Package ‘ParBayesianOptimization’

January 20, 2025

Title Parallel Bayesian Optimization of Hyperparameters
Version 1.2.6

Description Fast, flexible framework for implementing Bayesian optimization of model
hyperparameters according to the methods described in Snoek et al. <arXiv:1206.2944>.
The package allows the user to run scoring function in parallel, save intermediary
results, and tweak other aspects of the process to fully utilize the computing resources
available to the user.

URL https://github.com/AnotherSamWilson/ParBayesianOptimization

BugReports https://github.com/AnotherSamWilson/ParBayesianOptimization/issues
Depends R (>=3.4)

Imports data.table (>= 1.11.8), DiceKriging, stats, foreach, dbscan,
lhs, crayon, ggplot2, ggpubr (>= 0.2.4)

Suggests knitr, rmarkdown, xgboost, doParallel, testthat
License GPL-2

Encoding UTF-8

RoxygenNote 7.2.1

VignetteBuilder knitr

Maintainer Samuel Wilson <samwilson303@gmail.com>
NeedsCompilation no

Author Samuel Wilson [aut, cre]

Repository CRAN

Date/Publication 2022-10-18 14:47:54 UTC

Contents

addIterations
bayesOpt e e
changeSaveFile
getBestPars L
getLocalOptimums

https://arxiv.org/abs/1206.2944
https://github.com/AnotherSamWilson/ParBayesianOptimization
https://github.com/AnotherSamWilson/ParBayesianOptimization/issues

2 addlIterations

plot.bayesOpt e e e e e 11
print.bayesOpt L e e 12
updateGP L e e e 13
Index 14
addIterations Run Additional Optimization Iterations
Description

Use this function to continue optimization of a bayesOpt object.

Usage

addIterations(
optObj,
iters.n =1,
iters.k = 1,
otherHalting = list(timeLimit = Inf, minUtility = @),
bounds = optObj$bounds,
acq = optObj$optParss$acq,
kappa = optObj$optPars$kappa,
eps = optObj$optParss$eps,
gsPoints = optObj$optPars$gsPoints,
convThresh = optObj$optPars$convThresh,
acqThresh = optObj$optPars$acqThresh,
errorHandling = "stop"”,
saveFile = optObj$saveFile,
parallel = FALSE,
plotProgress = FALSE,
verbose = 1,

Arguments
optObj an object of class bayesOpt.
iters.n The total number of additional times to sample the scoring function.
iters.k integer that specifies the number of times to sample FUN at each Epoch (opti-

mization step). If running in parallel, good practice is to set iters.k to some
multiple of the number of cores you have designated for this process. Must
belower than, and preferrably some multiple of iters.n.

otherHalting Same as bayesOpt ()
bounds Same as bayesOpt ()
acq Same as bayesOpt ()

addlIterations

kappa

eps

gsPoints
convThresh
acqThresh
errorHandling
saveFile
parallel
plotProgress

verbose

Details

By default, this function uses the original parameters used to create optObj, however the parameters
(including the bounds) can be customized. If new bounds are used which cause some of the prior
runs to fall outside of the bounds, these samples are removed from the optimization procedure, but
will remain in scoreSummary. FUN should return the same elements and accept the same inputs as

Same as bayesOpt ()
Same as bayesOpt ()
Same as bayesOpt ()
Same as bayesOpt ()
Same as bayesOpt ()
Same as bayesOpt ()
Same as bayesOpt ()
Same as bayesOpt ()
Same as bayesOpt ()
Same as bayesOpt ()
Same as bayesOpt ()

the original, or this function may fail.

Value

An object of class bayesOpt having run additional iterations.

Examples

scoringFunction <- function(x) {
a <- exp(-(2-x)*2)*1.5
b <- exp(-(4-x)"2)*2
c <- exp(-(6-x)"2)*1

return(list(Score

}

bounds <- list(x

atb+c))

c(0,8))

Results <- bayesOpt(
FUN = scoringFunction
, bounds = bounds

, initPoints
, iters.n
, gsPoints

)

1

Results <- addIterations(Results,iters.n=1)

10

3

4 bayesOpt

bayesOpt Bayesian Optimization with Gaussian Processes

Description

Maximizes a user defined function within a set of bounds. After the function is sampled a pre-
determined number of times, a Gaussian process is fit to the results. An acquisition function is
then maximized to determine the most likely location of the global maximum of the user defined
function. This process is repeated for a set number of iterations.

Usage

bayesOpt (
FUN,
bounds,
saveFile = NULL,
initGrid,
initPoints = 4,
iters.n = 3,
iters.k = 1,
otherHalting = list(timeLimit = Inf, minUtility = @),

acq = "ucb”,
kappa = 2.576,
eps = 0,

parallel = FALSE,

gsPoints = pmax (100, length(bounds)”*3),
convThresh = 1e+08,

acqThresh = 1,

errorHandling = "stop"”,

plotProgress = FALSE,

verbose = 1,

)
Arguments

FUN the function to be maximized. This function should return a named list with at
least 1 component. The first component must be named Score and should con-
tain the metric to be maximized. You may return other named scalar elements
that you wish to include in the final summary table.

bounds named list of lower and upper bounds for each FUN input. The names of the list
should be arguments passed to FUN. Use "L" suffix to indicate integers.

saveFile character filepath (including file name and extension, .RDS) that specifies the

location to save results as they are obtained. A bayesOpt object is saved to the
file after each epoch.

bayesOpt

initGrid

initPoints

iters.n

iters.k

otherHalting

acq

kappa

eps

parallel

gsPoints

convThresh

acqThresh

user specified points to sample the scoring function, should be a data. frame or
data. table with identical column names as bounds.

Number of points to initialize the process with. Points are chosen with latin
hypercube sampling within the bounds supplied.

The total number of times FUN will be run after initialization.

integer that specifies the number of times to sample FUN at each Epoch (opti-
mization step). If running in parallel, good practice is to set iters.k to some
multiple of the number of cores you have designated for this process. Must be
lower than, and preferrably some multiple of iters.n.

A list of other halting specifications. The process will stop if any of the follow-
ing is true. These checks are only performed in between optimization steps:
* The elapsed seconds is greater than the list element timeLimit.

* The utility expected from the Gaussian process is less than the list element
minUtility.

mon

acquisition function type to be used. Can be "ucb", "ei", "eips" or "poi".

¢ ucb Upper Confidence Bound

* ei Expected Improvement

* eips Expected Improvement Per Second
* poi Probability of Improvement

tunable parameter kappa of the upper confidence bound. Adjusts exploitation/exploration.

Increasing kappa will increase the importance that uncertainty (unexplored space)
has, therefore incentivising exploration. This number represents the standard
deviations above 0 of your upper confidence bound. Default is 2.56, which cor-
responds to the ~99th percentile.

tunable parameter epsilon of ei, eips and poi. Adjusts exploitation/exploration.
This value is added to y_max after the scaling, so should between -0.1 and 0.1.
Increasing eps will make the "improvement" threshold for new points higher,
therefore incentivising exploitation.

should the process run in parallel? If TRUE, several criteria must be met:

* A parallel backend must be registered

* Objects required by FUN must be loaded into each cluster.

» Packages required by FUN must be loaded into each cluster. See vignettes.
* FUN must be thread safe.

integer that specifies how many initial points to try when searching for the opti-
mum of the acquisition function. Increase this for a higher chance to find global
optimum, at the expense of more time.

convergence threshold passed to factr when the optim function (L-BFGS-B)
is called. Lower values will take longer to converge, but may be more accurate.

number 0-1. Represents the minimum percentage of the global optimal utility
required for a local optimum to be included as a candidate parameter set in the
next scoring function. If 1.0, only the global optimum will be used as a candidate
parameter set. If 0.5, only local optimums with 50 percent of the utility of the
global optimum will be used.

6 bayesOpt

errorHandling If FUN returns an error, how to proceed. All errors are stored in scoreSummary.
Can be one of 3 options: "stop" stops the function running and returns results.
"continue" keeps the process running. Passing an integer will allow the process
to continue until that many errors have occured, after which the results will be
returned.

plotProgress Should the progress of the Bayesian optimization be printed? Top graph shows
the score(s) obtained at each iteration. The bottom graph shows the estimated
utility of each point. This is useful to display how much utility the Gaussian
Process is assuming still exists. If your utility is approaching O, then you can be
confident you are close to an optimal parameter set.

verbose Whether or not to print progress to the console. If 0, nothing will be printed. If
1, progress will be printed. If 2, progress and information about new parameter-
score pairs will be printed.

Other parameters passed to DiceKriging::km(). All FUN inputs and scores
are scaled from 0-1 before being passed to km. FUN inputs are scaled within
bounds, and scores are scaled by 0 = min(scores), 1 = max(scores).

Value

An object of class bayesOpt containing information about the process.

* FUN The scoring function.

* bounds The bounds originally supplied.

* iters The total iterations that have been run.

e initPars The initialization parameters.

* optPars The optimization parameters.

* GauProlList A list containing information on the Gaussian Processes used in optimization.

* scoreSummary A data.table with results from the execution of FUN at different inputs. In-
cludes information on the epoch, iteration, function inputs, score, and any other information
returned by FUN.

* stopStatus Information on what caused the function to stop running. Possible explenations
are time limit, minimum utility not met, errors in FUN, iters.n was reached, or the Gaussian
Process encountered an error.

* elapsedTime The total time in seconds the function was executing.

Vignettes

It is highly recommended to read the GitHub for examples. There are also several vignettes available
from the official CRAN Listing.

References

Jasper Snoek, Hugo Larochelle, Ryan P. Adams (2012) Practical Bayesian Optimization of Machine
Learning Algorithms

https://github.com/AnotherSamWilson/ParBayesianOptimization
https://CRAN.R-project.org/package=ParBayesianOptimization

bayesOpt

Examples

Example 1 - Optimization of a continuous single parameter function
scoringFunction <- function(x) {

a <- exp(-(2-x)*2)*1.5

b <- exp(-(4-x)"2)*2

c <- exp(-(6-x)"2)*1

return(list(Score = a+b+c))

3
bounds <- list(x = c(0,8))

Results <- bayesOpt(
FUN = scoringFunction
, bounds = bounds
, initPoints = 3
, iters.n = 2
, gsPoints = 10

Not run:

Example 2 - Hyperparameter Tuning in xgboost

if (requireNamespace('xgboost', quietly = TRUE)) {
library("xgboost")

data(agaricus.train, package = "xgboost")

Folds <- list(
Foldl = as.integer(seq(1,nrow(agaricus.train$data),by = 3))
, Fold2 = as.integer(seq(2,nrow(agaricus.train$data),by = 3))
, Fold3 = as.integer(seq(3,nrow(agaricus.train$data),by = 3))

)
scoringFunction <- function(max_depth, min_child_weight, subsample) {
dtrain <- xgb.DMatrix(agaricus.train$data,label = agaricus.train$label)

Pars <- list(
booster = "gbtree"
, eta = 0.01
, max_depth = max_depth
, min_child_weight = min_child_weight
, subsample = subsample
, objective = "binary:logistic”

, eval_metric = "auc

)

xgbcv <- xgb.cv(
params = Pars
, data = dtrain
, nround = 100
, folds = Folds
, prediction = TRUE

8 changeSaveFile

, showsd = TRUE

, early_stopping_rounds = 5
, maximize = TRUE

, verbose = 0

)
return(
list(
Score = max(xgbcv$evaluation_log$test_auc_mean)
, nrounds = xgbcv$best_iteration
)
)

}

bounds <- list(
max_depth = c(2L, 10L)
, min_child_weight = c(1, 100)
, Subsample = c(0.25, 1)
)

ScoreResult <- bayesOpt(
FUN = scoringFunction

, bounds = bounds
, initPoints = 3
, iters.n = 2
, iters.k =1
, acq = "ei”
, gsPoints = 10
, parallel = FALSE
, verbose =1

)

3

End(Not run)

changeSaveFile Change Save File Location

Description

Use this to change the saveFile parameter in a pre-existing bayesOpt object.

Usage
changeSaveFile(optObj, saveFile = NULL)

Arguments
optObj An object of class bayesOpt
saveFile A filepath stored as a character. Must include the filename and extension as a

.RDS.

getBestPars 9

Value

The same optObj with the updated saveFile.

Examples

Not run:

scoringFunction <- function(x) {
a <- exp(-(2-x)*2)*1.5
b <- exp(-(4-x)"2)*2
c <= exp(-(6-x)"2)*1
return(list(Score = a+b+c))

3
bounds <- list(x = c(0,8))

Results <- bayesOpt(
FUN = scoringFunction
, bounds = bounds
, initPoints = 3
, iters.n = 2
, gsPoints = 10
, saveFile = "filepath.RDS"
)
Results <- changeSaveFile(Results,saveFile = "DifferentFile.RDS")

End(Not run)

getBestPars Get the Best Parameter Set

Description

Returns the N parameter sets which resulted in the maximum scores from FUN.

Usage

getBestPars(optObj, N = 1)

Arguments

optObj An object of class bayesOpt

N The number of parameter sets to return
Value

A list containing the FUN inputs which resulted in the highest returned Score. If N > 1, adata. table
is returned. Each row is a result from FUN, with results ordered by descending Score.

10 getLocalOptimums

Examples

scoringFunction <- function(x) {
a <- exp(-(2-x)*2)*1.5
b <- exp(-(4-x)"2)*2
c <= exp(-(6-x)"2)*1
return(list(Score = a+b+c))

3
bounds <- list(x = c(0,8))

Results <- bayesOpt(
FUN = scoringFunction

, bounds = bounds

, initPoints = 3

, iters.n = 2

, gsPoints = 10
)
print(getBestPars(Results))

getLocalOptimums Get Local Optimums of acq From a bayesOpt Object

Description

Returns all local optimums of the acquisition function, no matter the utility.

Usage

getLocalOptimums(
optObj,
bounds = optObj$bounds,
acq = optObj$optParss$acq,
kappa = optObj$optPars$kappa,
eps = optObj$optParsseps,
convThresh = optObj$optPars$convThresh,
gsPoints = optObj$optPars$gsPoints,
parallel = FALSE,
verbose = 1

)
Arguments
optObj an object of class bayesOpt. The following parameters are all defaulted to the
options provided in this object, but can be manually specified.
bounds Same as in bayesOpt ()
acq Same as in bayesOpt ()

kappa Same as in bayesOpt ()

plot.bayesOpt 11

eps Same as in bayesOpt ()

convThresh Same as in bayesOpt ()

gsPoints Same as in bayesOpt ()

parallel Same as in bayesOpt ()

verbose Should warnings be shown before results are returned prematurely?
Details

gsPoints points in the parameter space are randomly initialized, and the L-BFGS-B method is used
to find the closest local optimum to each point. dbscan is then used to cluster points together which
converged to the same optimum - only unique optimums are returned.

Value

A data table of local optimums, including the utility (gpUtility), the utility relative to the max utility
(relUtility), and the steps taken in the L-BFGS-B method (gradCount).

Examples

scoringFunction <- function(x) {
a <- exp(-(2-x)*2)*1.5
b <- exp(-(4-x)"2)*2
c <- exp(-(6-x)"2)*1
return(list(Score = atb+c))

3
bounds <- list(x = c(0,8))

Results <- bayesOpt(
FUN = scoringFunction

, bounds = bounds

, initPoints = 3

, iters.n = 2

, gsPoints = 10
)
print(getLocalOptimums(Results))

plot.bayesOpt Plot a bayesOpt object

Description

Returns 2 stacked plots - the top shows the results from FUN at each iteration. The bottom shows
the utility from each point before the search took place.

Usage

S3 method for class 'bayesOpt'
plot(x, ...)

12 print.bayesOpt

Arguments
X An object of class bayesOpt
Passed to ggarrange () when plots are stacked.
Value

an object of class ggarrange from the ggpubr package.

Examples

scoringFunction <- function(x) {
a <- exp(-(2-x)7*2)*1.5
b <- exp(-(4-x)"2)*2
c <- exp(-(6-x)"2)*1
return(list(Score = atb+c))

3
bounds <- list(x = c(0,8))

Results <- bayesOpt(
FUN = scoringFunction
, bounds = bounds
, initPoints = 3
, iters.n = 2
, gsPoints = 10

)
This plot will also show in real time with parameter plotProgress = TRUE in bayesOpt()
plot(Results)
print.bayesOpt Print a bayesOpt object
Description

Print a bayesOpt object

Usage
S3 method for class 'bayesOpt'
print(x, ...)
Arguments
X Object of class bayesOpt
required to use S3 method
Value

NULL

updateGP 13

updateGP Update Gaussian Processes in a bayesOpt Object

Description

To save time, Gaussian processes are not updated after the last iteration in addIterations(). The
user can do this manually, using this function if they wish. This is not necessary to continue opti-
mization using addIterations.

Usage

updateGP(optObj, bounds = optObj$bounds, verbose =1, ...)
Arguments

optObj an object of class bayesOpt

bounds The bounds to scale the parameters within.

verbose Should the user be warned if the GP is already up to date?

passed to DiceKriging: :km()

Value

An object of class bayesOpt with updated Gaussian processes.

Examples

Create initial object
scoringFunction <- function(x) {
a <- exp(-(2-x)"2)*1.5
b <- exp(-(4-x)"2)*2
c <- exp(-(6-x)"2)*1
return(list(Score = atb+c))

3
bounds <- list(x = c(90,8))

Results <- bayesOpt(
FUN = scoringFunction
, bounds = bounds
, initPoints = 3
, iters.n = 2
, gsPoints = 10
)

At this point, the Gaussian Process has not been updated
with the most recent results. We can update it manually:
Results <- updateGP(Results)

Index

addIterations, 2
bayesOpt, 4
changeSaveFile, 8

getBestPars, 9
getLocalOptimums, 10

plot.bayesOpt, 11
print.bayesOpt, 12

updateGP, 13

14

	addIterations
	bayesOpt
	changeSaveFile
	getBestPars
	getLocalOptimums
	plot.bayesOpt
	print.bayesOpt
	updateGP
	Index

