
Introduction to the PRISMA package

Tammo Krueger

May 26, 2018

https://github.com/tammok/PRISMA

Introduction

This vignette gives you a first tour to the features of the PRISMA package. We will give an overview of
the application of the algorithm, yet, the full story is available in the papers [3, 4]. If you use the PRISMA
package in your research, please cite at least one of these references.

The PRISMA package consists essentially out of three parts:

1. Efficiently reading sally output, an extremely fast n-gram processor available at http://www.mlsec.
org/sally/

2. Testing-based feature dimension reduction

3. Optimized matrix factorization of the reduced data exploiting the replicate structure of the data

For the theory behind these parts please consult [3, 4]. We will start this walk-through with the reading
of sally data, then showing the inner structure of the resulting data object on which the replicate-aware
non-negative matrix factorization can be applied.

Loading the Data

This section serves just as a reference how to apply the processing chain to new data, to get a usable PRISMA
data set. The generated data set is already prepackaged inside the PRISMA package and can be loaded via
data(asap).

Before executing the examples please extract asap.tar.gz located in the extdata path of the PRISMA
package to find all data necessary to understand the processing chain from the raw data (asap.raw) to the
sally file (asap.sally) and the optimized file (asap.fsally). The asap.sally file can be produced as follows:

sally -c asap.cfg asap.raw asap.sally

this call generates asap.sally from the raw data found in asap.raw. To speed up the loading of the data
in R, one should apply the sallyPreprocessing.py Python script as follows:

python sallyPreprocessing.py asap.sally asap.fsally

Now the data is ready to be efficiently loaded and processed in R via loadPrismaData("asap") which
also executes the feature dimension reduction step.

The PRISMA Data Set

As an example we use the prepackages ASAP toy data set as described in [4]:

> data(asap)

> asap

PRISMA data asap

Unprocessed data: # features: 10034 # entries: 10000

Processed data: # features: 12 # entries: 24

1

https://github.com/tammok/PRISMA
http://www.mlsec.org/sally/
http://www.mlsec.org/sally/

We see that the feature reduction step worked quite well. Let’s have a look behind the scenes:

> asap$data

12 x 24 sparse Matrix of class "dgCMatrix"

rv Gecko 1.8.1.3 Mozilla Firefox 2.0.0.3 5.0 20070309 1 1 1 1 1 1 1 1 1 1 1 1 .

admin.php par action 1 1 1 1 1 1 1 1 1

show 1 1 1

s search.php 1 1 . . .

move . . 1 1

static 1 1 .

6.0 1 . 1 . 1 1 . . 1 . 1 . 1

9.20 Opera 1

delete 1 1

5.1 . 1 . 1 . . 1 1 . 1 . 1 .

cgi 1 1 1 1 1 1 1 1 1 1 . . 1

rename 1 . . 1

rv Gecko 1.8.1.3 Mozilla Firefox 2.0.0.3 5.0 20070309

admin.php par action 1 1 1 1 1 1 1

show 1

s search.php 1 1 . .

move . 1 1

static 1 1

6.0 . 1 . 1 1 . . 1 . 1 .

9.20 Opera 1 1 1 1 1 1 1 1 1 1 1

delete 1 1

5.1 1 . 1 . . 1 1 . 1 . 1

cgi 1 1 1 1 1 1 1 1 1 . .

rename . . . 1 . . 1

This shows us the reduced form of the initial data matrix in a features × documents representation, i.e. this
is a replicate-free version of it. We can see that the features partly consists of grouped tokens (for instance
admin.php par action contains 3 tokens, which always co-occurred in the data) and how theses tokens are
present in the different documents. We can see the initial tokens before the grouping and their corresponding
group assignment in the group variable:

> asap$group

rv admin.php show s search.php par Gecko

1 2 3 4 4 2 1

1.8.1.3 move static 6.0 action 9.20 Opera

1 5 6 7 2 8 8

Mozilla delete Firefox 2.0.0.3 5.0 5.1 20070309

1 9 1 1 1 10 1

cgi rename

11 12

The member variable unprocessed contains the initial data matrix before the feature selection and group-
ing step. If we want to reconstruct all replicates in the reduced feature space, we need the getDuplicateData
function:

> dim(getDuplicateData(asap))

[1] 12 10000

> dim(asap$unprocessed)

[1] 10034 10000

This will blow up the reduced matrix to the full 10.000 initial data points in the reduced feature space. To
see, how often a specific entry in the reduced data matrix was present, we can have a look at the duplicate
count:

2

> asap$duplicatecount

[1] 216 227 199 202 196 245 200 200 803 790 814 842 214 219 209 212 192 213 194

[20] 210 877 855 817 854

> sum(asap$duplicatecount)

[1] 10000

The Replicate-Aware Non-Negative Matrix Factorization (NMF)

The replicate-aware NMF is a matrix factorization method which describes the data according to a new base
vector system, i.e. each data point is described as a weighted sum of these base vectors. Thus, the base
vectors can be seen as the parts of which a document is constructed. Furthermore, the new coordinates
of a document (the base weights) can also be interpreted as a soft clustering. But before we can apply
the NMF we need to specify the inner dimension of the factorization. This could either be supplied by a
number (which should be even, if pca.init is TRUE), or a prismaDimension object generated by the fully
automatized dimension estimation method:

> asapDim = estimateDimension(asap)

> asapDim

Estimated data dimension for positive matrix factorization via simulated noise level: 8

Equipped with this object, we can now apply the NMF to the data:

> asapNMF = prismaNMF(asap, asapDim, time=60)

Error: 3771.392

Error: 3113.138

Error: 2855.863

Error: 2810.286

Error: 2765.763

Error: 2755.29

Error: 2752.505

> asapLabels = getMatrixFactorizationLabels(asapNMF)

> table(asapLabels)

asapLabels

1 2 3 4 5 6 7 8

623 607 602 660 1696 2473 817 2522

We can look at the results via plot(asapNMF) which is shown in Figure 1. We can see that the NMF extracts
a search template, then the four admin.php-action templates, a Firefox template and two static templates,
which reproduces the results in [4], Section 3.1., with added user agents as “noise”.

Interface to the tm Package

To allow the application of the replicate-aware NMF to corpora generated by the tm package [1], the PRISMA
package contains a converter function which maps a tm corpus object to a PRISMA data object. We exemplify
this procedure with an already stemmed and cleansed version of the 15 subsections of [2]:

> data(thesis)

> thesis

A corpus with 15 text documents

> thesis = corpusToPrisma(thesis, NULL, TRUE)

> thesis

PRISMA data tm-Corpus

Unprocessed data: # features: 2002 # entries: 15

Processed data: # features: 2002 # entries: 15

> thesisNMF = prismaNMF(thesis, 3, pca.init=FALSE)

Error: 1329.73

Error: 1310.481

Error: 1295.959

Error: 1295.509

3

C
om

p.
4.

po
s

C
om

p.
4.

ne
g

C
om

p.
3.

ne
g

C
om

p.
1.

ne
g

C
om

p.
2.

ne
g

C
om

p.
2.

po
s

C
om

p.
1.

po
s

C
om

p.
3.

po
s

9.20 Opera

5.1

admin.php par action

cgi

6.0

rv Gecko 1.8.1.3 Mozilla Firefox 2.0.0.3 5.0 20070309

static

rename

move

show

s search.php

delete

0 0.2 0.4 0.6
Value

0
20

40
60

Color Key
and Histogram

C
ou

nt

Figure 1: Result of the replicate-aware NMF on the asap data set.

Since we have just 15 documents, the application of the feature reduction step and the correlation analysis
suffers from too less data, which also holds true for the PCA-based initialization scheme. Thus, we ignore all
these processings and apply the NMF directly on the data with three components as a sophisticated guess.
To analyze the result we look at the top 20 words of the resulting base matrix:

> isQuantile = (t(thesisNMF$B) > apply(thesisNMF$B, 2, quantile, prob=.99))

> maxFeatures = apply(isQuantile, 1, function(r) which(r == 1))

> rownames(thesis$data)[maxFeatures[, 1]]

[1] "add" "align" "associ" "cluster" "communic" "correct"

[7] "extract" "fill" "format" "inner" "machin" "messag"

[13] "obvious" "preserv" "reflect" "return" "simul" "templat"

[19] "trace" "transit" "tri"

> rownames(thesis$data)[maxFeatures[, 2]]

[1] "behavior" "chang" "configur" "crossvalid" "drop"

[6] "fast" "figur" "follow" "lead" "learn"

[11] "lower" "observ" "optim" "overal" "procedur"

[16] "process" "relat" "shown" "speed" "statist"

[21] "use"

> rownames(thesis$data)[maxFeatures[, 3]]

[1] "addit" "applic" "approach" "attack" "base" "construct"

[7] "content" "exploit" "method" "model" "network" "normal"

[13] "protocol" "server" "similar" "simpl" "structur" "techniqu"

[19] "token" "traffic" "use"

These word stems accurately describe the contents of the three chapters of [2] which concludes the analysis
of this section.

4

References

[1] Ingo Feinerer, Kurt Hornik, and David Meyer. Text mining infrastructure in R. Journal of Statistical
Software, 25(5):1–54, March 2008.

[2] Tammo Krueger. Probabilistic Methods for Network Security. From Analysis to Response. PhD thesis,
TU Berlin, 2013. http://opus.kobv.de/tuberlin/volltexte/2013/3881/.

[3] Tammo Krueger, Hugo Gascon, Nicole Krämer, and Konrad Rieck. Learning stateful models for network
honeypots. In Proceedings of the 5th ACM workshop on Security and artificial intelligence, AISec ’12,
pages 37–48. ACM, 2012. http://doi.acm.org/10.1145/2381896.2381904.

[4] Tammo Krueger, Nicole Krämer, and Konrad Rieck. ASAP: Automatic semantics-aware analysis of
network payloads. In Christos Dimitrakakis, Aris Gkoulalas-Divanis, Aikaterini Mitrokotsa, VassiliosS.
Verykios, and Yücel Saygin, editors, Privacy and Security Issues in Data Mining and Machine Learning,
volume 6549 of Lecture Notes in Computer Science, pages 50–63. Springer Berlin Heidelberg, 2011.
http://dx.doi.org/10.1007/978-3-642-19896-0_5.

5

http://opus.kobv.de/tuberlin/volltexte/2013/3881/
http://doi.acm.org/10.1145/2381896.2381904
http://dx.doi.org/10.1007/978-3-642-19896-0_5

