Finding the Number of Principal Components

Min Wang!, Steven M. Kornblau?, and Kevin R. Coombes?

"Mathematical Biosciences Institute, The Ohio State University

2Dept. of Leukemia, The University of Texas MD Anderson Cancer Center

3Dept. of Biomedical Informatics, The Ohio State University

April 7, 2025

Contents
1 Getting Started

2 Testing on Unstructured Data
2.1 Bartlett’s Test
2.2 Randomization-Based Methods
2.3 Broken-Stick

2.4 Auer-Gervini,

3 Testing on Data with Structure
3.1 Bartlett’s Test
3.2 Randomization-Based Methods
3.3 Broken-Stick
3.4 Auer-Gervini e e e

4 References

= W w NN

00 00 ~I -1 =

1 Getting Started

In this section, we describe how to select significant number of PCs using the PCDimen-
sion R package. The latest version of the package is always available from the R-Forge
webpage (http://r-forge.r-project.org/R/?group_id=1900); the latest stable version
can be found on CRAN. We illustrate the methods by exploring a small simulated data set.
First, we load all of the R library packages that we need for this analysis. Note that PCDi-
mension implements the Broken-Stick model, the randomization-based procedure of ter
Brack [1,2], and the Auer-Gervini model [3], while nFactors (developed by Raiche and
Magis) is used to run Bartlett’s test and its variants.

> library(PCDimension)
> library(nFactors) # implements Bartlett's test
> library(MASS) # for mvrnorm to simulate data

2 Testing on Unstructured Data

Next, we simulate an unstructured data set with random noise. That is, the variation of
the data is isotropic and the number of significant PCs is 0. The data is generated via the
command:

> set.seed(12345)

> NC <- 15

> NS <- 200

> ranData <- matrix(rnorm(NS*NC, 6), ncol=NC)

2.1 Bartlett’s Test

Now, we apply Bartlett’s test to the simulated data. The required input includes the raw
data and the number of subjects (rows).

> nBartlett(data.frame(ranData), nrow(ranData))

bartlett anderson lawley
15 15 0

The original version of Bartlett’s test, and the Anderson variant, fail to return the correct
number of components. The Lawley variant does yield the correct value, 0.

2.2 Randomization-Based Methods

The PCDimension package implements both of the randomization-based statistics that
were identified as successful in a previous study [4]. The number of permutations (default,
B = 1000) and the significance level (default, a = 0.05) are optional input arguments in
addition to the required data set. The estimated number of PCs is the last point at which
the p-value of the statistic of interest greater than the observed one is at least the threshold
significance level.

> rndLambdaF (ranData) # input argument is data

rndLambda rndF
0] 0

The randomization-based procedure successfully recovers the true number of PCs.

2.3 Broken-Stick

The PCDimension package also implements the Broken-Stick model. Both this model and
the Auer-Gervini model require the eigenvalues from the singular value decomposition of
the data matrix used to compute the principal components. We compute the decomposition
using the SamplePCA function from the ClassDiscovery package, and then extract the
variances.

> spca <- SamplePCA(t (ranData))
> lambda <- spca@variances[1:(NC-1)]
> bsDimension (lambda)

(11 0

In the Broken-Stick model, the individual percentages of variance of the components are
compared with the values expected from the “broken stick” distribution. The two distri-
butions are compared element-by-element, and first value d + 1 where the expected value
is larger than the observed value determines the dimension. The Broken-Stick model also
correctly finds that there are zero significant PCs.

Note: In our implementation of tbhe bsDimension function, we add an extra parameter
(FUZZ, with default value 0.005) for this comparison to deal with numerical errors in the
estimates of the eigenvalues.

2.4 Auer-Gervini

We now use the SamplePCA object to construct an Auer-Gervini object.

> ag.obj <- AuerGervini(spca)
> agDimension(ag.obj)

[11 ©

The agDimension function takes an optional argument, agfun that specifies the method used
to automate the computation of the number of PCs. The default value uses the TwiceMean
method, which correctly concludes that there are zero significant PCs. We can also compare
the results of multiple algorithms to automate the procedure.

> f <- makeAgCpmFun("Exponential")
> agfuns <- list(twice=agDimTwiceMean, specc=agDimSpectral,

+ km=agDimKmeans, km3=agDimKmeans3,
+ tt=agDimTtest, tt2=agDimTtest2,
+ cpt=agDimCPT, cpm=f)

> compareAgDimMethods (ag.obj, agfuns) # compare the list of all criteria

twice specc km km3 tt tt2 cpt cpm
0 0 0 0 1 0 0 0

Overall, the Auer-Gervini model does an excellent job in selecting the actual number of
components since 7 criteria out of 8 return 0 while only the “Ttest” procedure yields 1. If
the majority rule is applied, that is, the estimated number of PCs is the one selected in
more than 4 criteria in Auer-Gervini model, then we will definitely have 0 as the estimated
number of components.

To get a more comprehensive understanding of the Broken-Stick method and the Auer-
Gervini model, we use the command to generate the plots of these two models in Figures 1
and 2:

> bs <- brokenStick(1:NC, NC)
> bs0 <- brokenStick(1:(NC-1), (NC-1))

Figure 1 shows the broken stick distributions and the relative proportions of the variation
that are explained by all the components in the simulated data set. The blue dotted line
reprensents the broken stick distributions under the condition that p equals the number

4

> pts <- screeplot(spca, ylim=c(0, 0.2))
> lines(pts, bs, type='b', col='blue', lwd=2, pch=16)
> lines(pts[-NC], bs0O, type='b', col='red', 1lwd=2, pch=16)

0.10 0.15 0.20
l l |
)

0.05
l

0.00
l
|
|
|
|
|
|
|
|
|
|

Figure 1: Screeplot of the data and the Broken-Stick model.

> plot(ag.obj, agfuns)

Bayesian Sensitivity Analysis

12 14
|

10

Number of Components

I I I I I
0.00 0.05 0.10 0.15 0.20

Prior Theta

Figure 2: Auer-Gervini step function relating the prior hyperparameter 6 to the maximum
posterior estimate of the number K of significant principal components.

of features, while the red one means the broken stick distributions after removing the 0
eigenvalue with p equating with the number of features minus one. And there is almost
no difference after removing the effect of eigenvalue 0. The grey rectangles are the relative
proportions of the variation explained by all PCs. This figure provides a clear illustration
on how the relative proportions are compared with the broken stick distributions and how
the estimated number of PCs is chosen from the Broken-Stick model. Figure 2 illustrates
how the Auer-Gervini model works. For the simulated data set, there are NC = 15 features,
so the possible models M, range from Mg to My4. The values d = 0,3,4,6,7,8,11,12,13
and 14 should be retained since the step functions are flat on those vertical coordinates.
From the plot, we can see that the highest dimension d for which the step is significantly
large is at d = 0. So M, is a reasonable model.

3 Testing on Data with Structure

Now we simulate another dataset, with two groups of correlated samples.

mu <- rep(0, 15)

sigma <- matrix(0, 15, 15)
sigma[1:8, 1:8] <- 0.7
sigma[9:15, 9:15] <- 0.3
diag(sigma) <- 1

struct <- mvrnorm(200, mu, sigma)

vV V.V Vv Vv VvV

3.1 Bartlett’s Test

As before, we start by applying Bartlett’s test to the simulated data.

> nBartlett(data.frame(struct), nrow(struct))

bartlett anderson lawley
8 8 8

All three variants grossly overestimate the dimension.

3.2 Randomization-Based Methods

Next, we apply ter Braak’s randomization procedures. Here we again use the defaulkt values
of the parametes, but include them explicitly to illustrate the function.

7

> rndLambdaF (struct, B = 1000, alpha = 0.05) # input argument is data

rndLambda rndF
2 9

The randomization-based procedure rndLambda successfully recovers the true number of PCs,
but the rndF procedure overestimates it. These results are consistent with a larger set of
simulations that we have performed..

3.3 Broken-Stick

Next, we apply the broken-stick model. As before, we first compute the singular value
decomposition using the SamplePCA function from the ClassDiscovery package.

> spca <- SamplePCA(t(struct))

> lambda <- spca@variances[1:(NC-1)]
> bsDimension(lambda)

(1] 2

The scree-plot (Figure 3) explains how the broken-stick model gets the correct answer.

> bs <- brokenStick(1:NC, NC)
> bs0 <- brokenStick(1:(NC-1), (NC-1))

3.4 Auer-Gervini
We now use the SamplePCA object to construct an Auer-Gervini object.

> ag.obj <- AuerGervini(spca)
> agDimension(ag.obj)

(1] 2

The agDimension function takes an optional argument, agfun that specifies the method used
to automate the computation of the number of PCs. The default value uses the TwiceMean
method, which correctly concludes that there are zero significant PCs. We can also compare
the results of multiple algorithms to automate the procedure.

> pts <- screeplot(spca)
> lines(pts, bs, type='b', col='blue', lwd=2, pch=16)
> lines(pts[-NC], bs0O, type='b', col='red', 1lwd=2, pch=16)

\.
3 - N
o | __DDDDDG\i§é§ﬁm-E

Figure 3: Screeplot of the structured data and the Broken-Stick model.

> f <- makeAgCpmFun ("Exponential')
> agfuns <- list(twice=agDimTwiceMean, specc=agDimSpectral,

+ km=agDimKmeans, km3=agDimKmeans3,
+ tt=agDimTtest, tt2=agDimTtest2,
+ cpt=agDimCPT, cpm=f)

> compareAgDimMethods (ag.obj, agfuns) # compare the list of all criteria

twice specc km km3 tt tt2 cpt cpm
2 2 2 2 3 2 1 2

Again, most of the criteria used to automate the Auer-Gervni method get te right answer.
Two of them (Ttest and CPM), however, grossly overestimate it. Figure 4 shows the Auer-
Gervini plot.

10

> plot(ag.obj, agfuns)

Bayesian Sensitivity Analysis

12

10

Number of Components

Prior Theta

Figure 4: Auer-Gervini step function relating the prior hyperparameter 6 to the maximum
posterior estimate of the number K of significant principal components in the example with
structured data.

11

4 References

[1] ter Braak CFJ. CANOCO - a Fortran program for canonical community ordination by
[partial] [detrended] [canonical] correspondence analysis, principal component analysis and
redundancy analysis (version 2.1). Agricultural Mathematics Group, Report LWA-88-02,
Wageningen, 1988.

[2] ter Braak CFJ. Update notes: CANOCO (version 8.1). Agricultural Mathematics Group,
Wageningen, 1990.

[3] Auer P and Gervini D. Choosing principal components: A new graphical method based
on Bayesian model selection. Communications in Statistics - Simulation and Computation
2008; 37: 962-977.

[4] Peres-Neto PR, Jackson DA and Somers KM. How many principal components? Stopping
rules for determining the number of non-trivial axes revisited. Computational Statistics and
Data Analysis 2005; 49: 974-997.

12

