcmax_at_25 will be fit, and Tp_at_25 will
be set to the values in the Tp_at_25 column of replicate_exdf.

sd_A The standard deviation of the measured values of the net CO2 assimilation rate,
expressed in units of micromol m^(-2) s^(-1). If sd_A is not a number, then
there must be a column in replicate_exdf called sd_A with appropriate units.
A numeric value supplied here will overwrite the values in the sd_A column of
replicate_exdf if it exists.

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of

error_function_c3_variable_j 131

RuBP regeneration; see calculate_c3_assimilation for more information.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

gamma_star_norm_column_name

The name of the column in replicate_exdf that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

j_norm_column_name

The name of the column in replicate_exdf that contains the normalized J
values (with units of normalized to J at 25 degrees C).

kc_norm_column_name

The name of the column in replicate_exdf that contains the normalized Kc
values (with units of normalized to Kc at 25 degrees C).

ko_norm_column_name

The name of the column in replicate_exdf that contains the normalized Ko
values (with units of normalized to Ko at 25 degrees C).

oxygen_column_name

The name of the column in replicate_exdf that contains the concentration of
O2 in the ambient air, expressed as a percentage (commonly 21% or 2%); the
units must be percent.

phips2_column_name

The name of the column in replicate_exdf that contains values of the operat-
ing efficiency of photosystem II (dimensionless).

qin_column_name

The name of the column in replicate_exdf that contains values of the incident
photosynthetically active flux density in micromol m^(-2) s^(-1).

rl_norm_column_name

The name of the column in replicate_exdf that contains the normalized RL
values (with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in replicate_exdf that contains the total pressure in
bar.

tp_norm_column_name

The name of the column in replicate_exdf that contains the normalized Tp
values (with units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vcmax
values (with units of normalized to Vcmax at 25 degrees C).

cj_crossover_min

The minimum value of Cc (in ppm) where Aj is allowed to become the overall
rate-limiting factor. If cj_crossover_min is set to NA, this restriction will not
be applied.

cj_crossover_max

The maximim value of Cc (in ppm) where Wj is allowed to be smaller than Wc.
If cj_crossover_max is set to NA, this restriction will not be applied.

132 error_function_c3_variable_j

hard_constraints

To be passed to calculate_c3_assimilation and calculate_c3_variable_j;
see those functions for more details.

require_positive_gmc

A character string specifying the method to be used for requiring positive val-
ues of mesophyll conductance. Can be 'none', 'all', or 'positive_a'. See
below for more details.

gmc_max The maximum value of mesophyll conductance that should be considered to be
acceptable. See below for more details.

check_j A logical (TRUE/FALSE) value indicating whether to check whether J_F >
J_tl. See below for more details.

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about the guess is printed each time the error func-
tion is called; this can be helpful when troubleshooting issues with an optimizer.

... Additional arguments to be passed to calculate_c3_assimilation.

Details

When fitting A-Ci + chlorophyll fluorescence curves using the Variable J method, it is necessary
to define a function that calculates the likelihood of a given set of alpha_g, alpha_old, alpha_s,
alpha_t, Gamma_star, J_at_25, RL_at_25, tau, Tp_at_25, and Vcmax_at_25 values by com-
paring a model prediction to a measured curve. This function will be passed to an optimization
algorithm which will determine the values that produce the smallest error.

The error_function_c3_variable_j returns such a function, which is based on a particular repli-
cate and a set of fitting options. It is possible to just fit a subset of the available fitting parame-
ters; by default, the fitting parameters are alpha_old, J_at_25, RL_at_25, Tp_at_25, tau, and
Vcmax_at_25. This behavior can be changed via the fit_options argument.

For practical reasons, the function actually returns values of -ln(L), where L is the likelihood.
The logarithm of L is simpler to calculate than L itself, and the minus sign converts the problem
from a maximization to a minimization, which is important because most optimizers are designed
to minimize a value.

Sometimes an optimizer will choose biologically unreasonable parameter values that nevertheless
produce good fits to the supplied assimilation values. There are several options for preventing an
optimizer from choosing such parameter values:

• Enforcing Rubisco limitations: A common problem is that the fit result may not indi-
cate Rubisc-limited assimilation at low CO2 values, which should be the case for any A-
Ci curves measured at saturating light. In this case, the optional cj_crossover_min and
cj_crossover_max can be used to constrain the range of Cc values (in ppm) where Wj is
allowed to be the overall rate limiting factor. If the crossover from Rubisco-limited to RuBP-
regeneration limited carboxylation occurs outside these bounds (when they are supplied), a
heavy penalty will be added to the error function, preventing the optimizer from choosing
those parameter values.

• Requiring positive gmc: The Variable J method sometimes predicts negative values of the
mesophyll conductance (gmc). Such values are probably not realistic, especially when Cc
is above the CO2 compensation point. The require_positive_gmc input argument can be
used to penalize negative values of gmc. When require_positive_gmc is 'all', a heavy

error_function_c3_variable_j 133

penalty will be added to the error function if there are any negative gmc values. When
require_positive_gmc is 'positive_a', a heavy penalty will be added to the error func-
tion if there are any negative gmc values when A is positive; negative gmc for negative A will
be allowed. When require_positive_gmc is 'none', these restrictions are disabled and no
penalties are added for negative gmc.

• Preventing large values of gmc: The Variable J method sometimes produces unreasonably
high values of gmc. The gmc_max argument can be used to address this. If any predicted gmc
values exceed gmc_max when A is positive, a heavy penalty will be added to the error function.

• Enforcing consistent RuBP regeneration rates: In principle, the actual RuBP regenera-
tion rate (J_F) should always be less than or equal to its maximum value for a given Qin and
leaf temperature (J_tl), with equality only occuring when assimilation is RuBP-regeneration-
limited. When check_j is TRUE, a heavy penalty will be added to the error function for any
parameter values where J_F is greater than J_tl at any point in the curve.

A penalty is also added for any parameter combination where An is not a number, or where calculate_c3_variable_j
or calculate_c3_assimilation produce an error.

Value

A function with one input argument guess, which should be a numeric vector representing values of
the parameters to be fitted (which are specified by the fit_options input argument.) Each element
of guess is the value of one parameter (arranged in alphabetical order.) For example, with the
default settings, guess should contain values of alpha_old, J_at_25, RL_at_25, tau, Tp_at_25,
and Vcmax_at_25 (in that order).

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

Define an error function for one curve from the set

134 error_function_c4_aci

error_fcn <- error_function_c3_variable_j(
licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE]

)

Evaluate the error for:
alpha_old = 1.9
J_at_25 = 270
RL_at_25 = 1.9
tau = 0.42
Tp_at_25 = 8.7
Vcmax_at_25 = 258
error_fcn(c(1.9, 270, 1.9, 0.42, 8.7, 258))

Make a plot of error vs. Tp_at_25 when the other parameters are fixed to the
values above. As Tp_at_25 increases, it eventually stops limiting the
assimilation rate and its value stops influencing the error.
tpu_error_fcn <- function(Tp_at_25) {error_fcn(c(1.9, 270, 1.9, 0.42, Tp_at_25, 258))}
tpu_seq <- seq(5, 12, by = 0.25)

lattice::xyplot(
sapply(tpu_seq, tpu_error_fcn) ~ tpu_seq,
type = 'b',
xlab = 'Tp at 25 degrees C (micromol / m^2 / s)',
ylab = 'Negative log likelihood (dimensionless)'

)

error_function_c4_aci Generate an error function for C4 A-Ci curve fitting

Description

Creates a function that returns an error value (the negative of the natural logarithm of the likeli-
hood) representing the amount of agreement between modeled and measured An values. When this
function is minimized, the likelihood is maximized.

Internally, this function uses apply_gm to calculate Cc, and then uses link{calculate_c4_assimilation}
to calculate assimilation rate values that are compared to the measured ones.

Usage

error_function_c4_aci(
replicate_exdf,
fit_options = list(),
sd_A = 1,
x_etr = 0.4,
a_column_name = 'A',
ao_column_name = 'ao',
ci_column_name = 'Ci',
gamma_star_column_name = 'gamma_star',
gmc_norm_column_name = 'gmc_norm',

error_function_c4_aci 135

j_norm_column_name = 'J_norm',
kc_column_name = 'Kc',
ko_column_name = 'Ko',
kp_column_name = 'Kp',
oxygen_column_name = 'oxygen',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
vcmax_norm_column_name = 'Vcmax_norm',
vpmax_norm_column_name = 'Vpmax_norm',
hard_constraints = 0,
debug_mode = FALSE

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.

fit_options A list of named elements representing fit options to use for each parameter. Val-
ues supplied here override the default values (see details below). Each element
must be 'fit', 'column', or a numeric value. A value of 'fit' means that the
parameter will be fit; a value of 'column' means that the value of the parame-
ter will be taken from a column in replicate_exdf of the same name; and a
numeric value means that the parameter will be set to that value. For example,
fit_options = list(RL_at_25 = 0, Vcmax_at_25 = 'fit', Vpmax_at_25 = 'column')
means that RL_at_25 will be set to 0, Vcmax_at_25 will be fit, and Vpmax_at_25
will be set to the values in the Vpmax_at_25 column of replicate_exdf.

sd_A The standard deviation of the measured values of the net CO2 assimilation rate,
expressed in units of micromol m^(-2) s^(-1). If sd_A is not a number, then
there must be a column in exdf_obj called sd_A with appropriate units. A
numeric value supplied here will overwrite the values in the sd_A column of
exdf_obj if it exists.

x_etr The fraction of whole-chain electron transport occurring in the mesophyll (di-
mensionless). See Equation 29 from S. von Caemmerer (2021).

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ao_column_name The name of the column in replicate_exdf that contains the dimensionless
ratio of solubility and diffusivity of O2 to CO2.

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

gamma_star_column_name

The name of the column in replicate_exdf that contains the dimensionless
gamma_star values.

gmc_norm_column_name

The name of the column in replicate_exdf that contains the normalized mes-
ophyll conductance values (with units of normalized to gmc at 25 degrees C).

j_norm_column_name

The name of the column in exdf_obj that contains the normalized Jmax values
(with units of normalized to Jmax at 25 degrees C).

136 error_function_c4_aci

kc_column_name The name of the column in replicate_exdf that contains the Michaelis-Menten
constant for rubisco carboxylation in microbar.

ko_column_name The name of the column in replicate_exdf that contains the Michaelis-Menten
constant for rubisco oxygenation in mbar.

kp_column_name The name of the column in replicate_exdf that contains the Michaelis-Menten
constant for PEP carboxylase carboxylation in microbar.

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

rl_norm_column_name

The name of the column in replicate_exdf that contains the normalized RL
values (with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.

vcmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vcmax
values (with units of normalized to Vcmax at 25 degrees C).

vpmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vpmax
values (with units of normalized to Vpmax at 25 degrees C).

hard_constraints

To be passed to calculate_c4_assimilation; see that function for more de-
tails.

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about the guess is printed each time the error func-
tion is called; this can be helpful when troubleshooting issues with an optimizer.

Details

When fitting A-Ci curves, it is necessary to define a function that calculates the likelihood of a given
set of alpha_psii, gbs, gmc_at_25, J_at_25, RL_at_25, Rm_frac, Vcmax_at_25, Vpmax_at_25,
and Vpr values by comparing a model prediction to a measured curve. This function will be passed
to an optimization algorithm which will determine the values that produce the smallest error.

The error_function_c4_aci returns such a function, which is based on a particular A-Ci curve
and a set of fitting options. It is possible to just fit a subset of the available fitting parameters; by
default, the fitting parameters are RL_at_25, Vcmax_at_25, and Vpmax_at_25. This behavior can
be changed via the fit_options argument.

For practical reasons, the function actually returns values of -ln(L), where L is the likelihood.
The logarithm of L is simpler to calculate than L itself, and the minus sign converts the problem
from a maximization to a minimization, which is important because most optimizers are designed
to minimize a value.

A penalty is added to the error value for any parameter combination where An is not a number, or
where calculate_c4_assimilation produces an error.

error_function_c4_aci 137

Value

A function with one input argument guess, which should be a numeric vector representing values
of the parameters to be fitted (which are specified by the fit_options input argument.) Each
element of guess is the value of one parameter (arranged in alphabetical order.) For example, with
the default settings, guess should contain values of RL_at_25, Vcmax_at_25, and Vpmax_at_25 (in
that order).

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate temperature-dependent values of C4 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c4_temperature_param_vc)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Define an error function for one curve from the set
error_fcn <- error_function_c4_aci(

licor_file[licor_file[, 'species_plot'] == 'maize - 5', , TRUE]
)

Evaluate the error for RL_at_25 = 0, Vcmax_at_25 = 35, Vpmax_at_25 = 180
error_fcn(c(0, 35, 180))

Make a plot of error vs. Vcmax_at_25 when the other parameters are fixed to
the values above.
vcmax_error_fcn <- function(Vcmax_at_25) {error_fcn(c(0, Vcmax_at_25, 180))}
vcmax_seq <- seq(20, 50)

lattice::xyplot(
sapply(vcmax_seq, vcmax_error_fcn) ~ vcmax_seq,
type = 'b',
xlab = 'Vcmax at 25 degrees C (micromol / m^2 / s)',
ylab = 'Negative log likelihood (dimensionless)'

)

138 error_function_c4_aci_hyperbola

error_function_c4_aci_hyperbola

Generate an error function for C4 A-Ci curve fitting with a hyperbola

Description

Creates a function that returns an error value (the negative of the natural logarithm of the likeli-
hood) representing the amount of agreement between modeled and measured An values. When this
function is minimized, the likelihood is maximized.

Internally, this function uses link{calculate_c4_assimilation_hyperbola} to calculate assim-
ilation rate values that are compared to the measured ones.

Usage

error_function_c4_aci_hyperbola(
replicate_exdf,
fit_options = list(),
sd_A = 1,
a_column_name = 'A',
ci_column_name = 'Ci',
hard_constraints = 0,
debug_mode = FALSE

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.

fit_options A list of named elements representing fit options to use for each parameter. Val-
ues supplied here override the default values (see details below). Each element
must be 'fit', 'column', or a numeric value. A value of 'fit' means that the
parameter will be fit; a value of 'column' means that the value of the param-
eter will be taken from a column in replicate_exdf of the same name; and
a numeric value means that the parameter will be set to that value. For exam-
ple, fit_options = list(rL = 0, Vmax = 'fit', c4_curvature = 'column')
means that rL will be set to 0, Vmax will be fit, and c4_curvature will be set to
the values in the c4_curvature column of replicate_exdf.

sd_A The standard deviation of the measured values of the net CO2 assimilation rate,
expressed in units of micromol m^(-2) s^(-1). If sd_A is not a number, then
there must be a column in exdf_obj called sd_A with appropriate units. A
numeric value supplied here will overwrite the values in the sd_A column of
exdf_obj if it exists.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in exdf_obj that contains the intercellular CO2 con-
centration, expressed in micromol mol^(-1).

error_function_c4_aci_hyperbola 139

hard_constraints

To be passed to calculate_c4_assimilation_hyperbola; see that function
for more details.

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about the guess is printed each time the error func-
tion is called; this can be helpful when troubleshooting issues with an optimizer.

Details

When fitting A-Ci curves, it is necessary to define a function that calculates the likelihood of a
given set of c4_curvature, c4_slope, rL, and Vmax values by comparing a model prediction to a
measured curve. This function will be passed to an optimization algorithm which will determine
the values that produce the smallest error.

The error_function_c4_aci_hyperbola returns such a function, which is based on a particular
A-Ci curve and a set of fitting options. It is possible to just fit a subset of the available fitting
parameters; by default, all are fit. This behavior can be changed via the fit_options argument.

For practical reasons, the function actually returns values of -ln(L), where L is the likelihood.
The logarithm of L is simpler to calculate than L itself, and the minus sign converts the problem
from a maximization to a minimization, which is important because most optimizers are designed
to minimize a value.

A penalty is added to the error value for any parameter combination where An is not a number, or
where calculate_c4_assimilation_hyperbola produces an error.

Value

A function with one input argument guess, which should be a numeric vector representing values of
the parameters to be fitted (which are specified by the fit_options input argument.) Each element
of guess is the value of one parameter (arranged in alphabetical order.) For example, with the
default settings, guess should contain values of c4_curvature, c4_slope, rL, and Vmax (in that
order).

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

140 estimate_licor_variance

Define an error function for one curve from the set
error_fcn <- error_function_c4_aci_hyperbola(

licor_file[licor_file[, 'species_plot'] == 'maize - 5', , TRUE]
)

Evaluate the error for c4_curvature = 0.8, c4_slope = 0.5, rL = 1.0, Vmax = 65
error_fcn(c(0.8, 0.5, 1.0, 65))

Make a plot of error vs. Vmax when the other parameters are fixed to
the values above.
vmax_error_fcn <- function(Vmax) {error_fcn(c(0.8, 0.5, 1.0, Vmax))}
vmax_seq <- seq(55, 75)

lattice::xyplot(
sapply(vmax_seq, vmax_error_fcn) ~ vmax_seq,
type = 'b',
xlab = 'Vmax (micromol / m^2 / s)',
ylab = 'Negative log likelihood (dimensionless)'

)

estimate_licor_variance

Estimate variance of measured Licor values

Description

Estimates variance and standard deviation of the net CO2 assimilation rate as measured by a Licor
Li-6800 or similar portable photosynthesis system.

Usage

estimate_licor_variance(
exdf_obj,
sd_CO2_r,
sd_CO2_s,
sd_flow,
sd_H2O_r,
sd_H2O_s,
a_column_name = 'A',
co2_r_column_name = 'CO2_r',
co2_s_column_name = 'CO2_s',
corrfact_column_name = 'CorrFact',
flow_column_name = 'Flow',
h2o_r_column_name = 'H2O_r',
h2o_s_column_name = 'H2O_s',
s_column_name = 'S'

)

estimate_licor_variance 141

Arguments

exdf_obj An exdf object containing gas exchange data.

sd_CO2_r The standard deviation of reference CO2 concentrations (CO2_r) in units of
micromol mol^(-1).

sd_CO2_s The standard deviation of sample CO2 concentrations (CO2_s) in units of micromol
mol^(-1).

sd_flow The standard deviation of flow rates (Flow) in units of micromol s^(-1).

sd_H2O_r The standard deviation of reference H2O concentrations (H2O_r) in units of mmol
mol^(-1).

sd_H2O_s The standard deviation of reference H2O concentrations (H2O_r) in units of mmol
mol^(-1).

a_column_name The name of the column in exdf_obj that contains the net CO2 assimilation rate
in micromol m^(-2) s^(-1).

co2_r_column_name

The name of the column in exdf_obj that contains the CO2 concentration in the
reference line in micromol mol^(-1).

co2_s_column_name

The name of the column in exdf_obj that contains the CO2 concentration in the
reference line in micromol mol^(-1).

corrfact_column_name

The name of the column in exdf_obj that contains the leak correction factor
(dimensionless)

flow_column_name

The name of the column in exdf_obj that contains the flow rate of air entering
the leaf chamber in micromol s^(-1).

h2o_r_column_name

The name of the column in exdf_obj that contains the H2O concentration in
the reference line in mmol mol^(-1).

h2o_s_column_name

The name of the column in exdf_obj that contains the H2O concentration in
the sample line in mmol mol^(-1).

s_column_name The name of the column in exdf_obj that contains the leaf chamber area in
cm^2.

Details

Uses the error propogation formula to calculate the influence of the variance in CO2_r, CO2_s, etc
on the variance of A, as calculated by a Licor LI-6800.

Value

An exdf object based on exdf_obj that includes additional columns representing the standard
deviation of A measurements (sd_A), and the individual terms comprising the total variance of A,
such as var_CO2_r, var_CO2_s, etc.

142 estimate_operating_point

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Estimate variance in measured A values
licor_file <- estimate_licor_variance(

licor_file,
sd_CO2_r = 1,
sd_CO2_s = 0.1,
sd_flow = 0.2,
sd_H2O_r = 0.5,
sd_H2O_s = 0.1

)

Plot each component of the total variance of A
lattice::xyplot(

var_CO2_r + var_CO2_s + var_flow + var_H2O_r + var_H2O_s + var_A ~ Ci | species_plot,
data = licor_file$main_data,
type = 'b',
pch = 16,
auto = TRUE

)

Plot the standard deviation of A
lattice::xyplot(

sd_A ~ Ci,
group = species_plot,
data = licor_file$main_data,
type = 'b',
pch = 16,
auto = TRUE

)

estimate_operating_point

Estimate the operating point from an A-Ci curve

estimate_operating_point 143

Description

Uses linear interpolation to estimate Cc, Ci, and An at atmospheric CO2 concentration from the
data in the exdf object, which should represent a single A-Ci curve. This function can accomodate
alternative column names for the variables taken from the data file in case they change at some point
in the future. This function also checks the units of each required column and will produce an error
if any units are incorrect.

Usage

estimate_operating_point(
aci_exdf,
Ca_atmospheric,
type = 'c3',
a_column_name = 'A',
ca_column_name = 'Ca',
cc_column_name = 'Cc',
ci_column_name = 'Ci',
pcm_column_name = 'PCm',
return_list = FALSE

)

Arguments

aci_exdf An exdf object representing one CO2 response curve.

Ca_atmospheric The atmospheric CO2 concentration (with units of micromol mol^(-1)); this
will be used to estimate the operating point. For example, the approximate
global average during the 2023 is 420 ppm, which would correspond to Ca_atmospheric
= 420.

type The type of photosynthesis: either 'c3' or 'c4'.

a_column_name The name of the column in aci_exdf that contains the net assimilation in micromol
m^(-2) s^(-1).

ca_column_name The name of the column in aci_exdf that contains the ambient CO2 concentra-
tion in micromol mol^(-1).

cc_column_name The name of the column in aci_exdf that contains the chloroplastic CO2 con-
centration in micromol mol^(-1).

ci_column_name The name of the column in aci_exdf that contains the intercellular CO2 con-
centration in micromol mol^(-1).

pcm_column_name

The name of the column in aci_exdf that contains the partial pressure of CO2
in the mesophyll, expressed in microbar.

return_list A logical value indicating whether or not to return the results as a list. Most
users will only need to use return_list = TRUE; return_list = FALSE is used
internally by other functions in the PhotoGEA package.

144 estimate_operating_point

Details

When analyzing or interpreting A-Ci curves, it is often useful to determine the values of Ci and An
that correspond to typical growth conditions (where Ca is set to the atmospheric value). Together,
these special values of Ci and An specify the "operating point" of the leaf.

However, for a variety of practical reasons, most A-Ci curves do not actually contain a measurement
point where Ca is at the atmospheric value. Nevertheless, it is possible to apply linear interpolation
to the observed Ci - Ca and An - Ca relations to estimate the operating point. This function auto-
mates that procedure. It also calculates the operating values of Cc (for c3 A-Ci curves) and PCm (for
c4 A-Ci curves).

This function assumes that aci_exdf represents a single A-Ci curve. Typically, this function is not
directly called by users because the fitting functions fit_c3_aci and fit_c4_aci automatically
use this function to determine the operating point.

Value

The return value depends on return_list and type.

When return_list is FALSE, this function returns an exdf object based on aci_exdf that includes
its identifier columns as well as values of Ca_atmospheric, operating_Ci, operating_An, and
operating_Cc (or operating_PCm) in columns with those names.

When return_list is TRUE, this function returns a list with the following named elements: Ca_atmospheric,
operating_Ci, operating_An, operating_Cc (or operating_PCm), and operating_exdf. The
first four are numeric values as described above, while operating_exdf is an exdf object with
one row that can be passed to calculate_c3_assimilation or calculate_c4_assimilation in
order to estimate the operating An from a photosynthesis model.

If Ca_atmospheric is outside the range of Ca values in aci_exdf, or if all provided values of Ca are
NA, then the operating point cannot be reasonably estimated; in this case, an explanation is returned
as the operating_point_msg column or list element, and all other calculated return values are set
to NA. Otherwise, the operating_point_msg is an empty string.

If Ca_atmospheric is NA, all calculated return values are set to NA without any additional explana-
tion.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

example_data_files 145

)

Calculate temperature-dependent values of photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_sharkey)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate Cc, assuming an infinite mesophyll conductance (so `Cc` = `Ci`)
licor_file <- apply_gm(licor_file, Inf)

Determine the operating point for just one curve from the data set
one_result <- estimate_operating_point(

licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE],
Ca_atmospheric = 420

)

one_result[, 'operating_Cc']
one_result[, 'operating_Ci']
one_result[, 'operating_An']
one_result[, 'operating_point_msg']

example_data_files Example data files

Description

The PhotoGEA package includes several data files that can be used to demonstrate different func-
tions and analysis techniques.

Details

The following files are included with the package:

• ball_berry_1.xlsx and ball_berry_2.xlsx: Two log files created by Licor Li-6800 portable
gas exchange measurement systems. These log files each contain several Ball-Berry curves.
Several user constants were defined in these logs that can be used to identify individual curves
or subsets of curves: species, plot, and instrument. These files are used in the "Analyzing
Ball-Berry Data" vignette and in other examples.

• ball_berry_1.csv: A CSV version of ball_berry_1.xlsx, which was created by reading
the Excel file with read_gasex_file and then saving it using write.csv.exdf. This can be
done as follows: tmp <- read_gasex_file(PhotoGEA_example_file_path('ball_berry_1.xlsx'));
write.csv.exdf(tmp, 'ball_berry_1.csv')

• c3_aci_1.xlsx and c3_aci_2.xlsx: Two log files created by Licor Li-6800 portable gas
exchange measurement systems. These log files each contain several C3 CO2 response (or
A-Ci) curves. Several user constants were defined in these logs that can be used to identify
individual curves or subsets of curves: species, plot, and instrument. These files are used
in the "Analyzing C3 A-Ci Curves" vignette and in other examples. The Remarks sheet of
c3_aci_2.xlsx was deleted from the original version as a test for read_licor_6800_Excel.

146 example_data_files

• c4_aci_1.xlsx and c4_aci_2.xlsx: Two log files created by Licor Li-6800 portable gas
exchange measurement systems. These log files each contain several C4 CO2 response (or
A-Ci) curves. Several user constants were defined in these logs that can be used to identify
individual curves or subsets of curves: species, plot, and instrument. These files are used
in the "Analyzing C4 A-Ci Curves" vignette and in other examples.

• tdl_sampling_1.dat and tdl_sampling_2.dat: Two log files created by a Campbell Sci-
entific CR3000 data logger, representing data from a tunable diode laser (TDL) system. These
files are used in the "Analyzing TDL Data" vignette and in other examples.

• plaintext_licor_file: A log file created by a Licor Li-6800 portable gas exchange mea-
surement system. This file contains several CO2 response (or A-Ci) curves. Several user
constants were defined in this log that can be used to identify individual curves or subsets of
curves: species, plot, and instrument.

• plaintext_licor_file_v2: A log file based on plaintext_licor_file that has two sep-
arate [Data] and [Header] sections, as if the log file had been closed and reopened halfway
through the measurement sequence. It also has an extra blank line at the end.

• licor_for_gm_site11.xlsx, licor_for_gm_site13.xslsx, and tdl_for_gm: Two Licor
Li-6800 log files and a CR3000 TDL log file, respectively. These files are used as an example
of loading and processing combined gas exchange and isotope discrimination measurements.
Each Licor log file includes 6 points measured with the CO2_r setpoint set to 715 ppm and 6
points with the setpoint set to 450 ppm.

Since none of these data files have been published, noise has been added to the original data. Thus,
they are similar to real measurements, but no useful conclusions can be drawn from them.

After installing ‘PhotoGEA‘, copies of these files will be stored in the R package directory (in the
PhotoGEA/extdata subdirectory). This location will be unique to your computer, but full paths to
these files can be obtained using the PhotoGEA_example_file_path function.

Examples

Print full paths to the example files
PhotoGEA_example_file_path('ball_berry_1.xlsx')
PhotoGEA_example_file_path('ball_berry_2.xlsx')
PhotoGEA_example_file_path('c3_aci_1.xlsx')
PhotoGEA_example_file_path('c3_aci_2.xlsx')
PhotoGEA_example_file_path('c4_aci_1.xlsx')
PhotoGEA_example_file_path('c4_aci_2.xlsx')
PhotoGEA_example_file_path('licor_for_gm_site11.xlsx')
PhotoGEA_example_file_path('licor_for_gm_site13.xlsx')
PhotoGEA_example_file_path('plaintext_licor_file')
PhotoGEA_example_file_path('plaintext_licor_file_v2')
PhotoGEA_example_file_path('tdl_for_gm.dat')
PhotoGEA_example_file_path('tdl_sampling_1.dat')
PhotoGEA_example_file_path('tdl_sampling_2.dat')

exclude_outliers 147

exclude_outliers Exclude outliers from a data set

Description

Excludes outliers from a data set using the "1.5 interquartile range" rule.

Usage

exclude_outliers(x, col_for_analysis, INDICES, method = 'exclude')

S3 method for class 'data.frame'
exclude_outliers(x, col_for_analysis, INDICES, method = 'exclude')

S3 method for class 'exdf'
exclude_outliers(x, col_for_analysis, INDICES, method = 'exclude')

Arguments

x A data table
col_for_analysis

The name of a column of x that should be used to determine outliers.

INDICES A factor or list of factors that each nrow(x) elements.

method Specify whether to remove rows from x ('remove') or to replace outlier values
of col_for_analysis with NA ('exclude').

Details

exclude_outliers is generic, with methods defined for data frames and exdf objects. This func-
tion uses a simple rule to detect outliers, where any point that deviates from the mean by more
than 1.5 * IQR, where IQR is the interquartile range, is said to be an outlier. This method is also
sometimes referred to as "Tukey’s Fences," as seen in the Wikipedia page about outliers.

For data sets with extreme outliers, it may be necessary to exclude outliers more than once to
actually remove them all.

Value

This function returns an object formed from x, where the results depend on on the value of method.

When method is 'remove', the returned object is a modified copy of x where all rows in which the
value of col_for_analysis is an outlier have been removed.

When method is 'exclude', the returned object is a modified copy of x where all outlier values of
col_for_analysis have been replaced with NA.

See Also

exdf

https://en.wikipedia.org/wiki/Outlier

148 exdf

Examples

Read a Licor file included with the PhotoGEA package; this file includes
several light response curves that can be identified by the 'species' and
'plot' columns.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

Remove points from each response curve in the data where the leaf temperature
is determined to be an outlier
licor_file_clean <- exclude_outliers(

licor_file,
'TleafCnd',
list(licor_file[, 'species'], licor_file[, 'plot']),
method = 'remove'

)

Check to see how many points remain after removing outliers
str(list('original' = nrow(licor_file), 'clean' = nrow(licor_file_clean)))

exdf Extended data frame

Description

An "extended data frame" (exdf) is an object similar to a data frame, but which also contains
information about the units and categories of each column.

Usage

exdf(
main_data = data.frame(),
units = NULL,
categories = NULL,
...

)

Arguments

main_data A data frame.

units A data frame with the same columns as main_data (or a subset of the columns
in main_data) but with just one row, where each entry describes the units for
the corresponding column of main_data. If units is NULL, it will be initialized
with NA for each column. The units of any columns in main_data that are not
present in units will also be initialized to NA.

exdf 149

categories A data frame with the same columns as main_data (or a subset of the columns
in main_data) but with just one row, where each entry describes the category for
the corresponding column of main_data. If categories is NULL, it will be ini-
tialized with NA for each column. The categories of any columns in main_data
that are not present in catgories will also be initialized to NA.

... Any additional properties to include as entries in the resulting exdf object; these
must be passed as named arguments.

Details

The exdf class was originally created as a way to represent the contents of a Licor Excel file in
an R structure. In Licor Excel files, each column has a name, units, and a category; for example,
the column for values of net assimilation rate is called A, has units of micromol / m^2 / s, and is
categorized as a GasEx variable.

From a technical point of view, an exdf object is simply a list with three required elements:
main_data, units, and categories. Each of these should be a data frame with the same col-
umn names, as described above. It is also possible for an exdf object to have additional entries
such as a filename that stores the name of the file that was used to create the exdf.

Several S3 methods have been defined for exdf objects, following the general guidance from Ad-
vanced R on S3 classes:

• is.exdf

• as.data.frame.exdf

• print.exdf

• str.exdf

• length.exdf

• dim.exdf

• dimnames.exdf

• [.exdf

• [<-.exdf

• rbind.exdf

• cbind.exdf

• split.exdf

• by.exdf

Note that the column names of main_data, units, and categories must be unique; the make.unique
function can be useful for ensuring this.

Value

An exdf object as described above.

http://adv-r.had.co.nz/S3.html
http://adv-r.had.co.nz/S3.html

150 extract.exdf

Examples

Example 1: Creating a simple exdf object with two columns (`A` and `B`) and
default values for its units and categories. There are four values of each
variable.
exdf(data.frame(A = c(3, 2, 7, 9), B = c(4, 5, 1, 8)))

Example 2: Creating a simple exdf object with two columns (`A` and `B`) that
have units of `m` and `s`, respectively, and categories of `Cat1` and `Cat2`,
respectively. There are four values of each variable.
exdf(

data.frame(A = c(3, 2, 7, 9), B = c(4, 5, 1, 8)),
data.frame(A = 'm', B = 's'),
data.frame(A = 'Cat1', B = 'Cat2')

)

extract.exdf Access or modify exdf elements

Description

Returns or sets the values of elements in an exdf object.

Usage

S3 method for class 'exdf'
x[i, j, return_exdf = FALSE]

S3 replacement method for class 'exdf'
x[i, j] <- value

Arguments

x An exdf object.

i, j Indices specifying elements to extract or replace. Indices are numeric or character
vectors or empty (missing) or NULL.

return_exdf A logical value indicating whether the return value should be an exdf object.

value Typically an array-like R object of a similar class as x.

Details

Since an exdf object is actually a list of named elements, those elements can be accessed using the
[[or $ operators, and a list of all named elements can be obtained by calling names.

Elements of the main_data data frame of an exdf object can be accessed and set using the [and
[<- operators. When applied to an exdf object, these operators are essentially shortcuts to calling
the same operators on the object’s main_data data frame.

To create a new exdf object with a subset of the data contained in another exdf object, the [operator
with return_exdf = TRUE can be used.

extract.exdf 151

Value

When return_exdf is FALSE, the access operator will return either a vector or a data frame, de-
pending on the dimension of j. When return_exdf is TRUE, the access operator will return an exdf
object.

See Also

exdf

Examples

Create a small exdf object that includes an extra element in addition to the
required ones (`main_data`, `units`, and `categories`).
small_exdf <- exdf(

data.frame(A = c(3, 2, 7, 9), B = c(4, 5, 1, 8)),
data.frame(A = 'm', B = 's'),
data.frame(A = 'Cat1', B = 'Cat2'),
extra_exdf_element = "This is an example of an extra exdf element"

)

Accessing elements of `small_exdf`
names(small_exdf) # Get the names of all elements of small_exdf
small_exdf[['units']] # View the units using the `[[` operator
small_exdf$categories # View the categories using the `$` operator

Accessing elements of `small_exdf$main_data`
small_exdf[,1] # Access the first column
small_exdf[1,] # Access the first row
small_exdf[,'B'] # Access the column named 'B'
small_exdf[1,2] # Access element 1 of column 2

Equivalent (but longer) commands for accessing elements of `small_exdf$main_data`
small_exdf$main_data[,1] # Access the first column
small_exdf$main_data[1,] # Access the first row
small_exdf$main_data[,'B'] # Access the column named 'B'
small_exdf$main_data[1,2] # Access element 1 of column 2

Replacing elements of `small_exdf$main_data`
small_exdf[,'A'] <- seq_len(4) # Replace column A with new values
small_exdf[small_exdf[,'A'] > 2, 'B'] <- 0 # Replace some rows of column B with new values

Creating a new exdf object with a subset of the data from small_exdf. Here we
specify `return_exdf = TRUE` so that the `[` operator returns an exdf object
instead of a data frame
new_exdf <- small_exdf[small_exdf[,'A'] > 2, , TRUE]
names(new_exdf) # Check that the `extra_exdf_element` is still present
print(new_exdf) # Check that only the rows with A > 2 are included

152 factorize_id_column

factorize_id_column Convert ID column to a factor with a suitable ordering

Description

Converts an ID column to a factor with a suitable ordering. In particular, this function will ensure
that any IDs beginning with WT (or any other control group name, case-insensitive) will be ordered
before other values. This is helpful when plotting results according to genotype.

Usage

factorize_id_column(x, ...)

S3 method for class 'character'
factorize_id_column(x, control_group_name = 'WT', ...)

S3 method for class 'data.frame'
factorize_id_column(x, id_column_name, control_group_name = 'WT', ...)

S3 method for class 'exdf'
factorize_id_column(x, id_column_name, control_group_name = 'WT', ...)

Arguments

x Object to be ordered.

id_column_name When x is a data.frame or exdf, this argument specifies the column within the
table that should be ordered.

control_group_name

A string specifying the name of the control group, such as 'WT' or 'control'.

... Additional arguments (currently unused).

Details

To choose an ordering, each unique identifier is split into three components: an initial control_group_name
(if present), a final numeric value, and any other content in between these two. Then, the identifiers
are sorted according to these three values, in order of control_group_name -> other content ->
numeric value. Note that capitalization of any initial control_group_name values will be stan-
dardized to match the user-specified version.

This system works well with identifiers that represent genotypes/events, or that combine geno-
type/event with a replicate number.

Value

factorize_id_column.character returns the character vector as a factor with an appropriate
ordering.

fit_ball_berry 153

factorize_id_column.data.frame and factorize_id_column.exdf return a copy of the origi-
nal table, where one column (specified by id_column_name) has been converted to a factor with
an appropriate ordering.

See Also

exdf

Examples

Identifiers that represent genotypes
genotype_ids <- c('4', 'control', '2', 'CONTROL', '8')

factorize_id_column(genotype_ids, control_group_name = 'control')

Identifiers that represent `genotype - replicate` values
replicate_ids <- c('4 - 4', 'wT - 2', 'a - 2', 'WT - 1', '4 - 8', 'wt - 9')

factorize_id_column(replicate_ids)

Data frame
dat <- data.frame(replicate_id = replicate_ids, val = seq_along(replicate_ids))

Display data in bar chart - note the order of the replicates
lattice::barchart(val ~ replicate_id, data = dat)

Display factorized data in bar chart - note the order of the replicates
lattice::barchart(val ~ replicate_id, data = factorize_id_column(dat, 'replicate_id'))

Extended data frame
exdf_obj <- exdf(dat, units = data.frame(replicate_id = '', val = 'm / s'))

exdf_obj <- factorize_id_column(exdf_obj, 'replicate_id')

exdf_obj[, 'replicate_id']

fit_ball_berry Fits the Ball-Berry model to an experimental curve

Description

Calculates a linear fit of stomatal conductance vs. the Ball-Berry index using the data in the exdf
object. This function can accomodate alternative column names for the variables taken from the
Licor file in case they change at some point in the future. This function also checks the units of
each required column and will produce an error if any units are incorrect.

154 fit_ball_berry

Usage

fit_ball_berry(
replicate_exdf,
bb_index_column_name = 'bb_index',
gsw_column_name = 'gsw'

)

Arguments

replicate_exdf An exdf object representing one Ball-Berry curve.
bb_index_column_name

The name of the column in replicate_exdf that contains the Ball-Berry index
in mol m^(-2) s^(-1).

gsw_column_name

The name of the column in replicate_exdf that contains the stomatal conduc-
tance to water vapor in mol m^(-2) s^(-1).

Details

The Ball-Berry model is a simple way to describe the response of a leaf’s stomata to its assimilation
rate and local environmental conditions. Specifically, it predicts stomatal conductance to water
vapor using the following equation:

gsw = bb_0 + bb_1 * A * h_s / C_s

where gsw is the stomatal conductance, A is the net assimilation rate, h_s is the relative humidity
at the leaf surface, and C_s is the CO2 concentration at the leaf surface. The term A * h_s / C_s is
commonly referred to as the Ball-Berry index, while the intercept (bb_0) and slope (bb_1) of the
linear relationship are the Ball-Berry parameters which describe the stomatal response.

Although this model is certainly an oversimplification, it does encode some important stomatal
responses. For example, when humidity is low, the stomata close, reducing stomatal conductance.
Likewise, if the CO2 concentration around the leaf is depleted, the stomata open to allow more CO2
to diffuse into the leaf’s interior, increasing somatal conductance. For more information about this
model and some possible alternatives, see the following papers:

• Ball, J. T., Woodrow, I. E. and Berry, J. A. "A Model Predicting Stomatal Conductance and its
Contribution to the Control of Photosynthesis under Different Environmental Conditions." in
"Progress in Photosynthesis Research: Volume 4" (1986) [doi:10.1007/9789401705196_48].

• Tardieu, F. and Davies, W. J. "Integration of hydraulic and chemical signalling in the control
of stomatal conductance and water status of droughted plants." Plant, Cell & Environment 16,
341–349 (1993). [doi:10.1111/j.13653040.1993.tb00880.x].

• Leuning, R. "A critical appraisal of a combined stomatal-photosynthesis model for C3 plants."
Plant, Cell & Environment 18, 339–355 (1995) [doi:10.1111/j.13653040.1995.tb00370.x].

• Dewar, R. C. "The Ball–Berry–Leuning and Tardieu–Davies stomatal models: synthesis and
extension within a spatially aggregated picture of guard cell function." Plant, Cell & Environ-
ment 25, 1383–1398 (2002). [doi:10.1046/j.13653040.2002.00909.x].

Ball-Berry parameters are typically determined by measuring a Ball-Berry curve, where one or more
of the factors that influence the Ball-Berry index is systematically varied across a range of values. At

https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1111/j.1365-3040.1993.tb00880.x
https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
https://doi.org/10.1046/j.1365-3040.2002.00909.x

fit_ball_berry 155

each value, care is taken that net assimilation and stomatal conductance have reached their steady-
state values, and then those values are recorded. Then, a linear fit of the experimentally observed
stomatal conductances as a function of the Ball-Berry index is performed to extract estimates for
the Ball-Berry intercept and slope.

This function uses lm to perform the fit.

This function assumes that replicate_exdf represents a single Ball-Berry curve. To fit multiple
curves at once, this function is often used along with by.exdf and consolidate.

Value

A list with two elements:

• fits: An exdf object including the measured values and the fitted values of stomatal conduc-
tance. The fitted values will be stored in a column whose name is determined by appending
'_fits' to the end of gsw_column_name; typically, this will be 'gsw_fits'. Also includes
residuals in the gsw_residuals column and values of the Ball-Berry slope and intercept.

• parameters: An exdf object including the fitting parameters and R-squared values. The
Ball-Berry intercept is stored in the bb_intercept column and the Ball-Berry slope is stored
in the bb_slope column. Their standard errors are stored in the bb_intercept_err and
bb_slope_err columns. The R-squared value and p-value for the fit are stored in the r_squared
and p_value columns. Other statistical descriptors of the fit as calculated by residual_stats
are also included.

Examples

Read an example Licor file included in the PhotoGEA package, calculate
additional gas properties, calculate the Ball-Berry index, define a new column
that uniquely identifies each curve, and then perform a fit to extract the
Ball-Berry parameters from each curve.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_total_pressure(licor_file)

licor_file <- calculate_gas_properties(licor_file)

licor_file[,'species_plot'] <-
paste(licor_file[,'species'], '-', licor_file[,'plot'])

licor_file <- calculate_ball_berry_index(licor_file)

Fit just one curve from the data set (it is rare to do this)
one_result <- fit_ball_berry(

licor_file[licor_file[, 'species_plot'] == 'soybean - 1a', , TRUE]
)

Fit all curves in the data set (it is more common to do this)
bb_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],

156 fit_c3_aci

fit_ball_berry
))

View the fitting parameters for each species / plot
col_to_keep <- c('species', 'plot', 'species_plot', 'bb_intercept', 'bb_slope', 'r_squared')
bb_results$parameters[, col_to_keep]

View the fits for each species / plot
plot_ball_berry_fit(bb_results, 'species_plot')

fit_c3_aci Fits a C3 assimilation model to an A-Ci curve

Description

Fits the Farquhar-von-Caemmerer-Berry model to an experimentally measured C3 A-Ci curve.

It is possible to fit the following parameters: alpha_g, alpha_old, alpha_s, alpha_t, Gamma_star_at_25,
gmc_at_25, J_at_25, Kc_at_25, Ko_at_25, RL_at_25, Tp_at_25, and Vcmax_at_25.

By default, only a subset of these parameters are actually fit: alpha_old, J_at_25, RL_at_25,
Tp_at_25, and Vcmax_at_25. This can be altered using the fit_options argument, as described
below.

Best-fit parameters are found using maximum likelihood fitting, where the optimizer (optim_fun)
is used to minimize the error function (defined by error_function_c3_aci).

Once best-fit parameters are found, confidence intervals are calculated using confidence_intervals_c3_aci,
and unreliable parameter estimates are removed.

For temperature-dependent parameters, best-fit values and confidence intervals are returned at 25
degrees C and at leaf temperature.

See below for more details.

Usage

fit_c3_aci(
replicate_exdf,
Ca_atmospheric = NA,
a_column_name = 'A',
ca_column_name = 'Ca',
ci_column_name = 'Ci',
gamma_star_norm_column_name = 'Gamma_star_norm',
gmc_norm_column_name = 'gmc_norm',
j_norm_column_name = 'J_norm',
kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',

fit_c3_aci 157

vcmax_norm_column_name = 'Vcmax_norm',
sd_A = 'RMSE',
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
optim_fun = optimizer_deoptim(200),
lower = list(),
upper = list(),
fit_options = list(),
cj_crossover_min = NA,
cj_crossover_max = NA,
relative_likelihood_threshold = 0.147,
hard_constraints = 0,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2,
debug_mode = FALSE,
...

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.
Ca_atmospheric The atmospheric CO2 concentration (with units of micromol mol^(-1)); this

will be used by estimate_operating_point to estimate the operating point. A
value of NA disables this feature.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ca_column_name The name of the column in replicate_exdf that contains the ambient CO2
concentration in micromol mol^(-1). If values of Ca are not available, they
can be set to NA. In this case, it will not be possible to estimate the operating
point, and apply_gm will not be able to calculate the CO2 drawdown across the
stomata.

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

gamma_star_norm_column_name

The name of the column in replicate_exdf that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

gmc_norm_column_name

The name of the column in replicate_exdf that contains the normalized mes-
ophyll conductance values (with units of normalized to gmc at 25 degrees C).

j_norm_column_name

The name of the column in replicate_exdf that contains the normalized J
values (with units of normalized to J at 25 degrees C).

kc_norm_column_name

The name of the column in replicate_exdf that contains the normalized Kc
values (with units of normalized to Kc at 25 degrees C).

ko_norm_column_name

The name of the column in replicate_exdf that contains the normalized Ko
values (with units of normalized to Ko at 25 degrees C).

158 fit_c3_aci

oxygen_column_name

The name of the column in replicate_exdf that contains the concentration of
O2 in the ambient air, expressed as a percentage (commonly 21% or 2%); the
units must be percent.

rl_norm_column_name

The name of the column in replicate_exdf that contains the normalized RL
values (with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in replicate_exdf that contains the total pressure in
bar.

tp_norm_column_name

The name of the column in replicate_exdf that contains the normalized Tp
values (with units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vcmax
values (with units of normalized to Vcmax at 25 degrees C).

sd_A A value of the standard deviation of measured A values, or the name of a method
for determining the deviation; currently, the only supported option is 'RMSE'.

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

optim_fun An optimization function that accepts the following input arguments: an initial
guess, an error function, lower bounds, and upper bounds. It should return a list
with the following elements: par, convergence, feval, and convergence_msg.
See optimizers for a list of available options.

lower A list of named numeric elements representing lower bounds to use when fitting.
Values supplied here override the default values (see details below). For exam-
ple, lower = list(Vcmax_at_25 = 10) sets the lower limit for Vcmax_at_25 to
10 micromol / m^2 / s.

upper A list of named numeric elements representing upper bounds to use when fitting.
Values supplied here override the default values (see details below). For exam-
ple, upper = list(Vcmax_at_25 = 200) sets the upper limit for Vcmax_at_25
to 200 micromol / m^2 / s.

fit_options A list of named elements representing fit options to use for each parameter. Val-
ues supplied here override the default values (see details below). Each element
must be 'fit', 'column', or a numeric value. A value of 'fit' means that the
parameter will be fit; a value of 'column' means that the value of the parame-
ter will be taken from a column in replicate_exdf of the same name; and a
numeric value means that the parameter will be set to that value. For example,
fit_options = list(alpha_g = 0, Vcmax_at_25 = 'fit', Tp_at_25 = 'column')
means that alpha_g will be set to 0, Vcmax_at_25 will be fit, and Tp_at_25 will
be set to the values in the Tp_at_25 column of replicate_exdf.

fit_c3_aci 159

cj_crossover_min

The minimum value of Cc (in ppm) where Aj is allowed to become the overall
rate-limiting factor. If cj_crossover_min is set to NA, this restriction will not
be applied.

cj_crossover_max

The maximim value of Cc (in ppm) where Wj is allowed to be smaller than Wc.
If cj_crossover_max is set to NA, this restriction will not be applied.

relative_likelihood_threshold

To be passed to confidence_intervals_c3_aci when calculate_confidence_intervals
is TRUE.

hard_constraints

To be passed to calculate_c3_assimilation; see that function for more de-
tails.

calculate_confidence_intervals

A logical value indicating whether or not to estimate confidence intervals for the
fitting parameters using confidence_intervals_c3_aci.

remove_unreliable_param

An integer value indicating the rules to use when identifying and removing unre-
liable parameter estimates. A value of 2 is the most conservative option. A value
of 0 disables this feature, which is not typically recommended. It is also pos-
sible to directly specify the trust values to remove; for example, 'unreliable
(process never limiting)' is equivalent to 1. See below for more details.

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about replicate_exdf, the initial guess, each
guess supplied from the optimizer, and the final outcome is printed; this can
be helpful when troubleshooting issues with a particular curve.

... Additional arguments to be passed to calculate_c3_assimilation.

Details

This function calls apply_gm and calculate_c3_assimilation to calculate values of net assimi-
lation. The user-supplied optimization function is used to vary the values of alpha_g, alpha_old,
alpha_s, alpha_t, Gamma_star_at_25, gmc_at_25, J_at_25, Kc_at_25, Ko_at_25, RL_at_25,
Tp_at_25, and Vcmax_at_25 to find ones that best reproduce the experimentally measured values
of net assimilation. By default, the following options are used for the fits:

• alpha_g: lower = 0, upper = 10, fit_option = 0

• alpha_old: lower = 0, upper = 10, fit_option = 'fit'

• alpha_s: lower = 0, upper = 10, fit_option = 0

• alpha_t: lower = 0, upper = 10, fit_option = 0

• Gamma_star_at_25: lower = -20, upper = 200, fit_option = 'column'

• gmc_at_25: lower = -1, upper = 10, fit_option = Inf

• J_at_25: lower = -50, upper = 1000, fit_option = 'fit'

• Kc_at_25: lower = -50, upper = 1000, fit_option = 'column'

• Ko_at_25: lower = -50, upper = 1000, fit_option = 'column'

160 fit_c3_aci

• RL_at_25: lower = -10, upper = 100, fit_option = 'fit'

• Tp_at_25: lower = -10, upper = 100, fit_option = 'fit'

• Vcmax_at_25: lower = -50, upper = 1000, fit_option = 'fit'

With these settings, the "new" alpha parameters are set to 0; values of Gamma_star_at_25, Kc_at_25,
and Ko_at_25 are taken from the Gamma_star_at_25, Kc_at_25, and Ko_at_25 columns of replicate_exdf;
mesophyll conductance (gmc_at_25) is set to inifinity (so Cc = Ci); and the other parameters are fit
during the process (see fit_options above). The bounds are chosen liberally to avoid any bias.

An initial guess for the parameters is generated by calling initial_guess_c3_aci as follows:

• cc_threshold_rl is set to 100 micromol / mol.

• If alpha_g is being fit, the alpha_g argument of initial_guess_c3_aci is set to 0.5; other-
wise, the argument is set to the value specified by the fit options.

• If alpha_old is being fit, the alpha_old argument of initial_guess_c3_aci is set to 0.5;
otherwise, the argument is set to the value specified by the fit options.

• if alpha_s is being fit, the alpha_s argument of initial_guess_c3_aci is set to 0.3 * (1 -
alpha_g); otherwise, the argument is set to the value specified by the fit options.

• if alpha_t is being fit, the alpha_t argument of initial_guess_c3_aci is set to 0; other-
wise, the argument is set to the value specified by the fit options.

• If Gamma_star_at_25 is being fit, the Gamma_star_at_25 argument of initial_guess_c3_aci
is set to 40; otherwise, the argument is set to the value specified by the fit options.

• If gmc_at_25 is being fit, the gmc_at_25 argument of initial_guess_c3_aci is set to 1;
otherwise, the argument is set to the value specified by the fit options.

• If Kc_at_25 is being fit, the Kc_at_25 argument of initial_guess_c3_aci is set to 400;
otherwise, the argument is set to the value specified by the fit options.

• If Ko_at_25 is being fit, the Ko_at_25 argument of initial_guess_c3_aci is set to 275;
otherwise, the argument is set to the value specified by the fit options.

Note that any fixed values specified in the fit options will override the values returned by the guess-
ing function.

The fit is made by creating an error function using error_function_c3_aci and minimizing its
value using optim_fun, starting from the initial guess described above. The optimizer_deoptim
optimizer is used by default since it has been found to reliably return great fits. However, it is
a slow optimizer. If speed is important, consider reducing the number of generations or using
optimizer_nmkb, but be aware that this optimizer is more likely to get stuck in a local minimum.

The photosynthesis model represented by calculate_c3_assimilation is not smooth in the sense
that small changes in the input parameters do not necessarily cause changes in its outputs. This
is related to the final step in the calculations, where the overall assimilation rate is taken to be
the minimum of three enzyme-limited rates. For example, if the assimilation rate is never TPU-
limited, modifying Tp_at_25 will not change the model’s outputs. For this reason, derivative-based
optimizers tend to struggle when fitting C3 A-Ci curves. Best results are obtained using derivative-
free methods.

Sometimes the optimizer may choose a set of parameter values where one or more of the potential
limiting carboxylation rates (Wc, Wj, or Wp) is never the smallest rate. In this case, the corresponding
parameter estimates (Vcmax, J, or alpha_old & Tp) will be severely unreliable. This will be indi-
cated by a value of 'unreliable (process never limiting)' in the corresponding trust column

fit_c3_aci 161

(for example, Vcmax_trust). If remove_unreliable_param is 1 or larger, then such parameter
estimates (and the corresponding rates) will be replaced by NA in the fitting results.

It is also possible that the upper limit of the confidence interval for a parameter is infinity; this indi-
cates a potentially unreliable parameter estimate. This will be indicated by a value of 'unreliable
(infinite upper limit)' in the corresponding trust column (for example, Vcmax_trust). If
remove_unreliable_param is 2 or larger, then such parameter estimates (but not the corresponding
rates) will be replaced by NA in the fitting results.

The trust value for fully reliable parameter estimates is set to 'reliable' and they will never be
replaced by NA.

Once the best-fit parameters have been determined, this function also estimates the operating value
of Cc from the atmospheric CO2 concentration atmospheric_ca using estimate_operating_point,
and then uses that value to estimate the modeled An at the operating point via calculate_c3_assimilation.
It also estimates the Akaike information criterion (AIC).

This function assumes that replicate_exdf represents a single C3 A-Ci curve. To fit multiple
curves at once, this function is often used along with by.exdf and consolidate.

Value

A list with three elements:

• fits: An exdf object including the original contents of replicate_exdf along with several
new columns:

– The fitted values of net assimilation will be stored in a column whose name is determined
by appending '_fit' to the end of a_column_name; typically, this will be 'A_fit'.

– Residuals (measured - fitted) will be stored in a column whose name is determined by ap-
pending '_residuals' to the end of a_column_name; typically, this will be 'A_residuals'.

– Values of fitting parameters at 25 degrees C will be stored in the Gamma_star_at_25,
gmc_at_25, J_at_25, Kc_at_25, Ko_at_25, RL_at_25, Tp_at_25, and Vcmax_at_25
columns.

– The other outputs from calculate_c3_assimilation will be stored in columns with the
usual names: alpha_g, alpha_old, alpha_s, alpha_t, Gamma_star_tl, gmc_tl, Kc_tl,
Ko_tl, Tp_tl, Vcmax_tl, RL_tl, J_tl, Wc, Wj, Wp, Vc, Ac, Aj, and Ap.

• fits_interpolated: An exdf object including the calculated assimilation rates at a fine
spacing of Ci values (step size of 1 micromol mol^(-1)).

• parameters: An exdf object including the identifiers, fitting parameters, and convergence
information for the A-Ci curve:

– The number of points where An = Ac, An = Aj, and An = Ap are stored in the n_Ac_limiting,
n_Aj_limiting, and n_Ap_limiting columns.

– The best-fit values are stored in the alpha_g, alpha_old, alpha_s, alpha_t, Gamma_star_at_25,
gmc_at_25, J_at_25, Kc_at_25, Ko_at_25, RL_at_25, Tp_at_25, and Vcmax_at_25
columns. If calculate_confidence_intervals is TRUE, upper and lower limits for
each of these parameters will also be included.

– For parameters that depend on leaf temperature, the average leaf-temperature-dependent
values are stored in Gamma_star_tl_avg, gmc_tl_avg, J_tl_avg, Kc_tl_avg, Ko_tl_avg,
RL_tl_avg, Tp_tl_avg, and Vcmax_tl_avg.

https://en.wikipedia.org/wiki/Akaike_information_criterion

162 fit_c3_aci

– Information about the operating point is stored in operating_Cc, operating_Ci, operating_An,
and operating_An_model.

– The convergence column indicates whether the fit was successful (==0) or if the opti-
mizer encountered a problem (!=0).

– The feval column indicates how many cost function evaluations were required while
finding the optimal parameter values.

– The residual stats as returned by residual_stats are included as columns with the de-
fault names: dof, RSS, RMSE, etc.

– The Akaike information criterion is included in the AIC column.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

For these examples, we will use a faster (but sometimes less reliable)
optimizer so they run faster
optimizer <- optimizer_nmkb(1e-7)

We can fit just one curve from the data set, although it is rare to do this
one_result <- fit_c3_aci(

licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE],
Ca_atmospheric = 420,
optim_fun = optimizer

)

We can fit the same curve, but allow alpha_old and Gamma_star_at_25 to vary
one_result_v2 <- fit_c3_aci(

licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE],
Ca_atmospheric = 420,
fit_options = list(Gamma_star_at_25 = 'fit', alpha_old = 'fit'),
optim_fun = optimizer

fit_c3_variable_j 163

)

Fit all curves in the data set (it is more common to do this)
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c3_aci,
Ca_atmospheric = 420,
optim_fun = optimizer

))

View the fitting parameters for each species / plot
col_to_keep <- c(

'species', 'plot', # identifiers
'n_Ac_limiting', 'n_Aj_limiting', 'n_Ap_limiting', # number of points where

each process is limiting
'Tp_at_25', 'J_at_25', 'RL_at_25', 'Vcmax_at_25', # parameters scaled to 25 degrees C
'J_tl_avg', 'RL_tl_avg', 'Vcmax_tl_avg', # average temperature-dependent values
'operating_Ci', 'operating_An', 'operating_An_model', # operating point info
'dof', 'RSS', 'MSE', 'RMSE', 'RSE', # residual stats
'convergence', 'convergence_msg', 'feval', 'optimum_val' # convergence info

)

aci_results$parameters[, col_to_keep, TRUE]

View the fits for each species / plot
plot_c3_aci_fit(aci_results, 'species_plot', 'Ci')

View the residuals for each species / plot
lattice::xyplot(

A_residuals ~ Ci | species_plot,
data = aci_results$fits$main_data,
type = 'b',
pch = 16,
auto = TRUE,
grid = TRUE,
xlab = paste0('Intercellular CO2 concentration (', aci_results$fits$units$Ci, ')'),
ylab = paste0('Assimilation rate residuals (', aci_results$fits$units$A_residuals, ')')

)

In some of the curves above, there are no points where carboxylation is TPU
limited. Estimates of Tp are therefore unreliable and are removed.

fit_c3_variable_j Fits a C3 assimilation model to an A-Ci + CF curve

Description

Fits the Farquhar-von-Caemmerer-Berry + Variable J model to an experimentally measured C3 A-
Ci + CF curve.

164 fit_c3_variable_j

It is possible to fit the following parameters: alpha_g, alpha_old, alpha_s, alpha_t, Gamma_star_at_25,
J_at_25, Kc_at_25, Ko_at_25 RL_at_25, tau, Tp_at_25, and Vcmax_at_25.

By default, only a subset of these parameters are actually fit: alpha_old, J_at_25, RL_at_25, tau,
Tp_at_25, and Vcmax_at_25. This can be altered using the fit_options argument, as described
below.

Best-fit parameters are found using maximum likelihood fitting, where the optimizer (optim_fun)
is used to minimize the error function (defined by error_function_c3_variable_j).

Once best-fit parameters are found, confidence intervals are calculated using confidence_intervals_c3_variable_j,
and unreliable parameter estimates are removed.

For temperature-dependent parameters, best-fit values and confidence intervals are returned at 25
degrees C and at leaf temperature.

See below for more details.

Usage

fit_c3_variable_j(
replicate_exdf,
Ca_atmospheric = NA,
a_column_name = 'A',
ca_column_name = 'Ca',
ci_column_name = 'Ci',
etr_column_name = 'ETR',
gamma_star_norm_column_name = 'Gamma_star_norm',
j_norm_column_name = 'J_norm',
kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
phips2_column_name = 'PhiPS2',
qin_column_name = 'Qin',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
sd_A = 'RMSE',
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
optim_fun = optimizer_deoptim(400),
lower = list(),
upper = list(),
fit_options = list(),
cj_crossover_min = NA,
cj_crossover_max = NA,
require_positive_gmc = 'positive_a',
gmc_max = Inf,
check_j = TRUE,
relative_likelihood_threshold = 0.147,
hard_constraints = 0,

fit_c3_variable_j 165

calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2,
debug_mode = FALSE,
...

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.

Ca_atmospheric The atmospheric CO2 concentration (with units of micromol mol^(-1)); this
will be used by estimate_operating_point to estimate the operating point. A
value of NA disables this feature.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ca_column_name The name of the column in replicate_exdf that contains the ambient CO2
concentration in micromol mol^(-1). If values of Ca are not available, they
can be set to NA. In this case, it will not be possible to estimate the operating
point, and apply_gm will not be able to calculate the CO2 drawdown across the
stomata.

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

etr_column_name

The name of the column in rc_exdf that contains the electron transport rate as
estimated by the measurement system in micromol m^(-2) s^(-1).

gamma_star_norm_column_name

The name of the column in replicate_exdf that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

j_norm_column_name

The name of the column in replicate_exdf that contains the normalized J
values (with units of normalized to J at 25 degrees C).

kc_norm_column_name

The name of the column in replicate_exdf that contains the normalized Kc
values (with units of normalized to Kc at 25 degrees C).

ko_norm_column_name

The name of the column in replicate_exdf that contains the normalized Ko
values (with units of normalized to Ko at 25 degrees C).

oxygen_column_name

The name of the column in replicate_exdf that contains the concentration of
O2 in the ambient air, expressed as a percentage (commonly 21% or 2%); the
units must be percent.

phips2_column_name

The name of the column in replicate_exdf that contains values of the operat-
ing efficiency of photosystem II (dimensionless).

qin_column_name

The name of the column in replicate_exdf that contains values of the incident
photosynthetically active flux density in micromol m^(-2) s^(-1).

166 fit_c3_variable_j

rl_norm_column_name

The name of the column in replicate_exdf that contains the normalized RL
values (with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in replicate_exdf that contains the total pressure in
bar.

tp_norm_column_name

The name of the column in replicate_exdf that contains the normalized Tp
values (with units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in replicate_exdf that contains the normalized Vcmax
values (with units of normalized to Vcmax at 25 degrees C).

sd_A A value of the standard deviation of measured A values, or the name of a method
for determining the deviation; currently, the only supported option is 'RMSE'.

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

optim_fun An optimization function that accepts the following input arguments: an initial
guess, an error function, lower bounds, and upper bounds. It should return a list
with the following elements: par, convergence, feval, and convergence_msg.
The default option is an evolutionary optimizer that runs slow but tends to find
good fits for most curves. optimizer_nmkb can also be used; it is faster, but
doesn’t always find a good fit.

lower A list of named numeric elements representing lower bounds to use when fitting.
Values supplied here override the default values (see details below). For exam-
ple, lower = list(Vcmax_at_25 = 10) sets the lower limit for Vcmax_at_25 to
10 micromol / m^2 / s.

upper A list of named numeric elements representing upper bounds to use when fitting.
Values supplied here override the default values (see details below). For exam-
ple, upper = list(Vcmax_at_25 = 200) sets the upper limit for Vcmax_at_25
to 200 micromol / m^2 / s.

fit_options A list of named elements representing fit options to use for each parameter. Val-
ues supplied here override the default values (see details below). Each element
must be 'fit', 'column', or a numeric value. A value of 'fit' means that the
parameter will be fit; a value of 'column' means that the value of the parame-
ter will be taken from a column in replicate_exdf of the same name; and a
numeric value means that the parameter will be set to that value. For example,
fit_options = list(alpha_g = 0, Vcmax_at_25 = 'fit', Tp_at_25 = 'column')
means that alpha_g will be set to 0, Vcmax_at_25 will be fit, and Tp_at_25 will
be set to the values in the Tp_at_25 column of replicate_exdf.

cj_crossover_min

To be passed to error_function_c3_variable_j.

fit_c3_variable_j 167

cj_crossover_max

To be passed to error_function_c3_variable_j.
require_positive_gmc

To be passed to error_function_c3_variable_j.

gmc_max To be passed to error_function_c3_variable_j.

check_j To be passed to error_function_c3_variable_j.
relative_likelihood_threshold

To be passed to confidence_intervals_c3_variable_j when calculate_confidence_intervals
is TRUE.

hard_constraints

To be passed to calculate_c3_assimilation and calculate_c3_variable_j;
see those functions for more details.

calculate_confidence_intervals

A logical value indicating whether or not to estimate confidence intervals for the
fitting parameters using confidence_intervals_c3_variable_j.

remove_unreliable_param

An integer value indicating the rules to use when identifying and removing unre-
liable parameter estimates. A value of 2 is the most conservative option. A value
of 0 disables this feature, which is not typically recommended. It is also pos-
sible to directly specify the trust values to remove; for example, 'unreliable
(process never limiting)' is equivalent to 1. See below for more details.

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about replicate_exdf, the initial guess, each
guess supplied from the optimizer, and the final outcome is printed; this can
be helpful when troubleshooting issues with a particular curve.

... Additional arguments to be passed to calculate_c3_assimilation.

Details

This function calls calculate_c3_variable_j and calculate_c3_assimilation to calculate
values of net assimilation. The user-supplied optimization function is used to vary the values of
alpha_g, alpha_old, alpha_s, alpha_t, Gamma_star_at_25, J_at_25, Kc_at_25, Ko_at_25,
RL_at_25, tau, Tp_at_25, and Vcmax_at_25 to find ones that best reproduce the experimentally
measured values of net assimilation. By default, the following options are used for the fits:

• alpha_g: lower = 0, upper = 10, fit_option = 0

• alpha_old: lower = 0, upper = 10, fit_option = 'fit'

• alpha_s: lower = 0, upper = 10, fit_option = 0

• alpha_t: lower = 0, upper = 10, fit_option = 0

• Gamma_star_at_25: lower = -20, upper = 200, fit_option = 'column'

• J_at_25: lower = -50, upper = 1000, fit_option = 'fit'

• Kc_at_25: lower = -50, upper = 1000, fit_option = 'column'

• Ko_at_25: lower = -50, upper = 1000, fit_option = 'column'

• RL_at_25: lower = -10, upper = 100, fit_option = 'fit'

• tau: lower = -10, upper = 10, fit_option = 'fit'

168 fit_c3_variable_j

• Tp_at_25: lower = -10, upper = 100, fit_option = 'fit'

• Vcmax_at_25: lower = -50, upper = 1000, fit_option = 'fit'

With these settings, all "new" alpha parameters are set to 0; values of Gamma_star_at_25, Kc_at_25,
and Ko_at_25 are taken from the Gamma_star_at_25, Kc_at_25, and Ko_at_25 columns of replicate_exdf;
and the other parameters are fit during the process (see fit_options above). The bounds are chosen
liberally to avoid any bias.

An initial guess for the parameters is generated by calling initial_guess_c3_variable_j as
follows:

• cc_threshold_rl is set to 100 micromol / mol.

• If alpha_g is being fit, the alpha_g argument of initial_guess_c3_variable_j is set to
0.5; otherwise, the argument is set to the value specified by the fit options.

• If alpha_old is being fit, the alpha_old argument of initial_guess_c3_variable_j is set
to 0.5; otherwise, the argument is set to the value specified by the fit options.

• if alpha_s is being fit, the alpha_s argument of initial_guess_c3_variable_j is set to
0.3 * (1 - alpha_g); otherwise, the argument is set to the value specified by the fit options.

• if alpha_t is being fit, the alpha_t argument of initial_guess_c3_variable_j is set to 0;
otherwise, the argument is set to the value specified by the fit options.

• If Gamma_star_at_25 is being fit, the Gamma_star_at_25 argument of initial_guess_c3_variable_j
is set to 40; otherwise, the argument is set to the value specified by the fit options.

• If Kc_at_25 is being fit, the Kc_at_25 argument of initial_guess_c3_variable_j is set to
400; otherwise, the argument is set to the value specified by the fit options.

• If Ko_at_25 is being fit, the Ko_at_25 argument of initial_guess_c3_variable_j is set to
275; otherwise, the argument is set to the value specified by the fit options.

Note that any fixed values specified in the fit options will override the values returned by the guess-
ing function.

The fit is made by creating an error function using error_function_c3_variable_j and minimiz-
ing its value using optim_fun, starting from the initial guess described above. The optimizer_deoptim
optimizer is used by default since it has been found to reliably return great fits. However, it is
a slow optimizer. If speed is important, consider reducing the number of generations or using
optimizer_nmkb, but be aware that this optimizer is more likely to get stuck in a local minimum.

The photosynthesis model used here is not smooth in the sense that small changes in the input
parameters do not necessarily cause changes in its outputs. This is related to the final step in the
calculations, where the overall assimilation rate is taken to be the minimum of three enzyme-limited
rates. For example, if the assimilation rate is never phosphate-limited, modifying Tp_at_25 will
not change the model’s outputs. For this reason, derivative-based optimizers tend to struggle when
fitting C3 A-Ci curves. Best results are obtained using derivative-free methods.

Sometimes the optimizer may choose a set of parameter values where one or more of the potential
limiting carboxylation rates (Wc, Wj, or Wp) is never the smallest rate. In this case, the corresponding
parameter estimates (Vcmax, J, or alpha_old & Tp) will be severely unreliable. This will be indi-
cated by a value of 'unreliable (process never limiting)' in the corresponding trust column
(for example, Vcmax_trust). If remove_unreliable_param is 1 or larger, then such parameter
estimates (and the corresponding rates) will be replaced by NA in the fitting results.

fit_c3_variable_j 169

It is also possible that the upper limit of the confidence interval for a parameter is infinity; this indi-
cates a potentially unreliable parameter estimate. This will be indicated by a value of 'unreliable
(infinite upper limit)' in the corresponding trust column (for example, Vcmax_trust). If
remove_unreliable_param is 2 or larger, then such parameter estimates (but not the corresponding
rates) will be replaced by NA in the fitting results.

The trust value for fully reliable parameter estimates is set to 'reliable' and they will never be
replaced by NA.

Once the best-fit parameters have been determined, this function also estimates the operating value
of ‘Cc from the atmospheric CO2 concentration atmospheric_ca using estimate_operating_point,
and then uses that value to estimate the modeled An at the operating point via calculate_c3_assimilation.
It also estimates the Akaike information criterion (AIC).

This function assumes that replicate_exdf represents a single C3 A-Ci curve. To fit multiple
curves at once, this function is often used along with by.exdf and consolidate.

Value

A list with two elements:

• fits: An exdf object including the original contents of replicate_exdf along with several
new columns:

– The fitted values of net assimilation will be stored in a column whose name is determined
by appending '_fit' to the end of a_column_name; typically, this will be 'A_fit'.

– Residuals (measured - fitted) will be stored in a column whose name is determined by ap-
pending '_residuals' to the end of a_column_name; typically, this will be 'A_residuals'.

– Values of fitting parameters at 25 degrees C will be stored in the Gamma_star_at_25,
J_at_25, Kc_at_25, Ko_at_25, RL_at_25, Tp_at_25, and Vcmax_at_25 columns.

– The other outputs from calculate_c3_variable_j and calculate_c3_assimilation
will be stored in columns with the usual names: alpha_g, alpha_old, alpha_s, alpha_t,
Gamma_star_tl, J_tl, Kc_tl, Ko_tl, RL_tl, tau, Tp_tl, Vcmax_tl, Ac, Aj, Ap, gmc,
J_F, and Cc.

• fits_interpolated: An exdf object including the calculated assimilation rates at a fine
spacing of Ci values (step size of 1 micromol mol^(-1)).

• parameters: An exdf object including the identifiers, fitting parameters, and convergence
information for the A-Ci curve:

– The number of points where An = Ac, An = Aj, and An = Ap are stored in the n_Ac_limiting,
n_Aj_limiting, and n_Ap_limiting columns.

– The best-fit values are stored in the alpha_g, alpha_old, alpha_s, alpha_t, Gamma_star_at_25,
J_at_25, Kc_at_25, Ko_at_25, RL_at_25, tau, Tp_at_25, and Vcmax_at_25 columns.
If calculate_confidence_intervals is TRUE, upper and lower limits for each of these
parameters will also be included.

– For parameters that depend on leaf temperature, the average leaf-temperature-dependent
values are stored in Gamma_star_tl_avg, J_tl_avg, Kc_tl_avg, Ko_tl_avg, RL_tl_avg,
Tp_tl_avg, and Vcmax_tl_avg.

– Information about the operating point is stored in operating_Cc, operating_Ci, operating_An,
and operating_An_model.

https://en.wikipedia.org/wiki/Akaike_information_criterion

170 fit_c3_variable_j

– The convergence column indicates whether the fit was successful (==0) or if the opti-
mizer encountered a problem (!=0).

– The feval column indicates how many cost function evaluations were required while
finding the optimal parameter values.

– The residual stats as returned by residual_stats are included as columns with the de-
fault names: dof, RSS, RMSE, etc.

– The Akaike information criterion is included in the AIC column.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

For these examples, we will use a faster (but sometimes less reliable)
optimizer so they run faster
optimizer <- optimizer_nmkb(1e-7)

Fit just one curve from the data set (it is rare to do this).
one_result <- fit_c3_variable_j(

licor_file[licor_file[, 'species_plot'] == 'tobacco - 1', , TRUE],
Ca_atmospheric = 420,
optim_fun = optimizer

)

Fit all curves in the data set (it is more common to do this).
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c3_variable_j,
Ca_atmospheric = 420,
optim_fun = optimizer

))

fit_c4_aci 171

View the fitting parameters for each species / plot
col_to_keep <- c(

'species', 'plot', # identifiers
'n_Ac_limiting', 'n_Aj_limiting', 'n_Ap_limiting', # number of points where

each process is limiting
'tau', 'Tp_at_25', # parameters with temperature response
'J_at_25', 'RL_at_25', 'Vcmax_at_25', # parameters scaled to 25 degrees C
'J_tl_avg', 'RL_tl_avg', 'Vcmax_tl_avg', # average temperature-dependent values
'operating_Ci', 'operating_An', 'operating_An_model', # operating point info
'dof', 'RSS', 'MSE', 'RMSE', 'RSE', # residual stats
'convergence', 'convergence_msg', 'feval', 'optimum_val' # convergence info

)

aci_results$parameters[, col_to_keep, TRUE]

View the fits for each species / plot
plot_c3_aci_fit(aci_results, 'species_plot', 'Ci')

View the residuals for each species / plot
lattice::xyplot(

A_residuals ~ Ci | species_plot,
data = aci_results$fits$main_data,
type = 'b',
pch = 16,
auto = TRUE,
grid = TRUE,
xlab = paste0('Intercellular CO2 concentration (', aci_results$fits$units$Ci, ')'),
ylab = paste0('Assimilation rate residuals (', aci_results$fits$units$A_residuals, ')')

)

View the estimated mesophyll conductance values for each species / plot
lattice::xyplot(

gmc ~ Ci | species_plot,
data = aci_results$fits$main_data,
type = 'b',
pch = 16,
auto = TRUE,
grid = TRUE,
xlab = paste0('Intercellular CO2 concentration (', aci_results$fits$units$Ci, ')'),
ylab = paste0('Mesophyll conductance to CO2 (', aci_results$fits$units$gmc, ')'),
ylim = c(0, 2)

)

In some of the curves above, there are no points where carboxylation is TPU
limited. Estimates of Tp are therefore unreliable and are removed.

fit_c4_aci Fits a C4 assimilation model to an A-Ci curve

172 fit_c4_aci

Description

Fits the von Caemmerer model to an experimentally measured C4 A-Ci curve.

It is possible to fit the following parameters: alpha_psii, gbs, gmc_at_25, J_at_25, RL_at_25,
Rm_frac, Vcmax_at_25, Vpmax_at_25, and Vpr.

By default, only a subset of these parameters are actually fit: RL_at_25, Vcmax_at_25, and Vpmax_at_25.
This can be altered using the fit_options argument, as described below.

Best-fit parameters are found using maximum likelihood fitting, where the optimizer (optim_fun)
is used to minimize the error function (defined by error_function_c4_aci).

Once best-fit parameters are found, confidence intervals are calculated using confidence_intervals_c4_aci,
and unreliable parameter estimates are removed.

For temperature-dependent parameters, best-fit values and confidence intervals are returned at 25
degrees C and at leaf temperature.

See below for more details.

Usage

fit_c4_aci(
replicate_exdf,
Ca_atmospheric = NA,
ao_column_name = 'ao',
a_column_name = 'A',
ca_column_name = 'Ca',
ci_column_name = 'Ci',
gamma_star_column_name = 'gamma_star',
gmc_norm_column_name = 'gmc_norm',
j_norm_column_name = 'J_norm',
kc_column_name = 'Kc',
ko_column_name = 'Ko',
kp_column_name = 'Kp',
oxygen_column_name = 'oxygen',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
vcmax_norm_column_name = 'Vcmax_norm',
vpmax_norm_column_name = 'Vpmax_norm',
sd_A = 'RMSE',
x_etr = 0.4,
optim_fun = optimizer_deoptim(200),
lower = list(),
upper = list(),
fit_options = list(),
relative_likelihood_threshold = 0.147,
hard_constraints = 0,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2,
debug_mode = FALSE

)

fit_c4_aci 173

Arguments

replicate_exdf An exdf object representing one CO2 response curve.

Ca_atmospheric The atmospheric CO2 concentration (with units of micromol mol^(-1)); this
will be used by estimate_operating_point to estimate the operating point. A
value of NA disables this feature.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ao_column_name The name of the column in exdf_obj that contains the dimensionless ratio of
solubility and diffusivity of O2 to CO2.

ca_column_name The name of the column in replicate_exdf that contains the ambient CO2
concentration in micromol mol^(-1). If values of Ca are not available, they
can be set to NA. In this case, it will not be possible to estimate the operating
point, and apply_gm will not be able to calculate the CO2 drawdown across the
stomata.

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

gamma_star_column_name

The name of the column in exdf_obj that contains the dimensionless gamma_star
values.

gmc_norm_column_name

The name of the column in replicate_exdf that contains the normalized mes-
ophyll conductance values (with units of normalized to gmc at 25 degrees C).

j_norm_column_name

The name of the column in exdf_obj that contains the normalized J values (with
units of normalized to J at 25 degrees C).

kc_column_name The name of the column in exdf_obj that contains the Michaelis-Menten con-
stant for rubisco carboxylation in microbar.

ko_column_name The name of the column in exdf_obj that contains the Michaelis-Menten con-
stant for rubisco oxygenation in mbar.

kp_column_name The name of the column in exdf_obj that contains the Michaelis-Menten con-
stant for PEP carboxylase carboxylation in microbar.

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

rl_norm_column_name

The name of the column in exdf_obj that contains the normalized RL values
(with units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in exdf_obj that contains the total pressure in bar.
vcmax_norm_column_name

The name of the column in exdf_obj that contains the normalized Vcmax values
(with units of normalized to Vcmax at 25 degrees C).

174 fit_c4_aci

vpmax_norm_column_name

The name of the column in exdf_obj that contains the normalized Vpmax values
(with units of normalized to Vpmax at 25 degrees C).

sd_A A value of the standard deviation of measured A values, or the name of a method
for determining the deviation; currently, the only supported option is 'RMSE'.

x_etr The fraction of whole-chain electron transport occurring in the mesophyll (di-
mensionless). See Equation 29 from S. von Caemmerer (2021).

optim_fun An optimization function that accepts the following input arguments: an initial
guess, an error function, lower bounds, and upper bounds. It should return a list
with the following elements: par, convergence, feval, and convergence_msg.
See optimizers for a list of available options.

lower A list of named numeric elements representing lower bounds to use when fitting.
Values supplied here override the default values (see details below). For exam-
ple, lower = list(Vcmax_at_25 = 10) sets the lower limit for Vcmax_at_25 to
10 micromol / m^2 / s.

upper A list of named numeric elements representing upper bounds to use when fitting.
Values supplied here override the default values (see details below). For exam-
ple, upper = list(Vcmax_at_25 = 200) sets the upper limit for Vcmax_at_25
to 200 micromol / m^2 / s.

fit_options A list of named elements representing fit options to use for each parameter. Val-
ues supplied here override the default values (see details below). Each element
must be 'fit', 'column', or a numeric value. A value of 'fit' means that the
parameter will be fit; a value of 'column' means that the value of the parameter
will be taken from a column in exdf_obj of the same name; and a numeric value
means that the parameter will be set to that value. For example, fit_options =
list(RL_at_25 = 0, Vcmax_at_25 = 'fit', Vpr = 'column') means that RL_at_25
will be set to 0, Vcmax_at_25 will be fit, and Vpr will be set to the values in the
Vpr column of exdf_obj.

relative_likelihood_threshold

To be passed to confidence_intervals_c4_aci when calculate_confidence_intervals
is TRUE.

hard_constraints

To be passed to calculate_c4_assimilation; see that function for more de-
tails.

calculate_confidence_intervals

A logical value indicating whether or not to estimate confidence intervals for the
fitting parameters using confidence_intervals_c4_aci.

remove_unreliable_param

An integer value indicating the rules to use when identifying and removing unre-
liable parameter estimates. A value of 2 is the most conservative option. A value
of 0 disables this feature, which is not typically recommended. It is also pos-
sible to directly specify the trust values to remove; for example, 'unreliable
(process never limiting)' is equivalent to 1. See below for more details.

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about replicate_exdf, the initial guess, each
guess supplied from the optimizer, and the final outcome is printed; this can
be helpful when troubleshooting issues with a particular curve.

fit_c4_aci 175

Details

This function calls calculate_c4_assimilation to calculate values of net assimilation. The user-
supplied optimization function is used to vary the values of alpha_psii, gbs, gmc_at_25, J_at_25,
RL_at_25, Rm_frac, Vcmax_at_25, Vpmax_at_25, and Vpr to find ones that best reproduce the
experimentally measured values of net assimilation. By default, the following options are used for
the fits:

• alpha_psii: lower = -1, upper = 10, fit_option = 0

• gbs: lower = -1, upper = 10, fit_option = 0.003

• gmc_at_25: lower = -1, upper = 10, fit_option = 1

• J_at_25: lower = -50, upper = 1000, fit_option = 1000

• RL_at_25: lower = -10, upper = 100, fit_option = 'fit'

• Rm_frac: lower = -10, upper = 10, fit_option = 0.5

• Vcmax_at_25: lower = -50, upper = 1000, fit_option = 'fit'

• Vpmax_at_25: lower = -50, upper = 1000, fit_option = 'fit'

• Vpr: lower = -50, upper = 1000, fit_option = 1000

With these settings, J_at_25 and Vpr are set to 1000 (so net assimilation is essentially never limited
by light or PEP carboxylase regeneration), alpha_psii, gbs, gmc_at_25, and Rm_frac are set to
default values used in von Caemmerer (2000), and the other parameters are fit during the process
(see fit_options above). The bounds are chosen liberally to avoid any bias.

An initial guess for the parameters is generated by calling initial_guess_c4_aci as follows:

• pcm_threshold_rlm is set to 40 microbar.

• If alpha_psii is being fit, the alpha_psii argument of initial_guess_c4_aci is set to 0.1;
otherwise, the argument is set to the value specified by the fit options.

• If gbs is being fit, the gbs argument of initial_guess_c4_aci is set to 0.003; otherwise, the
argument is set to the value specified by the fit options.

• If gmc_at_25 is being fit, the gmc_at_25 argument of initial_guess_c4_aci is set to 1;
otherwise, the argument is set to the value specified by the fit options.

• If Rm_frac is being fit, the Rm_frac argument of initial_guess_c4_aci is set to 0.5; other-
wise, the argument is set to the value specified by the fit options.

Note that any fixed values specified in the fit options will override the values returned by the guess-
ing function.

The fit is made by creating an error function using error_function_c4_aci and minimizing its
value using optim_fun, starting from the initial guess described above. The optimizer_deoptim
optimizer is used by default since it has been found to reliably return great fits. However, it is
a slow optimizer. If speed is important, consider reducing the number of generations or using
optimizer_nmkb, but be aware that this optimizer is more likely to get stuck in a local minimum.

The photosynthesis model represented by calculate_c4_assimilation is not smooth in the sense
that small changes in the input parameters do not necessarily cause changes in its outputs. This is
related to the calculation of the PEP carboxylase activity Vp, which is taken to be the minimum of
Vpr and Vpc. For example, if Vpr is high and Vp = Vpc at all points along the curve, modifying Vpr
by a small amount will not change the model’s outputs. Similar issues can occur when calculating

176 fit_c4_aci

An as the minimum of Ac and Aj. Because of this, derivative-based optimizers tend to struggle when
fitting C4 A-Ci curves. Best results are obtained using derivative-free methods.

Sometimes the optimizer may choose a set of parameter values where one of the potential lim-
iting rates Vpc or Vpr is never the smallest rate. In this case, the corresponding parameter es-
timates (Vpmax or Vpr) will be severely unreliable. Likewise, it may happen that one of Ac or
Aj is never the smallest rate. In this case the corresponding parameter estimates (Vpmax, Vpr,
and Vcmax, or J) will be severely unreliable. This will be indicated by a value of 'unreliable
(process never limiting)' in the corresponding trust column (for example, Vcmax_trust). If
remove_unreliable_param is 1 or larger, then such parameter estimates (and the corresponding
rates) will be replaced by NA in the fitting results.

It is also possible that the upper limit of the confidence interval for a parameter is infinity; this indi-
cates a potentially unreliable parameter estimate. This will be indicated by a value of 'unreliable
(infinite upper limit)' in the corresponding trust column (for example, Vcmax_trust). If
remove_unreliable_param is 2 or larger, then such parameter estimates (but not the corresponding
rates) will be replaced by NA in the fitting results.

The trust value for fully reliable parameter estimates is set to 'reliable' and they will never be
replaced by NA.

Once the best-fit parameters have been determined, this function also estimates the operating value
of ‘PCm from the atmospheric CO2 concentration atmospheric_ca using estimate_operating_point,
and then uses that value to estimate the modeled An at the operating point via calculate_c4_assimilation.
It also estimates the Akaike information criterion (AIC).

This function assumes that replicate_exdf represents a single C4 A-Ci curve. To fit multiple
curves at once, this function is often used along with by.exdf and consolidate.

Value

A list with two elements:

• fits: An exdf object including the original contents of replicate_exdf along with several
new columns:

– The fitted values of net assimilation will be stored in a column whose name is determined
by appending '_fit' to the end of a_column_name; typically, this will be 'A_fit'.

– Residuals (measured - fitted) will be stored in a column whose name is determined by ap-
pending '_residuals' to the end of a_column_name; typically, this will be 'A_residuals'.

– Values of fitting parameters at 25 degrees C will be stored in the gmc_at_25, J_at_25,
RL_at_25, Vcmax_at_25, Vpmax_at_25, and Vpr columns.

– The other outputs from calculate_c4_assimilation will be stored in columns with the
usual names: alpha_psii, gbs, gmc_tl, Rm_Frac, Vcmax_tl, Vpmax_tl, RL_tl, RLm_tl,
Vp, Apc, Apr, Ap, Ar, Ajm, Ajbs, Ac, and Aj.

• fits_interpolated: An exdf object including the calculated assimilation rates at a fine
spacing of Ci values (step size of 1 micromol mol^(-1)).

• parameters: An exdf object including the identifiers, fitting parameters, and convergence
information for the A-Ci curve:

– The number of points where Vpc and Vpr are each the smallest potential carboxylation
rate are stored in the n_Vpc_smallest and n_Vpr_smallest columns.

https://en.wikipedia.org/wiki/Akaike_information_criterion

fit_c4_aci 177

– The best-fit values are stored in the alpha_psii, gbs, gmc_at_25, J_at_25, RL_at_25,
Rm_frac, Vcmax_at_25, Vpmax_at_25, and Vpr columns. If calculate_confidence_intervals
is TRUE, upper and lower limits for each of these parameters will also be included.

– For parameters that depend on leaf temperature, the average leaf-temperature-dependent
values are stored in X_tl_avg columns: gmc_tl_avg, J_tl_avg, Jmax_tl_avg, RL_tl_avg,
Vcmax_tl_avg, and Vpmax_tl_avg.

– The average leaf temperature is also stored in the Tleaf_avg column.
– Information about the operating point is stored in operating_PCm, operating_Ci, operating_An,

and operating_An_model.
– The convergence column indicates whether the fit was successful (==0) or if the opti-

mizer encountered a problem (!=0).
– The feval column indicates how many cost function evaluations were required while

finding the optimal parameter values.
– The residual stats as returned by residual_stats are included as columns with the de-

fault names: dof, RSS, RMSE, etc.
– The Akaike information criterion is included in the AIC column.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate temperature-dependent values of C4 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c4_temperature_param_vc)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

For these examples, we will use a faster (but sometimes less reliable)
optimizer so they run faster
optimizer <- optimizer_nmkb(1e-7)

Fit just one curve from the data set (it is rare to do this).
one_result <- fit_c4_aci(

licor_file[licor_file[, 'species_plot'] == 'maize - 5', , TRUE],
Ca_atmospheric = 420,

178 fit_c4_aci_hyperbola

optim_fun = optimizer
)

Fit all curves in the data set (it is more common to do this)
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c4_aci,
Ca_atmospheric = 420,
optim_fun = optimizer

))

View the fitting parameters for each species / plot
col_to_keep <- c(

'species', 'plot', # identifiers
'RL_at_25', 'Vcmax_at_25', 'Vpmax_at_25', 'Vpr', # parameters scaled to 25 degrees C
'RL_tl_avg', 'Vcmax_tl_avg', 'Vpmax_tl_avg', # average temperature-dependent values
'operating_Ci', 'operating_An', 'operating_An_model', # operating point info
'dof', 'RSS', 'MSE', 'RMSE', 'RSE', # residual stats
'convergence', 'convergence_msg', 'feval', 'optimum_val' # convergence info

)

aci_results$parameters[, col_to_keep, TRUE]

View the fits for each species / plot
plot_c4_aci_fit(aci_results, 'species_plot', 'Ci', ylim = c(0, 100))

View the residuals for each species / plot
lattice::xyplot(

A_residuals ~ Ci | species_plot,
data = aci_results$fits$main_data,
type = 'b',
pch = 16,
auto = TRUE,
grid = TRUE,
xlab = paste('Intercellular CO2 concentration [', aci_results$fits$units$Ci, ']'),
ylab = paste('Assimilation rate residuals [', aci_results$fits$units$A_residuals, ']')

)

fit_c4_aci_hyperbola Fits a hyperbolic C4 assimilation model to an experimental curve

Description

Fits an empirical hyperbola model to an experimentally measured C4 A-Ci curve.

It is possible to fit the following parameters: c4_curvature, c4_slope, rL, and Vmax.

By default, all of these parameters are fit.

Best-fit parameters are found using maximum likelihood fitting, where the optimizer (optim_fun)
is used to minimize the error function (defined by error_function_c4_aci_hyperbola).

fit_c4_aci_hyperbola 179

Once best-fit parameters are found, confidence intervals are calculated using confidence_intervals_c4_aci_hyperbola.

See below for more details.

Usage

fit_c4_aci_hyperbola(
replicate_exdf,
a_column_name = 'A',
ci_column_name = 'Ci',
sd_A = 'RMSE',
optim_fun = optimizer_nmkb(1e-7),
lower = list(),
upper = list(),
fit_options = list(),
relative_likelihood_threshold = 0.147,
hard_constraints = 0,
calculate_confidence_intervals = TRUE,
debug_mode = FALSE

)

Arguments

replicate_exdf An exdf object representing one CO2 response curve.

a_column_name The name of the column in replicate_exdf that contains the net assimilation
in micromol m^(-2) s^(-1).

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration in micromol mol^(-1).

sd_A A value of the standard deviation of measured A values, or the name of a method
for determining the deviation; currently, the only supported option is 'RMSE'.

optim_fun An optimization function that accepts the following input arguments: an initial
guess, an error function, lower bounds, and upper bounds. It should return a list
with the following elements: par, convergence, feval, and convergence_msg.
See optimizers for a list of available options.

lower A list of named numeric elements representing lower bounds to use when fitting.
Values supplied here override the default values (see details below). For exam-
ple, lower = list(Vmax = 10) sets the lower limit for Vmax to 10 micromol /
m^2 / s.

upper A list of named numeric elements representing upper bounds to use when fitting.
Values supplied here override the default values (see details below). For exam-
ple, upper = list(Vmax = 200) sets the upper limit for Vmax to 200 micromol /
m^2 / s.

fit_options A list of named elements representing fit options to use for each parameter. Val-
ues supplied here override the default values (see details below). Each element
must be 'fit', 'column', or a numeric value. A value of 'fit' means that the
parameter will be fit; a value of 'column' means that the value of the parameter
will be taken from a column in exdf_obj of the same name; and a numeric value

180 fit_c4_aci_hyperbola

means that the parameter will be set to that value. For example, fit_options
= list(rL = 0, Vmax = 'fit', c4_curvature = 'column') means that rL will
be set to 0, Vmax will be fit, and c4_curvature will be set to the values in the
c4_curvature column of replicate_exdf.

relative_likelihood_threshold

To be passed to confidence_intervals_c4_aci_hyperbola when calculate_confidence_intervals
is TRUE.

hard_constraints

To be passed to calculate_c4_assimilation_hyperbola; see that function
for more details.

calculate_confidence_intervals

A logical value indicating whether or not to estimate confidence intervals for the
fitting parameters using confidence_intervals_c4_aci_hyperbola.

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about replicate_exdf, the initial guess, each
guess supplied from the optimizer, and the final outcome is printed; this can
be helpful when troubleshooting issues with a particular curve.

Details

This function calls calculate_c4_assimilation_hyperbola to calculate values of net assim-
ilation. The user-supplied optimization function is used to vary the values of c4_curvature,
c4_slope, rL, and Vmax to find ones that best reproduce the experimentally measured values of
net assimilation. By default, the following options are used for the fits:

• c4_curvature: lower = -10, upper = 10, fit_option = 'fit'

• c4_slope: lower = -50, upper = 1000, fit_option = 'fit'

• rL: lower = -10, upper = 100, fit_option = 'fit'

• Vmax: lower = -50, upper = 1000, fit_option = 'fit'

With these settings, all of the parameters are fit during the process (see fit_options above). The
bounds are chosen liberally to avoid any bias.

An initial guess for the parameters is generated by calling initial_guess_c4_aci_hyperbola.
Note that any fixed values specified in the fit options will override the values returned by the guess-
ing function.

The fit is made by creating an error function using error_function_c4_aci_hyperbola and mini-
mizing its value using optim_fun, starting from the initial guess described above. The optimizer_nmkb
optimizer is used by default since it has been found to reliably return great fits. However, it is a fast
optimizer that can get stuck in local minima. If it seems to be returning bad fits, consider using the
optimizer_deoptim optimizer instead, but be aware that the fits will take more time to complete.

Unlike the model represented by calculate_c4_assimilation, the model in calculate_c4_assimilation_hyperbola
is smooth in the sense that small changes in the input parameters cause small changes in its outputs.
Because of this, it is a fairly easy model to fit.

This function assumes that replicate_exdf represents a single C4 A-Ci curve. To fit multiple
curves at once, this function is often used along with by.exdf and consolidate.

fit_c4_aci_hyperbola 181

Value

A list with two elements:

• fits: An exdf object including the original contents of replicate_exdf along with several
new columns:

– The fitted values of net assimilation will be stored in a column whose name is determined
by appending '_fit' to the end of a_column_name; typically, this will be 'A_fit'.

– Residuals (measured - fitted) will be stored in a column whose name is determined by ap-
pending '_residuals' to the end of a_column_name; typically, this will be 'A_residuals'.

– Values of fitting parameters will be stored in the c4_curvature, c4_slope, rL, and Vmax
columns.

– The other outputs from calculate_c4_assimilation_hyperbola will be stored in columns
with the usual names: Ag, Ainitial, Amax, An, c4_curvature, c4_slope, rL, Vinitial,
Vmax, and c4_assimilation_hyperbola_msg.

• fits_interpolated: An exdf object including the calculated assimilation rates at a fine
spacing of Ci values (step size of 1 micromol mol^(-1)).

• parameters: An exdf object including the identifiers, fitting parameters, and convergence
information for the A-Ci curve:

– The best-fit values are stored in the c4_curvature, c4_slope, rL, and Vmax. If calculate_confidence_intervals
is TRUE, upper and lower limits for each of these parameters will also be included.

– The convergence column indicates whether the fit was successful (==0) or if the opti-
mizer encountered a problem (!=0).

– The feval column indicates how many cost function evaluations were required while
finding the optimal parameter values.

– The residual stats as returned by residual_stats are included as columns with the de-
fault names: dof, RSS, RMSE, etc.

– The Akaike information criterion is included in the AIC column.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-
paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Fit just one curve from the data set (it is rare to do this).

182 fit_laisk

one_result <- fit_c4_aci_hyperbola(
licor_file[licor_file[, 'species_plot'] == 'maize - 5', , TRUE]

)

Fit all curves in the data set (it is more common to do this)
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c4_aci_hyperbola

))

View the fitting parameters for each species / plot
col_to_keep <- c(

'species', 'plot', # identifiers
'c4_curvature', 'c4_slope', 'rL', 'Vmax', # best estimates for parameter values
'dof', 'RSS', 'MSE', 'RMSE', 'RSE', # residual stats
'convergence', 'convergence_msg', 'feval', 'optimum_val' # convergence info

)

aci_results$parameters[, col_to_keep, TRUE]

View the fits for each species / plot
plot_c4_aci_hyperbola_fit(aci_results, 'species_plot', ylim = c(0, 100))

View the residuals for each species / plot
lattice::xyplot(

A_residuals ~ Ci | species_plot,
data = aci_results$fits$main_data,
type = 'b',
pch = 16,
auto = TRUE,
grid = TRUE,
xlab = paste('Intercellular CO2 concentration [', aci_results$fits$units$Ci, ']'),
ylab = paste('Assimilation rate residuals [', aci_results$fits$units$A_residuals, ']')

)

fit_laisk Calculate RL and Ci_star using the Laisk method

Description

Uses the Laisk method to estimate Ci_star and RL. This function can accomodate alternative colum
names for the variables taken from log files in case they change at some point in the future. This
function also checks the units of each required column and will produce an error if any units are
incorrect.

Usage

fit_laisk(
replicate_exdf,

fit_laisk 183

ci_lower = 40, # ppm
ci_upper = 120, # ppm
a_column_name = 'A',
ci_column_name = 'Ci',
ppfd_column_name = 'PPFD'

)

Arguments

replicate_exdf An exdf object containing multiple A-Ci curves measured at different levels of
incident photosynthetically active photon flux density (PPFD).

ci_lower Lower end of Ci range used for linear fits of An vs. Ci.

ci_upper Upper end of Ci range used for linear fits of An vs. Ci.

a_column_name The name of the column in replicate_exdf that contains the net CO2 assimi-
lation rate An in micromol m^(-2) s^(-1).

ci_column_name The name of the column in replicate_exdf that contains the intercellular CO2
concentration Ci in micromol mol^(-1).

ppfd_column_name

The name of the column in replicate_exdf that can be used to split it into
individual response curves. Typically the individial curves are measured at dif-
ferent values of incident light, but the log entries for 'Qin' are not all exactly the
same. It is advised to create a new column called 'PPFD' with rounded values.
For example, licor_data[, 'PPFD'] <- round(licor_data[, 'Qin']).

Details

The Laisk method is a way to estimate RL and Ci_star for a C3 plant. Definitions of these quantities
and a description of the theory underpinning this method is given below.

For a C3 plant, the net CO2 assimilation rate An is given by

An = Vc - Rp - RL,

where Vc is the rate of RuBP carboxylation, Rp is the rate of carbon loss due to photorespiration,
and RL is the rate of carbon loss due to non-photorespiratory respiration (also known as the rate of
day respiration, the rate of mitochondrial respiration, or the rate of respiration in the light). Because
RuBP carboxylation and photorespiration both occur due to Rubisco activity, these rates are actually
proportional to each other:

Rp = Vc * Gamma_star / Cc,

where Cc is the CO2 concentration in the chloroplast (where Rubisco is located) and Gamma_star
will be discussed below. Using this expression, the net CO2 assimilation rate can be written as

An = Vc * (1 - Gamma_star / Cc) - RL.

When Cc is equal to Gamma_star, the net assimilation rate is equal to -RL. For this reason, Gamma_star
is usually referred to as the CO2 compensation point in the absence of mitochondrial respiration.

In general, Cc is related to the intercellular CO2 concentration Ci according to

Ci = Cc + An / gmc,

where gmc is the mesophyll conductance to CO2 diffusion. When Cc is equal to Gamma_star, we
therefore have Ci = Gamma_star - RL / gmc. This special value of Ci is referred to as Ci_star, and

184 fit_laisk

can be understood as the value of Ci where Cc = Gamma_star and An = -RL. Note that the values of
Gamma_star and Ci_star depend on Rubisco properties, mesophyll conductance, and the ambient
O2 concentration, but not on the incident light intensity.

These observations suggest a method for estimating RL from a leaf: Measure An vs. Ci curves at
several light intensities, and find the value of Ci where the curves intersect with each other. This
will be Ci_star, and the corresponding value of An will be equal to -RL.

In practice, it is unlikely that the measured curves will all exactly intersect at a single point. A
method for dealing with this issue was developed in Walker & Ort (2015) and described in more
detail in Busch et al. (2024). Briefly, a linear fit is first made to each A-Ci curve, enabling the
calculation of an intercept-slope curve. Then another linear fit is made to the intercept-slope curve.
The intercept of this fit is equal to -RL and its slope is equal to -Ci_star.

Note: it is possible that RL depends on incident light intensity, an issue which complicates the
application of the Laisk method. See the references for more details.

References:

• Yin, X., Sun, Z., Struik, P. C. & Gu, J. "Evaluating a new method to estimate the rate of
leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluores-
cence measurements." Journal of Experimental Botany 62, 3489–3499 (2011) [doi:10.1093/
jxb/err038].

• Walker, B. J. & Ort, D. R. "Improved method for measuring the apparent CO2 photocompensa-
tion point resolves the impact of multiple internal conductances to CO2 to net gas exchange."
Plant, Cell & Environment 38, 2462–2474 (2015) [doi:10.1111/pce.12562].

• Busch, F. A. et al. "A guide to photosynthetic gas exchang measurements: Fundamental
principles, best practice and potential pitfalls." Plant, Cell & Environment 47, 3344–3364
(2024) [doi:10.1111/pce.14815].

Value

This function returns a list with the following named elements:

• first_fit_parameters: An exdf object with the slope (and its standard error), intercept
(and its standard error), R-squared value, and p-value for each linear fit of A vs. Ci. These are
included as the laisk_slope, laisk_slope_err, laisk_intercept, laisk_intercept_err,
r_squared, and p_value columns.

• first_fits: An exdf object based on replicate_exdf that also includes the fitted values of
An in a new column whose name is a_column_name followed by _fit (for example, A_fit).
The fits are extrapolated to Ci = 0 so they can be visually checked for a common intersection
point.

• second_fit_parameters: An exdf object with RL (and its standard error), Ci_Star (and its
standard error) as estimated from a linear fit of laisk_intercept vs. laisk_slope. Also
includes the R-squared and p-value of the fit.

• second_fit_parameters: An exdf object based on first_fit_parameters that also in-
cludes fitted values of laisk_intercept in the laisk_intercept_fit column.

As noted above, the estimated values of RL and Ci_star are included in the second_fit_parameters
element of the returned list.

https://doi.org/10.1093/jxb/err038
https://doi.org/10.1093/jxb/err038
https://doi.org/10.1111/pce.12562
https://doi.org/10.1111/pce.14815

fit_medlyn 185

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Apply the Laisk method. Note: this is a bad example because these curves were
measured at the same light intensity, but from different species. Because of
this, the results are not meaningful.
laisk_results <- fit_laisk(

licor_file, 20, 150,
ppfd_column_name = 'species_plot'

)

Get estimated values
print(laisk_results$second_fit_parameters[, 'RL'])
print(laisk_results$second_fit_parameters[, 'Ci_star'])

Plot the linear fits of A vs. Ci
plot_laisk_fit(laisk_results, 'instrument', 'first', ppfd_column_name = 'species_plot')

Plot the linear fits of Laisk intercept vs. Laisk slope
plot_laisk_fit(laisk_results, 'instrument', 'second', ppfd_column_name = 'species_plot')

fit_medlyn Fits the Medlyn model to an experimental curve

Description

Fits measured values of stomatal conductance using the Medlyn model. This function can acco-
modate alternative column names for the variables taken from gas exchange log files in case they
change at some point in the future. This function also checks the units of each required column and
will produce an error if any units are incorrect.

Usage

fit_medlyn(

186 fit_medlyn

replicate_exdf,
a_column_name = 'A',
csurface_column_name = 'Csurface',
gsw_column_name = 'gsw',
vpdleaf_column_name = 'VPDleaf'

)

Arguments

replicate_exdf An exdf object representing one Ball-Berry curve.
a_column_name The name of the column in replicate_exdf that contains the net assimilation

in micromol m^(-2) s^(-1).
csurface_column_name

The name of the column in replicate_exdf that contains the CO2 concentra-
tion at the leaf surface in micromol mol^(-1).

gsw_column_name

The name of the column in replicate_exdf that contains the stomatal conduc-
tance to water vapor in mol m^(-2) s^(-1).

vpdleaf_column_name

The name of the column in replicate_exdf that contains the vapor pressure
deficit at the leaf surface in kPa.

Details

The Medlyn model is a simple way to describe the response of a leaf’s stomata to its assimilation
rate and local environmental consitions. Specifically, it predicts that the stomatal conductance to
water vapor (gsw) using the following equation:

gsw = g0 + 1.6 * (1 + g1 / sqrt(VPDleaf)) * A / Csurface,

where VPDleaf is the vapor pressure deficit at the leaf surface, A is the net CO2 assimilation rate,
Csurface is the CO2 concentration at the leaf surface, g0 is the stomatal conductance when A is
zero, and g1 is a parameter describing the leaf’s combined response to environmental parameters.

Fits from this model are typically plotted with gsw on the Y-axis and A / (Csurface * sqrt(VPDleaf))
on the X-axis. Because g1 is typically close to or larger than 1, the model exhibits an almost linear
response of gsw to A / (Csurface * sqrt(VPDleaf)), which we refer to as the "Medlyn index" in
analogy with the Ball-Berry index (see calculate_ball_berry_index).

Although this model is certainly an oversimplification, it does encode some important stomatal
responses. For example, when humidity is low, the stomata close, reducing stomatal conductance.
Likewise, if the CO2 concentration around the leaf is depleted, the stomata open to allow more CO2
to diffuse into the leaf’s interior, increasing somatal conductance.

The Medlyn model was originally described in Medlyn, B. E. et al. "Reconciling the optimal and
empirical approaches to modelling stomatal conductance." Global Change Biology 17, 2134–2144
(2011) [doi:10.1111/j.13652486.2010.02375.x].

Medlyn parameters are typically determined using the same type of response curve measured for
parameterizing the Ball-Berry model. See fit_ball_berry for more details.

This function uses nls to perform the fit, beginning from an initial guess of g0 = 0.005 and g1 = 4.

This function assumes that replicate_exdf represents a single response curve. To fit multiple
curves at once, this function is often used along with by.exdf and consolidate.

https://doi.org/10.1111/j.1365-2486.2010.02375.x

fit_medlyn 187

Value

A list with two elements:

• fits: An exdf object including the measured values and the fitted values of stomatal con-
ductance. The fitted values will be stored in a column whose name is determined by ap-
pending '_fits' to the end of gsw_column_name; typically, this will be 'gsw_fits'. Also
includes residuals in the gsw_residuals column and values of the Medlyn model parameters
medlyn_g0 and medlyn_g1.

• parameters: An exdf object including the fitting parameters and R-squared value. The Med-
lyn model parameters are stored in the medlyn_g0 and medlyn_g1 columns, their standard
errors are stored in the medlyn_g0_err and medlyn_g1_err columns. Other statistical de-
scriptors of the fit as calculated by residual_stats are also included.

Examples

Read an example Licor file included in the PhotoGEA package, calculate
additional gas properties, calculate the Ball-Berry index, define a new column
that uniquely identifies each curve, and then perform a fit to extract the
Ball-Berry parameters from each curve.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_total_pressure(licor_file)

licor_file <- calculate_gas_properties(licor_file)

licor_file[,'species_plot'] <-
paste(licor_file[,'species'], '-', licor_file[,'plot'])

Fit just one curve from the data set (it is rare to do this)
one_result <- fit_medlyn(

licor_file[licor_file[, 'species_plot'] == 'soybean - 1a', , TRUE]
)

Fit all curves in the data set (it is more common to do this)
medlyn_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_medlyn

))

View the fitting parameters for each species / plot
col_to_keep <- c('species', 'plot', 'species_plot', 'medlyn_g0', 'medlyn_g1')
medlyn_results$parameters[, col_to_keep]

View the fits for each species / plot
lattice::xyplot(

gsw + gsw_fit ~ medlyn_index | species_plot,
data = medlyn_results$fits$main_data,
type = 'b',

188 get_oxygen_from_preamble

pch = 16,
auto = TRUE,
xlab = paste('Medlyn index [', medlyn_results$fits$units$medlyn_index, ']'),
ylab = paste('Stomatal conductance to H2O [', medlyn_results$fits$units$gsw, ']')

)

get_oxygen_from_preamble

Extract oxygen information from a Licor file

Description

Extracts oxygen information from a Licor file’s preamble and adds it to the main data as a new
column so it is easier to access.

Usage

get_oxygen_from_preamble(licor_exdf)

Arguments

licor_exdf An exdf object representing data from a photosynthetic gas exchange measure-
ment system. The exdf_obj$preamble field must be defined and contain the
preamble contents; this will automatically be the case if licor_exdf was cre-
ated by read_gasex_file.

Details

Licor LI-6800 log files include the oxygen concentration as an entry in the preamble, but it is more
helpful to include this information as a column in the main data. The get_oxygen_from_preamble
function attempts to move the oxygen concentration (as a percentage) from the preamble into a
column.

Value

An exdf object based on licor_exdf that includes the oxygen percentage as a new column called
oxygen.

Examples

Example: Read data from a Licor log file and get the oxygen information from
the preamble

Read the file
licor_data <- read_gasex_file(

PhotoGEA_example_file_path('licor_for_gm_site11.xlsx'),
)

Here we can see the oxygen percentage in the preamble

get_sample_valve_from_filename 189

str(licor_data$preamble)

Include the oxygen info as a column in the file
licor_data <- get_oxygen_from_preamble(licor_data)

licor_data[, c('replicate', 'oxygen'), TRUE]

get_sample_valve_from_filename

Extract TDL valve information from file name

Description

Determines the TDL valve number from a photosynthetic gas exchange system log file name.

Usage

get_sample_valve_from_filename(
exdf_obj,
reference_table = NULL

)

Arguments

exdf_obj An exdf object representing data from a photosynthetic gas exchange measure-
ment system. The exdf_obj$file_name field must be defined and contain
the file name; this will automatically be the case if exdf_obj was created by
read_gasex_file.

reference_table

An optional list of named elements, where the name of each element is a Licor
sample line valve number (as a character) and the value of each element is the
corresponding Licor reference line valve number.

Details

When making combined gas exchange and isotope discrimination measurements using a portable
photosynthetic gas exchange system (such as a Licor LI-6800) coupled with a tunable diode laser
(TDL) absorption spectroscopy system, the TDL’s gas handling system cycles through several gas
lines (or sites) by opening and closing valves. When analyzing such data, a key step is to identify
which TDL valve numbers correspond to the sample and reference gas lines of the Licor.

At UIUC, there is a convention for designating the sample line valve numbers in the Licor file
names, where "siteNN" or "site NN" means that the Licor’s sample line is valve NN in the TDL
data file. The get_sample_valve_from_filename function extracts the valve number from the file
name and stores it in a new column in exdf_obj called valve_number_s.

Optionally, it is also possible to specify the reference line valve number corresponding to each sam-
ple line valve number using the reference_table input argument. Reference line valve numbers
will be stored in the valve_number_r column.

190 identifier_columns

Value

An exdf object based on exdf_obj that includes the Licor sample line valve number as a new
column called valve_number_s and (optionally) the Licor reference line valve number as a new
column called valve_number_r.

Examples

In this example we load a gas exchange data file and determine the TDL valve
numbers from its file name

Read the gas exchange data
licor_data <- read_gasex_file(

PhotoGEA_example_file_path('licor_for_gm_site11.xlsx'),
)

Get TDL valve information from Licor file name; for this TDL system, the
reference valve is 12 when the sample valve is 11
licor_data <- get_sample_valve_from_filename(licor_data, list('11' = 12))

View the results
licor_data[, c('obs', 'valve_number_s', 'valve_number_r')]

identifier_columns Find columns that have a single value across all rows

Description

Identifies columns that have a single value across all rows and returns them.

Usage

identifier_columns(x)

S3 method for class 'data.frame'
identifier_columns(x)

S3 method for class 'exdf'
identifier_columns(x)

Arguments

x A table-like R object such as a data frame or an exdf.

identify_c3_limiting_processes 191

Details

identifier_columns is generic, with methods defined for data frames and exdf objects.

identifier_columns gets the names and values of any columns in a table-like object that have
a single unique value. If the object represents a set of data from one replicate, then these special
columns are taken to be "identifiers" that describe the replicate. This function is often used inside
fitting functions that are passed to by.exdf as its FUN input argument. For example, see the code
for fit_ball_berry by typing PhotoGEA::fit_ball_berry in the R terminal.

Value

The return value will be a subset of x, restricted to only include columns whose values are constant.
Only one row will be returned.

See Also

exdf

Examples

Create a simple exdf object
simple_exdf <- exdf(

data.frame(A = c(3, 2, 7, 9), species = c('a', 'a', 'a', 'a'), plot = c(1, 1, 1, 1)),
data.frame(A = 'm', species = '', plot = ''),
data.frame(A = 'Cat1', species = '', plot = '')

)

Find its identifier columns
identifier_columns(simple_exdf)

Apply the data frame method to the exdf object's main data frame
identifier_columns(simple_exdf$main_data)

identify_c3_limiting_processes

Identify C3 Limiting Processes

Description

Identify limiting processes in a C3 curve, typically the result of a fit. It is rate for users to call this
function directly because it is used internally by fit_c3_aci and fit_c3_variable_j.

Usage

identify_c3_limiting_processes(
data_table,
a_column_name = 'A_fit',
ac_column_name = 'Ac',
aj_column_name = 'Aj',

192 identify_c3_limiting_processes

ap_column_name = 'Ap',
tol = 1e-3

)

Arguments

data_table A table-like R object such as a data frame or an exdf.

a_column_name The name of the column in data_table that contains the modeled net CO2
assimilation rate in micromol m^(-2) s^(-1).

ac_column_name The name of the column in data_table that contains the modeled Rubisco-
limited net CO2 assimilation rate in micromol m^(-2) s^(-1).

aj_column_name The name of the column in data_table that contains the modeled RuBP-regeneration-
limited net CO2 assimilation rate in micromol m^(-2) s^(-1).

ap_column_name The name of the column in data_table that contains the modeled TPU-limited
net CO2 assimilation rate in micromol m^(-2) s^(-1).

tol A relative tolerance factor used to identify when two rates are equal.

Details

For a C3 leaf, An is given by either Ac, Aj, or Ap. See the documentation for calculate_c3_assimilation
for more information.

This function first identifies points where An = Ac, An = Aj, and An = Ap. The results are stored in
columns called Ac_limiting, Aj_limiting, and Ap_limiting, where a value of TRUE indicates
that the corresponding process is limiting.

Then, the overall limiting state is specified in the limiting_process column. For example, points
where An equals Ac but not Aj or Ap are designated by limiting_process = 'Ac', and like-
wise for the other potential limiting processes. If more than one process is limiting for a point,
limiting_process is set to 'co-limited'.

Value

An exdf object based on licor_exdf that includes new columns as described above: Ac_limiting,
Aj_limiting, Ap_limiting, and limiting_process. The categories of these new columns are set
to identify_c3_limiting_processes to indicate that they were created using this function.

Examples

Identify limiting processes in an example curve
example_curve <- exdf(

data.frame(
A_fit = c(1.0, 2.0, 3.0, 4.0, 4.0),
Ac = c(1.0, 2.0, 5.0, 8.0, 9.0),
Aj = c(2.0, 2.5, 3.0, 4.0, 8.0),
Ap = c(NA, NA, 4.0, 4.0, 4.0)

),
units = data.frame(

A_fit = 'micromol m^(-2) s^(-1)',
Ac = 'micromol m^(-2) s^(-1)',

identify_common_columns 193

Aj = 'micromol m^(-2) s^(-1)',
Ap = 'micromol m^(-2) s^(-1)',
stringsAsFactors = FALSE

)
)

identify_c3_limiting_processes(example_curve)

This function also works for data frames
identify_c3_limiting_processes(example_curve$main_data)

identify_common_columns

Identify columns that are common to multiple objects

Description

Checks whether the input arguments have the same columns

Usage

identify_common_columns(...)

S3 method for class 'data.frame'
identify_common_columns(...)

S3 method for class 'exdf'
identify_common_columns(...)

Arguments

... One or more R objects that have column names.

Details

identify_common_columns is generic, with methods defined for data frames and exdf objects. In
the case of exdf objects, a column will only be considered common if it has the same name, units,
and category in all of the input objects.

Value

A character vector of the column names that are common to all the input objects.

See Also

exdf

194 identify_tdl_cycles

Examples

Here we create two exdf objects with the same column names and units, but
where the categories of one column are not the same in both objects
exdf_1 <- exdf(

data.frame(A = c(3, 2, 7, 9), B = c(4, 5, 1, 8)),
data.frame(A = 'm', B = 's'),
data.frame(A = 'Cat1', B = 'Cat2')

)

exdf_2 <- exdf(
data.frame(A = c(3, 2, 7, 9), B = c(4, 5, 1, 8)),
data.frame(A = 'm', B = 's'),
data.frame(A = 'Cat1', B = 'Cat3')

)

Calling `identify_common_columns` on the exdf objects will only identify one
common column (A) because the category for column B is not common to all the
exdf objects.
identify_common_columns(exdf_1, exdf_2)

Calling `identify_common_columns` on the main_data data frames will identify
two common columns because unit and category information will not be
considered here.
identify_common_columns(exdf_1$main_data, exdf_2$main_data)

identify_tdl_cycles Identifying cycles in TDL data

Description

Tool for identifying complete measurement cycles in a set of tunable diode laser (TDL) data.

Usage

identify_tdl_cycles(
tdl_exdf,
valve_column_name,
cycle_start_valve,
expected_cycle_length_minutes,
expected_cycle_num_valves,
expected_cycle_num_time_pts = expected_cycle_num_valves,
timestamp_colname

)

Arguments

tdl_exdf An exdf object representing data from a TDL data logger.

identify_tdl_cycles 195

valve_column_name

The name of the column in tdl_exdf that contains the valve number; typically,
this is 'valve_number'.

cycle_start_valve

The value of the valve column that indicates the start of a new cycle.
expected_cycle_length_minutes

The expected length of a full cycle (in minutes); here the length is determined by
the difference in timestamp between the first and last measurements that com-
pose the cycle. For example, if a cycle consists of 9 valves that each require 20
seconds to measure, the expected length of the cycle in minutes would be 8 * 20
/ 60 = 2.7 minutes (approximately).

expected_cycle_num_valves

The total number of unique valves that are measured in each cycle. For exam-
ple, if a cycle consists of measuements from valves 1, 3, 13, 6, and 13, then
expected_cycle_num_valves should be 4.

expected_cycle_num_time_pts

The total number of time points that are recorded in each cycle. For exam-
ple, if 10 measuements are logged per second and a cycle is 12 minutes long,
expected_cycle_num_time_pts should be 12 * 60 * 10 = 7200.

timestamp_colname

The name of the column in tdl_exdf that contains the timestamp of each mea-
surement; typically, this is 'TIMESTAMP'.

Details

Typically a TDL system periodically cycles between multiple gas lines during measurements. Some
of the gas lines represent gas mixtures with known composition that can be used for calibration,
while others are the "unknown" mixtures whose composition is being measured. A collection of
valves are used to control which gas line is being measured at any given time, and the "active" valve
for each recorded data point is included in a measurement file.

When using the calibration lines to apply corrections to the measured data, it is necessary to first
identify complete measurements cycles within the data set. Here, complete cycles are identified
using the following criteria:

• A cycle is said to begin when the value of valve_column_name is cycle_start_valve.

• A cycle ends after expected_cycle_num_valves valves have been measured.

• The time difference between the first and last points of a cycle cannot deviate from expected_cycle_length_minutes
by more than +/- 30 seconds.

In addition to identifying valid measurement cycles within the data, identify_tdl_cycles also
calculates the elapsed time at the beginning of each cycle (in minutes).

Value

An exdf object based on tdl_exdf that includes two new columns: the cycle_num column indi-
cates the measurement cycle corresponding to each measurement, and the elapsed_time column
indicates the elapsed time (in minutes) at the start of each cycle. Any rows in tdl_exdf that were
not found to be part of a complete cycle will not be included in the return value.

196 initial_guess_c3_aci

Examples

Example: reading a TDL file that is included with the PhotoGEA package and
identifying its measurement cycles.
tdl_file <- read_gasex_file(

PhotoGEA_example_file_path('tdl_sampling_1.dat'),
'TIMESTAMP'

)

tdl_file <- identify_tdl_cycles(
tdl_file,
valve_column_name = 'valve_number',
cycle_start_valve = 20,
expected_cycle_length_minutes = 2.7,
expected_cycle_num_valves = 9,
timestamp_colname = 'TIMESTAMP'

)

str(tdl_file) # Notice the two new columns: `cycle_num` and `elapsed_time`

initial_guess_c3_aci Make an initial guess of FvCB model parameter values for one curve

Description

Creates a function that makes an initial guess of FvCB model parameter values for one curve. This
function is used internally by fit_c3_aci.

Values estimated by this guessing function should be considered inaccurate, and should always be
improved upon by an optimizer.

Usage

initial_guess_c3_aci(
alpha_g,
alpha_old,
alpha_s,
alpha_t,
Gamma_star_at_25,
gmc_at_25,
Kc_at_25,
Ko_at_25,
cc_threshold_rl = 100,
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
a_column_name = 'A',
ci_column_name = 'Ci',
gamma_star_norm_column_name = 'Gamma_star_norm',
gmc_norm_column_name = 'gmc_norm',
j_norm_column_name = 'J_norm',

initial_guess_c3_aci 197

kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
debug_mode = FALSE

)

Arguments

alpha_g A dimensionless parameter where 0 <= alpha_g <= 1, representing the propor-
tion of glycolate carbon taken out of the photorespiratory pathway as glycine.
alpha_g is often assumed to be 0. If alpha_g is not a number, then there must
be a column in rc_exdf called alpha_g with appropriate units. A numeric value
supplied here will overwrite the values in the alpha_g column of rc_exdf if it
exists.

alpha_old A dimensionless parameter where 0 <= alpha_old <= 1, representing the frac-
tion of remaining glycolate carbon not returned to the chloroplast after account-
ing for carbon released as CO2. alpha_old is often assumed to be 0. If
alpha_old is not a number, then there must be a column in rc_exdf called
alpha_old with appropriate units. A numeric value supplied here will over-
write the values in the alpha_old column of rc_exdf if it exists.

alpha_s A dimensionless parameter where 0 <= alpha_s <= 0.75 * (1 - alpha_g) rep-
resenting the proportion of glycolate carbon taken out of the photorespiratory
pathway as serine. alpha_s is often assumed to be 0. If alpha_s is not a num-
ber, then there must be a column in rc_exdf called alpha_s with appropriate
units. A numeric value supplied here will overwrite the values in the alpha_s
column of rc_exdf if it exists.

alpha_t A dimensionless parameter where 0 <= alpha_t <= 1 representing the propor-
tion of glycolate carbon taken out of the photorespiratory pathway as CH2-THF.
alpha_t is often assumed to be 0. If alpha_t is not a number, then there must
be a column in rc_exdf called alpha_t with appropriate units. A numeric value
supplied here will overwrite the values in the alpha_t column of rc_exdf if it
exists.

Gamma_star_at_25

The chloroplastic CO2 concentration at which CO2 gains from Rubisco car-
boxylation are exactly balanced by CO2 losses from Rubisco oxygenation, at
25 degrees C, expressed in micromol mol^(-1). If Gamma_star_at_25 is not
a number, then there must be a column in rc_exdf called Gamma_star_at_25
with appropriate units. A numeric value supplied here will overwrite the values
in the Gamma_star_at_25 column of rc_exdf if it exists.

gmc_at_25 The mesophyll conductance to CO2 diffusion at 25 degrees C, expressed in
mol m^(-2) s^(-1) bar^(-1). In the absence of other reliable information,
gmc_at_25 is often assumed to be infinitely large. If gmc_at_25 is not a num-
ber, then there must be a column in rc_exdf called gmc_at_25 with appropriate

198 initial_guess_c3_aci

units. A numeric value supplied here will overwrite the values in the gmc_at_25
column of rc_exdf if it exists.

Kc_at_25 The Michaelis-Menten constant for Rubisco carboxylation at 25 degrees C, ex-
pressed in micromol mol^(-1). If Kc_at_25 is not a number, then there must be
a column in rc_exdf called Kc_at_25 with appropriate units. A numeric value
supplied here will overwrite the values in the Kc_at_25 column of rc_exdf if it
exists.

Ko_at_25 The Michaelis-Menten constant for Rubisco oxygenation at 25 degrees C, ex-
pressed in mmol mol^(-1). If Ko_at_25 is not a number, then there must be a
column in rc_exdf called Ko_at_25 with appropriate units. A numeric value
supplied here will overwrite the values in the Ko_at_25 column of rc_exdf if it
exists.

cc_threshold_rl

An upper cutoff value for the chloroplast CO2 concentration in micromol mol^(-1)
to be used when estimating RL.

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

a_column_name The name of the column in rc_exdf that contains the net assimilation in micromol
m^(-2) s^(-1).

ci_column_name The name of the column in rc_exdf that contains the intercellular CO2 concen-
tration in micromol mol^(-1).

gamma_star_norm_column_name

The name of the column in rc_exdf that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

gmc_norm_column_name

The name of the column in rc_exdf that contains the normalized mesophyll
conductance values (with units of normalized to gmc at 25 degrees C).

j_norm_column_name

The name of the column in rc_exdf that contains the normalized J values (with
units of normalized to J at 25 degrees C).

kc_norm_column_name

The name of the column in rc_exdf that contains the normalized Kc values (with
units of normalized to Kc at 25 degrees C).

ko_norm_column_name

The name of the column in rc_exdf that contains the normalized Ko values (with
units of normalized to Ko at 25 degrees C).

oxygen_column_name

The name of the column in rc_exdf that contains the concentration of O2 in the
ambient air, expressed as a percentage (commonly 21% or 2%); the units must
be percent.

initial_guess_c3_aci 199

rl_norm_column_name

The name of the column in rc_exdf that contains the normalized RL values (with
units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in rc_exdf that contains the total pressure in bar.
tp_norm_column_name

The name of the column in rc_exdf that contains the normalized Tp values (with
units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in rc_exdf that contains the normalized Vcmax values
(with units of normalized to Vcmax at 25 degrees C).

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about the linear fit used to estimate RL is printed;
this can be helpful when troubleshooting issues with a particular curve.

Details

Here we estimate values of J_at_25, RL_at_25, Tp_at_25, and Vcmax_at_25 from a measured C3
CO2 response curve. It is difficult to estimate values of alpha_g, alpha_old, alpha_s, alpha_t,
Gamma_star_at_25, gmc_at_25, Kc_at_25, Ko_at_25 from a curve, so they must be supplied be-
forehand. For more information about these parameters, see the documentation for calculate_c3_assimilation.

• Estimating RL: Regardless of which process is limiting at low Cc, it is always true that An =
-RL when Cc = Gamma_star_agt. Here we make a linear fit of the measured An vs. Cc values
where Cc is below cc_threshold_rl, and evaluate it at at Cc = Gamma_star_agt to estimate
RL. If there are fewer than two points with Cc <= cc_threshold_rl, the fit cannot be made,
and we use a typical value instead (1.0 micromol m^(-2) s^(-1)). Likewise, if the linear fit
predicts a negative or NA value for RL, we use the same typical value instead.

• Estimating Vc: Once an estimate for RL has been found, the RuBP carboxylation rate Vc
can be estimated using Vc = (An + RL) / (1 - Gamma_star_agt / Cc). This is useful for the
remaining parameter estimates.

• Estimating Vcmax: An estimate for Vcmax can be obtained by solving the equation for Wc
for Vcmax, and evaluating it with Wc = Vc as estimated above. In the rubisco-limited part of
the curve, Vc = Wc and the estimated values of Vcmax should be reasonable. In other parts of
the curve, Wc is not the limiting rate, so Vc < Wc. Consequently, the estimated values of Vcmax
in these parts of the curve will be smaller. So, to make an overall estimate, we choose the the
largest estimated Vcmax value.

• Estimating J and Tp: Estimates for these parameters can be made using the equations for Wj
and Wp, similar to the approach followed for Vcmax.

For the parameter values estimated above, the values of RL_norm, Vcmax_norm, and J_norm are
used to convert the values at leaf temperature to the values at 25 degrees C.

Value

A function with one input argument rc_exdf, which should be an exdf object representing one C3
CO2 response curve. The return value of this function will be a numeric vector with twelve ele-
ments, representing the values of alpha_g, alpha_old, alpha_s, alpha_t, Gamma_star_at_25,

200 initial_guess_c3_aci

gmc_at_25, J_at_25, Kc_at_25, Ko_at_25, RL_at_25, Tp_at_25, and Vcmax_at_25 (in that or-
der).

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

Create the guessing function; here we set:
- All alpha values to 0
- Gamma_star_at_25 to 40 micromol / mol
- gmc to infinity
- Kc_at_25 to 400 micromol / mol
- Ko_at_25 to 275 mmol / mol
guessing_func <- initial_guess_c3_aci(

alpha_g = 0,
alpha_old = 0,
alpha_s = 0,
alpha_t = 0,
Gamma_star = 40,
gmc_at_25 = Inf,
Kc_at_25 = 400,
Ko_at_25 = 275

)

Apply it and see the initial guesses for each curve
print(by(licor_file, licor_file[, 'species_plot'], guessing_func))

A simple way to visualize the guesses is to "fit" the curves using the null
optimizer, which simply returns the initial guess
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],

initial_guess_c3_variable_j 201

fit_c3_aci,
fit_options = list(alpha_old = 0),
optim_fun = optimizer_null(),
remove_unreliable_param = 0

))

plot_c3_aci_fit(aci_results, 'species_plot', 'Ci')

initial_guess_c3_variable_j

Make an initial guess of "Variable J" model parameter values for one
curve

Description

Creates a function that makes an initial guess of "variable J" model parameter values for one curve.
This function is used internally by fit_c3_variable_j.
Values estimated by this guessing function should be considered inaccurate, and should always be
improved upon by an optimizer.

Usage

initial_guess_c3_variable_j(
alpha_g,
alpha_old,
alpha_s,
alpha_t,
Gamma_star_at_25,
Kc_at_25,
Ko_at_25,
cc_threshold_rl = 100,
Wj_coef_C = 4.0,
Wj_coef_Gamma_star = 8.0,
a_column_name = 'A',
ci_column_name = 'Ci',
etr_column_name = 'ETR',
gamma_star_norm_column_name = 'Gamma_star_norm',
j_norm_column_name = 'J_norm',
kc_norm_column_name = 'Kc_norm',
ko_norm_column_name = 'Ko_norm',
oxygen_column_name = 'oxygen',
phips2_column_name = 'PhiPS2',
qin_column_name = 'Qin',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
tp_norm_column_name = 'Tp_norm',
vcmax_norm_column_name = 'Vcmax_norm',
debug_mode = FALSE

)

202 initial_guess_c3_variable_j

Arguments

alpha_g A dimensionless parameter where 0 <= alpha_g <= 1, representing the propor-
tion of glycolate carbon taken out of the photorespiratory pathway as glycine.
alpha_g is often assumed to be 0. If alpha_g is not a number, then there must
be a column in rc_exdf called alpha_g with appropriate units. A numeric value
supplied here will overwrite the values in the alpha_g column of rc_exdf if it
exists.

alpha_old A dimensionless parameter where 0 <= alpha_old <= 1, representing the frac-
tion of remaining glycolate carbon not returned to the chloroplast after account-
ing for carbon released as CO2. alpha_old is often assumed to be 0. If
alpha_old is not a number, then there must be a column in rc_exdf called
alpha_old with appropriate units. A numeric value supplied here will over-
write the values in the alpha_old column of rc_exdf if it exists.

alpha_s A dimensionless parameter where 0 <= alpha_s <= 0.75 * (1 - alpha_g) rep-
resenting the proportion of glycolate carbon taken out of the photorespiratory
pathway as serine. alpha_s is often assumed to be 0. If alpha_s is not a num-
ber, then there must be a column in rc_exdf called alpha_s with appropriate
units. A numeric value supplied here will overwrite the values in the alpha_s
column of rc_exdf if it exists.

alpha_t A dimensionless parameter where 0 <= alpha_t <= 1 representing the propor-
tion of glycolate carbon taken out of the photorespiratory pathway as CH2-THF.
alpha_t is often assumed to be 0. If alpha_t is not a number, then there must
be a column in rc_exdf called alpha_t with appropriate units. A numeric value
supplied here will overwrite the values in the alpha_t column of rc_exdf if it
exists.

Gamma_star_at_25

The chloroplastic CO2 concentration at which CO2 gains from Rubisco car-
boxylation are exactly balanced by CO2 losses from Rubisco oxygenation, at
25 degrees C, expressed in micromol mol^(-1). If Gamma_star_at_25 is not
a number, then there must be a column in rc_exdf called Gamma_star_at_25
with appropriate units. A numeric value supplied here will overwrite the values
in the Gamma_star_at_25 column of rc_exdf if it exists.

Kc_at_25 The Michaelis-Menten constant for Rubisco carboxylation at 25 degrees C, ex-
pressed in micromol mol^(-1). If Kc_at_25 is not a number, then there must be
a column in rc_exdf called Kc_at_25 with appropriate units. A numeric value
supplied here will overwrite the values in the Kc_at_25 column of rc_exdf if it
exists.

Ko_at_25 The Michaelis-Menten constant for Rubisco oxygenation at 25 degrees C, ex-
pressed in mmol mol^(-1). If Ko_at_25 is not a number, then there must be a
column in rc_exdf called Ko_at_25 with appropriate units. A numeric value
supplied here will overwrite the values in the Ko_at_25 column of rc_exdf if it
exists.

cc_threshold_rl

An upper cutoff value for the chloroplast CO2 concentration in micromol mol^(-1)
to be used when estimating RL.

initial_guess_c3_variable_j 203

Wj_coef_C A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

Wj_coef_Gamma_star

A coefficient in the equation for RuBP-regeneration-limited carboxylation, whose
value depends on assumptions about the NADPH and ATP requirements of
RuBP regeneration; see calculate_c3_assimilation for more information.

a_column_name The name of the column in rc_exdf that contains the net assimilation in micromol
m^(-2) s^(-1).

ci_column_name The name of the column in rc_exdf that contains the intercellular CO2 concen-
tration in micromol mol^(-1).

etr_column_name

The name of the column in rc_exdf that contains the electron transport rate as
estimated by the measurement system in micromol m^(-2) s^(-1).

gamma_star_norm_column_name

The name of the column in rc_exdf that contains the normalized Gamma_star
values (with units of normalized to Gamma_star at 25 degrees C).

j_norm_column_name

The name of the column in rc_exdf that contains the normalized J values (with
units of normalized to J at 25 degrees C).

kc_norm_column_name

The name of the column in rc_exdf that contains the normalized Kc values (with
units of normalized to Kc at 25 degrees C).

ko_norm_column_name

The name of the column in rc_exdf that contains the normalized Ko values (with
units of normalized to Ko at 25 degrees C).

oxygen_column_name

The name of the column in exdf_obj that contains the concentration of O2 in
the ambient air, expressed as a percentage (commonly 21% or 2%); the units
must be percent.

phips2_column_name

The name of the column in rc_exdf that contains values of the operating effi-
ciency of photosystem II (dimensionless).

qin_column_name

The name of the column in rc_exdf that contains values of the incident photo-
synthetically active flux density in micromol m^(-2) s^(-1).

rl_norm_column_name

The name of the column in rc_exdf that contains the normalized RL values (with
units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in rc_exdf that contains the total pressure in bar.
tp_norm_column_name

The name of the column in rc_exdf that contains the normalized Tp values (with
units of normalized to Tp at 25 degrees C).

vcmax_norm_column_name

The name of the column in rc_exdf that contains the normalized Vcmax values
(with units of normalized to Vcmax at 25 degrees C).

204 initial_guess_c3_variable_j

debug_mode Passed to initial_guess_c3_aci.

Details

The variable J method is a fitting procedure for estimating values of alpha_g, alpha_old, alpha_s,
alpha_t, Gamma_star_at_25, J_at_25, Kc_at_25, Kc_at_25, RL_at_25, tau, Tp_at_25, and
Vcmax_at_25 from a measured C3 CO2 response curve + chlorophyll fluorescence. For more
information about these parameters, see the documentation at calculate_c3_variable_j and
calculate_c3_assimilation.

Here, we make an estimate for tau by noting that gas exchange measurement systems equipped with
chlorophyll fluorometers typically make an estimate for the electron transport rate (ETR), which is
essentially synonymous with the actual RuBP regeneration rate. Thus, tau can be estimated by
inverting the equation for J_actual:

tau = ETR / (Qin * PhiPSII)

Estimates of the remaining parameters are calculated by setting Cc = Ci and then calling initial_guess_c3_aci.

Value

A function with one input argument rc_exdf, which should be an exdf object representing one
C3 CO2 response curve. The return value of this function will be a numeric vector with twelve
elements, representing the values of alpha_g, alpha_old, alpha_s, alpha_t, Gamma_star_at_25,
J_at_25, Kc_at_25, Ko_at_25, RL_at_25, tau, Tp_at_25, and Vcmax_at_25 (in that order).

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-
paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

Create the guessing function; here we set:
- All alpha values to 0

initial_guess_c4_aci 205

- Gamma_star_at_25 to 40 micromol / mol
- Kc_at_25 to 400 micromol / mol
- Ko_at_25 to 275 mmol / mol
guessing_func <- initial_guess_c3_variable_j(

alpha_g = 0,
alpha_old = 0,
alpha_s = 0,
alpha_t = 0,
Gamma_star = 40,
Kc_at_25 = 400,
Ko_at_25 = 275

)

Apply it and see the initial guesses for each curve
print(by(licor_file, licor_file[, 'species_plot'], guessing_func))

A simple way to visualize the guesses is to "fit" the curves using the null
optimizer, which simply returns the initial guess
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c3_variable_j,
fit_options = list(alpha_old = 0),
optim_fun = optimizer_null(),
remove_unreliable_param = 0

))

plot_c3_aci_fit(aci_results, 'species_plot', 'Ci')

initial_guess_c4_aci Make an initial guess of C4 photosynthesis parameter values for one
curve

Description

Creates a function that makes an initial guess of C4 photosynthesis model parameter values for one
curve. This function is used internally by fit_c4_aci.

Values estimated by this guessing function should be considered inaccurate, and should always be
improved upon by an optimizer.

Usage

initial_guess_c4_aci(
alpha_psii,
gbs,
gmc_at_25,
Rm_frac,
pcm_threshold_rlm = 40,
x_etr = 0.4,

206 initial_guess_c4_aci

a_column_name = 'A',
ci_column_name = 'Ci',
gmc_norm_column_name = 'gmc_norm',
j_norm_column_name = 'J_norm',
kp_column_name = 'Kp',
rl_norm_column_name = 'RL_norm',
total_pressure_column_name = 'total_pressure',
vcmax_norm_column_name = 'Vcmax_norm',
vpmax_norm_column_name = 'Vpmax_norm',
debug_mode = FALSE

)

Arguments

alpha_psii The fraction of photosystem II activity in the bundle sheath (dimensionless).
If alpha_psii is not a number, then there must be a column in rc_exdf called
alpha_psii with appropriate units. A numeric value supplied here will over-
write the values in the alpha_psii column of rc_exdf if it exists.

gbs The bundle sheath conductance to CO2 in mol m^(-2) s^(-1) bar^(-1). If
gbs is not a number, then there must be a column in rc_exdf called gbs with
appropriate units. A numeric value supplied here will overwrite the values in the
gbs column of rc_exdf if it exists.

gmc_at_25 The mesophyll conductance to CO2 diffusion at 25 degrees C, expressed in mol
m^(-2) s^(-1) bar^(-1). If gmc_at_25 is not a number, then there must be a
column in rc_exdf called gmc_at_25 with appropriate units. A numeric value
supplied here will overwrite the values in the gmc_at_25 column of rc_exdf if
it exists.

Rm_frac The fraction of the total mitochondrial respiration that occurs in the mesophyll.
If Rm_frac is not a number, then there must be a column in rc_exdf called
Rm_frac with appropriate units. A numeric value supplied here will overwrite
the values in the Rm_frac column of rc_exdf if it exists.

pcm_threshold_rlm

An upper cutoff value for the partial pressure of CO2 in the mesophyll (in
microbar) to be used when estimating RLm.

x_etr The fraction of whole-chain electron transport occurring in the mesophyll (di-
mensionless). See Equation 29 from S. von Caemmerer (2021).

a_column_name The name of the column in rc_exdf that contains the net assimilation in micromol
m^(-2) s^(-1).

ci_column_name The name of the column in rc_exdf that contains the intercellular CO2 concen-
tration in micromol mol^(-1).

gmc_norm_column_name

The name of the column in rc_exdf that contains the normalized mesophyll
conductance values (with units of normalized to gmc at 25 degrees C).

j_norm_column_name

The name of the column in rc_exdf that contains the normalized J values (with
units of normalized to J at 25 degrees C).

initial_guess_c4_aci 207

kp_column_name The name of the column in rc_exdf that contains the Michaelis-Menten con-
stant for PEP carboxylase carboxylation in microbar.

rl_norm_column_name

The name of the column in rc_exdf that contains the normalized RL values (with
units of normalized to RL at 25 degrees C).

total_pressure_column_name

The name of the column in rc_exdf that contains the total pressure in bar.
vcmax_norm_column_name

The name of the column in rc_exdf that contains the normalized Vcmax values
(with units of normalized to Vcmax at 25 degrees C).

vpmax_norm_column_name

The name of the column in rc_exdf that contains the normalized Vpmax values
(with units of normalized to Vpmax at 25 degrees C).

debug_mode A logical (TRUE or FALSE) variable indicating whether to operate in debug mode.
In debug mode, information about the linear fit used to estimate RL is printed;
this can be helpful when troubleshooting issues with a particular curve.

Details

Here we estimate values of J_at_25, RL_at_25, Vcmax_at_25, Vpmax_at_25, and Vpr from a mea-
sured C4 CO2 response curve. It is difficult to estimate values of alpha_psii, gbs, gmc_at_25,
and Rm_frac from a curve, so they must be supplied beforehand. For more information about
these parameters, see the documentation for calculate_c4_assimilation. To estimate these pa-
rameter values, we use several equations from S. von Caemmerer, "Biochemical Models of Leaf
Photosynthesis" (CSIRO Publishing, 2000) [doi:10.1071/9780643103405]. Any equation numbers
referenced below are from this book.

• Estimating RL: An estimate for RLm can be obtained using Equation 4.26, which applies for
low values of PCm. In this situation, PCm + Kp can be approximated by Kp, and Equation 4.26
simplifies to a linear relationship between the net assimilation An and PCm: An = (gbs + Vpmax
/ kP) * PCm - RLm. So, to estimate RLm, we make a linear fit of An vs. PCm in the low PCm range
(PCm <= pcm_threshold_rlm) where this equation is expected to be valid. Then RLm is given
by the negative of the intercept from the fit. In the C4 assimilation model, we assume that RLm
= Rm_frac * RL, so we can also estimate RL = RLm / Rm_frac from this value.
If there are fewer than two points with PCm <= pcm_threshold_rlm, the fit cannot be made,
and we use a typical value instead (0.5 micromol m^(-2) s^(-1)). Likewise, if the linear fit
predicts a negative or NA value for RLm, we use the same typical value instead.

• Estimating Vpmax: An estimate for Vpmax can also be obtained from Equation 4.26. In this
case, we simply solve the equation for Vpmax and use it to calculate a value of Vpmax at each
point in the curve from the measured values of An and PCm, the input value of gbs, and the
value of RLm estimated above. In the PEP-carboxylation-limited range, the estimated values
of Vpmax should be reasonable. In other parts of the curve, the assimilation rate is limited
by other factors, so An will be smaller than the PEP-carboxylation-limited values, causing the
estimated values of Vpmax to be smaller. So, to make an overall estimate, we choose the largest
estimated Vpmax value.

• Estimating Vcmax: An estimate for Vcmax can be obtained by solving An = Vcmax - RL for
Vcmax, similar to the method used to estimate Vpmax.

https://doi.org/10.1071/9780643103405

208 initial_guess_c4_aci

• Estimating Vpr: An estimate for Vpr can be obtained by solving An = Vpr + gbs * PCm - RLm
for Vpr, similar to the method used to estimate Vpmax.

• Estimating J: First, an estimate for J can be obtained by solving An = (1 - x_etr) * J / 3 -
RL for J. Then, estimates of J can be made from J and Qin. The largest value of J / J_norm is
chosen as the best estimate for J_at_25.

Note that a key assumption underlying this approach is that the net assimilation can be reasonably
approximated by An = min(Apc, Apr, Ar, Ajm) (Equations 4.19, 4.25, 4.45, and 4.47 combined).
While this approximation seems to work well for low values of PCm, it tends to deviate significantly
from the more accurate version at higher values of PCm, predicting values that are noticably smaller.
Thus, the values of Vcmax and Vpr estimated using this procedure are unlikely to be accurate. This
is not a problem; instead it simply highlights the importance of improving this initial guess using
an optimizer, which can be accomplished via fit_c4_aci.

Value

A function with one input argument rc_exdf, which should be an exdf object representing one
C4 CO2 response curve. The return value of this function will be a numeric vector with eight ele-
ments, representing the values of alpha_psii, gbs, J_at_25, RL_at_25, rm_frac, Vcmax_at_25,
Vpmax_at_25, and Vpr (in that order).

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate temperature-dependent values of C4 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c4_temperature_param_vc)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Create the guessing function, using typical values for the alpha_psii, gbs,
gmc_at_25, and Rm_frac: 0, 0.003, 1, and 0.5
guessing_func <- initial_guess_c4_aci(0, 0.003, 1, 0.5)

Apply it and see the initial guesses for each curve

initial_guess_c4_aci_hyperbola 209

print(by(licor_file, licor_file[, 'species_plot'], guessing_func))

A simple way to visualize the guesses is to "fit" the curves using the null
optimizer, which simply returns the initial guess
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c4_aci,
optim_fun = optimizer_null()

))

plot_c4_aci_fit(aci_results, 'species_plot', 'Ci', ylim = c(-10, 100))

initial_guess_c4_aci_hyperbola

Make an initial guess of C4 hyperbola parameter values for one curve

Description

Creates a function that makes an initial guess of C4 hyperbola model parameter values for one
curve. This function is used internally by fit_c4_aci_hyperbola.

Values estimated by this guessing function should be considered inaccurate, and should always be
improved upon by an optimizer.

Usage

initial_guess_c4_aci_hyperbola(
a_column_name = 'A'

)

Arguments

a_column_name The name of the column in rc_exdf that contains the net assimilation rate in
micromol m^(-2) s^(-1).

Details

Here we estimate values of c4_curvature, c4_slope, rL, and Vmax from a measured C4 CO2 re-
sponse curve. For more information about these parameters, see the documentation for calculate_c4_assimilation_hyperbola.

Here we take a very simple approach to forming the initial guess. We always choose c4_curvature
= 0.5, c4_slope = 1.0, and rL = 0.0. For Vmax, we use Vmax = max{A} - rL_guess, where max{A}
is the largest observed net CO2 assimilation rate and rL_guess is the guess for rL.

Value

A function with one input argument rc_exdf, which should be an exdf object representing one C4
CO2 response curve. The return value of this function will be a numeric vector with four elements,
representing the values of c4_curvature, c4_slope, rL, and Vmax (in that order).

210 is.exdf

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Create the guessing function
guessing_func <- initial_guess_c4_aci_hyperbola()

Apply it and see the initial guesses for each curve
print(by(licor_file, licor_file[, 'species_plot'], guessing_func))

A simple way to visualize the guesses is to "fit" the curves using the null
optimizer, which simply returns the initial guess
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c4_aci_hyperbola,
optim_fun = optimizer_null()

))

plot_c4_aci_hyperbola_fit(aci_results, 'species_plot', ylim = c(-10, 100))

is.exdf Is an object an exdf?

Description

Checks whether an object is an exdf object.

Usage

is.exdf(x, consistency_check = FALSE)

Arguments

x An R object.
consistency_check

A logical value indicating whether to perform additional consistency checks.

jmax_temperature_param_bernacchi 211

Details

The default version of is.exdf simply checks to see if 'exdf' is in class(x).

If consistency_check is TRUE, then additional checks will be performed to make sure the object
has three elements named main_data, units, and categories; that these elements are data frames
with the same column names; and that units and categories each have one row. These require-
ments are all part of the definition of an exdf object, but these checks require additional time so
they are not always desired.

Value

A logical (TRUE / FALSE) value indicating whether the object is an exdf object.

See Also

exdf

Examples

Test a simple exdf object
simple_exdf <- exdf(data.frame(A = 1), data.frame(A = 'u'), data.frame(A = 'c'))
is.exdf(simple_exdf)
is.exdf(simple_exdf, TRUE)

Test an object that is clearly not an exdf
not_an_exdf <- 2
is.exdf(not_an_exdf)
is.exdf(not_an_exdf, TRUE)

Test an object that claims to be an exdf but does not meet all of the
requirements
fake_exdf <- not_an_exdf
class(fake_exdf) <- c('exdf', class(fake_exdf))
is.exdf(fake_exdf)
is.exdf(fake_exdf, TRUE)

jmax_temperature_param_bernacchi

Jmax-related temperature response parameters from Bernacchi et al.

Description

Parameters describing the temperature response of Jmax-related photosynthetic parameters, in-
tended to be passed to the calculate_temperature_response function.

Usage

jmax_temperature_param_bernacchi

212 jmax_temperature_param_flat

Format

List with 2 named elements that each represent a variable whose temperature-dependent value can
be calculated using a polynomial equation:

• alpha_j_norm: The apparent quantum efficiency of electron transport (alpha_j) normalized
to its value at 25 degrees C.

• theta_j_norm: The empirical curvature parameter normalized to its value at 25 degrees C.

In turn, each of these elements is a list with 3 named elements:

• type: the type of temperature response.

• coef: the polynomial coefficients.

• units: the units of the corresponding variable.

Source

Polynomial coefficients were obtained from Bernacchi et al. (2003). Here, we use the values
determined from plants grown at 25 degrees C (Table 2). The coefficients given in the paper are
used to calculate the values of alpha_j and theta_j at leaf temperature. Here we normalize by the
values of alpha_j and theta_j at 25 degrees C, which are 0.6895 and 0.97875, respectively.

References:

• Bernacchi, C. J., Pimentel, C. & Long, S. P. "In vivo temperature response functions of pa-
rameters required to model RuBP-limited photosynthesis" Plant, Cell & Environment 26,
1419–1430 (2003) [doi:10.1046/j.00168025.2003.01050.x].

jmax_temperature_param_flat

Jmax-related temperature response parameters from Bernacchi et al.

Description

Parameters that describe a flat temperature response (in other words, no dependence on temperature)
for Jmax-related photosynthetic parameters, intended to be passed to the calculate_temperature_response
function.

Usage

jmax_temperature_param_flat

https://doi.org/10.1046/j.0016-8025.2003.01050.x

length.exdf 213

Format

List with 2 named elements that each represent a variable whose temperature-dependent value can
be calculated using a polynomial equation:

• alpha_j_norm: The apparent quantum efficiency of electron transport (alpha_j) normalized
to its value at 25 degrees C.

• theta_j_norm: The empirical curvature parameter normalized to its value at 25 degrees C.

In turn, each of these elements is a list with 3 named elements:

• type: the type of temperature response.

• coef: the polynomial coefficients.

• units: the units of the corresponding variable.

Source

Here, the polynomial coefficients (coef) are all set to 1, speciying a zeroth-order polynomial equal
to 1, which means that the values will not depend on temperature.

length.exdf Length of an exdf object

Description

Returns the length of an exdf object’s main_data.

Usage

S3 method for class 'exdf'
length(x)

Arguments

x An exdf object.

Value

Returns length(x[['main_data']]).

See Also

exdf

Examples

simple_exdf <- exdf(data.frame(A = 1), data.frame(A = 'u'), data.frame(A = 'c'))
length(simple_exdf)
length(simple_exdf[['main_data']]) # An equivalent command

214 multi_curve_colors

multi_curve_colors Set of colors for plotting multiple curves

Description

multi_curve_colors returns a vector of color specifications that work reasonably well for plotting
multiple curves on the same axes.

multi_curve_line_colors returns the same vector, but with the first color set to be transparent.
multi_curve_point_colors also returns the same vector, but with all colors except the first set to
transparent. These color specifications can be helpful when plotting measured data along with fits,
allowing the data to be displayed as points and the fits as lines.

Usage

multi_curve_colors()

multi_curve_line_colors()

multi_curve_point_colors()

Details

The color set was originally formed by calling the following:

multi_curve_colors <- c("#000000", RColorBrewer::brewer.pal(8, "Set2"), RColorBrewer::brewer.pal(12,
"Paired")[c(1:10,12)], RColorBrewer::brewer.pal(8, "Dark2"))

Value

A character vector with 28 elements, each of which is a hexadecimal color specification.

Examples

multi_curve_colors()

multi_curve_line_colors()

multi_curve_point_colors()

optimizers 215

optimizers Optimizers

Description

These functions return optimizers that meet requirements for the optim_fun input argument of
fit_c3_aci, fit_c3_variable_j, fit_c4_aci, and fit_c4_aci_hyperbola. Essentially, they
are wrappers for optimizers from other libraries that serve to standardize their inputs and outputs.

Usage

optimizer_deoptim(itermax, VTR = -Inf)

optimizer_hjkb(tol, maxfeval = Inf, target = Inf)

optimizer_nlminb(rel.tol, eval.max = 200, iter.max = 200, abs.tol = 0)

optimizer_nmkb(tol, maxfeval = 2000, restarts.max = 10)

optimizer_null()

Arguments

tol A convergence tolerance value; to be passed to nmkb or hjkb via their control
input arguments. A typical value is 1e-7.

maxfeval A maximum value for the number of function evaluations to allow during opti-
mization; to be passed to nmkb or hjkb via their control input arguments.

target A real number restricting the absolute function value; to be passed to hjkb via
its control input argument.

rel.tol A relative convergence tolerance value; to be passed to nlminb via its control
input argument. A typical value is 1e-10.

eval.max A maximum value for the number of function evaluations; to be passed to
nlminb via its control input argument.

iter.max A maximum value for the number of iterations; to be passed to nlminb via its
control input argument.

abs.tol An absolute convergence tolerance value; to be passed to nlminb via its control
input argument.

restarts.max A maximum value for the number of restarts allowed during optimization; to be
passed to nmkb via its control input argument.

itermax The maximum number of generations to be used; to be passed to DEoptim via its
control input argument. Note that when VTR is -Inf, the optimizer will always
use the maximum number of generations. A typical value is 200.

VTR The value to be reached; to be passed to DEoptim via its control input argu-
ment.

216 organize_response_curve_data

Details

optimizer_deoptim is a wrapper for DEoptim.

optimizer_hjkb is a wrapper for hjkb.

optimizer_nlminb is a wrapper for nlminb.

optimizer_nmkb is a wrapper for nmkb.

optimizer_null simply returns the initial guess without doing any optimization; it can be useful
for viewing initial guesses.

See the documentation for those functions for more information about how the optimizers work.

Value

Each of these functions returns an optimizer function optim_fun. The returned optim_fun function
has four input arguments: an initial guess (guess), an error function (fun), lower bounds (lower),
and upper bounds (upper). It returns a list with four named elements: par, convergence, feval,
and convergence_msg.

Examples

Here we just show examples of the optim_fun results. Other examples using the
optimizers can be found throughout PhotoGEA, such as in the user guides and
the documentation for fit_c3_aci, fit_c4_aci, etc.

optimizer_deoptim(200)

optimizer_hjkb(1e-7)

optimizer_nlminb(1e-7)

optimizer_nmkb(1e-7)

optimizer_null()

organize_response_curve_data

Reorganize response curve data for analysis and plotting

Description

Prepares a set of response curves for future processing and analysis by numbering and reordering
the points, (optionally) removing recovery points, and (optionally) calculating average values of
key variables across each curve.

organize_response_curve_data 217

Usage

organize_response_curve_data(
licor_exdf,
identifier_columns,
measurement_numbers_to_remove,
column_for_ordering,
ordering_column_tolerance = Inf,
columns_to_average = c(),
print_information = TRUE

)

Arguments

licor_exdf An exdf object representing response curve data from a Licor gas exchange
measurement system.

identifier_columns

A vector or list of strings representing the names of columns in licor_exdf
that, taken together, uniquely identify each curve. This often includes names
like plot, event, replicate, etc.

measurement_numbers_to_remove

A vector of integers specifying which points to remove from each curve; for ex-
ample, if each curve has 16 points and the 10^th^ and 11^th^ points along the se-
quence should not be included in subsequent analysis, measurement_numbers_to_remove
could be specified as c(10, 11). If measurement_numbers_to_remove is set
to c(), no points will be removed.

column_for_ordering

The name of a column that is systematically varied to produce each curve; for
example, in a light response curve, this would typically by Qin.

ordering_column_tolerance

To be passed to check_response_curve_data as the driving_column_tolerance
input argument.

columns_to_average

A list of columns whose average values should be calculated; see below for
details.

print_information

To be passed to check_response_curve_data.

Details

For an exdf object consisting of multiple response curves that can be identified using the values of
its identifier_columns, this function performs the following actions:

• Assigns a sequential number to each measurement in each curve, beginning with 1. In other
words, the first point in the curve is given number 1, the second is given number 2, etc. These
numbers are stored as a new column called seq_num.

• (Optionally) extracts a subset of the data. If measurement_numbers_to_remove is c(), then
this step will be skipped; otherwise, values of seq_num specified by measurement_numbers_to_remove

218 organize_response_curve_data

will be removed, and then check_response_curve_data will be called to make sure the re-
maining points all follow the same sequence of setpoint values (within the tolerance set by
ordering_column_tolerance), treating the column_for_ordering as the driving_column.

• Reorders the data according to ascending values of the column_for_ordering.

• (Optionally) calculates average values of important columns. If columns_to_average is c(),
then this step will be skipped; otherwise, for each curve, the mean value of each column
specified in columns_to_average will be stored in a new column whose name is based on
the original column name, but with '_avg' added at the end. For example, the average value
of the Qin column would be stored in Qin_avg.

Removing certain points is often helpful for A-Ci curves, where the CO~2~ concentration begins
at the ambient value, is decreased to a low value, is reset to atmospheric for several measurements
to allow the plant to reacclimate, and then is increased to higher values. In this case, only the
first measurement at ambient CO~2~ is used for plotting or additional analysis, and the "recovery"
points should be removed.

Reordering the points is often helpful for plotting. For example, the points in an A-Ci curve would
not be ordered according to their Ci values in a curve measured using a sequence as described above.
This can cause issues when making line plots, so it may be convenient to reorder them according to
their Ci values.

Calculating average values of certain columns is especially useful for estimating Jmax values using
calculate_jmax, since this operation requires average values of leaf temperature and incident
photon flux across each curve.

Value

An exdf object based on licor_exdf but processed as described above.

Examples

Read an example Licor file included in the PhotoGEA package and organize it.
This file includes several 7-point light-response curves that can be uniquely
identified by the values of its 'species' and 'plot' columns. Since these are
light-response curves, each one follows a pre-set sequence of `Qin` values.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

Split the data into individual curves, keep all seven measurement points in
each curve, and order them by their incident light values (since these are
light response curves). The curves were measured from high to low values of
`Qin`, so after organizing the curves, their order will be reversed from the
original version. Also add the average value of TleafCnd and Qin for each
curve.
licor_file <- organize_response_curve_data(

licor_file,
c('species', 'plot'),
c(),
'Qin',
columns_to_average = c('TleafCnd', 'Qin')

)

pair_gasex_and_tdl 219

View a subset of the data, including the new `seq_num` column
print(licor_file[, c('species', 'plot', 'seq_num', 'Qin', 'A', 'Qin_avg'), TRUE])

pair_gasex_and_tdl Pair gas exchange and TDL data

Description

Identifies the closest TDL cycle corresponding to each entry in the gas exchange data and adds the
TDL data to the gas exchange data.

Usage

pair_gasex_and_tdl(
gasex_exdf,
tdl_exdf,
max_allowed_time_difference = 1,
gasex_timestamp_column_name = 'time',
tdl_timestamp_column_name = 'TIMESTAMP'

)

Arguments

gasex_exdf An exdf object representing data from a photosynthetic gas exchange measure-
ment system.

tdl_exdf An exdf object representing calibrated data from a tunable diode laser absorp-
tion spectroscopy system. Typically this is the output from applying process_tdl_cycle_erml
or process_tdl_cycle_polynomial to a set of uncalibrated TDL data.

max_allowed_time_difference

The maximum time difference (in minutes) to allow between gas exchange and
TDL timestamp values.

gasex_timestamp_column_name

The name of the column in gasex_exdf that contains the timestamp values.
tdl_timestamp_column_name

The name of the column in tdl_exdf that contains the timestamp values.

Details

When making combined gas exchange and isotope discrimination measurements using a portable
photosynthetic gas exchange system (such as a Licor LI-6800) coupled with a tunable diode laser
(TDL) absorption spectroscopy system, the TDL’s gas handling system cycles through several gas
lines (or sites) by opening and closing valves. When analyzing such data, a key step is to combine
TDL and gas exchange data that were measured at the same times.

The pair_gasex_and_tdl function performs this operation by locating the TDL cycle whose
timestamp is closest to each Licor file entry. Then, the 12C, 13C, total CO2, and delta_13C values
measured by the TDL from the Licor’s sample and reference lines during that cycle are added to the
gas exchange data as new columns.

220 pair_gasex_and_tdl

Value

An exdf object based on gasex_exdf that includes TDL values measured at the same times as
the original gas exchange logs. Several new columns are added: 'cycle_num', 'tdl_time_s',
'calibrated_12c_s', 'calibrated_13c_s', 'total_CO2_s', 'delta_C13_s', 'tdl_time_r',
'calibrated_12c_r', 'calibrated_13c_r', 'total_CO2_r', and 'delta_C13_r'. Variables
with '_s' in the name refer to TDL measurements from the Licor sample line, and '_r' indicates
the reference line. The category of each new column is pair_gasex_and_tdl to indicate that it
was created using this function.

Examples

In this example we load gas exchange and TDL data files, calibrate the TDL
data, and pair the data tables together

Read the TDL data file, making sure to interpret the time zone as US Central
time
tdl_data <- read_gasex_file(

PhotoGEA_example_file_path('tdl_for_gm.dat'),
'TIMESTAMP',
list(tz = 'America/Chicago')

)

Identify cycles within the TDL data
tdl_data <- identify_tdl_cycles(

tdl_data,
valve_column_name = 'valve_number',
cycle_start_valve = 20,
expected_cycle_length_minutes = 2.7,
expected_cycle_num_valves = 9,
timestamp_colname = 'TIMESTAMP'

)

Use reference tanks to calibrate the TDL data
processed_tdl <- consolidate(by(

tdl_data,
tdl_data[, 'cycle_num'],
process_tdl_cycle_erml,
noaa_valve = 2,
calibration_0_valve = 20,
calibration_1_valve = 21,
calibration_2_valve = 23,
calibration_3_valve = 26,
noaa_cylinder_co2_concentration = 294.996,
noaa_cylinder_isotope_ratio = -8.40,
calibration_isotope_ratio = -11.505

))

Read the gas exchange data, making sure to interpret the time stamp in the US
Central time zone
licor_data <- read_gasex_file(

PhotoGEA_example_file_path('licor_for_gm_site11.xlsx'),

pdf_print 221

'time',
list(tz = 'America/Chicago')

)
Get TDL valve information from Licor file name; for this TDL system, the
reference valve is 12 when the sample valve is 11
licor_data <- get_sample_valve_from_filename(licor_data, list('11' = 12))

Pair the Licor and TDL data by locating the TDL cycle corresponding to each
Licor measurement
licor_data <- pair_gasex_and_tdl(licor_data, processed_tdl$tdl_data)

View some of the results
licor_data[, c('A', 'delta_C13_r', 'delta_C13_s', 'total_CO2_r', 'total_CO2_s')]

pdf_print Print a plot object or save it to a PDF

Description

A convenience function that either displays a plot object in an R graphics window or saves it to a
PDF.

Usage

pdf_print(
plot_obj,
width = 7,
height = 7,
save_to_pdf = FALSE,
file = NULL,
new_window = TRUE,
...

)

Arguments

plot_obj A plotting object that can be printed, such as a trellis object returned by a call to
xyplot.

width The width of the figure in inches.
height The width of the figure in inches.
save_to_pdf When save_to_pdf is TRUE, plot_obj will be saved as a PDF; otherwise it will

be printed to an R graphics window.
file A file name to use when save_to_pdf is TRUE. If file is NULL, then the default

value will be determined by the pdf function.
new_window When printing plot_obj to an R graphics window, a new window will be cre-

ated if new_window is TRUE. Otherwise, the plot will replace the currently active
plot window (if one exists).

... Additional arguments to be passed to pdf.

222 PhotoGEA

Details

This function is helpful when developing and using analysis scripts. In this context, it is recom-
mended to define a boolean called SAVE_TO_PDF early in the script and to always use pdf_print
when creating figures, passing the boolean as the save_to_pdf input argument. Figures can be
initially displayed in R (setting SAVE_TO_PDF = FALSE), and then saved as PDFs once graphing
parameters have been optimized (setting SAVE_TO_PDF = TRUE).

Note that calling pdf from the command line (as is done internally by pdf_print) is different than
exporting an R graphics object as a PDF from RGui or RStudio. For some reason, RGui and RStudio
override some of the pdf defaults and set useDingbats to TRUE. This setting almost always causes
problems when opening the PDFs in software like Adobe Illustrator or Inkscape.

Value

The pdf_print function does not return anything.

Examples

SAVE_TO_PDF = FALSE # change this to TRUE to save to a PDF

pdf_print(
lattice::xyplot(

1:4 ~ 11:14,
xlab = 'X',
ylab = 'Y',
type = 'b'

),
save_to_pdf = SAVE_TO_PDF,
file = 'example.pdf', # this name will only be used when saving to a PDF
new_window = FALSE # necessary for rendering the documentation examples

)

PhotoGEA The PhotoGEA R package

Description

PhotoGEA (short for photosynthetic gas exchange analysis) is an R package that provides a suite
of tools for loading, processing, and analyzing photosynthetic gas exchange data. See Lochocki,
Salesse-Smith, & McGrath (2025) [doi:10.1111/pce.15501] for more information.

The best way to learn about using PhotoGEA is to visit the PhotoGEA website and click the Get
Started link in the top menu bar. The website includes documentation for all the functions and
data sets included in the package, as well as articles that describe its general features and several
important use cases.

https://doi.org/10.1111/pce.15501
https://eloch216.github.io/PhotoGEA/index.html
https://eloch216.github.io/PhotoGEA/articles/PhotoGEA.html
https://eloch216.github.io/PhotoGEA/articles/PhotoGEA.html

PhotoGEA_example_file_path 223

PhotoGEA_example_file_path

Locate a PhotoGEA example file on your computer

Description

A convenience function that locates examples files included with the PhotoGEA package (see
example_data_files). This function is intended for use in PhotoGEA examples and documen-
tation, and users should not need to use it in their own analysis scripts.

Usage

PhotoGEA_example_file_path(example_file_name)

Arguments

example_file_name

The name of an example file included with the PhotoGEA package.

Details

The PhotoGEA package includes several instrument log files to use in examples and other doc-
umentation. A full list can be found in the article about example_data_files. When Photo-
GEA is installed, these example files will be stored locally in the R package directory (in the
PhotoGEA/extdata subdirectory), which will generally have a different path on every computer.
The PhotoGEA_example_file_path function simply locates one of these files and returns its full
file path.

When loading your own files for analysis, this function should not be used. Instead, either:

1. Directly write absolute file paths

2. Directly write relative file paths

3. Use one of the convenience functions from PhotoGEA to select files via a pop-up window,
such as choose_input_licor_files

When directly writing relative file paths, consider using the file.path function from base R, which
will ensure that the paths are properly formatted on any operating system. For example, instead
of writing 'Documents\file.xlsx', write file.path('Documents', 'file.xlsx'). Doing this
will make it easier to share your analysis scripts with other people who may be using different
operating systems.

Value

A full path to a PhotoGEA example file.

Examples

PhotoGEA_example_file_path('c3_aci_1.xlsx')

224 plot_ball_berry_fit

plot_ball_berry_fit Plot the results of a C3 CO2 response curve fit

Description

Plots the output from fit_c3_aci or fit_c3_variable_j.

Usage

plot_ball_berry_fit(
fit_results,
identifier_column_name,
bb_index_column_name = 'bb_index',
gsw_column_name = 'gsw',
...

)

Arguments

fit_results A list of three exdf objects names fits, parameters, and fits_interpolated,
as calculated by fit_c3_aci.

identifier_column_name

The name of a column in each element of fit_results whose value can be used
to identify each response curve within the data set; often, this is 'curve_identifier'.

bb_index_column_name

The name of the column in fit_results$fits that contains the Ball-Berry in-
dex in mol m^(-2) s^(-1); should be the same value that was passed to fit_ball_berry.

gsw_column_name

The name of the column in fit_results$fits that contains the stomatal con-
ductance to water vapor in mol m^(-2) s^(-1); should be the same value that
was passed to fit_ball_berry.

... Additional arguments to be passed to xyplot.

Details

This is a convenience function for plotting the results of a Ball-Berry curve fit. It is typically used
for displaying several fits at once, in which case fit_results is actually the output from calling
consolidate on a list created by calling by.exdf with FUN = fit_ball_berry.

The resulting plot will show curves for the fitted gsw, along with points for the measured values of
gsw.

Internally, this function uses xyplot to perform the plotting. Optionally, additional arguments can
be passed to xyplot. These should typically be limited to things like xlim, ylim, main, and grid,
since many other xyplot arguments will be set internally (such as xlab, ylab, auto, and others).

See the help file for fit_ball_berry for an example using this function.

plot_c3_aci_fit 225

Value

A trellis object created by lattice::xyplot.

Examples

Read an example Licor file included in the PhotoGEA package, calculate
additional gas properties, calculate the Ball-Berry index, define a new column
that uniquely identifies each curve, and then perform a fit to extract the
Ball-Berry parameters from each curve.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- calculate_total_pressure(licor_file)

licor_file <- calculate_gas_properties(licor_file)

licor_file[,'species_plot'] <-
paste(licor_file[,'species'], '-', licor_file[,'plot'])

licor_file <- calculate_ball_berry_index(licor_file)

Fit all curves in the data set
bb_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_ball_berry

))

View the fits for each species / plot
plot_ball_berry_fit(bb_results, 'species_plot')

plot_c3_aci_fit Plot the results of a C3 CO2 response curve fit

Description

Plots the output from fit_c3_aci or fit_c3_variable_j.

Usage

plot_c3_aci_fit(
fit_results,
identifier_column_name,
x_name,
plot_operating_point = TRUE,
plot_Ad = FALSE,
a_column_name = 'A',
cc_column_name = 'Cc',

226 plot_c3_aci_fit

ci_column_name = 'Ci',
...

)

Arguments

fit_results A list of three exdf objects named fits, parameters, and fits_interpolated,
as calculated by fit_c3_aci.

identifier_column_name

The name of a column in each element of fit_results whose value can be used
to identify each response curve within the data set; often, this is 'curve_identifier'.

x_name The name of the column that should be used for the x-axis in the plot. This
should refer to either 'Ci' or 'Cc', and it must be the same as ci_column_name
or cc_column_name.

plot_operating_point

A logical value indicating whether to plot the operating point.

plot_Ad A logical value indicating whether to plot the RuBP-depletion-limited net CO2
assimilation rate (Ad).

a_column_name The name of the columns in the elements of fit_results that contain the net
assimilation in micromol m^(-2) s^(-1); should be the same value that was
passed to fit_c3_aci or fit_c3_variable_j.

cc_column_name The name of the columns in the elements of fit_results that contain the
chloroplastic CO2 concentration in micromol mol^(-1).

ci_column_name The name of the columns in the elements of fit_results that contain the in-
tercellular CO2 concentration in micromol mol^(-1); should be the same value
that was passed to fit_c3_aci or fit_c3_variable_j.

... Additional arguments to be passed to xyplot.

Details

This is a convenience function for plotting the results of a C3 A-Ci curve fit. It is typically used
for displaying several fits at once, in which case fit_results is actually the output from calling
consolidate on a list created by calling by.exdf with FUN = fit_c3_aci or FUN = fit_c3_variable_j.

The resulting plot will show curves for the fitted rates An, Ac, Aj, and Ap, along with points for the
measured values of A, and (optionally) the estimated operating point. The x-axis can be set to either
Ci or Cc.

Internally, this function uses xyplot to perform the plotting. Optionally, additional arguments can
be passed to xyplot. These should typically be limited to things like xlim, ylim, main, and grid,
since many other xyplot arguments will be set internally (such as xlab, ylab, auto, and others).

See the help file for fit_c3_aci for an example using this function.

Value

A trellis object created by lattice::xyplot.

plot_c4_aci_fit 227

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

Calculate temperature-dependent values of C3 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c3_temperature_param_bernacchi)

For these examples, we will use a faster (but sometimes less reliable)
optimizer so they run faster
optimizer <- optimizer_nmkb(1e-7)

Fit all curves in the data set
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c3_aci,
Ca_atmospheric = 420,
optim_fun = optimizer

))

View the fits for each species / plot
plot_c3_aci_fit(aci_results, 'species_plot', 'Ci')

plot_c4_aci_fit Plot the results of a C4 CO2 response curve fit

Description

Plots the output from fit_c4_aci.

228 plot_c4_aci_fit

Usage

plot_c4_aci_fit(
fit_results,
identifier_column_name,
x_name,
plot_operating_point = TRUE,
a_column_name = 'A',
ci_column_name = 'Ci',
pcm_column_name = 'PCm',
...

)

Arguments

fit_results A list of three exdf objects named fits, parameters, and fits_interpolated,
as calculated by fit_c4_aci.

identifier_column_name

The name of a column in each element of fit_results whose value can be used
to identify each response curve within the data set; often, this is 'curve_identifier'.

x_name The name of the column that should be used for the x-axis in the plot. This
should refer to either 'Ci' or 'Cc', and it must be the same as ci_column_name
or cc_column_name.

plot_operating_point

A logical value indicating whether to plot the operating point.
a_column_name The name of the columns in the elements of fit_results that contain the net

assimilation in micromol m^(-2) s^(-1); should be the same value that was
passed to fit_c4_aci.

ci_column_name The name of the columns in the elements of fit_results that contain the in-
tercellular CO2 concentration in micromol mol^(-1); should be the same value
that was passed to fit_c4_aci.

pcm_column_name

The name of the columns in the elements of exdf_obj that contain the partial
pressure of CO2 in the mesophyll, expressed in microbar.

... Additional arguments to be passed to xyplot.

Details

This is a convenience function for plotting the results of a C4 A-Ci curve fit. It is typically used
for displaying several fits at once, in which case fit_results is actually the output from calling
consolidate on a list created by calling by.exdf with FUN = fit_c4_aci.

The resulting plot will show curves for the fitted rates An, Apr, Apc, and Ar, along with points for
the measured values of A, and (optionally) the estimated operating point. The x-axis can be set to
either Ci or PCm.

Internally, this function uses xyplot to perform the plotting. Optionally, additional arguments can
be passed to xyplot. These should typically be limited to things like xlim, ylim, main, and grid,
since many other xyplot arguments will be set internally (such as xlab, ylab, auto, and others).

See the help file for fit_c4_aci for an example using this function.

plot_c4_aci_hyperbola_fit 229

Value

A trellis object created by lattice::xyplot.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Calculate temperature-dependent values of C4 photosynthetic parameters
licor_file <- calculate_temperature_response(licor_file, c4_temperature_param_vc)

Calculate the total pressure in the Licor chamber
licor_file <- calculate_total_pressure(licor_file)

For these examples, we will use a faster (but sometimes less reliable)
optimizer so they run faster
optimizer <- optimizer_nmkb(1e-7)

Fit all curves in the data set
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c4_aci,
Ca_atmospheric = 420,
optim_fun = optimizer

))

View the fits for each species / plot
plot_c4_aci_fit(aci_results, 'species_plot', 'Ci', ylim = c(0, 100))

plot_c4_aci_hyperbola_fit

Plot the results of a hyperbolic C4 CO2 response curve fit

230 plot_c4_aci_hyperbola_fit

Description

Plots the output from fit_c4_aci_hyperbola.

Usage

plot_c4_aci_hyperbola_fit(
fit_results,
identifier_column_name,
a_column_name = 'A',
ci_column_name = 'Ci',
...

)

Arguments

fit_results A list of three exdf objects named fits, parameters, and fits_interpolated,
as calculated by fit_c4_aci_hyperbola.

identifier_column_name

The name of a column in each element of fit_results whose value can be used
to identify each response curve within the data set; often, this is 'curve_identifier'.

a_column_name The name of the columns in the elements of fit_results that contain the net
assimilation in micromol m^(-2) s^(-1); should be the same value that was
passed to fit_c4_aci_hyperbola.

ci_column_name The name of the columns in the elements of fit_results that contain the in-
tercellular CO2 concentration in micromol mol^(-1); should be the same value
that was passed to fit_c4_aci_hyperbola.

... Additional arguments to be passed to xyplot.

Details

This is a convenience function for plotting the results of a C4 A-Ci curve fit. It is typically used
for displaying several fits at once, in which case fit_results is actually the output from calling
consolidate on a list created by calling by.exdf with FUN = fit_c4_aci_hyperbola.

The resulting plot will show curves for the fitted rates An, Ainitial, and Amax, along with points
for the measured values of A.

Internally, this function uses xyplot to perform the plotting. Optionally, additional arguments can
be passed to xyplot. These should typically be limited to things like xlim, ylim, main, and grid,
since many other xyplot arguments will be set internally (such as xlab, ylab, auto, and others).

See the help file for fit_c4_aci_hyperbola for an example using this function.

Value

A trellis object created by lattice::xyplot.

plot_laisk_fit 231

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c4_aci_1.xlsx')
)

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Fit all curves in the data set
aci_results <- consolidate(by(

licor_file,
licor_file[, 'species_plot'],
fit_c4_aci_hyperbola

))

View the fits for each species / plot
plot_c4_aci_hyperbola_fit(aci_results, 'species_plot', ylim = c(0, 100))

plot_laisk_fit Plot the results of a C3 CO2 response curve fit

Description

Plots the output from fit_laisk.

Usage

plot_laisk_fit(
fit_results,
identifier_column_name,
plot_type,
cols = multi_curve_colors(),
a_column_name = 'A',
ci_column_name = 'Ci',
ppfd_column_name = 'PPFD',
...

)

232 plot_laisk_fit

Arguments

fit_results A list of four exdf objects named first_fits, first_fit_parameters, second_fits,
and second_fit_parameters, as calculated by fit_laisk.

identifier_column_name

The name of a column in each element of fit_results whose value can be used
to identify each replicate within the data set; often, this is 'curve_identifier'.

plot_type Must be either 'first' or 'second' (case-insensitive); determines which type
of plot to create (see below for details).

cols A vector of color specifications to use for each light level when plotting.

a_column_name The name of the columns in the elements of fit_results that contain the net
assimilation in micromol m^(-2) s^(-1); should be the same value that was
passed to fit_laisk.

ci_column_name The name of the column in the elements of fit_results that contain the in-
tercellular CO2 concentration in micromol mol^(-1); should be the same value
that was passed to fit_laisk.

ppfd_column_name

The name of the column in the elements of fit_results that can be used to
split the data into individual response curves; should be the same value that was
passed to fit_laisk.

... Additional arguments to be passed to xyplot.

Details

This is a convenience function for plotting the results of a Laisk curve fit. It is typically used
for displaying several fits at once, in which case fit_results is actually the output from calling
consolidate on a list created by calling by.exdf with FUN = fit_laisk.

Because the Laisk fitting process involves two sets of linear fits, there are two possible graphs that
can be created. When plot_type is 'first', this function will plot the individual A-Ci curves
at each PPFD, along with the linear fits and the estimated intersection point. When plot_type is
'second', this function will plot the Laisk intercept vs. Laisk slope from the results of the first fits,
along with a linear fit of Laisk intercept vs. Laisk slope. See fit_laisk for more details.

Internally, this function uses xyplot to perform the plotting. Optionally, additional arguments can
be passed to xyplot. These should typically be limited to things like xlim, ylim, main, and grid,
since many other xyplot arguments will be set internally (such as xlab, ylab, auto, and others).

See the help file for fit_laisk for an example using this function.

Value

A trellis object created by lattice::xyplot.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('c3_aci_1.xlsx')
)

print.exdf 233

Define a new column that uniquely identifies each curve
licor_file[, 'species_plot'] <-

paste(licor_file[, 'species'], '-', licor_file[, 'plot'])

Organize the data
licor_file <- organize_response_curve_data(

licor_file,
'species_plot',
c(9, 10, 16),
'CO2_r_sp'

)

Apply the Laisk method. Note: this is a bad example because these curves were
measured at the same light intensity, but from different species. Because of
this, the results are not meaningful.
laisk_results <- fit_laisk(

licor_file, 20, 150,
ppfd_column_name = 'species_plot'

)

Plot the linear fits of A vs. Ci
plot_laisk_fit(laisk_results, 'instrument', 'first', ppfd_column_name = 'species_plot')

Plot the linear fits of Laisk intercept vs. Laisk slope
plot_laisk_fit(laisk_results, 'instrument', 'second', ppfd_column_name = 'species_plot')

print.exdf Print the contents of an exdf object

Description

Prints the contents of an exdf object’s main_data. Each column is described by its name, unit, and
category formatted like name [category] (units).

Usage

S3 method for class 'exdf'
print(x, ...)

Arguments

x An exdf object.

... Additional arguments to be passed to print.

Value

None.

234 process_tdl_cycle_erml

See Also

exdf

Examples

simple_exdf <- exdf(data.frame(A = 1), data.frame(A = 'u'), data.frame(A = 'c'))
print(simple_exdf)

process_tdl_cycle_erml

Process cycles from the ERML TDL

Description

Uses the 12C and 13C signal from the calibration lines of a tunable diode laser (TDL) to determine
correction factors and apply them to the sample lines. Applicable for a system with a NOAA
calibration tank, a nitrogen tank, and three other lines mixing the nitrogen with a CO2 tank in
different ratios. This function is designed specifically for the TDL operating in Carl Bernacchi’s lab
in the Edward R. Madigan Laboratory (ERML) at the University of Illinois, Urbana-Champaign.

Usage

process_tdl_cycle_erml(
tdl_cycle,
noaa_valve,
calibration_0_valve,
calibration_1_valve,
calibration_2_valve,
calibration_3_valve,
noaa_cylinder_co2_concentration,
noaa_cylinder_isotope_ratio,
calibration_isotope_ratio,
valve_column_name = 'valve_number',
raw_12c_colname = 'Conc12C_Avg',
raw_13c_colname = 'Conc13C_Avg'

)

Arguments

tdl_cycle An exdf object representing one cycle of TDL data.

noaa_valve The valve number that corresponds to the NOAA reference cylinder.
calibration_0_valve

The valve number that corresponds to the calibration valve 0 (the nitrogen cylin-
der).

calibration_1_valve

The valve number that corresponds to the calibration valve 1 (a mixture of ni-
trogen gas with a calibrated CO2 source).

process_tdl_cycle_erml 235

calibration_2_valve

The valve number that corresponds to the calibration valve 2 (a mixture of ni-
trogen gas with a calibrated CO2 source).

calibration_3_valve

The valve number that corresponds to the calibration valve 3 (a mixture of ni-
trogen gas with a calibrated CO2 source).

noaa_cylinder_co2_concentration

The total CO2 concentration of the NOAA calibration cylinder in ppm; this
includes all carbon species, such as 12C18O18O.

noaa_cylinder_isotope_ratio

The isotope ratio of the NOAA calibration cylinder in ppt.

calibration_isotope_ratio

The isotope ratio of the other CO2 cylinder in ppt.

valve_column_name

The name of the column in tdl_cycle that contains the valve number; typically,
this is 'valve_number'.

raw_12c_colname

The name of the column in tdl_cycle that contains the 12C signal; typically,
this is 'Conc12C_Avg'.

raw_13c_colname

The name of the column in tdl_cycle that contains the 13C signal; typically,
this is 'Conc13C_Avg'.

Details

This function applies several corrections to the data in tdl_cycle:

• First, the 12C and 13C signals from the nitrogen line are considered to be additive offsets
in the data. These values are subtracted from all measured 12C and 13C signals to produce
"zero-corrected" values.

• The zero-corrected 12C signal from the NOAA calibration line is assumed to be related to the
true 12C concentration in that line by a multiplicative "gain" factor. This factor is calculated
using the known values of the NOAA cylinder’s CO2 concentration and isotope ratio, and then
applied to all the zero-corrected 12C signals to get "calibrated" 12C concentrations.

• The true 13C concentration in calibration lines 0-3 can be determined from the calibrated
12C concentration measurements and the known isotope ratio of the calibration tank. These
true concentrations can be compared to the measured zero-corrected 13C signals to develop a
correction function. Here we perform a third-order polynomial fit of expected vs. measured
13C values. (Four data points are used in the fit.) Then the fit result can be used to convert the
zero-corrected 13C signals to "calibrated" 13C concentrations.

Should there be any equations here? Are there any references to cite?

This function assumes that tdl_cycle represents a single TDL measurement cycle. To process
multiple cycles at once, this function is often used along with by.exdf and consolidate.

236 process_tdl_cycle_erml

Value

A list with five elements:

• tdl_data: An exdf object containing the original content of tdl_cycle and several new
columns: 'zero_corrected_12c', 'zero_corrected_13c', 'calibrated_12c', 'calibrated_13c',
'total_CO2', and 'delta_C13'.

• calibration_zero: An exdf object describing the values used to calculate the zero-corrected
12C and 13C signals.

• calibration_12CO2: An exdf object describing the gain factor used to calculate the cali-
brated 12C signal.

• calibration_13CO2_data: An exdf object describing the data used for the polynomial fit of
expected vs. measured 13C signals from calibration valves 0-3.

• calibration_13CO2_fit: An exdf object describing the results of the polynomial fitting
procedure.

Examples

Example: reading a TDL file that is included with the PhotoGEA package,
identifying its measurement cycles, and then processing them.
tdl_file <- read_gasex_file(

PhotoGEA_example_file_path('tdl_sampling_1.dat'),
'TIMESTAMP'

)

This is a large file; for this example, we will truncate to just the first
200 rows so it runs faster
tdl_file <- tdl_file[seq_len(200), , TRUE]

Identify TDL cycles
tdl_file <- identify_tdl_cycles(

tdl_file,
valve_column_name = 'valve_number',
cycle_start_valve = 20,
expected_cycle_length_minutes = 2.7,
expected_cycle_num_valves = 9,
timestamp_colname = 'TIMESTAMP'

)

Process TDL cycles
processed_tdl <- consolidate(by(

tdl_file,
tdl_file[, 'cycle_num'],
process_tdl_cycle_erml,
valve_column_name = 'valve_number',
noaa_valve = 2,
calibration_0_valve = 20,
calibration_1_valve = 21,
calibration_2_valve = 23,
calibration_3_valve = 26,
raw_12c_colname = 'Conc12C_Avg',

process_tdl_cycle_polynomial 237

raw_13c_colname = 'Conc13C_Avg',
noaa_cylinder_co2_concentration = 294.996,
noaa_cylinder_isotope_ratio = -8.40,
calibration_isotope_ratio = -11.505

))

The output is a list of five exdf objects; four of them are related to each
step in the calibration procedure for each TDL cycle
names(processed_tdl)

The processed TDL data includes new columns for the calibrated CO2
concentrations
colnames(processed_tdl$tdl_data)

Make a plot of the raw and calibrated 13C signals across all the TDL cycles.
Note that the calibrated signal from valve 20 is always exactly zero, since
this is the line from the nitrogen tank. The calibrated signal from valve 2 is
also constant since this is the line from the NOAA tank whose concentration is
known.
lattice::xyplot(

Conc13C_Avg + calibrated_13c ~ cycle_num | factor(valve_number),
data = processed_tdltdl_datamain_data,
type = 'l',
auto = TRUE,
grid = TRUE,
xlab = 'TDL cycle',
ylab = paste0('13C concentration (', processed_tdltdl_dataunits$Conc13C_Avg, ')')

)

Make a plot of 12C gain factor against elapsed time
lattice::xyplot(

gain_12CO2 ~ elapsed_time,
data = processed_tdl$calibration_12CO2$main_data,
type = 'b',
pch = 16,
grid = TRUE,
xlab = paste0('Elapsed time (', processed_tdl$calibration_12CO2$units$elapsed_time, ')'),
ylab = paste0('12C gain factor (', processed_tdl$calibration_12CO2$units$gain_12CO2, ')')

)

process_tdl_cycle_polynomial

Process TDL cycles using a polynomial correction method

Description

Uses the 12C and 13C signal from the calibration lines of a tunable diode laser (TDL) to determine
correction factors and apply them to the sample lines. Applicable for a system with two or more
reference tanks whose 12C and 13C concentrations are known beforehand.

238 process_tdl_cycle_polynomial

Usage

process_tdl_cycle_polynomial(
tdl_cycle,
poly_order,
reference_tanks,
reference_tank_time_points = NA,
valve_column_name = 'valve_number',
raw_12c_colname = 'Conc12C_Avg',
raw_13c_colname = 'Conc13C_Avg'

)

Arguments

tdl_cycle An exdf object representing one cycle of TDL data.

poly_order The order of the polynomial to fit, where 1 indicates a linear fit, 2 indicates
a quadratic fit, etc. This argument will be passed to stats::poly during the
fitting procedure.

reference_tanks

A list where each element is a list with three named elements: valve, conc_12C,
and conc_13C. valve should indicate the valve number for the reference tank,
and the other two elements should indicate the known concentrations of 12C and
13C in the tank.

reference_tank_time_points

Either NA or a list where each element is a list with three named elements: valve,
start, and end. valve should indicate the valve number for a reference tank,
and the other two elements should indicate the first and last time points where
the measurements from this valve should be averaged. The order of valves must
be the same as in the reference_tanks input argument.

valve_column_name

The name of the column in tdl_cycle that contains the valve number.
raw_12c_colname

The name of the column in tdl_cycle that contains the 12C signal.
raw_13c_colname

The name of the column in tdl_cycle that contains the 13C signal.

Details

This function applies a simple correction to the measured values of 12C and 13C. This correction is
based on the fact that each reference tank has both a true concentration (which is known beforehand)
and a measured concentration (from the TDL) of each isotope. Using this information, it is possible
to perform a polynomial fit of true vs. measured concentrations; in other words, it is possible
to identify a polynomial function that determines true concentrations from measured ones. This
function can then be applied to tanks whose concentration is not known beforehand; in this case, it
provides an estimate of the true concentration, otherwise referred to as a calibrated value.

When making dynamic TDL measurements, concentrations from some of the reference valves may
be logged at multiple time points. In this case, it is typical to take an average value from a subset of

process_tdl_cycle_polynomial 239

them. process_tdl_cycle_polynomial can handle this situation when its reference_tank_time_points
input argument is not NA.

This function assumes that tdl_cycle represents a single TDL measurement cycle. To process
multiple cycles at once, this function is often used along with by.exdf and consolidate.

Value

A list with two elements:

• tdl_data: An exdf object containing the original content of tdl_cycle and several new
columns: 'calibrated_12c', 'calibrated_13c', 'total_CO2', and 'delta_C13'.

• calibration_parameters: An exdf object describing the fitted polynomial coefficients.

Examples

Example 1: An example of a `reference_tank_time_points` list for a situation
where there are just two reference valves (1 and 3)
reference_tank_time_points <- list(
list(valve = 1, start = 101, end = 300), # Take an average of time points 101 - 300 for valve 1
list(valve = 3, start = 201, end = 300) # Take an average of time points 201 - 300 for valve 3

)

Example2 : reading a TDL file that is included with the PhotoGEA package,
identifying its measurement cycles, and then processing them.
tdl_file <- read_gasex_file(

PhotoGEA_example_file_path('tdl_sampling_1.dat'),
'TIMESTAMP'

)

This is a large file; for this example, we will truncate to just the first
200 rows so it runs faster
tdl_file <- tdl_file[seq_len(200), , TRUE]

Identify TDL cycles
tdl_file <- identify_tdl_cycles(

tdl_file,
valve_column_name = 'valve_number',
cycle_start_valve = 20,
expected_cycle_length_minutes = 2.7,
expected_cycle_num_valves = 9,
timestamp_colname = 'TIMESTAMP'

)

Process TDL cycles; note that the reference tank concentrations used in this
example are not accurate, so the results are not meaningful
processed_tdl <- consolidate(by(

tdl_file,
tdl_file[, 'cycle_num'],
process_tdl_cycle_polynomial,
poly_order = 1,
reference_tanks = list(
list(valve = 23, conc_12C = 70.37507124, conc_13C = 0.754892652),

240 read_cr3000

list(valve = 26, conc_12C = 491.1854149, conc_13C = 5.269599965)
)

))

The output is a list of two exdf objects
names(processed_tdl)

The calibration parameters include the coefficients of the polynomial fit for
each cycle
colnames(processed_tdl$calibration_parameters)

The processed TDL data includes new columns for the calibrated CO2
concentrations
colnames(processed_tdl$tdl_data)

read_cr3000 Reading a CR3000 data file

Description

Tool for reading output files created by Campbell Scientific CR3000 data loggers and storing their
contents in exdf objects.

Usage

read_cr3000(
file_name,
rows_to_skip = 1,
variable_name_row = 2,
variable_unit_row = 3,
data_start_row = 5,
remove_NA_rows = TRUE,
...

)

Arguments

file_name A relative or absolute path to a .dat file containing TDL data.

rows_to_skip The number of rows to skip at the beginning of the file; the first row in a TDL
file typically has fewer columns than the others, which causes problems when
storing it as a table.

variable_name_row

The row number in the TDL file containing the names of the variables (RECORD,
Conc12C_Avg, etc).

variable_unit_row

The row number in the TDL file containing the units of the variables (ppm, V,
etc).

read_gasex_file 241

data_start_row The first row number of the table containing the measured data.
remove_NA_rows A logical value indicating whether to remove any rows whose values are all NA.
... Additional arguments to be passed to read.csv.

Value

An exdf object that fully includes all the data from the CR3000 output file. In addition to the
elements described in the documentation for read_gasex_file, the following "extra" elements are
also included:

• rows_to_skip: A copy of the input argument with the same name
• variable_name_row: A copy of the input argument with the same name.
• variable_unit_row: A copy of the input argument with the same name.
• data_start_row: A copy of the input argument with the same name.

See Also

read_gasex_file

Examples

Example: reading a TDL file that is included with the PhotoGEA package.
tdl_file <- read_cr3000(

PhotoGEA_example_file_path('tdl_sampling_1.dat')
)

tdl_file$file_name # A record of where the data came from
str(tdl_file) # View the contents of the exdf object's main_data

read_gasex_file Reading a gas exchange log file

Description

Tool for reading log files created by gas exchange measurement instruments and storing their con-
tents in exdf objects.

Usage

read_gasex_file(
file_name,
timestamp_colname = NA,
posix_options = list(),
file_type = 'AUTO',
instrument_type = 'AUTO',
standardize_columns = TRUE,
remove_NA_rows = TRUE,
...

)

242 read_gasex_file

Arguments

file_name A relative or absolute path to a log file containing gas exchange data.
timestamp_colname

The name of the column that contains the timestamp of each measurement; typ-
ically, this is something like 'time' or 'TIMESTAMP'.

posix_options Optional arguments to pass to as.POSIXlt; must be formatted as a list of named
elements. See details below for more information.

file_type The type of file to be loaded. If file_type is 'AUTO', then the file type will
be automatically determined from the extension of file_name. The other sup-
ported options are 'plaintext', 'Excel', and 'data'.

instrument_type

The type of measurement instrument that produced the log file. If instrument_type
is 'AUTO', then the instrument type will be determined from the file_type. The
other supported options are 'Licor LI-6800' and 'CR3000'.

standardize_columns

A logical value indicating whether to standardize columns; see details below.

remove_NA_rows A logical value indicating whether to remove any rows whose values are all NA;
this argument will be passed to the specialized reading functions; see below for
more details.

... Additional arguments to be passed to specialized reading functions; see below
for more details.

Details

Some log files contain Unicode characters in some column names and units, but these charac-
ters cannot be represented properly in R. To address this, Unicode characters are replaced with
reasonable alternatives; for example, the character for the capital Greek letter delta is replaced
with the word Delta. The replacement rules are stored in a data frame that can be accessed
via PhotoGEA:::UNICODE_REPLACEMENTS, and more information can be found in the source code
(R/unicode_replacements.R).

Sometimes it is useful to "standardize" the names, units, or categories of columns in instrument log
files. This can be helpful in several situations:

• An instrument may not be consistent with the name of a column; for example, Licor LI-6800s
may may have a PhiPs2 or PhiPS2 column depending on the version of the operating system
running on the machine.

• An instrument may not specify the units of a column; for example, Licor LI-6800s do not
specify that PhiPS2 has units of dimensionless.

• An instrument may use different names or different units than another instrument for the same
measured quantity.

To deal with these situations, it is possible to "standardize" the column names, units, and categories
when reading an instrument file. A list of definitions for all standardizations can be accessed from
an R session by typing View(PhotoGEA:::gasex_column_conversions).

When reading a log file, it can be useful to identify the timestamp column so its values can be
properly interpreted as POSIXlt objects. If timestamp_colname is NA, this conversion will be

read_gasex_file 243

skipped. By default, read_gasex_file calls as.POSIXlt with origin = '1970-01-01' and tz =
''. With these options, any numeric timestamps (such as 1692386305.5) will be interpreted as the
number of seconds since January 1, 1970 (the UNIX standard) and the time will be expressed using
the local system time. This works well in many situations. However, if a log file was created in a
different time zone than the local one, it may be necessary to specify the time zone. This can be
done via the posix_options argument. For example, to interpret the timestamp as a time in US
Central time, set posix_options = list(tz = 'US/Central'). This may be necessary when using
pair_gasex_and_tdl to match timestamps between different log files.

When automatically determining the file type from its extension, the following rules are used:

• A .xlsx extension corresponds to file_type = 'Excel'.

• A .dat extension corresponds to file_type = 'data'.

• A .txt extension or a file with no extension corresponds to file_type = 'plaintext'.

When automatically determining the instrument type from the file type, the following rules are used:

• File types of 'Excel' and 'plaintext' correspond to instrument_type = 'Licor LI-6800'.

• A file type of 'data' corresponds to instrument_type = 'CR3000'.

Internally, this function calls one of several other (non-exported) functions depending on the values
of instrument_type and file_type:

• read_licor_6800_plaintext (for instrument_type = 'LI-6800' and file_type = 'plaintext')

• read_licor_6800_Excel (for instrument_type = 'LI-6800' and file_type = 'Excel')

• read_cr3000 (for instrument_type = 'CR3000' and file_type = 'data')

Any additional arguments specified via ... will be passed to these functions, along with the value
of remove_NA_rows.

IMPORTANT NOTE ABOUT LICOR EXCEL FILES: by default, Licor Excel files do not
"calculate" formula values. This causes a problem when reading them in R, since any data entry
determined from a formula will be read as 0. To fix this issue for a Licor Excel file, open it in in
Excel, go to the Formulas menu, and choose Calculate Now. (Alternatively, press F9.) Then save
the file and close it. See read_licor_6800_Excel for more details.

Value

An exdf object that fully includes all the data from the log file. In addition to the required elements
of an exdf object, the following "extra" elements are also included:

• file_name: A copy of the input argument with the same name.

• instrument_type: A copy of the input argument with the same name.

• file_type: A copy of the input argument with the same name, unless it was set to 'AUTO';
in that case, the file type that was determined from the file’s extension.

• timestamp_colname: A copy of the input argument with the same name, unless it was set to
'AUTO'; in that case, the instrument type that was determined from the file type.

244 read_licor_6800_Excel

Examples

Example: Eeading a Licor Excel file that is included with the PhotoGEA
package. Here we specify 'time' as the name of the timestamp column.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx'),
'time'

)

licor_file$file_name # A record of where the data came from
str(licor_file) # View the contents of the exdf object's main_data
str(licor_file$preamble) # View the Licor file's preamble data

read_licor_6800_Excel Reading a Licor LI-6800 Excel log file

Description

Tool for reading Excel log files created by Licor LI-6800 instruments and storing their contents in
exdf objects.

Usage

read_licor_6800_Excel(
file_name,
column_name = 'obs',
get_oxygen = TRUE,
check_for_zero = c('A', 'gsw'),
include_user_remark_column = TRUE,
remove_NA_rows = TRUE,
...

)

Arguments

file_name A relative or absolute path to an Excel file containing Licor data.

column_name A column name that should be present in the log file; used to identify the begin-
ning of the data block in the file.

get_oxygen A logical value indicating whether to get the oxygen percentage from the file’s
preamble using get_oxygen_from_preamble.

check_for_zero The names of columns whose values should not all be zero; see below for details.
include_user_remark_column

A logical value indicating whether to include the user remarks as a column; see
below for details.

remove_NA_rows A logical value indicating whether to remove any rows whose values are all NA.

... Additional arguments; currently unused.

read_licor_6800_Excel 245

Details

Licor LI-6800 instruments create two types of log files: a plain-text file and an Excel file, each
containing the same information. In general, the Excel files are much easier to modify, for example,
deleting rows or adding new columns. For this reason, it is helpful to be able to read these files in R.
Unfortunately, base R does not have any functionality for reading Excel files, so here the openxlsx
package is used.

Excel log files typically have two sheets called Measurements and Remarks. The Measurements
sheet contains the main data logs, and if read_licor_6800_Excel does not find a sheet called
Measurements, it will send an error message.

Then, read_licor_6800_Excel looks for a particular data column (column_name) in order to iden-
tify the start of the data table within the contents of the Measurements sheet. Rows above the main
data table are assumed to be part of the preamble (or header), which are broken into pairs of rows
representing names and values.

"Calculating" formula values: By default, Licor Excel files do not "calculate" formula values.
This causes a problem when reading them in R, since any data entry determined from a formula
will be read as 0. To fix this issue for a Licor Excel file, open it in in Excel, go to the Formulas
menu, and choose Calculate Now. (Alternatively, press F9.) Then save the file and close it. See
these articles for more information about this issue:

• GitHub issue 261 from the openxlsx package

• GitHub issue 863 from the openxlsx2 package

• GitHub issue 495 from the readxl package

read_licor_6800_Excel attempts to detect this issue by checking the values of key columns (spec-
ified by the check_for_zero input argument). If any of these columns are all 0, then an error
message will be sent. This feature can be disabled by setting check_for_zero = c() when calling
read_licor_6800_Excel or read_gasex_file.

User remarks: When operating a Licor LI-6800, it is possible to make a "remark." Each re-
mark will appear in the Remarks sheet of an Excel log file on its own line, where the entry in
the first column is an HH:MM:SS time, and the second column contains the remark text. The
read_licor_6800_Excel function identifies these user remarks and includes them in the return
as an "extra" element called user_remarks. Note that changing stability criteria will also generate
a user remark with a message describing the new stability settings. Also note that the "remarks" tab
includes other automatically generated entries, such as the instrument serial number; these entries
are included with the "preamble" in the output from read_licor_6800_Excel.

When include_user_remark_column is TRUE, these user remarks will be included in the main
data table as a column called user_remark. For each row in the table, the entry in the user_remark
column will be set to the most recent user remark.

The user remark system is prone to errors, especially since changes to stability settings are recorded
in the log files using the exact same format as true user remarks. In general, it is better to record
metadata about measurements via user constants rather than user remarks.

User constants as rows: When operating a Licor LI-6800, it is possible to include user con-
stants as either rows or columns. In general, it is better to include them as columns, and the
read_licor_6800_Excel function may not be able to properly read files where they are included
as rows. Support for user constant rows may be added in the future.

https://github.com/ycphs/openxlsx/issues/261
https://github.com/JanMarvin/openxlsx2/issues/863
https://github.com/tidyverse/readxl/issues/495

246 read_licor_6800_plaintext

Value

An exdf object that fully includes all the data from the Licor Excel file. In addition to the ele-
ments described in the documentation for read_gasex_file, the following "extra" elements are
also included:

• preamble: A data frame containing the "preamble" (or "header") information from the file.

• data_row: The line of the file where the column name was found.

• user_remarks: A data frame containing any user remarks from the file. The data frame
has two columns for the timestamp and the value, called remark_time and remark_value,
respectively.

See Also

read_gasex_file

Examples

Example 1: Reading a Licor Excel file that is included with the PhotoGEA
package and viewing some of the "extra" information associated with the file
licor_file <- read_licor_6800_Excel(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

str(licor_file$preamble)

print(licor_file$user_remarks)

Example 2: Reading a Licor Excel file that is included with the PhotoGEA
package; here we use a different column name to identify the data block within
the file's contents.
licor_file <- read_licor_6800_Excel(

PhotoGEA_example_file_path('ball_berry_1.xlsx'),
column_name = 'A'

)

read_licor_6800_plaintext

Reading a Licor LI-6800 plaintext log file

Description

Tool for reading plaintext log files created by Licor LI-6800 instruments and storing their contents
in exdf objects.

read_licor_6800_plaintext 247

Usage

read_licor_6800_plaintext(
file_name,
get_oxygen = TRUE,
include_user_remark_column = TRUE,
remove_NA_rows = TRUE,
...

)

Arguments

file_name A relative or absolute path to a plaintext file containing Licor data.

get_oxygen A logical value indicating whether to get the oxygen percentage from the file’s
preamble using get_oxygen_from_preamble.

include_user_remark_column

A logical value indicating whether to include the user remarks as a column; see
below for details.

remove_NA_rows A logical value indicating whether to remove any rows whose values are all NA.

... Additional arguments; currently unused.

Details

Licor LI-6800 instruments create two types of log files: a plaintext file and an Excel file, each
containing the same information. The plaintext files are the only ones guaranteed to be created,
since the Excel files require the user to select an option to create them.

read_licor_6800_plaintext looks for two special lines in the Licor log file: the [Head] line
indicates the beginning of the header (or preamble), and the [Data] line indicates the beginning of
the data table. If these lines are missing from the file, it will not be loaded properly.

Closing and reopening a log file: When operating a Licor LI-6800, it is possible to close and then
reopen a log file. Doing this causes the plaintext log file to contain multiple [Head] and [Data]
sections. This function is able to handle such files.

User remarks: When operating a Licor LI-6800, it is possible to make a "remark." Each remark
will appear in the plaintext log file in its own line, which begins with an HH:MM:SS time and then
contains the remark text. The read_licor_6800_plaintext function identifies these user remarks
and includes them in the return as an "extra" element called user_remarks. Note that changing sta-
bility criteria will also generate a user remark with a message describing the new stability settings.

When include_user_remark_column is TRUE, these user remarks will be included in the main
data table as a column called user_remark. For each row in the table, the entry in the user_remark
column will be set to the most recent user remark.

The user remark system is prone to errors, especially since changes to stability settings are recorded
in the log files using the exact same format as true user remarks. In general, it is better to record
metadata about measurements via user constants rather than user remarks.

User constants as rows: When operating a Licor LI-6800, it is possible to include user con-
stants as either rows or columns. In general, it is better to include them as columns, and the
read_licor_6800_plaintext function may not be able to properly read files where they are in-
cluded as rows. Support for user constant rows may be added in the future.

248 remove_points

Value

An exdf object that fully includes all the data from the Licor Excel file. In addition to the ele-
ments described in the documentation for read_gasex_file, the following "extra" elements are
also included:

• preamble: A data frame containing the "preamble" (or "header") information from the file.

• user_remarks: A data frame containing any user remarks from the file. The data frame
has two columns for the timestamp and the value, called remark_time and remark_value,
respectively.

See Also

read_gasex_file

Examples

Example: Reading a Licor plaintext file that is included with the PhotoGEA
package and viewing some of the "extra" information associated with the file
licor_file <- read_licor_6800_plaintext(

PhotoGEA_example_file_path('plaintext_licor_file')
)

str(licor_file$preamble)

print(licor_file$user_remarks)

remove_points Remove specific points from an exdf object

Description

Removes all points from an exdf object that satisfy a set of conditions.

Usage

remove_points(exdf_obj, ..., method = 'remove')

Arguments

exdf_obj An exdf object.

... Each optional argument should be a list of named elements that specify points to
be removed from exdf_obj. For example, list(species = 'soybean', plot
= c('1a', '1b')) specifies the set of points where (1) species is 'soybean'
and (2) plot is '1a' or '1b'.

method Specify whether to remove points ('remove') or designate them as being ex-
cluded from subsequent fits ('exclude'); see below for more details.

remove_points 249

Value

This function returns an exdf object formed from exdf_obj, where the result depends on the value
of method.

When method is 'remove', the returned object is a modified copy of exdf_obj where all rows that
meet the conditions specified by the optional arguments have been removed.

When method is 'exclude', the returned object is a modified copy of exdf_obj with a new col-
umn called include_when_fitting. The value of this column is FALSE for all rows that meet the
conditions specified by the optional arguments, and TRUE otherwise. Points where this column is
FALSE will not be used for fitting by fit_c3_aci or other fitting functions.

See Also

exdf

Examples

Create an exdf object by reading a Licor Excel file
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

Print the number of points in the data set
nrow(licor_file)

Remove the following:
- All points where `obs` is 28 (1 point)
- All points where `species` is `soybean` and `plot` is `1a` or `1b` (14 points)
licor_file_2 <- remove_points(

licor_file,
list(obs = 28),
list(species = 'soybean', plot = c('1a', '1b')),
method = 'remove'

)

There should now be 15 fewer points remaining in the data set
nrow(licor_file_2)

We can also specify the same points for exclusion rather than removal:
licor_file_3 <- remove_points(

licor_file,
list(obs = 28),
list(species = 'soybean', plot = c('1a', '1b')),
method = 'exclude'

)

print(licor_file_3[, c('species', 'plot', 'include_when_fitting')])

The number of points where `include_when_fitting` is TRUE should be the same
as the number of remaining rows when using the `remove` method
sum(licor_file_3[, 'include_when_fitting'])

250 residual_stats

residual_stats Calculate statistics that describe the residuals of a fit

Description

Calculates several key statistics from the residuals of of a fit: the residual sum of squares (RSS), the
mean squared error (MSE), the root mean squared error (RMSE), the residual standard error (RSE), and
the Akaike information criterion (AIC). This function is used internally by all fitting functions in the
PhotoGEA package, such as fit_ball_berry and fit_c3_aci.

Usage

residual_stats(fit_residuals, units, nparam)

Arguments

fit_residuals A numeric vector representing the residuals from a fit, i.e., the differences be-
tween the measured and fitted values.

units A string expressing the units of the residuals.

nparam The number of free parameters that were varied when performing the fit.

Details

This function calculates several model-independent measures of the quality of a fit. The basis for
these statistics are the residuals (also known as the errors). If the measured values of a quantity
y are given by y_measured and the fitted values are y_fitted, then the residuals are defined to be
residual = y_measured - y_fitted. The key statistics that can be calculated from the residuals
are as follows:

• The residual sum of squares (RSS) is also known as the sum of squared errors (SSE). As its
name implies, it is simply the sum of all the squared residuals: RSS = sum(residuals^2).

• The mean squared error (MSE) is the mean value of the squared residuals: MSE = sum(residuals^2)
/ n = RSS / n, where n is the number of residuals.

• The root mean squared error (RMSE) is the square root of the mean squared error: RMSE =
sqrt(MSE) = sqrt(RSS / n).

• The residual standard error RSE is given by RSE = sqrt(RSS / dof), where dof = n - nparam
is the number of degrees of freedom involved in the fit.

• The Akaike information criterion AIC is given by AIC = npts * (log(2 * pi) + 1) + npts *
log(MSE) + 2 * (nparam + 1).

For a given model, the RMSE is usually a good way to compare the quality of different fits. When
trying to decide which model best fits the measured data, the AIC may be a more appropriate metric
since it controls for the number of parameters in the model.

The AIC definition used here is appropriate for the results of maximum likelihood fitting with equal
variance, or minimum least squares fitting. For more details about the AIC equation above and its
relation to the more general definition of AIC, see Section 2 of Banks & Joyner (2017).

set_variable 251

References:

Banks, H. T. & Joyner, M. L. "AIC under the framework of least squares estimation." Applied
Mathematics Letters 74, 33–45 (2017) [doi:10.1016/j.aml.2017.05.005].

Value

An exdf object with one row and the following columns: npts (the number of residual values),
nparam, dof, RSS, MSE, RMSE, RSE, AIC.

Examples

Generate some random residuals
residuals <- runif(10, -1, 1)

Calculate residual stats as if these values had units of `kg` and were related
to a model with 3 free parameters
residual_stats(residuals, 'kg', 3)

set_variable Set values, units, and categories for a column in a table

Description

Sets the value, units, and/or category of a new or existing column of a table-like object.

Usage

set_variable(
data_table,
name,
units = NULL,
category = NULL,
value = NA,
id_column = NULL,
value_table = NULL

)

Arguments

data_table A table-like R object such as a data frame or an exdf.
name The name of the column to be added to data_table.
units The units of the column to be added to data_table.
category The category of the column to be added to data_table.
value The value of the column to be added to data_table.
id_column The name of an identifier column in data_table.
value_table A list of named elements, where the name of each element is a possible value

of the id_column and the value of each element is the corresponding value that
the name column should take.

https://doi.org/10.1016/j.aml.2017.05.005

252 set_variable

Details

There are two main "modes" for setting the value of the new column: it can be set to a fixed value
(using the value input argument), or it can be set according to the values of another column (using
the id_column and value_table input arguments). The latter method is useful when different
values must be specified for different treatments within the data set.

In greater detail, this function attempts to set the value of a new or existing column in an exdf
object according to the following rules:

• The value of the name column of data_table will be set to value; this assignment fol-
lows the usual rules; in other words, value could be a single value or a vector of length
nrow(data_table).

• If units and categories are both NULL, the units and category will not be specified. In this
case, if the name column already exists, its units and category will remain the same; if the
name column is new, it will be initialized with NA for its units and category.

• If either units _or_ category is not NULL, the units and category for the name column _will_
be specified. In this case, if one of units or category _is_ NULL, its value will be set to NA.

• If id_column is not NULL, then the value_table will be used to set different values of the
name column for each specified value of id_column. For example, if id_column is species
and value_table = list(soybean = 1, tobacco = 2), then the name column will be set to
1 when species is 'soybean' and 2 when species is 'tobacco'. For any other values of
species (such as 'maize'), the value of name will still be value. **Note**: values of the
id_column will be converted using as.character before making comparisons.

For other table-like objects, such as data frames, only the values will be set, and the units and
categories will be ignored.

Value

An object based on data_table with new and/or modified columns.

See Also

exdf

Examples

Create a simple exdf object with two columns (`A` and `B`) and default values
for its units and categories.
simple_exdf <- exdf(data.frame(A = c(3, 2, 7, 9), B = c(4, 5, 1, 8)))

print(simple_exdf)

Add a new column called 'C' with units 'u1' and category 'cat1' whose value is
1000.
simple_exdf <- set_variable(simple_exdf, 'C', 'u1', 'cat1', 1000)

Set the value of the 'B' column to 2000 when 'A' is 3, to 3000 when 'A' is 9,
and to 4000 for all other values of 'A'. Do not modify its units or category.
simple_exdf <- set_variable(

smooth_tdl_data 253

simple_exdf,
'B',
value = 4000,
id_column = 'A',
value_table = list('3' = 2000, '9' = 3000)

)

print(simple_exdf)

Take the same operations, but using a data frame instead
simple_df <- data.frame(A = c(3, 2, 7, 9), B = c(4, 5, 1, 8))

simple_df <- set_variable(simple_exdf$main_data, 'C', 'u1', 'cat1', 1000)

simple_df <- set_variable(
simple_df,
'B',
value = 4000,
id_column = 'A',
value_table = list('3' = 2000, '9' = 3000)

)

print(simple_df)

As a more realistic example, load a Licor file and set different values of
mesophyll conductance for each species in the data set.
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- set_variable(
licor_file,
'gmc',
'mol m^(-2) s^(-1) bar^(-1)',
'',
id_column = 'species',
value_table = list(soybean = 0.9, tobacco = 1.1)

)

print(licor_file[, c('species', 'gmc'), TRUE])

smooth_tdl_data Smoothing data from one TDL valve

Description

Tool for applying a smoothing function to the time series corresponding to measurements from a
single valve in a tunable diode laser (TDL) data set.

254 smooth_tdl_data

Usage

smooth_tdl_data(
tdl_exdf,
column_to_be_smoothed,
valve_column_name,
valve_number,
smoothing_function

)

Arguments

tdl_exdf An exdf object representing data from a TDL data logger.
column_to_be_smoothed

The name of the column in tdl_exdf that contains the data to be smoothed;
typically, this is 'Conc12C_Avg' or 'Conc12C_Avg'.

valve_column_name

The name of the column in tdl_exdf that contains the valve number; typically,
this is 'valve_number'.

valve_number The value of the valve_column_name column that indicates the valve to be
smoothed.

smoothing_function

A function that accepts two vectors Y and X (in that order) and returns a smoothed
version of Y(X); typically, smoothing_function is based on smooth.spline or
a filter from the signal package.

Details

The output from a TDL is highly sensitive to electronic and atmospheric noise, and it is often helpful
to smooth the data from one or more valves before attempting to apply calibration corrections or
determine the content of an unknown gas mixture. smooth_tdl_data is a convenience function
that extracts a time series corresponding to data from one valve, applies a smoothing operation,
and replaces the original data in tdl_exdf with the smoothed version. The smoothing function is
user-supplied to allow more flexbility.

In addition to the column_to_be_smoothed and valve_column_name columns, the tdl_exdf must
also contain an 'elapsed_time' column, which is typically created by a call to identify_tdl_cycles.

Value

An exdf object based on tdl_exdf, where the time series of column_to_be_smoothed vs. 'elapsed_time'
has been replaced by a smoothed version obtained by applying the smoothing_function.

Examples

Example: Smoothing the 12C signal from one TDL valve using a spline fit
tdl_file <- read_gasex_file(

PhotoGEA_example_file_path('tdl_sampling_1.dat'),
'TIMESTAMP'

)

split.exdf 255

tdl_file <- identify_tdl_cycles(
tdl_file,
valve_column_name = 'valve_number',
cycle_start_valve = 20,
expected_cycle_length_minutes = 2.7,
expected_cycle_num_valves = 9,
timestamp_colname = 'TIMESTAMP'

)

spline_smoothing_function <- function(Y, X) {
ss <- smooth.spline(X, Y)
return(ss$y)

}

spline_smoothed_tdl_file <- smooth_tdl_data(
tdl_file, 'Conc12C_Avg', 'valve_number', 20, spline_smoothing_function

)

split.exdf Divide an exdf object into groups

Description

Divides an exdf object into groups defined by one or more factors.

Usage

S3 method for class 'exdf'
split(x, f, drop = FALSE, lex.order = FALSE, ...)

Arguments

x An exdf object.

f A factor or a list of factors.

drop A logical value indicating whether levels of f that do not occur should be dropped.

lex.order A logical value passed to interaction.

... Additional arguments to be passed to the default method of split.

Value

Returns a list of exdf objects created by splitting x along the values of f.

See Also

exdf

256 str.exdf

Examples

Read a Licor file, select just a few columns, and then split it by the value
of the `plot` column
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

licor_file <- licor_file[, c('plot', 'species', 'Qin', 'A', 'gsw'), TRUE]

split(
licor_file,
list(licor_file[,'species'], licor_file[,'plot']),
drop = TRUE

)

str.exdf Display the structure of an exdf object

Description

Displays the structure of an exdf object’s main_data. Each column is described by its name, unit,
and category formatted like name [category] (units).

Usage

S3 method for class 'exdf'
str(object, ...)

Arguments

object An exdf object.

... Additional arguments to be passed to str.

Value

None.

See Also

exdf

Examples

simple_exdf <- exdf(data.frame(A = 1), data.frame(A = 'u'), data.frame(A = 'c'))
str(simple_exdf)

xyplot_avg_rc 257

xyplot_avg_rc Plot average response curves with error bars

Description

A wrapper for lattice::xyplot that plots average response curves with error bars.

Usage

xyplot_avg_rc(
Y,
X,
point_identifier,
group_identifier,
y_error_bars = TRUE,
x_error_bars = FALSE,
cols = multi_curve_colors(),
eb_length = 0.05,
eb_lwd = 1,
na.rm = TRUE,
subset = rep_len(TRUE, length(Y)),
...

)

Arguments

Y A numeric vector of y-values.
X A numeric vector of x-values with the same length as Y
point_identifier

A vector with the same length as Y that indicates the location of each (x, y)
pair along the response curve; typically this is the seq_num column of an exdf
object.

group_identifier

A vector with the same length as Y that indicates the "group" of each response
curve.

y_error_bars A logical value indicating whether to plot y-axis error bars.
x_error_bars A logical value indicating whether to plot x-axis error bars.
cols A vector of color specifications.
eb_length The width of the error bars.
eb_lwd The line width (thickness) of the error bars.
na.rm A logical value indicating whether or not to remove NA values before calculat-

ing means and standard errors.
subset A logical vector (of the same length as Y) indicating which points to include in

the final plot.
... Additional arguments to be passed to lattice::xyplot.

258 xyplot_avg_rc

Details

This function calculates average values of X and Y at each value of the point_identifier across
groups defined by group_identifier, and then uses these values to plot average response curves
for each group. Error bars are determined by calculating the standard errors of X and Y at each value
of the point_identifier across groups defined by group_identifier.

If points were excluded from the data set using remove_points with method = 'exclude', then
the include_when_fitting column should be passed to xyplot_avg_rc as the subset input ar-
gument; this will ensure that the excluded points are not used when calculating average response
curves.

Value

A trellis object created by lattice::xyplot.

Examples

Read an example Licor file included in the PhotoGEA package
licor_file <- read_gasex_file(

PhotoGEA_example_file_path('ball_berry_1.xlsx')
)

Organize the response curve data
licor_file <- organize_response_curve_data(

licor_file,
c('species', 'plot'),
c(),
'Qin'

)

Plot the average light response curve for each species (here there is only one
curve for tobacco, so there are no tobacco error bars)
xyplot_avg_rc(

licor_file[, 'A'],
licor_file[, 'Qin'],
licor_file[, 'seq_num'],
licor_file[, 'species'],
ylim = c(0, 50),
xlab = paste0('Incident PPFD (', licor_file$units$Qin, ')'),
ylab = paste0('Average net assimilation (', licor_file$units$A, ')'),
auto = TRUE,
grid = TRUE

)

Exclude a few points from the data set and re-plot the average curves
licor_file <- remove_points(

licor_file,
list(obs = c(5, 10, 18)),
method = 'exclude'

)

xyplot_avg_rc(

xyplot_avg_rc 259

licor_file[, 'A'],
licor_file[, 'Qin'],
licor_file[, 'seq_num'],
licor_file[, 'species'],
subset = licor_file[, 'include_when_fitting'],
ylim = c(0, 50),
xlab = paste0('Incident PPFD (', licor_file$units$Qin, ')'),
ylab = paste0('Average net assimilation (', licor_file$units$A, ')'),
auto = TRUE,
grid = TRUE

)

Index

∗ datasets
c3_temperature_param_bernacchi, 12
c3_temperature_param_flat, 13
c3_temperature_param_sharkey, 15
c4_temperature_param_flat, 16
c4_temperature_param_vc, 17
example_data_files, 145
jmax_temperature_param_bernacchi,

211
jmax_temperature_param_flat, 212

∗ exdf
apply_gm, 4
as.data.frame.exdf, 7
basic_stats, 10
by.exdf, 11
calculate_ball_berry_index, 19
calculate_c3_assimilation, 20
calculate_c3_limitations_grassi,

27
calculate_c3_limitations_warren,

32
calculate_c3_variable_j, 36
calculate_c4_assimilation, 41
calculate_c4_assimilation_hyperbola,

48
calculate_gamma_star, 51
calculate_gas_properties, 56
calculate_gm_busch, 59
calculate_gm_ubierna, 64
calculate_isotope_discrimination,

68
calculate_jmax, 71
calculate_leakiness_ubierna, 78
calculate_temperature_response, 81
calculate_temperature_response_arrhenius,

84
calculate_temperature_response_gaussian,

86
calculate_temperature_response_johnson,

87
calculate_temperature_response_polynomial,

89
calculate_ternary_correction, 91
calculate_total_pressure, 93
calculate_wue, 94
cbind.exdf, 97
check_required_variables, 98
check_response_curve_data, 99
confidence_intervals_c3_aci, 105
confidence_intervals_c3_variable_j,

109
confidence_intervals_c4_aci, 112
confidence_intervals_c4_aci_hyperbola,

116
consolidate, 118
csv.exdf, 120
dim.exdf, 122
dimnames.exdf, 123
document_variables, 124
error_function_c3_aci, 125
error_function_c3_variable_j, 129
error_function_c4_aci, 134
error_function_c4_aci_hyperbola,

138
estimate_licor_variance, 140
estimate_operating_point, 142
exclude_outliers, 147
exdf, 148
extract.exdf, 150
factorize_id_column, 152
fit_ball_berry, 153
fit_c3_aci, 156
fit_c3_variable_j, 163
fit_c4_aci, 171
fit_c4_aci_hyperbola, 178
fit_laisk, 182
fit_medlyn, 185
get_oxygen_from_preamble, 188

260

INDEX 261

get_sample_valve_from_filename,
189

identifier_columns, 190
identify_c3_limiting_processes,

191
identify_common_columns, 193
identify_tdl_cycles, 194
initial_guess_c3_aci, 196
initial_guess_c3_variable_j, 201
initial_guess_c4_aci, 205
initial_guess_c4_aci_hyperbola,

209
is.exdf, 210
length.exdf, 213
organize_response_curve_data, 216
pair_gasex_and_tdl, 219
plot_ball_berry_fit, 224
plot_c3_aci_fit, 225
plot_c4_aci_fit, 227
plot_c4_aci_hyperbola_fit, 229
plot_laisk_fit, 231
print.exdf, 233
process_tdl_cycle_erml, 234
process_tdl_cycle_polynomial, 237
read_cr3000, 240
read_gasex_file, 241
read_licor_6800_Excel, 244
read_licor_6800_plaintext, 246
remove_points, 248
residual_stats, 250
set_variable, 251
smooth_tdl_data, 253
split.exdf, 255
str.exdf, 256

∗ temperature_response_parameters
c3_temperature_param_bernacchi, 12
c3_temperature_param_flat, 13
c3_temperature_param_sharkey, 15
c4_temperature_param_flat, 16
c4_temperature_param_vc, 17
jmax_temperature_param_bernacchi,

211
jmax_temperature_param_flat, 212

[.exdf, 149
[.exdf (extract.exdf), 150
[<-.exdf (extract.exdf), 150

apply_gm, 4, 95, 99, 125, 134, 157, 159, 165,
173

as.data.frame.exdf, 7, 149
as.POSIXlt, 242, 243

ball_berry_1 (example_data_files), 145
ball_berry_2 (example_data_files), 145
barchart_with_errorbars, 8
basic_stats, 10
bwplot_wrapper

(barchart_with_errorbars), 8
by.exdf, 11, 149, 155, 161, 169, 176, 180,

186, 191, 224, 226, 228, 230, 232,
235, 239

c3_aci_1 (example_data_files), 145
c3_aci_2 (example_data_files), 145
c3_temperature_param_bernacchi, 12, 16
c3_temperature_param_flat, 13, 13
c3_temperature_param_sharkey, 13, 14, 15,

82, 85, 88
c4_aci_1 (example_data_files), 145
c4_aci_2 (example_data_files), 145
c4_temperature_param_flat, 16
c4_temperature_param_vc, 17, 17, 86
calculate_arrhenius (deprecated), 121
calculate_ball_berry_index, 19, 186
calculate_c3_assimilation, 20, 28, 33–35,

38, 39, 106, 107, 110, 111, 126–128,
130–133, 144, 158, 159, 161, 166,
167, 169, 192, 198, 199, 203, 204

calculate_c3_limitations_grassi, 27, 34
calculate_c3_limitations_warren, 32
calculate_c3_variable_j, 36, 111, 132,

133, 167, 169, 204
calculate_c4_assimilation, 41, 49, 114,

136, 144, 174–176, 180, 207
calculate_c4_assimilation_hyperbola,

47, 117, 139, 180, 181, 209
calculate_gamma_star, 51, 60, 65
calculate_gas_properties, 20, 28, 56, 60,

65, 79, 91, 95
calculate_gm_busch, 59, 65
calculate_gm_ubierna, 61, 64
calculate_isotope_discrimination, 68
calculate_jmax, 71, 218
calculate_leakiness_ubierna, 78
calculate_peaked_gaussian (deprecated),

121
calculate_temperature_response, 12, 13,

15–17, 33, 60, 65, 74, 81, 84, 86, 87,

262 INDEX

89, 211, 212
calculate_temperature_response_arrhenius,

18, 52, 82, 84, 88
calculate_temperature_response_gaussian,

82, 86
calculate_temperature_response_johnson,

82, 87
calculate_temperature_response_polynomial,

82, 89
calculate_ternary_correction, 60, 61, 64,

65, 79, 91
calculate_total_pressure, 29, 33, 93, 95
calculate_wue, 94
cbind, 97
cbind.exdf, 97, 149
check_licor_data (deprecated), 121
check_required_variables, 98
check_response_curve_data, 99, 217
choose_input_files, 104
choose_input_licor_files, 223
choose_input_licor_files

(choose_input_files), 104
choose_input_tdl_files

(choose_input_files), 104
confidence_intervals_c3_aci, 105, 156,

159
confidence_intervals_c3_variable_j,

109, 164, 167
confidence_intervals_c4_aci, 112, 172,

174
confidence_intervals_c4_aci_hyperbola,

116, 179, 180
consolidate, 118, 155, 161, 169, 176, 180,

186, 224, 226, 228, 230, 232, 235,
239

csv.exdf, 120

data.frame, 152
DEoptim, 215, 216
deprecated, 121
dim.exdf, 122, 149
dimnames.exdf, 123, 149
dimnames<-.exdf (dimnames.exdf), 123
document_variables, 124

error_function_c3_aci, 108, 125, 156, 160
error_function_c3_variable_j, 111, 129,

164, 166–168
error_function_c4_aci, 115, 134, 172, 175

error_function_c4_aci_hyperbola, 117,
138, 178, 180

estimate_licor_variance, 140
estimate_operating_point, 142, 157, 161,

165, 169, 173, 176
example_data_files, 145, 223
exclude_outliers, 8, 147
exdf, 7, 11, 72, 97, 99, 119–121, 123, 124,

141, 147, 148, 151–153, 191, 193,
211, 213, 234, 240, 241, 244, 246,
249, 252, 255, 256

extract.exdf, 150

factor, 152, 153
factorize_id_column, 152
file.path, 223
fit_ball_berry, 153, 186, 191, 224, 250
fit_c3_aci, 5, 23, 25, 28, 29, 33, 71, 72, 74,

105, 106, 144, 156, 191, 196, 215,
224–226, 249, 250

fit_c3_variable_j, 25, 38, 39, 71, 72, 74,
109, 110, 163, 191, 201, 215, 224,
225

fit_c4_aci, 43, 45, 71, 72, 74, 113, 144, 171,
205, 208, 215, 227, 228

fit_c4_aci_hyperbola, 49, 50, 116, 117,
178, 209, 215, 230

fit_laisk, 182, 231, 232
fit_medlyn, 185

get_oxygen_from_preamble, 188, 244, 247
get_sample_valve_from_filename, 189

hjkb, 215, 216

identifier_columns, 190
identify_c3_limiting_processes, 191
identify_common_columns, 193
identify_tdl_cycles, 194, 254
initial_guess_c3_aci, 160, 196, 204
initial_guess_c3_variable_j, 168, 201
initial_guess_c4_aci, 175, 205
initial_guess_c4_aci_hyperbola, 180,

209
interaction, 255
is.exdf, 149, 210

jmax_temperature_param_bernacchi, 74,
90, 211

INDEX 263

jmax_temperature_param_flat, 74, 212

lapply, 104
length.exdf, 149, 213
licor_for_gm_site11

(example_data_files), 145
licor_for_gm_site13

(example_data_files), 145
lm, 155

make.unique, 149
multi_curve_colors, 214
multi_curve_line_colors

(multi_curve_colors), 214
multi_curve_point_colors

(multi_curve_colors), 214

nlminb, 215, 216
nls, 186
nmkb, 215, 216

optimizer_deoptim, 160, 168, 175, 180
optimizer_deoptim (optimizers), 215
optimizer_hjkb (optimizers), 215
optimizer_nlminb (optimizers), 215
optimizer_nmkb, 160, 166, 168, 175, 180
optimizer_nmkb (optimizers), 215
optimizer_null (optimizers), 215
optimizers, 158, 174, 179, 215
organize_response_curve_data, 216

pair_gasex_and_tdl, 68, 219, 243
pdf, 221, 222
pdf_print, 221
PhotoGEA, 222
photogea (PhotoGEA), 222
PhotoGEA_example_file_path, 146, 223
plaintext_licor_file

(example_data_files), 145
plaintext_licor_file_v2

(example_data_files), 145
plot_ball_berry_fit, 224
plot_c3_aci_fit, 225
plot_c4_aci_fit, 227
plot_c4_aci_hyperbola_fit, 229
plot_laisk_fit, 231
POSIXlt, 242
print.exdf, 149, 233
process_tdl_cycle_erml, 219, 234

process_tdl_cycle_polynomial, 219, 237

rbind, 97
rbind.exdf, 149
rbind.exdf (cbind.exdf), 97
read.csv, 120, 241
read.csv.exdf (csv.exdf), 120
read_cr3000, 240, 243
read_gasex_file, 104, 145, 188, 189, 241,

241, 246, 248
read_licor_6800_Excel, 145, 243, 244
read_licor_6800_plaintext, 243, 246
read_licor_file (deprecated), 121
read_tdl_file (deprecated), 121
remove_points, 248, 258
residual_stats, 155, 162, 170, 177, 181,

187, 250

set_variable, 6, 251
smooth.spline, 254
smooth_tdl_data, 253
split, 255
split.exdf, 149, 255
str.exdf, 149, 256

tapply, 8
tdl_for_gm (example_data_files), 145
tdl_sampling_1 (example_data_files), 145
tdl_sampling_2 (example_data_files), 145

write.csv, 120
write.csv.exdf, 145
write.csv.exdf (csv.exdf), 120

xyplot, 221, 224, 226, 228, 230, 232
xyplot_avg_rc, 102, 257

	apply_gm
	as.data.frame.exdf
	barchart_with_errorbars
	basic_stats
	by.exdf
	c3_temperature_param_bernacchi
	c3_temperature_param_flat
	c3_temperature_param_sharkey
	c4_temperature_param_flat
	c4_temperature_param_vc
	calculate_ball_berry_index
	calculate_c3_assimilation
	calculate_c3_limitations_grassi
	calculate_c3_limitations_warren
	calculate_c3_variable_j
	calculate_c4_assimilation
	calculate_c4_assimilation_hyperbola
	calculate_gamma_star
	calculate_gas_properties
	calculate_gm_busch
	calculate_gm_ubierna
	calculate_isotope_discrimination
	calculate_jmax
	calculate_leakiness_ubierna
	calculate_temperature_response
	calculate_temperature_response_arrhenius
	calculate_temperature_response_gaussian
	calculate_temperature_response_johnson
	calculate_temperature_response_polynomial
	calculate_ternary_correction
	calculate_total_pressure
	calculate_wue
	cbind.exdf
	check_required_variables
	check_response_curve_data
	choose_input_files
	confidence_intervals_c3_aci
	confidence_intervals_c3_variable_j
	confidence_intervals_c4_aci
	confidence_intervals_c4_aci_hyperbola
	consolidate
	csv.exdf
	deprecated
	dim.exdf
	dimnames.exdf
	document_variables
	error_function_c3_aci
	error_function_c3_variable_j
	error_function_c4_aci
	error_function_c4_aci_hyperbola
	estimate_licor_variance
	estimate_operating_point
	example_data_files
	exclude_outliers
	exdf
	extract.exdf
	factorize_id_column
	fit_ball_berry
	fit_c3_aci
	fit_c3_variable_j
	fit_c4_aci
	fit_c4_aci_hyperbola
	fit_laisk
	fit_medlyn
	get_oxygen_from_preamble
	get_sample_valve_from_filename
	identifier_columns
	identify_c3_limiting_processes
	identify_common_columns
	identify_tdl_cycles
	initial_guess_c3_aci
	initial_guess_c3_variable_j
	initial_guess_c4_aci
	initial_guess_c4_aci_hyperbola
	is.exdf
	jmax_temperature_param_bernacchi
	jmax_temperature_param_flat
	length.exdf
	multi_curve_colors
	optimizers
	organize_response_curve_data
	pair_gasex_and_tdl
	pdf_print
	PhotoGEA
	PhotoGEA_example_file_path
	plot_ball_berry_fit
	plot_c3_aci_fit
	plot_c4_aci_fit
	plot_c4_aci_hyperbola_fit
	plot_laisk_fit
	print.exdf
	process_tdl_cycle_erml
	process_tdl_cycle_polynomial
	read_cr3000
	read_gasex_file
	read_licor_6800_Excel
	read_licor_6800_plaintext
	remove_points
	residual_stats
	set_variable
	smooth_tdl_data
	split.exdf
	str.exdf
	xyplot_avg_rc
	Index

