
Package ‘OmicNavigator’
May 28, 2025

Type Package

Title Open-Source Software for 'Omic' Data Analysis and Visualization

Description A tool for interactive exploration of the results from 'omics'
experiments to facilitate novel discoveries from high-throughput biology. The
software includes R functions for the 'bioinformatician' to deposit study
metadata and the outputs from statistical analyses (e.g. differential
expression, enrichment). These results are then exported to an interactive
JavaScript dashboard that can be interrogated on the user's local machine or
deployed online to be explored by collaborators. The dashboard includes
'sortable' tables, interactive plots including network visualization, and
fine-grained filtering based on statistical significance.

Version 1.15.0

URL https://github.com/abbvie-external/OmicNavigator

BugReports https://github.com/abbvie-external/OmicNavigator/issues

License MIT + file LICENSE

License_restricts_use no

License_is_FOSS yes

Encoding UTF-8

LazyData true

Depends R (>= 3.2.0)

Imports data.table (>= 1.12.4), graphics, jsonlite, stats, tools,
utils

Suggests faviconPlease, ggplot2, opencpu, plotly, tinytest (>= 1.2.3),
ttdo (>= 0.0.6), UpSetR

RoxygenNote 7.3.2

NeedsCompilation no

Author Terrence Ernst [aut] (Web application),
John Blischak [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2634-9879>),

Paul Nordlund [aut] (Web application),

1

https://github.com/abbvie-external/OmicNavigator
https://github.com/abbvie-external/OmicNavigator/issues
https://orcid.org/0000-0003-2634-9879

2 Contents

Justin Moore [aut] (UpSet-related functions and web application),
Joe Dalen [aut] (Barcode functionality and web application),
Akshay Bhamidipati [aut] (Web application),
Brett Engelmann [aut],
Marco Curado [aut] (Improved plotting capabilities),
Joe LoGrasso [aut] (Support for plotly),
Elyse Geoffroy [ctb],
AbbVie Inc. [cph, fnd]

Maintainer John Blischak <jdblischak@gmail.com>

Repository CRAN

Date/Publication 2025-05-28 19:40:02 UTC

Contents
OmicNavigator-package . 4
addAnnotations . 5
addAssays . 5
addBarcodes . 6
addEnrichments . 7
addEnrichmentsLinkouts . 8
addFeatures . 9
addMapping . 10
addMetaFeatures . 11
addMetaFeaturesLinkouts . 11
addModels . 13
addOverlaps . 14
addPlots . 14
addReports . 16
addResults . 17
addResultsLinkouts . 17
addSamples . 19
addTests . 19
basal.vs.lp . 21
basal.vs.ml . 22
cam.BasalvsLP . 23
cam.BasalvsML . 24
combineStudies . 25
createStudy . 26
exportStudy . 31
getAnnotations . 32
getAssays . 32
getBarcodeData . 33
getBarcodes . 34
getEnrichments . 35
getEnrichmentsIntersection . 36
getEnrichmentsLinkouts . 37
getEnrichmentsNetwork . 37

Contents 3

getEnrichmentsTable . 38
getEnrichmentsUpset . 39
getFavicons . 40
getFeatures . 40
getInstalledStudies . 41
getLinkFeatures . 41
getMapping . 42
getMetaFeatures . 42
getMetaFeaturesLinkouts . 43
getMetaFeaturesTable . 44
getModels . 44
getNodeFeatures . 45
getOverlaps . 46
getPackageVersion . 46
getPlots . 47
getPlottingData . 47
getReportLink . 49
getReports . 49
getResults . 50
getResultsIntersection . 51
getResultsLinkouts . 52
getResultsTable . 53
getResultsUpset . 54
getSamples . 54
getTests . 55
getUpsetCols . 56
group . 56
importStudy . 57
installApp . 58
installStudy . 58
lane . 59
lcpm . 60
listStudies . 60
Mm.c2 . 61
plotStudy . 62
removeStudy . 63
samplenames . 64
startApp . 64
summary.onStudy . 65
validateStudy . 66

Index 67

4 OmicNavigator-package

OmicNavigator-package OmicNavigator

Description

Package options to control package-wide behavior are described below.

Details

The default prefix for OmicNavigator study packages is "ONstudy". If you would prefer to use a
different prefix, you can change the package option OmicNavigator.prefix. For example, to use
the prefix "OmicNavigatorStudy", you could add the following line to your .Rprofile file.

options(OmicNavigator.prefix = "OmicNavigatorStudy")

Author(s)

Maintainer: John Blischak <jdblischak@gmail.com> (ORCID)

Authors:

• Terrence Ernst (Web application)

• Paul Nordlund (Web application)

• Justin Moore (UpSet-related functions and web application)

• Joe Dalen (Barcode functionality and web application)

• Akshay Bhamidipati (Web application)

• Brett Engelmann <brett.engelmann@abbvie.com>

• Marco Curado (Improved plotting capabilities)

• Joe LoGrasso (Support for plotly)

Other contributors:

• Elyse Geoffroy [contributor]

• AbbVie Inc. [copyright holder, funder]

See Also

Useful links:

• https://github.com/abbvie-external/OmicNavigator

• Report bugs at https://github.com/abbvie-external/OmicNavigator/issues

https://orcid.org/0000-0003-2634-9879
https://github.com/abbvie-external/OmicNavigator
https://github.com/abbvie-external/OmicNavigator/issues

addAnnotations 5

addAnnotations Add annotations

Description

Add annotations

Usage

addAnnotations(study, annotations, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

annotations The annotations used for the enrichment analyses. The input is a nested list.
The top-level list contains one entry per annotation database, e.g. reactome.
The names correspond to the name of each annotation database. Each of these
elements should be a list that contains more information about each annotation
database. Specifically the sublist should contain 1) description, a character
vector that describes the resource, 2) featureID, the name of the column in the
features table that was used for the enrichment analysis, and 3) terms, a list of
annotation terms. The names of terms sublist correspond to the name of the
annotation terms. Each of the annotation terms should be a character vector of
featureIDs.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addAssays Add assays

Description

Add assays

Usage

addAssays(study, assays, reset = FALSE)

6 addBarcodes

Arguments

study An OmicNavigator study created with createStudy

assays The assays from the study. The input object is a list of data frames (one per
model). The row names should correspond to the featureIDs (addFeatures).
The column names should correspond to the sampleIDs (addSamples). The
data frame should only contain numeric values. To share a data frame across
multiple models, use the modelID "default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addBarcodes Add barcode plot metadata

Description

The app can display a barcode plot of the enrichment results for a given annotation term. The
metadata in barcodes instructs the app how to create and label the barcode plot.

Usage

addBarcodes(study, barcodes, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

barcodes The metadata variables that describe the barcode plot. The input object is a list of
lists (one per model). Each sublist must contain the element statistic, which
is the column name in the results table to use to construct the barcode plot. Each
sublist may additionally contain any of the following optional elements:

1. absolute - Should the statistic be converted to its absolute value (default
is TRUE).

2. logFoldChange - The column name in the results table that contains the
log fold change values.

3. labelStat - The x-axis label to describe the statistic.
4. labelLow - The left-side label to describe low values of the statistic.
5. labelHigh - The right-side label to describe high values of the statistic.
6. featureDisplay - The feature variable to use to label the barcode plot on

hover. To share metadata across multiple models, use the modelID "de-
fault".

addEnrichments 7

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addEnrichments Add enrichment results

Description

Add enrichment results

Usage

addEnrichments(study, enrichments, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

enrichments The enrichment results from each model. The input is a nested named list. The
names of the list correspond to the model names. Each list element should be
a list of the annotation databases tested (addAnnotations). The names of the
list correspond to the annotation databases. Each list element should be another
list of tests (addTests). The names correspond to the tests performed. Each of
these elements should be a data frame with enrichment results. Each table must
contain the following columns: "termID", "description", "nominal" (the nominal
statistics), and "adjusted" (the statistics after adjusting for multiple testing). Any
additional columns are ignored.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

8 addEnrichmentsLinkouts

addEnrichmentsLinkouts

Add linkouts to external resources in the enrichments table

Description

You can provide additional information on the annotation terms in your study by providing linkouts
to external resources. These will be embedded directly in the enrichments table.

Usage

addEnrichmentsLinkouts(study, enrichmentsLinkouts, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

enrichmentsLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a named list. The names of the list correspond to the
annotation names. Each element of the list is a character vector of linkouts for
that annotationID.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Details

For each linkout, the URL pattern you provide will be concatenated with the value of the termID
column. As an example, if you used the annotation database AmiGO 2 for your enrichments anal-
ysis, you can provide a linkout for each termID using the following pattern:

go = "https://amigo.geneontology.org/amigo/term/"

As another example, if you used the annotation database Reactome for your enrichments analysis,
you can provide a linkout for each termID using the following pattern:

reactome = "https://reactome.org/content/detail/"

Note that you can provide more than one linkout per termID.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

addAnnotations, addEnrichments

https://amigo.geneontology.org/
https://reactome.org/

addFeatures 9

Examples

study <- createStudy("example")
enrichmentsLinkouts <- list(

gobp = c("https://amigo.geneontology.org/amigo/term/",
"https://www.ebi.ac.uk/QuickGO/term/"),

reactome = "https://reactome.org/content/detail/"
)
study <- addEnrichmentsLinkouts(study, enrichmentsLinkouts)

addFeatures Add feature metadata

Description

Add feature metadata

Usage

addFeatures(study, features, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

features The metadata variables that describe the features in the study. The input object
is a list of data frames (one per model). The first column of each data frame is
used as the featureID, so it must contain unique values. To share a data frame
across multiple models, use the modelID "default". All columns will be coerced
to character strings.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

10 addMapping

addMapping Add mapping object

Description

Add mapping object

Usage

addMapping(study, mapping, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

mapping Feature IDs from models. The input object is a list of named data frames. For
each data frame, column names indicate model names while rows indicate fea-
tureIDs per model. Features with same index position across columns are treated
as mapped across models. For each model, feature IDs must match feature IDs
available in the results object of the respective model. 1:N relationships are
allowed.
Mapping list elements are required to be named as ’default’ or after a model
name as provided in addModels(). If a single data frame is provided, this list
element is recommended to be named ’default’. For multiple list elements, each
with its own data frame, list elements should be named after model name(s) (a
single element may still be named ’default’). In that case, when navigating in
ON front-end (FE), mapping element related to the selected model in the FE
will be used in multimodel plots. If a selected model in FE does not have a
corresponding mapping list element, it may still use the mapping list element
called ’default’ if this is available.
E.g., if in a study there are models "transcriptomics" and "proteomics" and the
user wants to create a plot based on data from both, a mapping list should be
provided with addMapping(). In this case, the mapping list element may be
named ’default’. This should contain a data frame with column names ’tran-
scriptomics’ and ’proteomics’, where feature IDs that map across models are
found in the same row.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getPlottingData, plotStudy

addMetaFeatures 11

addMetaFeatures Add meta-feature metadata

Description

The meta-features table is useful anytime there are metadata variables that cannot be mapped 1:1 to
your features. For example, a peptide may be associated with multiple proteins.

Usage

addMetaFeatures(study, metaFeatures, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

metaFeatures The metadata variables that describe the meta-features in the study. The in-
put object is a list of data frames (one per model). The first column of each
data frame is used as the featureID, so it must contain the same IDs as the cor-
responding features data frame (addFeatures). To share a data frame across
multiple models, use the modelID "default". All columns will be coerced to
character strings.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addMetaFeaturesLinkouts

Add linkouts to external resources in the metaFeatures table

Description

You can provide additional information on the metaFeatures in your study by providing linkouts to
external resources. These will be embedded directly in the metaFeatures table.

Usage

addMetaFeaturesLinkouts(study, metaFeaturesLinkouts, reset = FALSE)

12 addMetaFeaturesLinkouts

Arguments

study An OmicNavigator study created with createStudy
metaFeaturesLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a nested named list. The names of the list correspond
to the model names. Each element of the list is a named list of character vectors.
The names of this nested list must correspond to the column names of the match-
ing metaFeatures table (addMetaFeatures). To share linkouts across multiple
models, use the modelID "default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Details

For each linkout, the URL pattern you provide will be concatenated with the value of that column
for each row. As an example, if your metaFeatures table included a column named "ensembl" that
contained the Ensembl Gene ID for each feature, you could create a linkout to Ensembl using the
following pattern:

ensembl = "https://ensembl.org/Homo_sapiens/Gene/Summary?g="

As another example, if you had a column named "entrez" that contained the Entrez Gene ID for
each feature, you could create a linkout to Entrez using the following pattern:

entrez = "https://www.ncbi.nlm.nih.gov/gene/"

Note that you can provide more than one linkout per column.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

addMetaFeatures

Examples

study <- createStudy("example")
metaFeaturesLinkouts <- list(

default = list(
ensembl = c("https://ensembl.org/Homo_sapiens/Gene/Summary?g=",

"https://www.genome.ucsc.edu/cgi-bin/hgGene?hgg_gene="),
entrez = "https://www.ncbi.nlm.nih.gov/gene/"

)
)
study <- addMetaFeaturesLinkouts(study, metaFeaturesLinkouts)

addModels 13

addModels Add models

Description

Add models

Usage

addModels(study, models, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

models The models analyzed in the study. The input is a named list. The names corre-
spond to the names of the models. The elements correspond to the descriptions
of the models. Alternatively, instead of a single character string, you can pro-
vide a list of metadata fields about each model. The field "description" will be
used to derive the tooltip displayed in the app.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

Examples

study <- createStudy("example")
models <- list(

model_01 = "Name of first model",
model_02 = "Name of second model"

)
study <- addModels(study, models)

Alternative: provide additional metadata about each model
models <- list(

model_01 = list(
description = "Name of first model",
data_type = "transcriptomics"

),
model_02 = list(

description = "Name of second model",
data_type = "proteomics"

)
)

14 addPlots

addOverlaps Add overlaps between annotation gene sets

Description

The app’s network view of the enrichments results requires pairwise overlap metrics between all
the terms of each annotation in order to draw the edges between the nodes/terms. These overlaps
are calculated automatically when installing or exporting an OmicNavigator study. If you’d like,
you can manually calculate these pairwise overlaps by calling addOverlaps prior to installing or
exporting your study.

Usage

addOverlaps(study, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addPlots Add custom plotting functions

Description

addPlots() adds custom plotting functions and plot metadata to an OmicNavigator study.

Usage

addPlots(study, plots, reset = FALSE)

addPlots 15

Arguments

study An OmicNavigator study created with createStudy

plots A nested list containing custom plotting functions and plot metadata. The input
object is a 3-level nested list. The first, or top-level list element name(s) must
match the study modelID(s). The second, or mid-level list element name(s)
must match the names of the plotting function(s) defined in the current R ses-
sion (see Details below for function construction requirements). The third, or
bottom-level list provides metadata to categorize, display, and support each plot.
The accepted fields are displayName, description, plotType, models, and
packages. displayName sets the plot name in the app and the description
field will display as a tool tip when hovering over plotting dropdown menus.
The plotType field is a character vector that categorizes the plot by 1) the num-
ber of features it supports (“singleFeature” or “multiFeature”), 2) the num-
ber of test results used by the plotting function (“singleTest”, “multiTest”),
3) if data from one or more models is used (add “multiModel” to specify that
data from two or more models are used in the plot; otherwise the plot is as-
sumed to reference only data within the model specified by the top-level list
element name), and 4) if the plot is interactive (add “plotly” to specify in-
teractive plots built using the plotly package; otherwise the plot is assumed to
be static). e.g., plotType = c("multiFeature", "multiTest",”plotly”).
If you do not specify the plotType the plot will be designated as plotType =
c("singleFeature", "singleTest"). The models field is an optional charac-
ter vector that specifies the models that should be used by the app when invoking
your custom plotting function. This field is set to ‘all’ by default and is only used
when plotType includes “multiModel”. If this field is not included the app will
assume all models in the study should be used with your plotting function. If the
plotting function requires additional packages beyond those attached by default
to a fresh R session, these must be defined in the element packages.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Details

Custom plotting functions must be constructed to accept as the first argument the value returned
from getPlottingData(). Custom plotting functions can have additional arguments, but these
must be provided with default values. The end-user should call getPlottingData() when test-
ing their custom plotting function. The end-user should consider the nature of the plot, i.e. the
plotType and (rarely) models values (see getPlottingData()). For example, a custom plotting
function meant to produce a multiTest plot should accept the output of a getPlottingData() call
with multiple testIDs assigned to the testID argument. See the details section of plotStudy()
for a description of how plotType dictates the way a custom plotting function is invoked by the
app.

Note that any ggplot2 plots will require extra care. This is because the plotting code will be inserted
into a study package, and thus must follow the best practices for using ggplot2 within packages.
Specifically, when you refer to columns of the data frame, e.g. aes(x = group), you need to prefix
it with .data$, so that it becomes aes(x = .data$group). Fortunately this latter code will also run

https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html#using-aes-and-vars-in-a-package-function-1

16 addReports

fine as you interactively develop the function.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

getPlottingData, plotStudy

addReports Add reports

Description

You can include reports of the analyses you performed to generate the results.

Usage

addReports(study, reports, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

reports The analysis report(s) that explain how the study results were generated. The
input object is a list of character vectors (one per model). Each element should
be either a URL or a path to a file on your computer. If it is a path to a file,
this file will be included in the exported study package. To share a report across
multiple models, use the modelID "default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addResults 17

addResults Add inference results

Description

Add inference results

Usage

addResults(study, results, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

results The inference results from each model. The input is a nested named list. The
names of the list correspond to the model names. Each element in the list should
be a list of data frames with inference results, one for each test. In each data
frame, the featureID must be in the first column, and all other columns must be
numeric.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addResultsLinkouts Add linkouts to external resources in the results table

Description

You can provide additional information on the features in your study by providing linkouts to ex-
ternal resources. These will be embedded directly in the results table.

Usage

addResultsLinkouts(study, resultsLinkouts, reset = FALSE)

18 addResultsLinkouts

Arguments

study An OmicNavigator study created with createStudy
resultsLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a nested named list. The names of the list correspond
to the model names. Each element of the list is a named list of character vectors.
The names of this nested list must correspond to the column names of the match-
ing features table. To share linkouts across multiple models, use the modelID
"default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Details

For each linkout, the URL pattern you provide will be concatenated with the value of that column
for each row. As an example, if your features table included a column named "ensembl" that
contained the Ensembl Gene ID for each feature, you could create a linkout to Ensembl using the
following pattern:

ensembl = "https://ensembl.org/Homo_sapiens/Gene/Summary?g="

As another example, if you had a column named "entrez" that contained the Entrez Gene ID for
each feature, you could create a linkout to Entrez using the following pattern:

entrez = "https://www.ncbi.nlm.nih.gov/gene/"

Note that you can provide more than one linkout per column.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

See Also

addFeatures

Examples

study <- createStudy("example")
resultsLinkouts <- list(

default = list(
ensembl = c("https://ensembl.org/Homo_sapiens/Gene/Summary?g=",

"https://www.genome.ucsc.edu/cgi-bin/hgGene?hgg_gene="),
entrez = "https://www.ncbi.nlm.nih.gov/gene/"

)
)
study <- addResultsLinkouts(study, resultsLinkouts)

addSamples 19

addSamples Add sample metadata

Description

Add sample metadata

Usage

addSamples(study, samples, reset = FALSE)

Arguments

study An OmicNavigator study created with createStudy

samples The metadata variables that describe the samples in the study. The input object
is a named list of data frames (one per model). The first column of each data
frame is used as the sampleID, so it must contain unique values. To share a data
frame across multiple models, use the modelID "default".

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

addTests Add tests

Description

Add tests

Usage

addTests(study, tests, reset = FALSE)

20 addTests

Arguments

study An OmicNavigator study created with createStudy

tests The tests from the study. The input object is a list of lists. Each element of
the top-level list is a model. The names should be the modelIDs. For each
modelID, each element of the nested list is a test. The names should be the
testIDs. The value should be a single character string describing the testID.
To share tests across multiple models, use the modelID "default". Instead of a
single character string, you can provide a list of metadata fields about each test.
The field "description" will be used to derive the tooltip displayed in the app.

reset Reset the data prior to adding the new data (default: FALSE). The default is to
add to or modify any previously added data (if it exists). Setting reset = TRUE
enables you to remove existing data you no longer want to include in the study.

Value

Returns the original onStudy object passed to the argument study, but modified to include the
newly added data

Examples

study <- createStudy("example")
tests <- list(

default = list(
test_01 = "Name of first test",
test_02 = "Name of second test"

)
)
study <- addTests(study, tests)

Alternative: provide additional metadata about each test
tests <- list(

default = list(
test_01 = list(

description = "Name of first test",
comparison_type = "treatment vs control",
effect_size = "beta"

),
test_02 = list(

description = "Name of second test",
comparison_type = "treatment vs control",
effect_size = "logFC"

)
)

)

basal.vs.lp 21

basal.vs.lp basal.vs.lp from Bioconductor workflow RNAseq123

Description

A subset of the object basal.vs.lp from Bioconductor workflow RNAseq123.

Usage

basal.vs.lp

Format

A data frame with 24 rows and 8 columns:

ENTREZID Entrez ID of mouse gene

SYMBOL Symbol of mouse gene

TXCHROM Chromosome location of mouse gene

logFC Log fold change

AveExpr Average expression level of the gene across all samples

t Moderated t-statistic

P.Value p-value

adj.P.Val Adjusted p-value

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(basal.vs.lp)
str(basal.vs.lp)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://doi.org/10.1186/s12885-015-1187-z

22 basal.vs.ml

basal.vs.ml basal.vs.ml from Bioconductor workflow RNAseq123

Description

A subset of the object basal.vs.ml from Bioconductor workflow RNAseq123.

Usage

basal.vs.ml

Format

A data frame with 24 rows and 8 columns:

ENTREZID Entrez ID of mouse gene

SYMBOL Symbol of mouse gene

TXCHROM Chromosome location of mouse gene

logFC Log fold change

AveExpr Average expression level of the gene across all samples

t Moderated t-statistic

P.Value p-value

adj.P.Val Adjusted p-value

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(basal.vs.ml)
str(basal.vs.ml)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://doi.org/10.1186/s12885-015-1187-z

cam.BasalvsLP 23

cam.BasalvsLP cam.BasalvsLP from Bioconductor workflow RNAseq123

Description

A subset of the object cam.BasalvsLP from Bioconductor workflow RNAseq123.

Usage

cam.BasalvsLP

Format

A data frame with 4 rows and 4 columns:

NGenes Number of genes in each term

Direction Direction of the enrichment

PValue Nominal p-value

FDR Multiple-testing adjusted p-value

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(cam.BasalvsLP)
str(cam.BasalvsLP)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://doi.org/10.1186/s12885-015-1187-z

24 cam.BasalvsML

cam.BasalvsML cam.BasalvsML from Bioconductor workflow RNAseq123

Description

A subset of the object cam.BasalvsML from Bioconductor workflow RNAseq123.

Usage

cam.BasalvsML

Format

A data frame with 4 rows and 4 columns:

NGenes Number of genes in each term

Direction Direction of the enrichment

PValue Nominal p-value

FDR Multiple-testing adjusted p-value

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(cam.BasalvsML)
str(cam.BasalvsML)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://doi.org/10.1186/s12885-015-1187-z

combineStudies 25

combineStudies Combine two or more studies

Description

Create a new OmicNavigator study by combining two or more existing study objects.

Usage

combineStudies(...)

Arguments

... Two or more objects of class onStudy

Details

This is a convenience function to quickly and conveniently combine studies. However, it is naive,
and you will likely need to edit the new study after combining. When there are conflicting elements
(e.g. different study names or different maintainers), then the value for the latter study is kept. As a
concrete example, if you combined 5 studies, the name of the combined study would be the name
of the 5th study.

The behavior is more complex for study elements that are nested lists of data frames (e.g. results). If
the 5 studies included a results table for the same modelID/testID combination, then only the results
from the 5th study would be retained. However, if they each defined a different modelID, then the
results for all 5 modelIDs would be included in the combined study. Please note that you should be
extra cautious in the situation where the studies have the same modelID/testID combination. Ideally
they should all have the same column names. Since a data frame is technically a list, the workhorse
function modifyList will retain any uniquely named columns from earlier studies along with the
columns from the final study.

Note that as a shortcut you can also combine studies using the S3 method c.

If a study you would like to combine is already installed, you can convert it to a study object by
importing it with importStudy.

Value

Returns a new combined OmicNavigator study object, which is a named nested list with class
onStudy

See Also

createStudy, importStudy

26 createStudy

Examples

Define threee study objects
studyOne <- createStudy(name = "One",

description = "First study",
studyMeta = list(metafield1 = "metavalue1"))

studyTwo <- createStudy(name = "Two",
description = "Second study",
maintainer = "The Maintainer",
studyMeta = list(metafield2 = "metavalue2"))

studyThree <- createStudy(name = "Three",
description = "Third study",
studyMeta = list(metafield3 = "metavalue3"))

Combine the three studies
combineStudies(studyOne, studyTwo, studyThree)

Equivalently, can use c()
c(studyOne, studyTwo, studyThree)

createStudy Create a study

Description

Create a new OmicNavigator study.

Usage

createStudy(
name,
description = name,
samples = list(),
features = list(),
models = list(),
assays = list(),
tests = list(),
annotations = list(),
results = list(),
enrichments = list(),
metaFeatures = list(),
plots = list(),
mapping = list(),
barcodes = list(),
reports = list(),
resultsLinkouts = list(),

createStudy 27

enrichmentsLinkouts = list(),
metaFeaturesLinkouts = list(),
version = NULL,
maintainer = NULL,
maintainerEmail = NULL,
studyMeta = list()

)

Arguments

name Name of the study

description Description of the study

samples The metadata variables that describe the samples in the study. The input object
is a named list of data frames (one per model). The first column of each data
frame is used as the sampleID, so it must contain unique values. To share a data
frame across multiple models, use the modelID "default".

features The metadata variables that describe the features in the study. The input object
is a list of data frames (one per model). The first column of each data frame is
used as the featureID, so it must contain unique values. To share a data frame
across multiple models, use the modelID "default". All columns will be coerced
to character strings.

models The models analyzed in the study. The input is a named list. The names corre-
spond to the names of the models. The elements correspond to the descriptions
of the models. Alternatively, instead of a single character string, you can pro-
vide a list of metadata fields about each model. The field "description" will be
used to derive the tooltip displayed in the app.

assays The assays from the study. The input object is a list of data frames (one per
model). The row names should correspond to the featureIDs (addFeatures).
The column names should correspond to the sampleIDs (addSamples). The
data frame should only contain numeric values. To share a data frame across
multiple models, use the modelID "default".

tests The tests from the study. The input object is a list of lists. Each element of
the top-level list is a model. The names should be the modelIDs. For each
modelID, each element of the nested list is a test. The names should be the
testIDs. The value should be a single character string describing the testID.
To share tests across multiple models, use the modelID "default". Instead of a
single character string, you can provide a list of metadata fields about each test.
The field "description" will be used to derive the tooltip displayed in the app.

annotations The annotations used for the enrichment analyses. The input is a nested list.
The top-level list contains one entry per annotation database, e.g. reactome.
The names correspond to the name of each annotation database. Each of these
elements should be a list that contains more information about each annotation
database. Specifically the sublist should contain 1) description, a character
vector that describes the resource, 2) featureID, the name of the column in the
features table that was used for the enrichment analysis, and 3) terms, a list of
annotation terms. The names of terms sublist correspond to the name of the

28 createStudy

annotation terms. Each of the annotation terms should be a character vector of
featureIDs.

results The inference results from each model. The input is a nested named list. The
names of the list correspond to the model names. Each element in the list should
be a list of data frames with inference results, one for each test. In each data
frame, the featureID must be in the first column, and all other columns must be
numeric.

enrichments The enrichment results from each model. The input is a nested named list. The
names of the list correspond to the model names. Each list element should be
a list of the annotation databases tested (addAnnotations). The names of the
list correspond to the annotation databases. Each list element should be another
list of tests (addTests). The names correspond to the tests performed. Each of
these elements should be a data frame with enrichment results. Each table must
contain the following columns: "termID", "description", "nominal" (the nominal
statistics), and "adjusted" (the statistics after adjusting for multiple testing). Any
additional columns are ignored.

metaFeatures The metadata variables that describe the meta-features in the study. The in-
put object is a list of data frames (one per model). The first column of each
data frame is used as the featureID, so it must contain the same IDs as the cor-
responding features data frame (addFeatures). To share a data frame across
multiple models, use the modelID "default". All columns will be coerced to
character strings.

plots A nested list containing custom plotting functions and plot metadata. The input
object is a 3-level nested list. The first, or top-level list element name(s) must
match the study modelID(s). The second, or mid-level list element name(s)
must match the names of the plotting function(s) defined in the current R ses-
sion (see Details below for function construction requirements). The third, or
bottom-level list provides metadata to categorize, display, and support each plot.
The accepted fields are displayName, description, plotType, models, and
packages. displayName sets the plot name in the app and the description
field will display as a tool tip when hovering over plotting dropdown menus.
The plotType field is a character vector that categorizes the plot by 1) the num-
ber of features it supports (“singleFeature” or “multiFeature”), 2) the num-
ber of test results used by the plotting function (“singleTest”, “multiTest”),
3) if data from one or more models is used (add “multiModel” to specify that
data from two or more models are used in the plot; otherwise the plot is as-
sumed to reference only data within the model specified by the top-level list
element name), and 4) if the plot is interactive (add “plotly” to specify in-
teractive plots built using the plotly package; otherwise the plot is assumed to
be static). e.g., plotType = c("multiFeature", "multiTest",”plotly”).
If you do not specify the plotType the plot will be designated as plotType =
c("singleFeature", "singleTest"). The models field is an optional charac-
ter vector that specifies the models that should be used by the app when invoking
your custom plotting function. This field is set to ‘all’ by default and is only used
when plotType includes “multiModel”. If this field is not included the app will
assume all models in the study should be used with your plotting function. If the
plotting function requires additional packages beyond those attached by default
to a fresh R session, these must be defined in the element packages.

createStudy 29

mapping Feature IDs from models. The input object is a list of named data frames. For
each data frame, column names indicate model names while rows indicate fea-
tureIDs per model. Features with same index position across columns are treated
as mapped across models. For each model, feature IDs must match feature IDs
available in the results object of the respective model. 1:N relationships are
allowed.
Mapping list elements are required to be named as ’default’ or after a model
name as provided in addModels(). If a single data frame is provided, this list
element is recommended to be named ’default’. For multiple list elements, each
with its own data frame, list elements should be named after model name(s) (a
single element may still be named ’default’). In that case, when navigating in
ON front-end (FE), mapping element related to the selected model in the FE
will be used in multimodel plots. If a selected model in FE does not have a
corresponding mapping list element, it may still use the mapping list element
called ’default’ if this is available.
E.g., if in a study there are models "transcriptomics" and "proteomics" and the
user wants to create a plot based on data from both, a mapping list should be
provided with addMapping(). In this case, the mapping list element may be
named ’default’. This should contain a data frame with column names ’tran-
scriptomics’ and ’proteomics’, where feature IDs that map across models are
found in the same row.

barcodes The metadata variables that describe the barcode plot. The input object is a list of
lists (one per model). Each sublist must contain the element statistic, which
is the column name in the results table to use to construct the barcode plot. Each
sublist may additionally contain any of the following optional elements:

1. absolute - Should the statistic be converted to its absolute value (default
is TRUE).

2. logFoldChange - The column name in the results table that contains the
log fold change values.

3. labelStat - The x-axis label to describe the statistic.
4. labelLow - The left-side label to describe low values of the statistic.
5. labelHigh - The right-side label to describe high values of the statistic.
6. featureDisplay - The feature variable to use to label the barcode plot on

hover. To share metadata across multiple models, use the modelID "de-
fault".

reports The analysis report(s) that explain how the study results were generated. The
input object is a list of character vectors (one per model). Each element should
be either a URL or a path to a file on your computer. If it is a path to a file,
this file will be included in the exported study package. To share a report across
multiple models, use the modelID "default".

resultsLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a nested named list. The names of the list correspond
to the model names. Each element of the list is a named list of character vectors.
The names of this nested list must correspond to the column names of the match-
ing features table. To share linkouts across multiple models, use the modelID
"default".

30 createStudy

enrichmentsLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a named list. The names of the list correspond to the
annotation names. Each element of the list is a character vector of linkouts for
that annotationID.

metaFeaturesLinkouts

The URL patterns that describe linkouts to external resources (see Details be-
low). The input object is a nested named list. The names of the list correspond
to the model names. Each element of the list is a named list of character vectors.
The names of this nested list must correspond to the column names of the match-
ing metaFeatures table (addMetaFeatures). To share linkouts across multiple
models, use the modelID "default".

version (Optional) Include a version number to track the updates to your study package.
If you export the study to a package, the version is used as the package version.

maintainer (Optional) Include the name of the study package’s maintainer
maintainerEmail

(Optional) Include the email of the study package’s maintainer

studyMeta (Optional) Define metadata about your study. The input is a list of key:value
pairs. See below for more details.

Details

You can add metadata to describe your study by passing a named list to to the argument studyMeta.
The names of the list cannot contain spaces or colons, and they can’t start with # or -. The values of
each list should be a single value. Also, your metadata fields cannot use any of the reserved fields
for R’s DESCRIPTION file.

Value

Returns a new OmicNavigator study object, which is a named nested list with class onStudy

See Also

addSamples, addFeatures, addModels, addAssays, addTests, addAnnotations, addResults,
addEnrichments, addMetaFeatures, addPlots, addMapping, addBarcodes, addReports, addResultsLinkouts,
addEnrichmentsLinkouts, addMetaFeaturesLinkouts, exportStudy, installStudy

Examples

study <- createStudy(name = "ABC",
description = "An analysis of ABC")

Define a version and study metadata
study <- createStudy(name = "ABC",

description = "An analysis of ABC",
version = "0.1.0",
maintainer = "My Name",
maintainerEmail = "me@email.com",
studyMeta = list(department = "immunology",

https://gist.github.com/jdblischak/f9d946327c9991fb57dde1e6f2bff1c2
https://gist.github.com/jdblischak/f9d946327c9991fb57dde1e6f2bff1c2

exportStudy 31

organism = "Mus musculus"))

exportStudy Export a study

Description

Export a study

Usage

exportStudy(
study,
type = c("tarball", "package"),
path = NULL,
requireValid = TRUE

)

Arguments

study An OmicNavigator study

type Export study as a package tarball ("tarball") or as a package directory ("pack-
age")

path Optional file path to save the object

requireValid Require that study is valid before exporting

Value

Invisibly returns the name of the tarball file ("tarball") or the path to the package directory ("pack-
age")

See Also

validateStudy

32 getAssays

getAnnotations Get annotations from a study

Description

Get annotations from a study

Usage

getAnnotations(study, annotationID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

annotationID Filter by annotationID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getAssays Get assays from a study

Description

Get assays from a study

Usage

getAssays(study, modelID = NULL, quiet = FALSE, libraries = NULL)

getBarcodeData 33

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getBarcodeData Get data for barcode and violin plots

Description

Get data for barcode and violin plots

Usage

getBarcodeData(study, modelID, testID, annotationID, termID)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

testID Filter by testID

annotationID Filter by annotationID

termID Filter by termID

Value

A list with the following components:

data Data frame with the differential statistics to plot

highest (numeric) The largest differential statistic, rounded up to the next integer

lowest (numeric) The lowest differential statistic, rounded down to the next integer

34 getBarcodes

labelStat (character) The x-axis label to describe the differential statistic

labelLow (character) The vertical axis label on the left to describe smaller values (default
is "Low")

labelHigh (character) The vertical axis label on the right to describe larger values (default
is "High")

See Also

addBarcodes, getBarcodes

getBarcodes Get barcodes from a study

Description

Get barcodes from a study

Usage

getBarcodes(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getEnrichments 35

getEnrichments Get enrichments from a study

Description

Get enrichments from a study

Usage

getEnrichments(
study,
modelID = NULL,
annotationID = NULL,
testID = NULL,
quiet = FALSE,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

testID Filter by testID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

36 getEnrichmentsIntersection

getEnrichmentsIntersection

getEnrichmentsIntersection

Description

getEnrichmentsIntersection

Usage

getEnrichmentsIntersection(
study,
modelID,
annotationID,
mustTests,
notTests,
sigValue,
operator,
type

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

mustTests The testIDs for which a featureID (or termID for enrichment) must pass the
filters

notTests The testIDs for which a featureID (or termID for enrichment) must not pass the
filters. In other words, if a featureID passes the filter for a testID specified in
notTests, that featureID is removed from the output

sigValue The numeric significance value to use as a cutoff for each column

operator The comparison operators for each column, e.g. "<"

type Type of p-value: ("nominal" or "adjusted")

Value

Returns a data frame with the enrichments, similar to getEnrichmentsTable. Only rows that pass
all the filters are included.

See Also

getEnrichmentsTable

getEnrichmentsLinkouts 37

getEnrichmentsLinkouts

Get enrichments table linkouts from a study

Description

Get enrichments table linkouts from a study

Usage

getEnrichmentsLinkouts(
study,
annotationID = NULL,
quiet = FALSE,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

annotationID Filter by annotationID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getEnrichmentsNetwork Get enrichments network from a study

Description

Get enrichments network from a study

Usage

getEnrichmentsNetwork(study, modelID, annotationID, libraries = NULL)

38 getEnrichmentsTable

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

Returns a list with the following components:

tests (character) Vector of testIDs

nodes (data frame) The description of each annotation term (i.e. node). The nominal
and adjusted p-values are in list-columns.

links (list) The statistics for each pairwise overlap between the annotation terms (i.e.
nodes)

getEnrichmentsTable Get enrichments table from a study

Description

Get enrichments table from a study

Usage

getEnrichmentsTable(
study,
modelID,
annotationID,
type = "nominal",
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

type Type of p-value: ("nominal" or "adjusted")

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

getEnrichmentsUpset 39

Value

A data frame of enrichments with the following columns:

termID The unique ID for the annotation term

description The description of the annotation term

... One column for each of the enrichments

getEnrichmentsUpset getEnrichmentsUpset

Description

getEnrichmentsUpset

Usage

getEnrichmentsUpset(
study,
modelID,
annotationID,
sigValue,
operator,
type,
tests = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

annotationID Filter by annotationID

sigValue The numeric significance value to use as a cutoff for each column

operator The comparison operators for each column, e.g. "<"

type Type of p-value: ("nominal" or "adjusted")

tests Restrict UpSet plot to only include these tests

Value

No return value. This function is called for the side effect of creating an UpSet plot.

40 getFeatures

getFavicons Get favicon URLs for table linkouts

Description

To enhance the display of the linkouts in the app’s tables, it can fetch the favicon URL for each
website.

Usage

getFavicons(linkouts)

Arguments

linkouts Character vector or (potentially nested) list of character vectors containing the
URLs for the table linkouts.

Value

The URLs to the favicons for each linkout. The output returned will always be the same class and
structure as the input.

See Also

getResultsLinkouts, getEnrichmentsLinkouts

getFeatures Get features from a study

Description

Get features from a study

Usage

getFeatures(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

getInstalledStudies 41

Value

A data frame (if modelID is specified) or a list of data frames. All the columns will be character
strings, even if the values appear numeric.

getInstalledStudies Get installed OmicNavigator studies

Description

Get installed OmicNavigator studies

Usage

getInstalledStudies(libraries = NULL)

Arguments

libraries Character vector of library directories to search for study packages. If NULL,
uses .libPaths.

Value

Returns a character vector of the installed OmicNavigator study packages

getLinkFeatures Get the shared features in a network link

Description

Get the shared features in a network link

Usage

getLinkFeatures(study, annotationID, termID1, termID2)

Arguments

study An OmicNavigator study. Only accepts name of installed study package.

annotationID Filter by annotationID
termID1, termID2

Linked terms to find overlapping features

Value

Returns a character vector with the features included in both termIDs (i.e. the intersection)

42 getMetaFeatures

See Also

getNodeFeatures

getMapping Get mapping object from a study

Description

Get mapping object from a study

Usage

getMapping(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getMetaFeatures Get metaFeatures from a study

Description

Get metaFeatures from a study

Usage

getMetaFeatures(study, modelID = NULL, quiet = FALSE, libraries = NULL)

getMetaFeaturesLinkouts 43

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID
quiet Suppress messages (default: FALSE)
libraries The directories to search for installed study packages. If left as NULL (the de-

fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getMetaFeaturesLinkouts

Get metaFeatures table linkouts from a study

Description

Get metaFeatures table linkouts from a study

Usage

getMetaFeaturesLinkouts(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID
quiet Suppress messages (default: FALSE)
libraries The directories to search for installed study packages. If left as NULL (the de-

fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

44 getModels

getMetaFeaturesTable Get metaFeatures for a given feature

Description

Get metaFeatures for a given feature

Usage

getMetaFeaturesTable(study, modelID, featureID)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

featureID Filter by featureID

Value

Returns a data frame with the metaFeatures for the provided featureID. If the featureID is not found
in the metaFeatures table, the data frame will have zero rows.

See Also

addMetaFeatures, getMetaFeatures

getModels Get models from a study

Description

Get models from a study

Usage

getModels(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

getNodeFeatures 45

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getNodeFeatures Get the features in a network node

Description

Get the features in a network node

Usage

getNodeFeatures(study, annotationID, termID, libraries = NULL)

Arguments

study An OmicNavigator study. Only accepts name of installed study package.

annotationID Filter by annotationID

termID Filter by termID

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

Returns a character vector with the features in the termID

See Also

getLinkFeatures

46 getPackageVersion

getOverlaps Get overlaps from a study

Description

Get overlaps from a study

Usage

getOverlaps(study, annotationID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

annotationID Filter by annotationID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getPackageVersion Get version of OmicNavigator package

Description

This is a convenience function for the app. It is easier to always call the OmicNavigator package
functions via OpenCPU than to call the utils package for this one endpoint.

Usage

getPackageVersion()

Value

Returns a one-element character vector with the version of the currently installed OmicNavigator R
package

getPlots 47

getPlots Get plots from a study

Description

Get plots from a study

Usage

getPlots(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getPlottingData Get plotting data from an OmicNavigator study

Description

Returns assay, sample, feature, and result data that may be used for plotting. This function
is called by plotStudy() and the output is passed to custom plotting functions. It should be used
directly when interactively creating custom plotting functions.

Usage

getPlottingData(study, modelID, featureID, testID = NULL, libraries = NULL)

48 getPlottingData

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

featureID Filter by featureID

testID Filter by testID

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Details

The end-user should call this function and populate the first argument of their custom plotting
function with the output. When building functions, the end-user should understand the category of
plotting function they are creating (e.g. singleFeature or multiFeature, see addPlots()) and
call getPlottingData() accordingly.

Custom plots that accept data from multiple models and a single test (plotType = c(‘multiModel’, ‘singleTest’);
see addPlots()) should be built to accept output from getPlottingData() where modelID is vec-
tor of length n and testID is a vector of length n, where n is the number of models. Custom plots
that accept data from multiple models and multiple tests (plotType = c(‘multiModel’, ‘multiTest’))
should be built to accept output from getPlottingData() where modelID and testID vectors are
length m, where m is the total number of tests considered across all models (note that testIDs must
be repeated across models for the plotting function to work in the app). The index positions of these
two vectors should correspond. That is, testID position 1 should be found in the model specified
by modelID position 1, etc. See addPlots() for information about the assignment of plotTypes
for your custom plots.

Value

Returns a list of at least 4 objects:

assays A data frame that contains the assay measurements, filtered to only include the
row(s) corresponding to the input featureID(s) (see getAssays). If multiple
featureIDs are requested, the rows are reordered to match the order of this input.
The column order is unchanged.

samples A data frame that contains the sample metadata for the given modelID (see
getSamples). The rows are reordered to match the columns of the assays data
frame.

features A data frame that contains the feature metadata, filtered to only include the
row(s) corresponding to the input featureID(s) (see getFeatures). If multiple
featureIDs are requested, the rows are reordered to match the order of this input
(and thus match the order of the assays data frame).

results A data frame that contains the test results, filtered to only include the row(s)
corresponding to the input featureID(s). If multiple featureIDs are requested,
the rows are reordered to match the order of this input. The column order is
unchanged. If multiple testIDs are provided, they are stored in a list object.

getReportLink 49

mapping A data frame that contains the featureID(s) from each model. This is the filtered
mapping object. This data frame is returned when multiple models are passed
as arguments

The data frame results is only returned if you pass a testID. By default the app will always pass
the currently selected testID.

See Also

addPlots, plotStudy

getReportLink Get link to report

Description

Get link to report

Usage

getReportLink(study, modelID)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

Value

Returns a one-element character vector with either a path to a report file or a URL to a report web
page. If no report is available for the modelID, an empty character vector is returned.

getReports Get reports from a study

Description

Get reports from a study

Usage

getReports(study, modelID = NULL, quiet = FALSE, libraries = NULL)

50 getResults

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getResults Get results from a study

Description

Get results from a study

Usage

getResults(
study,
modelID = NULL,
testID = NULL,
quiet = FALSE,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

testID Filter by testID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

getResultsIntersection 51

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getResultsIntersection

getResultsIntersection

Description

getResultsIntersection

Usage

getResultsIntersection(
study,
modelID,
anchor,
mustTests,
notTests,
sigValue,
operator,
column

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

anchor The primary testID to filter the results

mustTests The testIDs for which a featureID (or termID for enrichment) must pass the
filters

notTests The testIDs for which a featureID (or termID for enrichment) must not pass the
filters. In other words, if a featureID passes the filter for a testID specified in
notTests, that featureID is removed from the output

sigValue The numeric significance value to use as a cutoff for each column

operator The comparison operators for each column, e.g. "<"

column The columns to apply the filters

52 getResultsLinkouts

Value

Returns a data frame with the results, similar to getResultsTable. Only rows that pass all the
filters are included. The new column Set_Membership is a comma-separated field that includes the
testIDs in which the featureID passed the filters.

See Also

getResultsTable

getResultsLinkouts Get results table linkouts from a study

Description

Get results table linkouts from a study

Usage

getResultsLinkouts(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getResultsTable 53

getResultsTable Get results table from a study

Description

Get results table from a study

Usage

getResultsTable(
study,
modelID,
testID,
annotationID = NULL,
termID = NULL,
libraries = NULL

)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

testID Filter by testID

annotationID Filter by annotationID

termID Filter by termID

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

A data frame which includes the columns from the features table followed by the columns from the
results table. All the columns from the features table will be character strings, even if the values
appear numeric.

If the optional arguments annotationID and termID are provided, the table will be filtered to only
include features in that annotation term.

54 getSamples

getResultsUpset getResultsUpset

Description

getResultsUpset

Usage

getResultsUpset(study, modelID, sigValue, operator, column, legacy = FALSE)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

sigValue The numeric significance value to use as a cutoff for each column

operator The comparison operators for each column, e.g. "<"

column The columns to apply the filters

legacy Use legacy code (for testing purposes only)

Value

Invisibly returns the output from upset

getSamples Get samples from a study

Description

Get samples from a study

Usage

getSamples(study, modelID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

getTests 55

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

getTests Get tests from a study

Description

Get tests from a study

Usage

getTests(study, modelID = NULL, testID = NULL, quiet = FALSE, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

testID Filter by testID

quiet Suppress messages (default: FALSE)

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

The object returned depends on the data available and any filters (e.g. the argument modelID):

If no filters are specified, then the object returned is a nested list, similar to the original input object.

If one or more filters are applied, then only a subset of the original nested list is returned. Techni-
cally, each filter applied is used to subset the original nested list using [[.

If no data is available, an empty list is returned (list()).

56 group

getUpsetCols getUpsetCols

Description

Determine the common columns across all tests of a model that are available for filtering with
UpSet.

Usage

getUpsetCols(study, modelID)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

Value

Returns a character vector with the names of the common columns

group group from Bioconductor workflow RNAseq123

Description

A subset of the object group from Bioconductor workflow RNAseq123.

Usage

group

Format

A factor with 3 levels:

Basal Basal cells

LP Luminal progenitor cells

ML Mature luminal cells

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html

importStudy 57

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

table(group)
str(group)

importStudy Import a study package

Description

Create an onStudy object by importing an installed study package

Usage

importStudy(study, libraries = NULL)

Arguments

study Named of an installed OmicNavigator study

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

Returns the onStudy object imported from the OmicNavigator study package

https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://doi.org/10.1186/s12885-015-1187-z

58 installStudy

installApp Install the OmicNavigator web app

Description

In order to run the OmicNavigator web app on your local machine, the app must be installed in
the www/ subdirectory of the R package. If you installed the release tarball from the GitHub Re-
leases page, then you already have the app installed. If you installed directly from GitHub with
install_github, or if you want to use a different version of the app, you can manually download
and install the app.

Usage

installApp(version = NULL, overwrite = FALSE, lib.loc = NULL, ...)

Arguments

version Version of the web app to install, e.g. "1.0.0"

overwrite Should an existing installation of the app be overwritten?

lib.loc a character vector with path names of R libraries. See ‘Details’ for the meaning
of the default value of NULL.

... Passed to download.file. If the download fails, you may need to adjust the
download settings for your operating system. For example, to download with
wget, pass the argument method = "wget".

Value

A one-element character vector with the absolute path to the directory in which the app files were
installed

installStudy Install a study as an R package

Description

Install a study as an R package

Usage

installStudy(study, library = .libPaths()[1])

Arguments

study An OmicNavigator study to install (class onStudy)

library Directory to install package. Defaults to first directory returned by .libPaths.

lane 59

Value

Invisibly returns the original onStudy object that was passed to the argument study

lane lane from Bioconductor workflow RNAseq123

Description

A subset of the object lane from Bioconductor workflow RNAseq123.

Usage

lane

Format

A factor with 3 levels:

L004 Sample sequenced on lane 4

L006 Sample sequenced on lane 6

L008 Sample sequenced on lane 8

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

table(lane)
str(lane)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://doi.org/10.1186/s12885-015-1187-z

60 listStudies

lcpm lcpm from Bioconductor workflow RNAseq123

Description

A subset of the object lcpm from Bioconductor workflow RNAseq123.

Usage

lcpm

Format

A matrix with 24 rows and 9 columns

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(lcpm)
str(lcpm)

listStudies List available studies and their metadata

Description

List available studies and their metadata

Usage

listStudies(libraries = NULL)

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://doi.org/10.1186/s12885-015-1187-z

Mm.c2 61

Arguments

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Value

Returns a nested list with one element per installed OmicNavigator study package. Each study
package entry has the following sublist components:

name (character) Name of the study

package (list) The fields from DESCRIPTION

results (nested list) The testIDs available for each modelID

enrichments (nested list) The annotationIDs available for each modelID

plots (nested list) The plotIDs available for each modelID

Mm.c2 Mm.c2 from Bioconductor workflow RNAseq123

Description

A subset of the object Mm.c2 from Bioconductor workflow RNAseq123.

Usage

Mm.c2

Format

A list of 4 character vectors

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://doi.org/10.1186/s12885-015-1187-z

62 plotStudy

Examples

Mm.c2[[1]]
str(Mm.c2)

plotStudy Invoke a custom plotting function

Description

plotStudy() invokes a custom plotting function saved within an OmicNavigator study. This func-
tion is called by the app using the study-model-test selection, feature selections, and plotting func-
tion metadata (see addPlots()) to define arguments.

Usage

plotStudy(study, modelID, featureID, plotID, testID = NULL, libraries = NULL)

Arguments

study An OmicNavigator study. Either an object of class onStudy, or the name of an
installed study package.

modelID Filter by modelID

featureID Filter by featureID

plotID Filter by plotID

testID Filter by testID

libraries The directories to search for installed study packages. If left as NULL (the de-
fault), then installed.packages will use the result of .libPaths.

Details

The arguments study, modelID, featureID, and testID are passed to the function getPlottingData().
The list returned by getPlottingData() is passed as the first argument to a custom plotting
function. Some custom plotTypes (see addPlots()) require care when being invoked and at-
tention should be paid to how a custom plot will be rendered by the app. Custom plots with
plotType = c(‘multiModel’, ‘singleTest’) accept a modelID vector of length n and a vector
of testIDs length n, where n is the number of models. Custom plots with plotType = c(‘multiModel’, ‘multiTest’)
accept modelID and testID vectors of length m, where m is the total number of tests considered
across all models (note testIDs are often repeated across models). Note that the index positions
of these two vectors should correspond. That is, testID position 1 should be found in the model
specified by modelID position 1, etc.

The app will invoke custom plotting functions via plotStudy() using the current menu selections
and plot metadata (see addPlots()). Plots with plotType = ‘multiTest’ will be invoked with all
testIDs found within the currently selected model. Plots with plotType = c(‘multiModel’,‘singleTest’)
will be invoked with all modelIDs within the study (unless the plot has specified a list of models via

removeStudy 63

models) and the currently selected testID (an error will result if the currently selected testID is not
present in all relevant models for the plot). Plots with plotType = c(‘multiModel’, ‘multiTest’)
will be invoked with all modelIDs within the study (unless the plot has specified a list of models via
models) and all identical testIDs across models (if there are no matching testIDs across models an
error will result).

Value

This function is called for the side effect of creating a plot. It invisibly returns the result from the
custom plotting function specified by plotID. Previously it invisibly returned the study object. It’s
unlikely you relied on this behavior. For a ggplot2 plot, the return value will be the plotting object
with class "ggplot". For a plotly plot, the return value will be the json schema used for plotting
with class “json”.

See Also

addPlots, getPlottingData

removeStudy Remove an installed study R package

Description

Remove an installed study R package

Usage

removeStudy(study, library = .libPaths()[1])

Arguments

study The name of the study or an onStudy object. Do not include the prefix of the
installed package, e.g. ONstudy.

library Directory where the study package is installed. Defaults to first directory re-
turned by .libPaths.

Value

Invisibly returns the path of the removed study package

64 startApp

samplenames samplenames from Bioconductor workflow RNAseq123

Description

A subset of the object samplenames from Bioconductor workflow RNAseq123.

Usage

samplenames

Format

A character vector containing the unique sample identifiers

Source

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/
limmaWorkflow.html

References

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME. RNA-seq analysis is
easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]. F1000Research
2018, 5:1408 doi:10.12688/f1000research.9005.3

Sheridan, J.M., Ritchie, M.E., Best, S.A. et al. A pooled shRNA screen for regulators of primary
mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015,
15:221 doi:10.1186/s128850151187z

Examples

head(samplenames)
str(samplenames)

startApp Start app on local machine

Description

After you have installed at least one OmicNavigator study package with installStudy, you can
explore the results in the app. The function startApp starts a local instance of the app running
on your current machine. It will automatically open the app in your default browser. For the best
experience, use Google Chrome. From the dropdown menu, you will be able to select from any of
the studies you have installed on your machine. When you are finished, you can stop the web server
by returning to the R console and pressing the Esc key (Windows) or Ctrl-C (Linux, macOS).

https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html
https://f1000research.com/articles/5-1408/v3
https://f1000research.com/articles/5-1408/v3
https://doi.org/10.12688/f1000research.9005.3
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://bmccancer.biomedcentral.com/articles/10.1186/s12885-015-1187-z
https://doi.org/10.1186/s12885-015-1187-z

summary.onStudy 65

Usage

startApp(...)

Arguments

... extra parameters passed to ocpu_start_server

Details

Note that the app can’t be run from within RStudio Server.

The app requires some additional R packages to run. If you receive an error about a missing pack-
age, please install it with install.packages. To ensure you have all the extra packages installed,
you can run the command below:

install.packages(c("faviconPlease", "opencpu", "UpSetR"))

Value

No return value. This function is only called for the side effect of running a local instance of the
app.

summary.onStudy Summarize elements of OmicNavigator study

Description

Displays a tree-like summary of the elements that have been added to an OmicNavigator study.

Usage

S3 method for class 'onStudy'
summary(object, elements = NULL, ...)

Arguments

object OmicNavigator study object (class onStudy)

elements Subset the output to only include specific elements of the study, e.g. c("results",
"enrichments")

... Currently unused

Value

Invisibly returns the original onStudy object

66 validateStudy

validateStudy Validate a study

Description

Validate a study

Usage

validateStudy(study)

Arguments

study An OmicNavigator study object

Value

For a valid study object, the logical value TRUE is invisibly returned. For an invalid study object,
there is no return value because an error is thrown.

Index

∗ datasets
basal.vs.lp, 21
basal.vs.ml, 22
cam.BasalvsLP, 23
cam.BasalvsML, 24
group, 56
lane, 59
lcpm, 60
Mm.c2, 61
samplenames, 64

.libPaths, 32–35, 37, 38, 40, 42–48, 50,
52–55, 57, 58, 61–63

[[, 32–35, 37, 42, 43, 45–47, 50–52, 55

addAnnotations, 5, 7, 8, 28, 30
addAssays, 5, 30
addBarcodes, 6, 30, 34
addEnrichments, 7, 8, 30
addEnrichmentsLinkouts, 8, 30
addFeatures, 6, 9, 11, 18, 27, 28, 30
addMapping, 10, 30
addMetaFeatures, 11, 12, 30, 44
addMetaFeaturesLinkouts, 11, 30
addModels, 13, 30
addOverlaps, 14
addPlots, 14, 30, 49, 63
addPlots(), 48, 62
addReports, 16, 30
addResults, 17, 30
addResultsLinkouts, 17, 30
addSamples, 6, 19, 27, 30
addTests, 7, 19, 28, 30

basal.vs.lp, 21
basal.vs.ml, 22

c, 25
cam.BasalvsLP, 23
cam.BasalvsML, 24
combineStudies, 25

createStudy, 5–20, 25, 26

download.file, 58

exportStudy, 30, 31

getAnnotations, 32
getAssays, 32, 48
getBarcodeData, 33
getBarcodes, 34, 34
getEnrichments, 35
getEnrichmentsIntersection, 36
getEnrichmentsLinkouts, 37, 40
getEnrichmentsNetwork, 37
getEnrichmentsTable, 36, 38
getEnrichmentsUpset, 39
getFavicons, 40
getFeatures, 40, 48
getInstalledStudies, 41
getLinkFeatures, 41, 45
getMapping, 42
getMetaFeatures, 42, 44
getMetaFeaturesLinkouts, 43
getMetaFeaturesTable, 44
getModels, 44
getNodeFeatures, 42, 45
getOverlaps, 46
getPackageVersion, 46
getPlots, 47
getPlottingData, 10, 16, 47, 63
getPlottingData(), 15, 62
getReportLink, 49
getReports, 49
getResults, 50
getResultsIntersection, 51
getResultsLinkouts, 40, 52
getResultsTable, 52, 53
getResultsUpset, 54
getSamples, 48, 54
getTests, 55

67

68 INDEX

getUpsetCols, 56
group, 56

importStudy, 25, 57
install.packages, 65
installApp, 58
installed.packages, 32–35, 37, 38, 40,

42–48, 50, 52–55, 57, 61, 62
installStudy, 30, 58, 64

lane, 59
lcpm, 60
listStudies, 60

Mm.c2, 61
modifyList, 25

ocpu_start_server, 65
OmicNavigator (OmicNavigator-package), 4
OmicNavigator-package, 4

plotStudy, 10, 16, 49, 62
plotStudy(), 15

removeStudy, 63

samplenames, 64
startApp, 64
summary.onStudy, 65

upset, 54

validateStudy, 31, 66

	OmicNavigator-package
	addAnnotations
	addAssays
	addBarcodes
	addEnrichments
	addEnrichmentsLinkouts
	addFeatures
	addMapping
	addMetaFeatures
	addMetaFeaturesLinkouts
	addModels
	addOverlaps
	addPlots
	addReports
	addResults
	addResultsLinkouts
	addSamples
	addTests
	basal.vs.lp
	basal.vs.ml
	cam.BasalvsLP
	cam.BasalvsML
	combineStudies
	createStudy
	exportStudy
	getAnnotations
	getAssays
	getBarcodeData
	getBarcodes
	getEnrichments
	getEnrichmentsIntersection
	getEnrichmentsLinkouts
	getEnrichmentsNetwork
	getEnrichmentsTable
	getEnrichmentsUpset
	getFavicons
	getFeatures
	getInstalledStudies
	getLinkFeatures
	getMapping
	getMetaFeatures
	getMetaFeaturesLinkouts
	getMetaFeaturesTable
	getModels
	getNodeFeatures
	getOverlaps
	getPackageVersion
	getPlots
	getPlottingData
	getReportLink
	getReports
	getResults
	getResultsIntersection
	getResultsLinkouts
	getResultsTable
	getResultsUpset
	getSamples
	getTests
	getUpsetCols
	group
	importStudy
	installApp
	installStudy
	lane
	lcpm
	listStudies
	Mm.c2
	plotStudy
	removeStudy
	samplenames
	startApp
	summary.onStudy
	validateStudy
	Index

