
PRIMAL: An Linear Programming-based Sparse
Learning Library in R and Python

Qianli Shen*, Zichong Li∗, Yujia Xie, Tuo Zhao †

1 Introduction

Linear Programming (LP) based sparse learning methods, such as the Dantzig selector (for linear
regression) (Candes et al., 2007), sparse quantile regression (Belloni et al., 2011), sparse support
vector machines (Wang, 2013), have been widely used in machine learning for high dimensional
data analysis (Belloni et al., 2011; Hudson et al., 2009; Bandyopadhyay et al., 2010). Despite of their
popularity, their software implementations are quite limited. We describe a new library in both R

and Python – PaRametric sImplex Method for spArse Learning (PRIMAL), for the aforementioned
LP-based sparse learning methods with the following two key features: 1) It provides a highly
efficient optimization engine based on the parametric simplex method, which can efficiently solve
large scale sparse learning problems; 2) Besides the estimation procedures, it provides additional
functional modules such as data-dependent model selection and model visualization.

2 Background

Many popular sparse learning methods involve solving an optimization problem. Here we are
interested in those that can be cast into the following linear programs,

max
x

(c+λ1)T x, subject to Ax ≤ b+λ1,x ≥ 0. (1)

where A, b, and c are known variables, λ is a tuning parameter. There are several general methods
for solving Linear Programs (LP). In particular, Interior point method (Mehrotra, 1992) is proven
to solve LPs in polynomial time, however, its total computational cost is cubically dependent on
the scale of the problem, which is not scalable in high dimensions. Moreover, the computation at
every iteration cannot take the advantage of the sparsity in the underlying models to boost the
computation. The reason behind is that interior point method uses the log barrier to handle the
constraints, thus, cannot yield sparse iterates. On the other hand, simplex method has stood the

*Equal contribution.
†Qianli Shen is affiliated with Peking University. Zichong Li is affiliated with University of Science and Techonoloty

of China. Yujia Xie and Tuo Zhao are affiliated with Georgia Institute of Technology. Emails: shenqianli@pku.edu.cn,
lzc123@mail.ustc.edu.cn, {xieyujia, tourzhao}@gatech.edu

1

test of various practical problems by efficiently finding optimal solutions, though its worst-case
iteration complexity has been shown to scale exponentially with the problem scale in existing
literature.

These methods, though popular, are usually designed for solving (1) for one single tuning
parameter. This is not satisfactory, since an appropriate choice of is usually unknown. Thus, one
usually expects an algorithm to obtain multiple solutions tuned over a reasonable range of values
for λ. For each value of λ, we need to solve a linear program from scratch, and it is therefore often
very inefficient for high dimensional problems.

To overcome the above drawbacks, we adopt a variant of Simplex method — Parametric Simplex
Method (PSM) (Pang et al., 2017) as the core engine to efficiently solve LP-based sparse learning
problems. PSM parametrizes (1) using the unknown regularization factor as a ”parameter”. This
eventually yields a piecewise linear solution path for a sequence of regularization factors. PSM
relies some special rules to iteratively choose the pair of variables to swap, which algebraically
calculates the solution path during each pivoting. PSM terminates at a value of parameter, where
we have successfully solved the full solution path to the original problem. Although in the worst-
case scenario, PSM can take an exponential number of pivots to find an optimal solution path. The
results (Pang et al., 2017) suggest that the number of iterations is roughly linear in the number of
nonzero variables for large regularization factors with sparse optima. This means that the desired
sparse solutions can often be found using very few pivots.

3 Algorithm and Package Design

The PSM engine is the core optimization engine that aims to solve the LP problem with regulariza-
tion parameters efficiently. Unlike the traditional generic LP solver, the PSM engine is specially
designed for statistical methods that has a regularization parameter that requires tuning. Therefore,
the PSM engine handles the tuning process efficiently. Furthermore, in order to achieve efficient
and reliable matrices and vectors computation, we exploit Eigen library, an open-source C++
library for linear algebra.

More specifically, the PSM algorithm is briefly described as follows:

• Initialize λ = (|minj cj |, |minj bj |), which is large enough such that x = 0 is an optimal solution
to (1). Let λ∗ = λ, λmin denote the minimal regularization parameter of our interest.

• While λ∗ > λmin do

– Decrease λ until x violates the constraints, i.e., x is infeasible. Denote by λ∗ the threshold
that breaks the feasibility of x.

– Update x by swapping a nonzero variable with a zero variable as in the simplex method.
More precisely, select the variable that attains λ∗ as the entering variable, which becomes
nonzero afterwards; select the variable that first violates the constraint as the leaving
variable, which becomes zero.

As can be seen, we are essentially keeping the iterates to be the optimal solution corresponding
to different values of λ. As a result, PSM naturally takes the advantage of the regularization

2

parameter tuning and obtains the optimal solution path in one run. Note that the subproblems
involved in each iteration of the above algorithm – for determining the decreased value of λ and
for determining the update for x– both admit closed-form intermediate solutions. Also, the update
in last line only involves part of the variables and yields sparse iterates, and the computational
cost can be significantly reduced by using sparse matrix vector multiplication. Therefore, the
algorithm has a low per-iteration cost. Furthermore, although in the worst-case scenario, PSM
can take an exponential number of operations to find an optimal solution path, empirical results
suggest that the number of iterations is roughly linear in the number of nonzero variables for large
regularization factors with sparse optima. This implies that the desired sparse solution can be
found in very few iterations – roughly speaking O(s), where s is the number of nonzero entries in
the optimal solution. For sparse learning problems, s is usually much smaller than the number of
variables. As a result, the algorithm is highly efficient.

We have four basic modules in our package design: the core optimization engine using para-
metric simplex method, visualization engine, and application engine.

PSM engine. The PSM described in the previous section is implemented in a pure C/C++
fashion. The code is supported by Eigen library, which is an efficient headers only C++ linear
algebra library.

Application engine. The user interface for Dantzig selector, sparse support vector machine,
sparse compressive sensing and quantile regression is implemented. We also include the sample
code for the applications in the package.

Visualization engine. Visualization functions for visualizing solution path is implemented.

4 Examples

Now we illustrate the user interface using Danzig selector as an example.

4.1 R user Interface

The following example solves

min
β
‖β‖1 subject to ‖XT (y −Xβ)‖∞ ≤ λ (2)

for any λ.

> library(PRIMAL)

> # Generate a synthetic dataset: the design matrix and coefficient vector

> n = 100 # number of samples

> d = 250 # sample dimension

> c = 0.5 # correlation parameter

> s = 20 # support size of coefficient

> set.seed(1024)

> X = scale(matrix(rnorm(n*d),n,d)+c*rnorm(n))/sqrt(n-1)*sqrt(n)

> flag = runif(s,-1,1)

3

> beta1 <- c()

> for(i in 1:s){

+ if(flag[i]>=0) beta1[i]=rnorm(1,1,1)

+ if(flag[i]<0) beta1[i]=rnorm(1,-1,1)

+ }

> beta = c(beta1, rep(0, d-s))

> # Generate response using Gaussian noise

> noise = rnorm(n)

> Y = X%*%beta + noise

>

> # Dantzig selection solved with parametric simplex method

fit.dantzig = Dantzig_solver(X, Y, max_it = 100, lambda_threshold = 0.01)

This line will return a list containing the information of the solution. From fit.dantzig, we can
recover solutions corresponds to any regularization parameter λ.

> # Now let’s see the regularization parameters along the path

> print(fit.dantzig$lambda)

[1] 195.22461 176.80544 135.96638 116.72507 104.60908 102.70803

[7] 89.74968 82.94148 78.33078 75.14407 74.65001 64.26936

[13] 58.49683 53.85248 49.89716 49.71839 47.68773 42.22191

[19] 40.88262 40.79184 38.71504 38.71244 38.07740 37.72982

[25] 37.72246 37.51079 37.47705 37.31156 37.09234 36.65785

[31] 36.51983 35.61435 34.75857 34.47443 34.22125 34.16291

[37] 34.08827 33.72415 33.62017 33.40794 33.33360 33.10474

[43] 32.65156 32.26433 29.46930 28.98127 28.01981 27.95761

[49] 27.27683 27.01244 26.16928 26.15484 26.14264 26.05776

[55] 25.90875 25.58693 24.42879 24.39550 24.33576 24.16818

[61] 24.06451 23.96691 23.70723 23.40995 23.27554 22.48808

[67] 22.08780 21.24536 20.62978 20.43703 20.43107 20.40643

[73] 19.56953 19.39416 19.29465 18.91443 18.81399 18.41681

[79] 18.37950 18.30446 18.04614 17.93162 17.79798 17.70347

[85] 17.68071 17.66381 16.97636 16.67124 16.55067 16.41163

[91] 15.36333 15.25158 15.10068 15.06699 15.05869 14.92861

[97] 14.82495 14.39728 14.32287 14.05490

For λ larger than the largest value listed above, i.e., 195.22, the optimal solution of (2) is β = 0.
For λ smaller than 195.22 larger than lambda threshold, the optimal solution is the same as the
smallest value listed above that is larger than λ. For example, consider λ = 24, its solution is the
same as λ = 24.06 in entry 61. We can get the corresponding β by calling fit.dantzig$beta[,61],
and the corresponding value of objective function by calling fit.dantzig$value[61].

Moreover, we can visualize the regularization path by calling plot.primal(fit.dantzig). The
plots are shown in Figure 1.

4

50 100 150 200

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Regularization Path

Regularization Parameter

C
oe

ffi
ci

en
t

0 20 40 60 80 100

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Regularization Path

Iteration

C
oe

ffi
ci

en
t

0 20 40 60 80 100

50
10

0
15

0
20

0

Value of Lambda along the Path

Iteration

La
m

bd
a

Figure 1: Visualizations of the solution path.

4.2 Python User Interface

Now we use the same example to illustrate the Python user interface.

> # load packages

> import numpy as np

> from sklearn.preprocessing import scale

> import pypsm

> from pypsm import Dantzig

> # Generate the design matrix and regression coefficient vector

> n = 100 # sample number

> d = 80 # sample dimension

> c = 0.5 # correlation parameter

> s = 20 # support size of coefficient

> X = scale(np.random.randn(n,d)+c* np.tile(np.random.randn(n),[d,1]).T)/ (n*(n-1))**0.5

> beta = np.append(np.random.rand(s), np.zeros(d-s))

> # Generate response using Gaussian noise, and fit sparse linear models

> noise = np.random.randn(n)

> y = np.matmul(X,beta) + noise

> # fit the model

> solver = Dantzig(X, y)

> solver.train()

result = solver.coef()

solver.plot()

The result can be similarly obtained by calling solver.coef()[’lambda list’],
solver.coef()[’theta list’] and solver.coef()[’target list’]

5

References

Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M.-K., Chuang, R., Jaehnig, E. J., Bodenmiller, B.,
Licon, K., Copeland, W., Shales, M. et al. (2010). Rewiring of genetic networks in response to
dna damage. Science, 330 1385–1389.

Belloni, A., Chernozhukov, V. et al. (2011). ?1-penalized quantile regression in high-dimensional
sparse models. The Annals of Statistics, 39 82–130.

Candes, E., Tao, T. et al. (2007). The dantzig selector: Statistical estimation when p is much larger
than n. The annals of Statistics, 35 2313–2351.

Hudson, N. J., Reverter, A. and Dalrymple, B. P. (2009). A differential wiring analysis of expression
data correctly identifies the gene containing the causal mutation. PLoS computational biology, 5
e1000382.

Mehrotra, S. (1992). On the implementation of a primal-dual interior point method. SIAM Journal
on optimization, 2 575–601.

Pang, H., Liu, H., Vanderbei, R. J. and Zhao, T. (2017). Parametric simplex method for sparse
learning. In Advances in Neural Information Processing Systems.

Wang, L. (2013). The l1 penalized lad estimator for high dimensional linear regression. Journal of
Multivariate Analysis, 120 135–151.

6

	Introduction
	Background
	Algorithm and Package Design
	Examples
	R user Interface
	Python User Interface

