
Package ‘PKI’
January 20, 2025

Version 0.1-14

Title Public Key Infrastucture for R Based on the X.509 Standard

Author Simon Urbanek <Simon.Urbanek@r-project.org>

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>

Depends R (>= 2.9.0), base64enc

Enhances gmp

Description Public Key Infrastucture functions such as verifying certificates, RSA encrip-
tion and signing which can be used to build PKI infrastructure and perform cryptographic tasks.

License GPL-2 | GPL-3 | file LICENSE

URL http://www.rforge.net/PKI

SystemRequirements OpenSSL library and headers (openssl-dev or
similar)

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-06-15 19:40:02 UTC

Contents
ASN1 . 2
BIGNUMint . 3
oid . 4
PKI.crypt . 6
PKI.digest . 7
PKI.genpass . 8
PKI.info . 9
PKI.random . 10
PKI.sign . 10
PKI.sign.tar . 12
raw2hex . 13
RSA . 14
X509 . 16

Index 19

1

http://www.rforge.net/PKI

2 ASN1

ASN1 Functions for handling ASN.1 format (typically DER)

Description

ASN1.decode decodes ASN.1 binary format into raw format chunks tagged with class types.

ASN1.encode converts structured objects into ASN.1 binary format.

ASN1.item creates an item - basic object in structures that can be encoded using ASN1.encode.

ASN1.type extracts the class type from an ASN.1 item

Usage

ASN1.decode(what)
ASN1.encode(what)
ASN1.item(what, type)
ASN1.type(what)

Arguments

what object to decode/encode/query

type class type of the item (integer value)

Details

This is a suite of low-level tools to deal with ASN.1 (Abstract Syntax Notation One) binary formats
DER, BER and CER. The tools were written specifically to handle the various DER-encoded key
structures so it provides only a subset of the ASN.1 specification. They are used internally by the
PKI poackage.

ASN1.decode decodes the binary representation (as raw vector) into individual items. Sequences
are convered into lists, all other objects are retained in their binary form and tagged with the integer
class type - which can be obtained using ASN1.type function.

ASN1.encode expects item (or a list of items) either created using ASN1.decode or ASN1.item and
converts them into DER binary format.

The result of ASN1.encode(ASN1.decode(x)) will be x if x was in DER format.

Value

ASN1.decode returns either one item or a list.

ASN1.encode returns a raw vector in DER format.

ASN1.type returns an integer class type

ASN1.item returns an ASN.1 item object

BIGNUMint 3

Note

ASN1.encode uses a fixed buffer for encoding which currently limits the total size of the resulting
structure to 1MB.

Only definite length forms are supported. The validity of individual items is not checked.

Author(s)

Simon Urbanek

Examples

generate a small key
key <- PKI.genRSAkey(bits = 512L)

extract private and public parts in DER format
prv <- PKI.save.key(key, format="DER")
pub <- PKI.save.key(key, private=FALSE, format="DER")

parse the public key
x <- ASN1.decode(pub)
x
the second element is the actual key
as a bit string that's itself in DER
two integers - modulus and exponent
Note that this is in fact the pure PKCS#1 key format
ASN1.decode(x[[2]])

encoding it back should yield the same representation since it is DER
stopifnot(identical(ASN1.encode(x), as.raw(pub)))

BIGNUMint Functions for BIGNUM representation of arbitrarily precise integers

Description

as.BIGNUMint encodes integer in BIGNUM format as raw vector as used by ASN.1 format.

Usage

as.BIGNUMint(what, scalar = TRUE)

Arguments

what representation of an integer or a vector thereof. Currently supported formats
include "bigz" objects from the "gmp" package, integers and reals.

scalar if TRUE then the input is expected to be scalar and only the first element will be
used (zero-length vectors raise an error). Otherwise the result will be a list of all
converted elements.

4 oid

Details

The BIGNUM representation as used in ASN.1 is a big-endian encoding of variable length stored
in a raw vector. Negative numbers are stored in two-complement’s encoding, but are currently
unsupported by as.BIGNUMint.

Value

Raw vector in BIGNUM integer representation.

Note

Unless the input is of class "bigz" then 32-bit platforms only support integers up to 32-bit, 64-bit
platforms up to 53-bit (when real vectors are used).

Author(s)

Simon Urbanek

Examples

as.BIGNUMint(65537)

oid OBJECT IDENTIFIER Functions

Description

Object Identifiers (OIDs) are entities defined by international standards (ITU-T, ISO, IEC) used to
identify objects. In the PKI context they are used for example to identify encyrption algorithms.
Each root (first integer - see below) denotes the standards body governing the allocations.

OIDs consist of a hierarchy of integers with each component having a meaning in the hierar-
chy. For example, the OID of the DER encoding is defined in the ITU-T X.680 standard as
joint-iso-itu-t(2) asn1(1) ber-derived(2) distinguished-encoding(1) where the text be-
fore each integer describes its meaning in that context and the integer is the encoding of that mean-
ing. So the OID itself would be in character form "2.1.2.1" (also called the dot notation introduced
by IETF) and in R integer form c(2, 1, 2, 1). Internally, OIDs are represented in their ASN.1 en-
coding as raw vectors which is the way they are typically used in files or communication payload.

The following functions are used to operate on OIDs.

oid creates an OID.

Coercion methods as.integer and as.character convert the OID into its numeric and textural
form respectively. as.oid is a generic for convering objects into OIDs and is implemented for at
least the above cases.

is.oid returns TRUE if the object is an OID.

oid 5

Usage

oid(x)

as.oid(x, ...)
Default S3 method:
as.oid(x, ...)
is.oid(x)

S3 method for class 'oid'
Ops(e1, e2)
S3 method for class 'oid'
print(x, ...)

S3 method for class 'oid'
as.character(x, ...)
S3 method for class 'oid'
as.integer(x, ...)

Arguments

x object to covert/create/check

e1 left-hand side argument for binary operators

e2 right-hand side arguemnt for binary operators

... further arguments (currently unused)

Details

The only allowed oparators on OIDs are == and != which return TRUE or FALSE.

The oid(x) constructor (and also the as.oid default method) support following types: scalar string
(expected to be in dot-notation), integer vector, numeric vector (it is coerced to integer vector im-
plicitly), raw vector (must be ASN.1 encoding of the OID).

The S3 class of OID objects is "oid". It consists of a raw vector repesenting the ASN.1 encoded
OID (without the type specifier). An additional attribute "type" is set to 6L for compatiblity with
ASN1.encode.

Author(s)

Simon Urbanek

See Also

ASN1.encode

Examples

RSA algorithm OID:
iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-1(1) rsaEncryption(1)

6 PKI.crypt

o <- oid("1.2.840.113549.1.1.1")
as.raw(o)
as.integer(o)
as.character(o)
as.oid(as.integer(o)) == o
is.oid(o)
(a <- ASN1.encode(o))
as.oid(ASN1.decode(a)) == o

PKI.crypt PKI encryption/decryption functions

Description

PKI.encrypt encrypts a raw vector

PKI.decrypt decrypts a raw vector

Usage

PKI.encrypt(what, key, cipher = NULL, iv = NULL)
PKI.decrypt(what, key, cipher = NULL, iv = NULL)

Arguments

what raw vector to encrypt/decrypt. It must not exceed the key size minus padding
key key to use for encryption/decryption
cipher cipher to use for encryption/decryption
iv initialization vector for ciphers that use it (e.g., CBC). NULL corresponds to all-

zeroes IV, otherwise must be either a string or a raw vector with sufficiently
many bytes to match the IV length for the cipher.

Value

Raw vector (encrypted/decrypted)

Note

The cipher is optional for key objects that already contain the cipher information such as RSA keys
(in fact it is ignored in that case).

Supported symmetric ciphers are AES-128, AES-256 and BF (blowfish). Each cipher can be used
in CBC (default), ECB or OFB modes which are specified as suffix, so "aes256ofb" would specify
AES-256 in OFB mode. Case and non-alphanumeric characters are ignored, so the same could be
specified as "AES-256-OFB". PKCS padding is used to fill up to the block size. Analogously, PKCS
padding is expected when decoding.

Note that the payload for RSA encryption should be very small since it must fit into the key size
including padding. For example, 1024-bit key can only encrypt 87 bytes, while 2048-bit key can
encrypt 215 bytes. Therefore a typical use is to use RSA to transfer a symmeric key to the peer and
subsequently use symmetric ciphers like AES for encryption of larger amounts of data.

PKI.digest 7

Author(s)

Simon Urbanek

See Also

PKI.genRSAkey, PKI.pubkey

Examples

key <- PKI.genRSAkey(2048)
x <- charToRaw("Hello, world!")
e <- PKI.encrypt(x, key)
y <- PKI.decrypt(e, key)
stopifnot(identical(x, y))
print(rawToChar(y))

AES symmetric - use SHA256 to support arbitrarily long key strings
key <- PKI.digest(charToRaw("hello"), "SHA256")
ae <- PKI.encrypt(x, key, "aes256")
ae
ad <- PKI.decrypt(ae, key, "aes256")
stopifnot(identical(x, ad))

PKI.digest Compute digest sum based on SHA1, SHA256 or MD5 hash functions

Description

PKI.digest computes digsest sum based on the hash function specified

Usage

PKI.digest(what, hash = c("SHA1", "SHA256", "MD5"))

Arguments

what raw vector of bytes to digest

hash type of the hash function. Note that "MD5" should not be used for cryptographic
purposes as it is not secure

Value

Raw vector containg the hash

Author(s)

Simon Urbanek

8 PKI.genpass

See Also

PKI.sign

Examples

PKI.digest(as.raw(1:10))

PKI.genpass Generate cryptographically strong pseudo-random password.

Description

PKI.genpass generates n cryptographically strong pseudo-random password by using a given set
of allowed characters.

Usage

PKI.genpass(n=15, set=c(alphanum, ".", "/"), block=5, sep="-")

Arguments

n positive integer, number of random elements in the password

set character vector, set of characters to use in the password, ideally its length
should be a power of 2 and must be at most 256. Internal variable alphanum
is equivalent to c(LETTERS, letters, 0:9).

block non-negative integer, number of character blocks in the password or 0 if no
separated blocks are desired.

sep string, separator between blocks (only used if 0 < blocks < n).

Details

PKI.genpass generates a password based on a set of allowable characters by subsetting the set with
bytes generated using PKI.random.

If block is >0 and <n then blocks of block characters are separated by the separator string sep.
This is typically used to guarantee at least one special character in the password. The default results
in a 90-bit random password of the form XXXXX-XXXXX-XXXXX.

Value

String, generated password.

Note

This is just a utility front-end to PKI.random(n) to subset set modulo its length. If the set does
not have a length which is a power of 2 then a warning is issued and the leading elements are more
likely to be used, reducing the password strength.

PKI.info 9

Author(s)

Simon Urbanek

Examples

PKI.genpass()

PKI.info Retrieve PKI back-end information

Description

PKI.info returns information about the engine which is providing the PKI functionality.

Usage

PKI.info()

Value

Named list:

engine string, name of the engine, currently either "openssl" or "libressl"

version numeric, version of the engine as a real number in the form major.minor

description string, description of the engine, its version and any futher information that the
engine may provide

Note

This function should be treated as informational only. The return value is subject to change, mainly
we may extend it to possibly supply information on available ciphers etc.

Older versions of OpenSSL did not provide functional API to retrieve version inforation, so versions
< 1.1 may not reflect the true version, but rather the values from the headers at compile time which
may not be the same as the loaded library at run-time.

Author(s)

Simon Urbanek

Examples

str(PKI.info())

10 PKI.sign

PKI.random Generate cryptographically strong pseudo-random bytes.

Description

PKI.random generates n cryptographically strong pseudo-random bytes.

Usage

PKI.random(n)

Arguments

n non-negative integer, number of bytes to generate

Details

PKI.random is the preferred way to generate cryptographically strong random content that can be
used as keys, seeds etc. Not to be confused with random number generators in R, it is entirely
separate for cryptographics purposes.

Value

Raw vector of n cryptographically strong pseudo-random bytes.

Author(s)

Simon Urbanek

Examples

PKI.random(10)

PKI.sign PKI: sign content or verify a signature

Description

PKI.sign signs content using RSA with the specified hash function

PKI.verify verifies a signature of RSA-signed content

Usage

PKI.sign(what, key, hash = c("SHA1", "SHA256", "MD5"), digest)
PKI.verify(what, signature, key, hash = c("SHA1", "SHA256", "MD5"), digest)

PKI.sign 11

Arguments

what raw vector: content to sign

key RSA private key to use for signing; RSA public key or certificate to use for
verification.

hash hash function to use. "MD5" should not be used unless absolutely needed for
compatibility as it is less secure.

digest raw vector: it is possible to supply the digest of the content directly instead of
specifying what.

signature raw vector: signature

Details

Objects are signed by computing a hash function digest (typically using SHA1 hash function) and
then signing the digest with a RSA key. Verification is done by computing the digest and then
comparing the signature to the digest. Private key is needed for signing whereas public key is
needed for verification.

Both functions call PKI.digest on what if digest is not specified.

Value

PKI.sign signature (raw vector)

PKI.verify logical: TRUE if the digest and signature match, FALSE otherwise

Author(s)

Simon Urbanek

See Also

PKI.pubkey, PKI.genRSAkey, PKI.digest

Examples

key <- PKI.genRSAkey(2048)
x <- charToRaw("My message to sign")
sig <- PKI.sign(x, key)
stopifnot(PKI.verify(x, sig, key))

12 PKI.sign.tar

PKI.sign.tar Functions for signing and verification of tar files

Description

PKI.sign.tar appends a signature to a tar file

PKI.verify.tar verifies the signature in a tar file

Usage

PKI.sign.tar(tarfile, key, certificate, output = tarfile)
PKI.verify.tar(tarfile, key, silent = FALSE, enforce.cert = FALSE)

Arguments

tarfile string, file name of the file to sign

key PKI.sign.tar: private key to use for signing; PKI.verify.tar: optional, pub-
lic key to use for verification

certificate optional, certificate to embed in the signature with the public key matching key.
If not present the signature will only contain the public key.

output file name, connection or raw vector determining how to store the signed tar file

silent if TRUE then no warning are generatod, otherwise a warning is issues for failed
verification describing the reason for failure

enforce.cert if TRUE then a certificate is required in the signature. It can be also set to a valid
certificate in which case the public key of the certificate in the signature must
also match the public key in the supplied certificate.

Details

PKI.tar.sign adds extra entry .signature with the signature based on the contents of the tarfile.
Note that any existing signatures are retained. key is a mandatory private key used to sign the con-
tent. certificate is optional but if present, it will be embedded in the signature.

The tarfile can be in compressed form (gzip, bzip2 or xz) in which case it is decompressed
internally before the signature is applied. If output is a file name then the same compression is
applied to the output, otherwise the output is uncompressed.

PKI.verify.tar retrieves the last .signature entry from the tar file (if tarfile is a file name
then the same compression auto-detection is applied as above) and verifies the signature against
either the supplied (public) key or against the key or certificate stored in the signature. The result is
TRUE or FALSE except when enforce.cert is set. In that case the result is the certificate contained
in the signature if the validation succeeded (and thus it can be further verified against a chain of
trust), otherwise FALSE.

raw2hex 13

Note

The signature format is ASN.1 DER encoded as follows:

SEQ(signature BITSTRING, subjectPublicKeyInfo, Certificate[opt])

The subjectPublicKeyInfo can be NULL in which case the certificate must be present (in X.509
DER format).

The signature is appended as tar entry named .signature. However, terminating blocks are not
removed from the file, so the signature is placed after the EOF blocks and thus doesn’t affect ex-
traction.

Author(s)

Simon Urbanek

raw2hex Convert raw vector to string hex representation

Description

raw2hex convers a raw vector into hexadecimal representation

Usage

raw2hex(what, sep, upper = FALSE)

Arguments

what raw vector

sep optional separator string

upper logical, if TRUE then upper case letters are used, otherwise any letters will be
lower case.

Details

If sep is omitted or NULL then the resulting character vector will have as many elements as the raw
vector. Otherwise the elements are concatenated using the specified separator into one character
string. This is much more efficient than using paste(raw2hex(x), collapse=sep), but has the
same effect.

Value

Character vector with the hexadecimal representation of the raw vector.

Author(s)

Simon Urbanek

14 RSA

Examples

raw2hex(PKI.digest(raw(), "SHA1"), "")
raw2hex(PKI.digest(raw(), "MD5"), ":")

this is jsut a performance comparison and a test that
raw2hex can handle long strings
x <- as.raw(runif(1e5) * 255.9)
system.time(h1 <- raw2hex(x, " "))
system.time(h2 <- paste(raw2hex(x), collapse=" "))
stopifnot(identical(h1, h2))

RSA PKI functions handling RSA keys

Description

PKI.load.key loads an RSA key in PKCS#1/8 PEM or DER format.

PKI.save.key creates a PEM or DER representation of a RSA key.

PKI.genRSAkey generates RSA public/private key pair.

PKI.mkRSApubkey creates a RSA public key with the supplied modulus and exponent.

PKI.load.OpenSSH.pubkey loads public key in OpenSSH format (as used in .ssh/authorized_keys
file)

Usage

PKI.load.key(what, format = c("PEM", "DER"), private, file, password="")
PKI.save.key(key, format = c("PEM", "DER"), private, target)
PKI.genRSAkey(bits = 2048L)
PKI.mkRSApubkey(modulus, exponent=65537L, format = c("DER", "PEM", "key"))
PKI.load.OpenSSH.pubkey(what, first=TRUE, format = c("DER", "PEM", "key"))

Arguments

what string, raw vector or connection to load the key from

key RSA key object

format format - PEM is ASCII (essentially base64-encoded DER with header/footer),
DER is binary and key means an acutal key object

private logical, whether to use the private key (TRUE), public key (FALSE) or whichever
is available (NA or missing).

file filename to load the key from - what and file are mutually exclusive

password string, used only if what is an encrypted private key as the password to decrypt
the key

target optional connection or a file name to store the result in. If missing, the result
is just returned form the function as either a character vector (PEM) or a raw
vector (DER).

RSA 15

bits size of the generated key in bits. Must be 2 ^ n with integer n > 8.

modulus modulus either as a raw vector (see as.BIGNUMint) or bigz object (from gmp
package) or an integer.

exponent exponent either as a raw vector (see as.BIGNUMint) or bigz object (from gmp
package) or an integer.

first logical, if TRUE only the first key will be used, otherwise the result is a list of
keys.

Value

PKI.load.key: private or public key object

PKI.save.key: raw vector (DER format) or character vector (PEM format).

PKI.genRSAkey: private + public key object

PKI.mkRSApubkey, PKI.load.OpenSSH.pubkey: raw vector (DER format) or character vector
(PEM format) or a "public.key" object.

Note

The output format for private keys in PEM is PKCS#1, but for public keys it is X.509 SubjectPub-
licKeyInfo (certificate public key). This is consistent with OpenSSL RSA command line tool which
uses the same convention.

PKI.load.key can auto-detect the contained format based on the header if ‘PEM‘ format is used. In
that case it supports PKCS#1 (naked RSA key), PKCS#8 (wrapped key with identifier - for public
keys X.509 SubjectPublicKeyInfo) and encrypted private key in PKCS#8 (password must be passed
to decrypt). ‘DER‘ format provides no way to define the type so ‘private‘ cannot be ‘NA‘ and only
the default format (PKCS#1 for private keys and X.509 SubjectPublicKeyInfo for public keys) is
supported.

The OpenSSH format is one line beginning with "ssh-rsa ". SSH2 PEM public keys (rfc4716) are
supported in PKI.load.key and the binary payload is the same as the OpenSSH, only with different
wrapping.

Author(s)

Simon Urbanek

See Also

PKI.encrypt, PKI.decrypt, PKI.pubkey

Examples

generate 2048-bit RSA key
key <- PKI.genRSAkey(bits = 2048L)

extract private and public parts as PEM
priv.pem <- PKI.save.key(key)
pub.pem <- PKI.save.key(key, private=FALSE)
load back the public key separately

16 X509

pub.k <- PKI.load.key(pub.pem)

encrypt with the public key
x <- PKI.encrypt(charToRaw("Hello, world!"), pub.k)
decrypt with private key
rawToChar(PKI.decrypt(x, key))

compute SHA1 hash (fingerprint) of the public key
PKI.digest(PKI.save.key(key, "DER", private=FALSE))

convert OpenSSH public key to PEM format
(the example is split into multiple lines just
so it is readable in the documentation, in reality you can
simply use the full line from is_rsa.pub without gsub)
PKI.load.OpenSSH.pubkey(gsub("\n","",

"ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAuvOXqfZ3pJeWeqyQOIXZwmg
M1RBqPUmVx3XgntpA+YtOZjKfuoJSpg3LhBuI/wXx8L2QZXNFibvX4qX2qoYsb
Hvkz2uonA3F7HRhCR/BJURR5nT135znVqALZo328v86HDsVWYR2/JzY1X8GI2R
2iKUMGXF0hVuRphdwLB735CU= foo@mycomputer"), format="PEM")

X509 Public Key Instraftructure (X509) functions

Description

PKI.load.cert creates a certificate object from a string, connection or file.

PKI.verifyCA verifies a certificate against a given chain of trust.

PKI.pubkey extracts public key from a certificate.

PKI.get.subject extracts the subject name from the certificate.

PKI.get.cert.info decodes information from the certificate.

Usage

PKI.load.cert(what, format = c("PEM", "DER"), file)
PKI.verifyCA(certificate, ca, default = FALSE, partial = FALSE)
PKI.pubkey(certificate)
PKI.get.subject(certificate)
PKI.get.cert.info(certificate)

Arguments

what string, raw vector or connection to load the certificate from

format format used to encode the certificate

file filename to load the certificate from - what and file are mutually exclusive

certificate a certificate object (as returned by PKI.load.cert)

ca a certificate object of the Certificate Authority (CA) or a list of such objects if a
chain of certificates is involved

X509 17

default logical, if TRUE then root CAs known to OpenSSL will be added to the trust
store. In that case ca can also be NULL if the certificate is directly signed by the
root CA (very uncommon).

partial logical, if TRUE then the CAs listed in ca are trusted even if they are neither root
nor self-signed CAs.

Details

PKI.verifyCA is used to verify the validity of a certificate by following a chain of trust. In the
most simple case the certificate was issued by a certificate authority (CA) directly, which has a
self-signed certificate. This is typically the case when you (or your organization) have created your
own CA for internal use. In that case you only need to supply that CA’s certificate to ca and that’s
it. It is also possible that your self-signed CA issued an intermediate certificate - if that is the case
then pass a list of both certificates (order doesn’t matter) to ca.

Another use case is that you have a certificate which has been issued by publicly trusted CA - this
is commonly the case with SSL certificates used by web servers. In that case, the chain doesn’t
end with an internal self-signed certificate, but instead it will end with a publicly known root CA.
OpenSSL manages a list of such trusted CAs and you can check against them with default=TRUE.
However, in most cases your certificate won’t be issued directly by a root CA, but by an intermetiate
authority so you have to pass the intermediate certificate(s) in the ca argument.

Finally, it is sometimes possible that the default list of trusted certificates does not include the root
CA that you need. If that is the case, and you still want to trust that chain, you can set partial=TRUE
and then PKI.verifyCA will trust the certificates provided in ca unconditinally, even if they don’t
lead to a trusted root or are not self-signed. Note, however, that this is the least secure option and
you should only use it if the certificates are supplied by you and not the user. If you want to support
user-supplied intermediate certificates then you can use PKI.verifyCA first to verify the integrity of
the user-supplied chain with partial=TRUE and then verify just the intermediate certificate against
your trusted certificate. That way you won’t trust the intermediate certificate inadvertently.

Value

PKI.load.cert: a certificate object

PKI.verifyCA: TRUE is the certificate can be trusted, FALSE otherwise

PKI.pubkey: public key object

PKI.get.subject: string containing the subject information in one-line RFC2253 format but in
UTF8 encoding instead of MBS escapes. NOTE: this is experimantal, we may choose to parse the
contents and return it in native R form as a named vector instead.

Author(s)

Simon Urbanek

Examples

(ca <- PKI.load.cert(file=system.file("certs", "RForge-ca.crt", package="PKI")))
(my.cert <- PKI.load.cert(readLines(system.file("certs", "demo.crt", package="PKI"))))
PKI.verifyCA(my.cert, ca)
PKI.pubkey(my.cert)

18 X509

PKI.get.subject(my.cert)
PKI.get.cert.info(my.cert)

Index

∗ interface
PKI.info, 9

∗ manip
ASN1, 2
BIGNUMint, 3
oid, 4
PKI.crypt, 6
PKI.digest, 7
PKI.genpass, 8
PKI.random, 10
PKI.sign, 10
PKI.sign.tar, 12
raw2hex, 13
RSA, 14
X509, 16

as.BIGNUMint, 15
as.BIGNUMint (BIGNUMint), 3
as.character.oid (oid), 4
as.integer.oid (oid), 4
as.oid (oid), 4
ASN1, 2
ASN1.encode, 5

BIGNUMint, 3

is.oid (oid), 4

oid, 4
Ops.oid (oid), 4

PKI.crypt, 6
PKI.decrypt, 15
PKI.decrypt (PKI.crypt), 6
PKI.digest, 7, 11
PKI.encrypt, 15
PKI.encrypt (PKI.crypt), 6
PKI.genpass, 8
PKI.genRSAkey, 7, 11
PKI.genRSAkey (RSA), 14
PKI.get.cert.info (X509), 16

PKI.get.subject (X509), 16
PKI.info, 9
PKI.load.cert (X509), 16
PKI.load.key (RSA), 14
PKI.load.OpenSSH.pubkey (RSA), 14
PKI.mkRSApubkey (RSA), 14
PKI.pubkey, 7, 11, 15
PKI.pubkey (X509), 16
PKI.random, 8, 10
PKI.save.key (RSA), 14
PKI.sign, 8, 10
PKI.sign.tar, 12
PKI.verify (PKI.sign), 10
PKI.verify.tar (PKI.sign.tar), 12
PKI.verifyCA (X509), 16
print.oid (oid), 4

raw2hex, 13
RSA, 14

X509, 16

19

	ASN1
	BIGNUMint
	oid
	PKI.crypt
	PKI.digest
	PKI.genpass
	PKI.info
	PKI.random
	PKI.sign
	PKI.sign.tar
	raw2hex
	RSA
	X509
	Index

