Package 'PBD'

January 20, 2025

Type Package Title Protracted Birth-Death Model of Diversification Version 1.4 Date 2017-5-4 **Depends** R (>= 3.0) Imports deSolve, ade4, ape, DDD, phytools, graphics, stats, utils Author Rampal S. Etienne Maintainer Rampal S. Etienne <r.s.etienne@rug.nl> Description Conducts maximum likelihood analysis and simulation of the protracted birth-death model of diversification. See Etienne, R.S. & J. Rosindell 2012 <doi:10.1093/sysbio/syr091>; Lambert, A., H. Morlon & R.S. Etienne 2014, <doi:10.1007/s00285-014-0767-x>; Etienne, R.S., H. Morlon & A. Lambert 2014, <doi:10.1111/evo.12433>. License GPL-2 Suggests knitr, rmarkdown VignetteBuilder knitr RoxygenNote 5.0.1 NeedsCompilation no **Repository** CRAN

Date/Publication 2017-05-04 16:32:06 UTC

Contents

PBD-package
pbd_bootstrap
pbd_brts_density
pbd_durspec_cumdensity
pbd_durspec_density
pbd_durspec_mean
pbd_durspec_mode
pbd_durspec_moment

PBD-package

26

pbd_durspec_quantile	12
pbd_durspec_var	13
pbd_loglik	14
pbd_LR	16
pbd_ML	19
pbd_sim	22
pbd_sim_cpp	23

Index

PBD-package

Protracted Birth-Death Model of Diversification

Description

This package computes the (maximum) likelihood of the protracted speciation model for a given set of branching times This package is a likelihood-based statistical package to estimate parameters under the protracted speciation model.

First version: 0.8 New in version 0.9 - Bug fix for stem age

New in version 0.91

- Reports loglik = -Inf on an error in the deSolve package (function ode)

New in version 0.92

- Correcting order of parameters of pbd_sim

New in version 0.93

- pbd_sim produces a tree, a matrix containing all events in the simulation, and a tree with one sample per species.

New in version 1.0

- Conditioning is also possible on a range of values of the number of species.

New in version 1.1

- Simulation of the protracted speciation tree has more features.

New in version 1.2

- Optimization can make use of subplex (default) and simplex (older versions).

New in version 1.3

- Contains a function to carry out a bootstrap likelihood ratio test.

- Vignette and test added.

- Reports an error if exteq = TRUE and initparsopt contains 4 parameters.

- Option to limit a simulation to a certain maximum number of species; if exceeded, the simulation is ignored.

New in version 1.4:

- Includes all special cases in pbd_durspec_mean

- Fixes a bug in conditioning on a range of values of the number of species

Details

Package:	PBD
Type:	Package
Version:	1.4
Date:	2017-5-4
License:	GPL-2

pbd_loglik computes the likelihood of the protracted birth-death model of diversification, given a set of parameters and a data set of phylogenetic branching times.

pbd_ML finds the parameters that maximizes the likelihood computed by pbd_loglik.

pbd_bootstrap performs a maximum likelihood analysis and simulates with the maximum likelihood parameters. The ML parameters of the simulated data sets are then estimated, providing an uncertainty distribution for the original ML estimate on the original data.

Author(s)

Rampal S. Etienne Maintainer: Rampal S. Etienne <r.s.etienne@rug.nl>

References

- Etienne, R.S. & J. Rosindell 2012. Systematic Biology 61: 204-213.

- Lambert, A., H. Morlon & R.S. Etienne 2014. Journal of Mathmematical Biology 70: 367-397. doi:10.1007/s00285-014-0767-x

- Etienne, R.S., H. Morlon & A. Lambert 2014. Evolution 68: 2430-2440, doi:10.1111/evo.12433

. - Etienne, R.S., A.L. Pigot & A.B. Phillimore 2016. Methods in Ecology & Evolution 7: 1092-1099, doi: 10.1111/2041-210X.12565

See Also

DDD

pbd_bootstrap	Bootstrap analysis under protracted birth-death model of diversifica-
	tion

Description

Likelihood maximization for protracted birth-death model of diversification followed by simulations of the model using the maximum likelihood parameter estimates to compute an estimate of the error in these estimates and to assess the goodness-of-fit of the model by comparing maximum likelihoods of the simulated data sets to the maximum likelihood of the real data set.

Usage

```
pbd_bootstrap(
   brts,
   initparsopt = c(0.2, 0.1, 1),
   idparsopt = 1:length(initparsopt),
   idparsfix = NULL,
   parsfix = NULL,
   exteq = (length(initparsopt) < 4),</pre>
   parsfunc = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]},
function(t,pars) {pars[3]}, function(t,pars) {pars[4]}),
   missnumspec = 0,
   cond = 1,
   btorph = 0,
   soc = 2,
   plotltt = 1,
   methode = "lsoda",
   n_{low} = 0,
   n_{up} = 0,
   tol = c(1E-4, 1E-4, 1E-6),
   maxiter = 1000 * round((1.25)^length(idparsopt)),
   endmc = 100,
   seed = 42
)
```

Arguments

brts	A set of branching times of a phylogeny, all positive
initparsopt	The initial values of the parameters that must be optimized
idparsopt	The ids of the parameters that must be optimized, e.g. 1:4 for all parameters. The ids are defined as follows: id == 1 corresponds to b (speciation-initiation rate) id == 2 corresponds to mu_1 (extinction rate of good species) id == 3 corresponds to la_1 (speciation-completion rate) id == 4 corresponds to mu_2 (extinction rate of incipient species)
idparsfix	The ids of the parameters that should not be optimized, e.g. $c(2,4)$ if mu_1 and mu_2 should not be optimized, but only b and la_1. In that case idparsopt must be $c(1,3)$.
parsfix	The values of the parameters that should not be optimized
exteq	Sets whether incipient species have the same (1) or different (0) extinction rate as good species. If exteq = 0, then idparsfix and idparsopt should together have all parameters 1:4
parsfunc	Specifies functions how the rates depend on time, default functions are constant functions
missnumspec	The number of species that are in the clade but missing in the phylogeny

4

cond	Conditioning: cond == 0 : conditioning on stem or crown age cond == 1 : conditioning on stem or crown age and non-extinction of the phy- logeny
btorph	Sets whether the likelihood is for the branching times (0) or the phylogeny (1)
SOC	Sets whether the first element of the branching times is the stem (1) or the crown (2) age
plotltt	Sets whether the lineage-through-time plot should be plotted (1) or not (0)
methode	Sets which method should be used in the ode-solver. Default is 'lsoda'. See package deSolve for details.
n_low	Sets the lower bound of the number of species on which conditioning should be done when $cond = 2$. Set this to 0 when conditioning should be done on precisely the number of species (default)
n_up	Sets the upper bound of the number of species on which conditioning should be done when $cond = 2$. Set this to 0 when conditioning should be done on precisely the number of species (default)
tol	Sets the tolerances in the optimization. Consists of: reltolx = relative tolerance of parameter values in optimization reltolf = relative tolerance of function value in optimization abstolx = absolute tolerance of parameter values in optimization
maxiter	Sets the maximum number of iterations in the optimization
endmc	Sets the number of simulations for the bootstrap
seed	Sets the seed for the simulations of the bootstrap

Value

A list of three dataframes. The first dataframe contains the maximum likelihood results of the real data set, the second contains the simulated trees, and the third dataframe, with number of rows equal to endmc, contain the maximum likelihood results for the simulated data. The columns of both frames contains the following elements for each simulated data set:

ntips	gives the number of tips
b	gives the maximum likelihood estimate of b
mu_1	gives the maximum likelihood estimate of mu_1
la_1	gives the maximum likelihood estimate of la_1
mu_2	gives the maximum likelihood estimate of mu_2
loglik	gives the maximum loglikelihood
df	gives the number of estimated parameters, i.e. degrees of feedom
conv	gives a message on convergence of optimization; $conv = 0$ means convergence
exp_durspec	gives the expected duration of speciation
median_durspec	gives the median duration of speciation

Author(s)

Rampal S. Etienne

See Also

pbd_ML

pbd_brts_density Node depth probbaility density for protracted birth-death model of diversification

Description

pbd_brts_density computes the probability density of node depths under the protracted speciation model given a set of parameters

Usage

```
pbd_brts_density(
    pars1,
    pars1f = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]},
function(t,pars) {pars[3]}, function(t,pars) {pars[4]}),
    methode = "lsoda",
    brts
)
```

Arguments

pars1	Vector of parameters:
	<pre>pars1[1] corresponds to b (= la_1 in Etienne & Rosindell R2012) = specia- tion initiation rate pars1[2] corresponds to mu_1 (= mu_g in Etienne & Rosindell 2012) = extinc- tion rate of good species pars1[3] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = specia- tion completion rate pars1[4] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipi- ent species When rates depend on time this time dependence should be specified in pars1f and pars1 then becomes the parameters used in pars1f</pre>
pars1f	Vector of functions how the rates depend on time, default functions are constant functions of the parameters in pars1: pars1f[1] corresponds to time-dependence of b (= la_1 in Etienne & Rosin- dell R2012) = speciation initiation rate

	<pre>pars1f[2] corresponds to time-dependence of mu_1 (= mu_g in Etienne & Rosindell 2012) = extinction rate of good species pars1f[3] corresponds to tiem-dependence of la_1 (= la_2 in Etienne & Rosin- dell 2012) = speciation completion rate pars1f[4] corresponds to time-dependence of mu_2 (= mu_i in ER2012) = ex- tinction rate of incipient species</pre>
methode	sets which method should be used in the ode-solver. Default is 'lsoda'. See package deSolve for details.
brts	A set of branching times of a phylogeny, all positive, for which the density must be computed

Value

The probability density for all branching times

Author(s)

Rampal S. Etienne

See Also

pbd_ML

Examples

```
pbd_brts_density(pars1 = c(0.2, 0.1, 1, 0.1), methode = "lsoda", brts = 1:10)
```

pbd_durspec_cumdensity

Cumulative density of duration of speciation under protracted birthdeath model of diversification

Description

pbd_durspec_cumdensity computes the cumulative density of the duration of speciation under the protracted speciation model for a given set of parameters

```
pbd_durspec_cumdensity(
    pars,
    tau
)
```

pars	Vector of parameters:
	<pre>pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species</pre>
tau	Value of the duration of speciation at which the cumulative density must be computed

Value

The cumulative density of the duration of speciation

Author(s)

Rampal S. Etienne

See Also

```
pbd_durspec_density
pbd_durspec_mean
pbd_durspec_mode
pbd_durspec_quantile
pbd_durspec_moment
pbd_durspec_var
```

Examples

pbd_durspec_cumdensity(pars = c(0.5,0.3,0.1),3)

pbd_durspec_density Probability density for duration of speciation under protracted birthdeath model of diversification

Description

pbd_durspec_density computes the probability density of the duration of speciation under the protracted speciation model for a given set of parameters

```
pbd_durspec_density(
    pars,
    tau
)
```

pars	Vector of parameters:
	<pre>pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species</pre>
tau	The duration of speciation for which the density must be computed

Value

The probability density

Author(s)

Rampal S. Etienne

See Also

```
pbd_durspec_cumdensity
pbd_durspec_mean
pbd_durspec_mode
pbd_durspec_quantile
pbd_durspec_moment
pbd_durspec_var
```

Examples

pbd_durspec_density(pars = c(0.5, 0.3, 0.1), tau = 1)

pbd_durspec_mean Mean duration of speciation under protracted birth-death model of diversification

Description

pbd_durspec_mean computes the mean duration of speciation under the protracted speciation model for a given set of parameters

```
pbd_durspec_mean(
    pars
)
```

pars	Vector of parameters:
	<pre>pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species</pre>

Value

The expected duration of speciation

Author(s)

Rampal S. Etienne

See Also

```
pbd_durspec_density
pbd_durspec_cumdensity
pbd_durspec_mode
pbd_durspec_quantile
pbd_durspec_moment
pbd_durspec_var
```

Examples

```
pbd_durspec_mean(pars = c(0.5, 0.3, 0.1))
```

<pre>pbd_durspec_mode</pre>	mode of the duration of speciation under protracted birth-death model
	of diversification

Description

pbd_durspec_mode computes the mode of the duration of speciation under the protracted speciation model for a given set of parameters

```
pbd_durspec_mode(
    pars
)
```

pars

Vector of parameters:

pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation
initiation rate
pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation
completion rate
pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient
species

Value

The expected duration of speciation

Author(s)

Rampal S. Etienne

See Also

```
pbd_durspec_density
pbd_durspec_cumdensity
pbd_durspec_mean
pbd_durspec_quantile
pbd_durspec_moment
pbd_durspec_var
```

Examples

pbd_durspec_mode(pars = c(0.5, 0.3, 0.1))

pbd_durspec_moment Moments of duration of speciation under protracted birth-death model of diversification

Description

pbd_durspec_moment computes the moments of the duration of speciation under the protracted speciation model for a given set of parameters

```
pbd_durspec_moment(
    pars,
    order
)
```

pars	Vector of parameters:
	<pre>pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species</pre>
order	order of the moment to compute (1 is first moment, giving the mean)

Value

The moment of the duration of speciation

Author(s)

Rampal S. Etienne

See Also

```
pbd_durspec_density
pbd_durspec_cumdensity
pbd_durspec_mean
pbd_durspec_mode
pbd_durspec_quantile
pbd_durspec_var
```

Examples

pbd_durspec_moment(pars = c(0.5, 0.3, 0.1), 2)

pbd_durspec_quantile Quantiles of duration of speciation under protracted birth-death model of diversification

Description

pbd_durspec_quantile computes a quantile of the duration of speciation under the protracted speciation model for a given set of parameters

```
pbd_durspec_quantile(
    pars,
    p
)
```

pars	Vector of parameters:
	<pre>pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species</pre>
р	Quantile (e.g. $p = 0.5$ gives the median)

Value

The quantil of the duration of speciation

Author(s)

Rampal S. Etienne

See Also

```
pbd_durspec_density
pbd_durspec_cumdensity
pbd_durspec_mean
pbd_durspec_mode
pbd_durspec_moment
pbd_durspec_var
```

Examples

pbd_durspec_quantile(pars = c(0.5, 0.3, 0.1), 0.5)

pbd_durspec_varVariance in duration of speciation under protracted birth-death model
of diversification

Description

pbd_durspec_var computes the variance in the duration of speciation under the protracted speciation model for a given set of parameters

```
pbd_durspec_var(
    pars
)
```

pars	Vector of parameters:
	<pre>pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species</pre>

Value

The variance in the duration of speciation

Author(s)

Rampal S. Etienne

See Also

```
pbd_durspec_density
pbd_durspec_cumdensity
pbd_durspec_mean
pbd_durspec_mode
pbd_durspec_quantile
pbd_durspec_moment
```

Examples

pbd_durspec_var(pars = c(0.5, 0.3, 0.1))

pbd_loglik

Loglikelihood for protracted birth-death model of diversification

Description

pbd_loglik computes the loglikelihood of the parameters of the protracted speciation model given a set of branching times and number of missing species

```
pbd_loglik(
    pars1,
    pars1f = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]},
function(t,pars) {pars[3]}, function(t,pars) {pars[4]}),
    pars2 = c(1,1,2,1,"lsoda",0,0),
```

```
brts,
missnumspec = 0
)
```

pars1	Vector of parameters:
	<pre>pars1[1] corresponds to b (= la_1 in Etienne & Rosindell R2012) = specia- tion initiation rate pars1[2] corresponds to mu_1 (= mu_g in Etienne & Rosindell 2012) = extinc- tion rate of good species pars1[3] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = specia- tion completion rate pars1[4] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipi- ent species When rates depend on time this time dependence should be specified in pars1f and pars1 then becomes the parameters used in pars1f</pre>
pars1f	Vector of functions how the rates depend on time, default functions are constant functions of the parameters in pars1:
	<pre>pars1f[1] corresponds to time-dependence of b (= la_1 in Etienne & Rosin- dell R2012) = speciation initiation rate pars1f[2] corresponds to time-dependence of mu_1 (= mu_g in Etienne & Rosindell 2012) = extinction rate of good species pars1f[3] corresponds to tiem-dependence of la_1 (= la_2 in Etienne & Rosin- dell 2012) = speciation completion rate pars1f[4] corresponds to time-dependence of mu_2 (= mu_i in ER2012) = ex- tinction rate of incipient species</pre>
pars2	Vector of model settings:
	pars2[1] set the conditioning on non-extinction of the clade (1) or not (0)
	pars2[2] sets whether the likelihood is for the branching times (0) or the phylogeny (1)
	pars2[3] sets whether the first element of the branching times is the stem (1) or the crown (2) age
	pars2[4] sets whether the parameters and likelihood should be shown on screen (1) or not (0)
	pars2[5] sets which method should be used in the ode-solver. Default is 'lsoda'. See package deSolve for details.

	pars2[6]Sets the lower bound of the number of species on which condition- ing should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)
	pars2[7]Sets the upper bound of the number of species on which condition- ing should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)
brts missnumspec	A set of branching times of a phylogeny, all positive The number of species that are in the clade but missing in the phylogeny

Value

The loglikelihood

Author(s)

Rampal S. Etienne

See Also

pbd_ML

Examples

pbd_loglik(pars1 = c(0.2,0.1,1,0.1), pars2 = c(1,1,2,0,"lsoda"),brts = 1:10)

pbd_LR	Bootstrap likelihood ratio test of protracted birth-death model of di-
	versification

Description

This function computes the maximum likelihood and the associated estimates of the parameters of a protracted birth-death model of diversification for a given set of phylogenetic branching times. It then performs a bootstrap likelihood ratio test of the protracted birth-death (PBD) model against the constant-rates (CR) birth-death model. Finally, it computes the power of this test.

```
pbd_LR(
    brts,
    initparsoptPBD,
    initparsoptCR,
    missnumspec,
```

pbd_LR

```
outputfilename = NULL,
seed = 42,
endmc = 1000,
alpha = 0.05,
plotit = TRUE,
parsfunc = c(function(t,pars) {pars[1]},
function(t,pars) {pars[2]},
function(t,pars) {pars[3]},
function(t,pars) {pars[4]}),
cond = 1,
btorph = 1,
soc = 2,
methode = 'lsoda',
n_{low} = 0,
n_{up} = 0,
tol = c(1E-6, 1E-6, 1E-6),
maxiter = 2000,
optimmethod = 'subplex',
verbose = FALSE
```

Arguments

)

brts	A set of branching times of a phylogeny, all positive
initparsoptPBD	The initial values of the parameters that must be optimized for the protracted birth-death (PBD) model: b, mu and lambda
initparsoptCR	The initial values of the parameters that must be optimized for the constant-rates (CR) model: b and mu
missnumspec	The number of species that are in the clade but missing in the phylogeny
outputfilename	The name (and location) of the file where the output will be saved. Default is no save.
seed	The seed for the pseudo random number generator for simulating the bootstrap data
endmc	The number of bootstraps
alpha	The significance level of the test
plotit	Boolean to plot results or not
parsfunc	Specifies functions how the rates depend on time, default functions are constant functions
cond	Conditioning: cond == 0 : conditioning on stem or crown age cond == 1 : conditioning on stem or crown age and non-extinction of the phy- logeny cond == 2 : conditioning on stem or crown age and on the total number of extant taxa (including missing species) cond == 3 : conditioning on the total number of extant taxa (including missing species)

	Note: cond == 3 assumes a uniform prior on stem age, as is the standard in constant-rate birth-death models, see e.g. D. Aldous & L. Popovic 2004. Adv. Appl. Prob. 37: 1094-1115 and T. Stadler 2009. J. Theor. Biol. 261: 58-66.
btorph	Sets whether the likelihood is for the branching times (0) or the phylogeny (1)
SOC	Sets whether stem or crown age should be used (1 or 2)
methode	The numerical method used to solve the master equation, such as 'lsoda' or 'ode45'.
n_low	Sets the lower bound of the number of species on which conditioning should be done when $cond = 2$. Set this to 0 when conditioning should be done on precisely the number of species (default)
n_up	Sets the upper bound of the number of species on which conditioning should be done when $cond = 2$. Set this to 0 when conditioning should be done on precisely the number of species (default)
tol	Sets the tolerances in the optimization. Consists of: reltolx = relative tolerance of parameter values in optimization reltolf = relative tolerance of function value in optimization abstolx = absolute tolerance of parameter values in optimization
maxiter	Sets the maximum number of iterations in the optimization
optimmethod	Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex'.
verbose	if TRUE, explanatory text will be shown

Details

The output is a list with 3 elements:

Value

brtsCR	a list of sets of branching times generated under the constant-rates model using the ML parameters under the CR model
brtsDD	a list of sets of branching times generated under the protracted birth-death model using the ML parameters under the PBD model
out	 a dataframe with the parameter estimates and maximum likelihoods for protracted birth-death and constant-rates models \$model - the model used to generate the data. 0 = unknown (for real data), 1 = CR, 2 = PBD \$mc - the simulation number for each model \$b_CR - speciation rate estimated under CR \$mu_CR - extinction rate estimated under CR \$LL_CR - maximum likelihood estimated under CR \$conv_CR - convergence code for likelihood optimization; conv = 0 means convergence \$b_PBD1 - speciation-initation rate estimated under PBD for first set of initial values \$mu_PB1 - extinction rate estimated under DD for first set of initial values \$lambda_PB1 - speciation-completion rate estimated under PBD for first set of initial values

	<pre>\$LL_PBD1 - maximum likelihood estimated under DD for first set of initial values \$conv_PBD1 - convergence code for likelihood optimization for first set of initial values; conv = 0 means convergence \$b_PBD2 - speciation-initation rate estimated under PBD for second set of initial values \$mu_PB2 - extinction rate estimated under DD for second set of initial values \$lambda_PB2 - speciation-completion rate estimated under PBD for second set of initial values \$LL_PBD2 - maximum likelihood estimated under DD for second set of initial values \$LL_PBD2 - convergence code for likelihood optimization for second set of initial values; conv = 0 means convergence \$LR - likelihood ratio between DD and CR</pre>
pvalue	p-value of the test
LRalpha	Likelihood ratio at the signifiance level alpha
poweroftest	power of the test for significance level alpha

Author(s)

Rampal S. Etienne

References

- Etienne, R.S. et al. 2016. Meth. Ecol. Evol. 7: 1092-1099, doi: 10.1111/2041-210X.12565

See Also

pbd_loglik, pbd_ML

pbd_ML	Maximization of loglikelihood under protracted birth-death model of
	diversification

Description

Likelihood maximization for protracted birth-death model of diversification

```
pbd_ML(
    brts,
    initparsopt = c(0.2,0.1,1),
    idparsopt = 1:length(initparsopt),
    idparsfix = NULL,
    parsfix = NULL,
```

```
exteq = 1,
parsfunc = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]},
function(t,pars) {pars[3]}, function(t,pars) {pars[4]}),
missnumspec = 0,
cond = 1,
btorph = 1,
soc = 2,
methode = "lsoda",
n_low = 0,
tol = c(1E-6, 1E-6, 1E-6),
maxiter = 1000 * round((1.25)^length(idparsopt)),
optimmethod = 'subplex',
verbose = TRUE
)
```

brts	A set of branching times of a phylogeny, all positive
initparsopt	The initial values of the parameters that must be optimized
idparsopt	The ids of the parameters that must be optimized, e.g. 1:4 for all parameters. The ids are defined as follows: id == 1 corresponds to b (speciation-initiation rate) id == 2 corresponds to mu_1 (extinction rate of good species) id == 3 corresponds to la_1 (speciation-completion rate) id == 4 corresponds to mu_2 (extinction rate of incipient species)
idparsfix	The ids of the parameters that should not be optimized, e.g. $c(2,4)$ if mu_1 and mu_2 should not be optimized, but only b and la_1. In that case idparsopt must be $c(1,3)$.
parsfix	The values of the parameters that should not be optimized
exteq	Sets whether incipient species have the same (1) or different (0) extinction rate as good species. If exteq = 0, then idparsfix and idparsopt should together have all parameters 1:4
parsfunc	Specifies functions how the rates depend on time, default functions are constant functions
missnumspec	The number of species that are in the clade but missing in the phylogeny
cond	Conditioning: cond == 0 : conditioning on stem or crown age cond == 1 : conditioning on stem or crown age and non-extinction of the phy- logeny cond == 2 : conditioning on stem or crown age and number of extant taxa
btorph	Sets whether the likelihood is for the branching times (0) or the phylogeny (1)
SOC	Sets whether the first element of the branching times is the stem (1) or the crown (2) age

20

pb	d	ML

methode	Sets which method should be used in the ode-solver. Default is 'lsoda'. See package deSolve for details.
n_low	Sets the lower bound of the number of species on which conditioning should be done when $cond = 2$. Set this to 0 when conditioning should be done on precisely the number of species (default)
n_up	Sets the upper bound of the number of species on which conditioning should be done when $cond = 2$. Set this to 0 when conditioning should be done on precisely the number of species (default)
tol	Sets the tolerances in the optimization. Consists of: reltolx = relative tolerance of parameter values in optimization reltolf = relative tolerance of function value in optimization abstolx = absolute tolerance of parameter values in optimization
maxiter	Sets the maximum number of iterations in the optimization
optimmethod	Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex' (default of previous versions)
verbose	if TRUE, explanatory text will be shown

Value

A data frame with the following components:

b	gives the maximum likelihood estimate of b
mu_1	gives the maximum likelihood estimate of mu_1
la_1	gives the maximum likelihood estimate of la_1
mu_2	gives the maximum likelihood estimate of mu_2
loglik	gives the maximum loglikelihood
df	gives the number of estimated parameters, i.e. degrees of feedom
conv	gives a message on convergence of optimization; $conv = 0$ means convergence

Author(s)

Rampal S. Etienne

See Also

pbd_loglik

Examples

pbd_ML(1:10,initparsopt = c(4.640321,4.366528,0.030521), exteq = 1)

pbd_sim

Description

Simulating the protracted speciation process using the Doob-Gillespie algorithm. This function differs from pbd_sim_cpp that 1) it does not require that the speciation-initiation rate is the same for good and incipient species, and 2) that it simulates the exact protracted speciation process, and not the approximation made by the coalescent point process. This function provides also the conversion to the approximation as output.

Usage

```
pbd_sim(
   pars,
   age,
   soc = 2,
   plotit = FALSE,
   limitsize = Inf
)
```

Arguments

)

pars	Vector of parameters:
	<pre>pars[1] corresponds to b_1, the speciation-initiation rate of good species pars[2] corresponds to la_1, the speciation-completion rate pars[3] corresponds to b_2, the speciation-initiation rate of incipient species pars[4] corresponds to mu_1, the extinction rate of good species pars[5] corresponds to mu_2, the extinction rate of incipient species</pre>
age	Sets the age for the simulation
soc	Sets whether this age is the stem (1) or crown (2) age
plotit	Sets whether the various trees produced by the function should be plotted or not
limitsize	Sets a maximum to the number of incipient + good species that are created during the simulation; if exceeded, the simulation is aborted and removed.

Value

out	A list with the following elements:
	tree is the tree of extant species in phylo format stree_random is a tree with one random sample per species in phylo format stree_oldest is a tree with the oldest sample per species in phylo format stree_youngest is a tree with the youngest sample per species in phylo format
	L is a matrix of all events in the simulation where

- the first column is the incipient-level label of a species
- the second column is the incipient-level label of the parent of the species
- the third column is the time at which a species is born as incipient species
- the fourth column is the time of speciation-completion of the species
If the fourth element equals -1, then the species is still incipient the fifth col-
umn is the time of extinction of the species
If the fifth element equals -1, then the species is still extant The sixth column
is the species-level label of the species
sL_random is a matrix like L but for stree_random
sL_oldest is a matrix like L but for stree_oldest
sL_youngest is a matrix like L but for stree_youngest
igtree.extinct is the tree in simmap format with incipient and good flags and
including extinct species
igtree.extant is the tree in simmap format with incipient and good flags with-
out extinct species
recontree is the reconstructed tree in phylo format, reconstructed using the ap-
proximation in Lambert et al. 2014
reconL is the matrix corresponding to recontree
L0 is a matrix where the crown age is at 0; for internal use only

Author(s)

Rampal S. Etienne

See Also

pbd_sim_cpp

Examples

pbd_sim(c(0.2,1,0.2,0.1,0.1),15)

pbd_sim_cpp

Function to simulate the approximate protracted speciation process

Description

Simulating the protracted speciation process according to the approxiomate model of Lambert et al. 2014. This function differs from pbd_sim that 1) it requires that the speciation-initiation rate is the same for good and incipient species, and 2) that it does not simulate the exact protracted speciation process, but an approximation made by the coalescent point process.

Usage

```
pbd_sim_ccpp(
  pars,
  parsf = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]},
function(t,pars) {pars[3]},function(t,pars) {pars[4]}),
  age,
  soc = 2,
  plotltt = 1,
  methode = "lsoda"
)
```

Arguments

pars	Vector of parameters:
	<pre>pars[1] corresponds to b (= la_1 in Etienne & Rosindell R2012) = speciation initiation rate pars[2] corresponds to mu_1 (= mu_g in Etienne & Rosindell 2012) = extinc- tion rate of good species pars[3] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate pars[4] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species When rates depend on time this time dependence should be specified in pars1f and pars1 then becomes the parameters used in pars1f</pre>
parsf	Vector of functions how the rates depend on time, default functions are constant functions of the parameters in pars1: parsf[1] corresponds to time-dependence of b (= la_1 in Etienne & Rosin- dell R2012) = speciation initiation rate parsf[2] corresponds to time-dependence of mu_1 (= mu_g in Etienne & Rosin- dell 2012) = extinction rate of good species parsf[3] corresponds to tiem-dependence of la_1 (= la_2 in Etienne & Rosin- dell 2012) = speciation completion rate parsf[4] corresponds to time-dependence of mu_2 (= mu_i in ER2012) = ex- tinction rate of incipient species
age	Sets the crown age for the simulation
SOC	Determines whether the simulation should start at stem (1) or crown (2) age
plotltt	Sets whether the lineage-through-time plot should be plotted (1) or not (0)
methode	Sets which method should be used in the ode-solver. Default is 'lsoda'. See package deSolve for details.

24

pbd_sim_cpp

Value

A set of branching times

Author(s)

Rampal S. Etienne

See Also

pbd_sim

Examples

pbd_sim_cpp(pars = c(0.2,1,0.2,0.1),age = 15)

Index

* models pbd_bootstrap, 3 pbd_brts_density, 6 pbd_durspec_cumdensity, 7 pbd_durspec_density, 8 pbd_durspec_mean, 9 pbd_durspec_mode, 10 pbd_durspec_moment, 11 pbd_durspec_quantile, 12 pbd_durspec_var, 13 pbd_loglik, 14 pbd_LR, 16 pbd_ML, 19 pbd_sim, 22 pbd_sim_cpp, 23 * package PBD-package, 2 PBD (PBD-package), 2 PBD-package, 2 pbd_bootstrap, 3 pbd_brts_density, 6 pbd_durspec_cumdensity, 7, 9–14 pbd_durspec_density, 8, 8, 10-14 pbd_durspec_mean, 8, 9, 9, 11-14 pbd_durspec_mode, 8-10, 10, 12-14 pbd_durspec_moment, 8-11, 11, 13, 14 pbd_durspec_quantile, 8-12, 12, 14 pbd_durspec_var, 8–13, 13 pbd_loglik, 14, 19, 21 pbd_LR, **16** pbd_ML, 6, 7, 16, 19, 19 pbd_sim, 22, 25 pbd_sim_cpp, 23, 23