
Package ‘PermAlgo’

January 20, 2025

Title Permutational Algorithm to Simulate Survival Data

Version 1.2

Date 2022-05-05

Author Marie-Pierre Sylvestre, Thad Edens, Todd MacKenzie, Michal
Abrahamowicz

Maintainer Marie-Pierre Sylvestre

<marie-pierre.sylvestre@umontreal.ca>

Description This version of the permutational algorithm generates a
dataset in which event and censoring times are conditional on
an user-specified list of covariates, some or all of which are
time-dependent.

License GPL-2

LazyLoad yes

Repository CRAN

Date/Publication 2022-05-06 17:00:02 UTC

NeedsCompilation no

Imports methods

Contents

PermAlgo-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
permalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Index 8

1



2 PermAlgo-package

PermAlgo-package Generate Event Times Conditional On Time-Dependent Covariates

Description

This version of the permutational algorithm generates a dataset in which event and censoring times
are conditional on an user-specified list of covariates, some or all of which are time-dependent.
Event times and censoring times also follow user-specified distributions.

Details

Package: PermAlgo
Type: Package
Version: 1.0
Date: 2010-08-24
License: GPL-2
LazyLoad: yes

The package contains one function avialable to the user, permalgorithm. The gist of the algorithm
is to perform a one-to-one matching of n observed times with n independently generated vectors of
covariates values. The matching is performed based on a permutation probability law derived from
the partial likelihood of Cox’s Proportional Hazards (PH) model.

Author(s)

Marie-Pierre Sylvestre, Thad Evans, Todd MacKenzie, Michal Abrahamowicz

Maintainer: Marie-Pierre Sylvestre <marie-pierre.sylvestre.chum@ssss.gouv.qc.ca>

References

This algorithm is an extension of the permutational algorithm first introduced by Abrahamowicz,
MacKenzie and Esdaile, and described in details by MacKenzie and Abrahamowicz. The current
version of the permutational algorithm is a flexible tool to generate event and censoring times that
follow user-specified distributions and that are conditional on user-specified covariates. It has been
validated through simulations in Sylvestre and Abrahamowicz. Please reference the manuscript by
Sylvestre and Abrahamowicz cited below if the results of this program are used in any published
material.

Sylvestre M.-P., Abrahamowicz M. (2008) Comparison of algorithms to generate event times con-
ditional on time-dependent covariates. Statistics in Medicine 27(14):2618–34.

Abrahamowicz M., MacKenzie T., Esdaile J.M. (1996) Time-dependent hazard ratio: modelling
and hypothesis testing with application in lupus nephritis. JASA 91:1432–9.

MacKenzie T., Abrahamowicz M. (2002) Marginal and hazard ratio specific random data genera-
tion: Applications to semi-parametric bootstrapping. Statistics and Computing 12(3):245–252.



PermAlgo-package 3

Examples

# Example - Generating adverse event conditional on use
# of prescription drugs

# Prepare the matrice of covariate (Xmat)
# Here we simulate daily exposures to 2 prescription drugs over a
# year. Drug prescriptions can start any day of follow-up, and their
# duration is a multiple of 7 days. There can be multiple prescriptions
# for each individuals over the year and interuptions of drug use in
# between.

# Additionaly, there is a time-independant binary covarite (sex).

n=500 # subjects
m=365 # days

# Generate the matrix of three covariate, in a 'long' format.
Xmat=matrix(ncol=3, nrow=n*m)

# time-independant binary covariate
Xmat[,1] <- rep(rbinom(n, 1, 0.3), each=m)

# Function to generate an individual time-dependent exposure history
# e.g. generate prescriptions of different durations and doses.
TDhist <- function(m){

start <- round(runif(1,1,m),0) # individual start date
duration <- 7 + 7*rpois(1,3) # in weeks
dose <- round(runif(1,0,10),1)
vec <- c(rep(0, start-1), rep(dose, duration))
while (length(vec)<=m){
intermission <- 21 + 7*rpois(1,3) # in weeks
duration <- 7 + 7*rpois(1,3) # in weeks
dose <- round(runif(1,0,10),1)
vec <- append(vec, c(rep(0, intermission), rep(dose, duration)))}

return(vec[1:m])}

# create TD var
Xmat[,2] <- do.call("c", lapply(1:n, function(i) TDhist(m)))
Xmat[,3] <- do.call("c", lapply(1:n, function(i) TDhist(m)))

# genereate vectors of event and censoring times prior to calling the
# function for the algorithm

eventRandom <- round(rexp(n, 0.012)+1,0)
censorRandom <- round(runif(n, 1,870),0)

# Generate the survival data conditional on the three covariates

data <- permalgorithm(n, m, Xmat, XmatNames=c("sex", "Drug1", "Drug2"),
eventRandom = eventRandom, censorRandom=censorRandom, betas=c(log(2),
log(1.04), log(0.99)), groupByD=FALSE )



4 permalgorithm

# could use survival library and check whether the data was generated
# properly using coxph(Surv(Start, Stop, Event) ~ sex + Drug1 + Drug2,
# data)

permalgorithm Generate Event Times Conditional On Time-Dependent Covariates

Description

This version of the permutational algorithm generates a dataset in which event and censoring times
are conditional on an user-specified list of covariates, some or all of which are time-dependent.
Event times and censoring times also follow user-specified distributions.

Usage

permalgorithm(numSubjects, maxTime, Xmat, XmatNames = NULL,
eventRandom = NULL, censorRandom = NULL, betas, groupByD = FALSE)

Arguments

numSubjects is the number of subjects generated.

maxTime is a non-zero integer represening the maximum length of follow-up.

Xmat is the matrix of covariates values in a counting process format where every line
represent one and only one time interval, during which all covariate values for a
given subject remains constant. Consequently, Xmat should have numSubjects*maxTime
rows. Each column of Xmat corresponds to a different covariates on which the
event is conditionned. For fixed-in-time covariates, the same value should be
replicated in each of maxTime row for a given subject.

XmatNames a an optional vector of character strings representing the names of each of the
covariates in Xmat.

eventRandom represents individual event times. eventRandom can be a vector of nonegative
integer values or a random generating function with argument n. In both cases,
its values must be smaller or equal to maxTime. If left unspecified, then the
algorithm generates event times based on an uniform distribtuion [1, maxTime].

censorRandom represents individual censoring times. censorRandom can be a vector of noneg-
ative integer values or a random generating function with argument n. In both
cases, its values must be smaller or equal to maxTime. The default is Uni-
form[1,maxTime].

betas is a vector of regression coefficients (log hazard) that represent the magnitude
of the relationship between each of the covariates and the risk of an event. The
length of betas should correspond to the number of columns in Xmat.



permalgorithm 5

groupByD groupByD is an option that, when enabled, increases the computational effi-
ciency of the algorithm by replacing the individual assignment of event times
and censoring times by grouped assignements. The side effect of this option is
that it generates datasets that are, on average, slightly less consistent with the
model described by betas that those generated with the groupByD option set to
FALSE. Still, groupByD=TRUE may be usefull to generate large datasets where
maxTime is much smaller than numSubjects so that many ties are expected. De-
fault is FALSE.

Details

The gist of the algorithm is to perform a one-to-one matching of n observed times with indepen-
dently generated vectors of covariates values. The matching is performed based on a permutation
probability law derived from the partial likelihood of Cox’s Proportional Hazards (PH) model.

The number of events obtained in the data.frame returned by the function depends on both the dis-
tribution of event enventRandom and censoring times censorRandom. In the simplest case where
the distirbution of eventRandom is Uniform over follow-up U[1,m], and the censoring is random,
the number of observed events in the data.frame returnd by the algorithm is determined by the up-
per bound of the Uniform distribution of censorRandom. For example, setting the distribution of
censorRandom to U[1,m] will lead to approximately half of the subjects to experience an event dur-
ing follow-up, while setting the distribution of censorRandom to U[1,3/2] will lead to approximately
two thirds of the observed times to be events.

Subjects without an event before or on maxTime and who are not censored before maxTime are
censored on maxTime (administrative censoring).

*** Warning *** Currently the algorithm only takes Xmat in matrix format. Consequently, factor
variables are not allowed. Instead, users need to code them with binary indicators.

Value

A data.frame object with columns corresponding to

Id Identifies the rows of the data.frame that corresponds to each of the n individu-
als.

Event Indicator of event. Event = 1 when event occurs and 0 otherwise.

Fup Individual follow-up time.

Start For counting process formulation. Represents the start of each time interval.

Stop For counting process formulation. Represents the end of each time interval.

Xmat The values of the covariates specified in Xmat.

Author(s)

Marie-Pierre Sylvestre, Thad Evans, Todd MacKenzie, Michal Abrahamowicz

References

This algorithm is an extension of the permutational algorithm first introduced by Abrahamowicz,
MacKenzie and Esdaile, and described in details by MacKenzie and Abrahamowicz. The current



6 permalgorithm

version of the permutational algorithm is a flexible tool to generate event and censoring times that
follow user-specified distributions and that are conditional on user-specified covariates. This is
especially useful whenever at least one of the covariate is time-dependent so that conventional
inversion methods are difficult to implement.

The algorithm has been validated through simulations in Sylvestre and Abrahamowicz. Please
reference the manuscript by Sylvestre and Abrahamowicz, cited below, if this program is used in
any published material.

Sylvestre M.-P., Abrahamowicz M. (2008) Comparison of algorithms to generate event times con-
ditional on time-dependent covariates. Statistics in Medicine 27(14):2618–34.

Abrahamowicz M., MacKenzie T., Esdaile J.M. (1996) Time-dependent hazard ratio: modelling
and hypothesis testing with application in lupus nephritis. JASA 91:1432–9.

MacKenzie T., Abrahamowicz M. (2002) Marginal and hazard ratio specific random data genera-
tion: Applications to semi-parametric bootstrapping. Statistics and Computing 12(3):245–252.

Examples

# Example 1 - Generating adverse event conditional on use
# of prescription drugs

# Prepare the matrice of covariate (Xmat)
# Here we simulate daily exposures to 2 prescription drugs over a
# year. Drug prescriptions can start any day of follow-up, and their
# duration is a multiple of 7 days. There can be multiple prescriptions
# for each individuals over the year and interuptions of drug use in
# between.

# Additionaly, there is a time-independant binary covarite (sex).

n=500 # subjects
m=365 # days

# Generate the matrix of three covariate, in a 'long' format.
Xmat=matrix(ncol=3, nrow=n*m)

# time-independant binary covariate
Xmat[,1] <- rep(rbinom(n, 1, 0.3), each=m)

# Function to generate an individual time-dependent exposure history
# e.g. generate prescriptions of different durations and doses.
TDhist <- function(m){

start <- round(runif(1,1,m),0) # individual start date
duration <- 7 + 7*rpois(1,3) # in weeks
dose <- round(runif(1,0,10),1)
vec <- c(rep(0, start-1), rep(dose, duration))
while (length(vec)<=m){
intermission <- 21 + 7*rpois(1,3) # in weeks
duration <- 7 + 7*rpois(1,3) # in weeks
dose <- round(runif(1,0,10),1)
vec <- append(vec, c(rep(0, intermission), rep(dose, duration)))}

return(vec[1:m])}



permalgorithm 7

# create TD var
Xmat[,2] <- do.call("c", lapply(1:n, function(i) TDhist(m)))
Xmat[,3] <- do.call("c", lapply(1:n, function(i) TDhist(m)))

# genereate vectors of event and censoring times prior to calling the
# function for the algorithm

eventRandom <- round(rexp(n, 0.012)+1,0)
censorRandom <- round(runif(n, 1,870),0)

# Generate the survival data conditional on the three covariates

data <- permalgorithm(n, m, Xmat, XmatNames=c("sex", "Drug1", "Drug2"),
eventRandom = eventRandom, censorRandom=censorRandom, betas=c(log(2),
log(1.04), log(0.99)), groupByD=FALSE )

# could use survival library and check whether the data was generated
# properly using coxph(Surv(Start, Stop, Event) ~ sex + Drug1 + Drug2,
# data)

# Example 2 - Generating Myocardial Infarction (MI) conditional on
# biennial measures of systolic blood pressure (like in the
# Framingham data).

m = 16 # exams
n <- 10000 # individuals

# Very crude way to generate the data, meant as an example only!
sysBP <- rnorm(n*m, 120, 15)

# by not submitting event and censor time, one let the algorithm
# generate them from uniform distributions over the follow-up time.

data2 <- permalgorithm(n, m, sysBP, XmatNames="sysBP", betas=log(1.01),
groupByD=FALSE )



Index

∗ survival
PermAlgo-package, 2
permalgorithm, 4

PermAlgo (PermAlgo-package), 2
PermAlgo-package, 2
permalgorithm, 4

8


	PermAlgo-package
	permalgorithm
	Index

