
Package ‘OenoKPM’
January 20, 2025

Title Modeling the Kinetics of Carbon Dioxide Production in Alcoholic
Fermentation

Version 2.4.1

Description
Developed to help researchers who need to model the kinetics of carbon dioxide (CO2) produc-
tion in alcoholic fermentation of wines, beers and other fermented products. The following mod-
els are available for modeling the carbon dioxide production curve as a func-
tion of time: 5PL, Gompertz and 4PL. This package has different functions, which ap-
plied can: perform the modeling of the data obtained in the fermentation and return the coeffi-
cients, analyze the model fit and return different statistical metrics, and calculate the kinetic pa-
rameters: Maximum production of carbon dioxide; Maximum rate of production of carbon diox-
ide; Moment in which maximum fermentation rate occurs; Duration of the latency phase for car-
bon dioxide production; Carbon dioxide produced until maximum fermentation rate occurs. In ad-
dition, a function that generates graphs with the observed and predicted data from the mod-
els, isolated and combined, is available. Gava, A., Borsato, D., & Ficagna, E. (2020).``Ef-
fect of mixture of fining agents on the fermentation kinetics of base wine for sparkling wine pro-
duction: Use of methodology for modeling''. <doi:10.1016/j.lwt.2020.109660>.

Depends R (>= 4.0.0)

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1

Imports ggplot2,minpack.lm,openxlsx,grDevices,ggpubr, grid, gridExtra

NeedsCompilation no

Author Angelo Gava [aut, cre] (<https://orcid.org/0000-0003-0338-6511>)

Maintainer Angelo Gava <gava.angelogava@gmail.com>

Repository CRAN

Date/Publication 2024-04-08 19:20:10 UTC

Contents
kp . 2
metrics . 5

1

https://doi.org/10.1016/j.lwt.2020.109660
https://orcid.org/0000-0003-0338-6511

2 kp

plot_fit . 7
pred . 14

Index 17

kp Calculates kinetic parameters as a function of model fit for CO2 pro-
duction as a function of time

Description

A function that, based on the observed data, the independent variable (e.g. time in h) and the
dependent variable (e.g. CO2 production in g L−1), performs the modeling of the fermentation
curve based on the chosen model (5PL, Gompertz, or 4PL).

Next, the coefficients are used in mathematical formulas to obtain the following kinetic parameters:

tLag - Duration of the latency phase for CO2 production;

Vmax - Maximum rate of production of CO2;

tVmax
- Moment in which maximum fermentation rate occurs;

CO2V max
- CO2 Produced until Maximum fermentation rate occurs;

Ymax - Maximum production of carbon dioxide (CO2);

Usage

kp(
data,
model,
save.xls = FALSE,
dir.save,
xls.name,
startA,
startB,
startC,
startD,
startG

)

Arguments

data Data frame to be analyzed. The data frame must be in the following order:

• First: All columns containing the independent variable (e.g. time in hours)
• Second: All columns containing dependent variables (e.g. CO2 g L−1 pro-

duction)
• Header: Columns must contain a header. If the treatment ID is in the

header, this ID will be used to identify the coefficients and kinetic param-
eters for each analyzed curve.

kp 3

model Model to be adjusted. Argument for model:

• Model = 1. 5PL Model (five-parameter logistic (5PL) model).
• Model = 2. Gompertz Model.
• Model = 3. 4PL Model (four-parameter logistic (4PL) model).

save.xls If TRUE, an xlsx file containing the coefficients and kinetic parameters will be
saved in the working directory. If FALSE, the xlsx file will not be saved.

dir.save Directory path where the xlsx file is to be saved.

xls.name File name. Must contain the format. For example, "Parameters.xlsx".

startA Starting estimate of the value of A for model.

startB Starting estimate of the value of B for model.

startC Starting estimate of the value of C for model.

startD Starting estimate of the value of D for model.

startG Starting estimate of the value of G for model.

Details

Curve fitting from the observed data is performed by the nlsLM() function in the ’minpack.lm’
package.

You can see our article for more details on the mathematical formulas used to obtain each kinetic
parameter (Gava et al., 2020). In addition, feel free to use it as a reference in your works.

Value

The analyzed model coefficients and the calculated kinetic parameters are returned in a data.frame.
In addition, a "Parameters.xlsx" file can be generated, containing the coefficients and kinetic pa-
rameters of each studied fermentation curve.

Author(s)

Angelo Gava

References

Gava, A., Borsato, D., & Ficagna, E. (2020). Effect of mixture of fining agents on the fermentation
kinetics of base wine for sparkling wine production: Use of methodology for modeling. LWT, 131,
109660. doi:10.1016/j.lwt.2020.109660

Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van’t Riet, K. J. A. E. M. (1990). Mod-
eling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881.
doi:10.1128/aem.56.6.18751881.1990

Examples

#Creating a data.frame.
#First, columns containing independent variable.
#Second, columns containing dependent variable.
#The data frame created presents two

https://doi.org/10.1016/j.lwt.2020.109660
https://doi.org/10.1128/aem.56.6.1875-1881.1990

4 kp

#fermentation curves for two yeasts with
#different times and carbon dioxide production.

df <- data.frame('Time_Yeast_A' = seq(0,280, by=6.23),
'Time_Yeast_B' = seq(0,170, by=3.7777778),
'CO2_Production_Yeast_A' = c(0,0.97,4.04,9.62,13.44,17.50,

24.03,27.46,33.75,36.40,40.80,
44.24,48.01,50.85,54.85,57.51,
61.73,65.43,66.50,72.41,75.47,
77.22,78.49,79.26,80.31,81.04,
81.89,82.28,82.56,83.13,83.62,
84.11,84.47,85.02,85.31,85.61,
86.05,86.27,85.29,86.81,86.94,
87.13,87.33,87.45,87.85),

'CO2_Production_Yeast_B' = c(0,0.41,0.70,3.05,15.61,18.41,
21.37,23.23,28.28,41.28,43.98,
49.54,54.43,60.40,63.75,69.29,
76.54,78.38,80.91,83.72,84.66,
85.39,85.81,86.92,87.38,87.61,
88.38,88.57,88.72,88.82,89.22,
89.32,89.52,89.71,89.92,90.11,
90.31,90.50,90.70,90.90,91.09,
91.29,91.49,91.68,91.88))

#Using the kp() function to find the
#coefficients and kinetic parameters
#according to the adopted model.

kp(data = df,
model = 1,
startA = 0,
startB = 1.5,
startC = 500,
startD = 92,
startG = 1500,
save.xls = FALSE) #5PL Model adopted

kp(data = df,model = 2,
startA = 92,
startB = 1.5,
startC = 0,
startD = NA,
startG = NA,
save.xls = FALSE) #Gompertz Model adopted

kp(data = df,
startA = 0,
startB = 2.5,
startC = 10,
startD = 92,
startG = NA,
model = 3,
save.xls = FALSE) #4PL Model adopted

metrics 5

#Saving an xlsx file. In this example,
#we will use saving a temporary file in
#the temporary file directories.

metrics Performs the modeling of the observed data and returns the fit metrics
of the studied model

Description

A function that, based on the observed data, the independent variable (e.g. time in h) and the
dependent variable (e.g. CO2 production in g L−1), performs the modeling of the fermentation
curve based on the chosen model (5PL, Gompertz, or 4PL) and returns the model fit metrics.

As a result, the fit metrics for the chosen model are returned in the form of data.frame: Correlation,
R2,Residual sum of squares (RSSmin) and Residual standard error.

Usage

metrics(
data,
model,
save.xls = FALSE,
dir.save,
xls.name,
startA,
startB,
startC,
startD,
startG

)

Arguments

data Data frame to be analyzed. The data frame must be in the following order:

• First: All columns containing the independent variable (e.g. time in hours)
• Second: All columns containing dependent variables (e.g. CO2 g L−1 pro-

duction)
• Header: Columns must contain a header. If the treatment ID is in the

header, this ID will be used to identify the metrics for each analyzed curve.

model Model to be adjusted. Argument for model:

• Model = 1. 5PL Model (five-parameter logistic (5PL) model)
• Model = 2. Gompertz Model
• Model = 3. 4PL Model (four-parameter logistic (4PL) model)

6 metrics

save.xls If TRUE, an xlsx file containing the metrics will be saved in the working direc-
tory. If FALSE, the xlsx file will not be saved.

dir.save Directory path where the xlsx file is to be saved.

xls.name File name. Must contain the format. For example, "Metrics.xlsx".

startA Starting estimate of the value of A for model.

startB Starting estimate of the value of B for model.

startC Starting estimate of the value of C for model.

startD Starting estimate of the value of D for model.

startG Starting estimate of the value of G for model.

Details

Curve fitting from the observed data is performed by the nlsLM() function in the ’minpack.lm’
package.

Value

The metrics from the analyzed model are returned in a data.frame. In addition, a "Metrics.xlsx"
file can be generated, containing the model fit metrics for each fermentation curve studied: Cor-
relation; R2; Residual standard error; Residual sum of squares (RSSmin).

Author(s)

Angelo Gava

Examples

#Creating a data.frame.
#First, columns containing independent variable.
#Second, columns containing dependent variable.
#The data frame created presents two
#fermentation curves for two yeasts with
#different times and carbon dioxide production.

df <- data.frame('Time_Yeast_A' = seq(0,280, by=6.23),
'Time_Yeast_B' = seq(0,170, by=3.7777778),
'CO2_Production_Yeast_A' = c(0,0.97,4.04,9.62,13.44,17.50,

24.03,27.46,33.75,36.40,40.80,
44.24,48.01,50.85,54.85,57.51,
61.73,65.43,66.50,72.41,75.47,
77.22,78.49,79.26,80.31,81.04,
81.89,82.28,82.56,83.13,83.62,
84.11,84.47,85.02,85.31,85.61,
86.05,86.27,85.29,86.81,86.94,
87.13,87.33,87.45,87.85),

'CO2_Production_Yeast_B' = c(0,0.41,0.70,3.05,15.61,18.41,
21.37,23.23,28.28,41.28,43.98,
49.54,54.43,60.40,63.75,69.29,
76.54,78.38,80.91,83.72,84.66,

plot_fit 7

85.39,85.81,86.92,87.38,87.61,
88.38,88.57,88.72,88.82,89.22,
89.32,89.52,89.71,89.92,90.11,
90.31,90.50,90.70,90.90,91.09,
91.29,91.49,91.68,91.88))

#Using the metrics() function to find the
#model fit metrics

metrics(data = df,
model = 1,
startA = 0,
startB = 1.5,
startC = 500,
startD = 92,
startG = 1500,
save.xls = FALSE) #5PL Model adopted

metrics(data = df,
model = 2,
startA = 92,
startB = 1.5,
startC = 0,
startD = NA,
startG = NA,
save.xls = FALSE) #Gompertz Model adopted

metrics(data = df,
model = 3,
startA = 0,
startB = 2.5,
startC = 10,
startD = 92,
startG = NA,
save.xls = FALSE) #4PL Model adopted

#Saving an xlsx file. In this example,
#we will use saving a temporary file in
#the temporary file directories.

plot_fit Plot graphs with observed data and predicted data from models

Description

A function that, based on the observed data, the independent variable (e.g. time in h) and the
dependent variable (e.g. CO2 production in g L−1), performs the modeling of the fermentation
curve based on the chosen model(s) (5PL, Gompertz, or/and 4PL).

8 plot_fit

From the observed data and predicted data, whether from one or all of the available models, this
function will plot a graph for each fermentation curve evaluated. The chart will have the following
basic structure:

X axis: fermentation time

Y axis: CO2 production

Observed data: Scatterplot with dots. Plot with geom_point function from ggplot2 package.

Predicted data: Smoothed line. Plot with the stat_smooth function from the ggplot2 package.

Usage

plot_fit(
data,
models,
startA,
startB,
startC,
startD,
startG,
col = "black",
col1 = "red",
col2 = "cornflowerblue",
col3 = "forestgreen",
axisX = "Time (hours)",
axisY = expression(paste("CO"["2"] * " Production (g L"^{

"-1"
} * ")")),
breaksX = waiver(),
limitsX = NULL,
breaksY = waiver(),
limitsY = NULL,
font = "serif",
font.size = 14,
legend.position = "top",
show.R2 = FALSE,
save.PDF = FALSE,
dir.save,
dir.name = "Graphics",
width.PDF = 15,
height.PDF = 12,
width.PDF2 = 25,
height.PDF2 = 18

)

Arguments

data Data frame to be analyzed. The data frame must be in the following order:

• First: All columns containing the independent variable (e.g. time in hours)

plot_fit 9

• Second: All columns containing dependent variables (e.g. CO2 g L−1 pro-
duction)

• Header: Columns must contain a header. If the treatment ID is in the
header, this ID will be used to name the graphics PDF files for each ana-
lyzed curve.

models Model or models to be adjusted:

• Models = 1. Only the 5PL Model.
• Models = 2. Only the Gompertz Model.
• Models = 3. Only the 4PL Model.
• Models = 4. 5PL and Gompertz Models.
• Models = 5. 5PL and 4PL Models.
• Models = 6. Gompertz and 4PL Models.
• Models = 7. 5PL, Gompertz and 4PL Models.

startA Starting estimate of the value of A for model.

startB Starting estimate of the value of B for model.

startC Starting estimate of the value of C for model.

startD Starting estimate of the value of D for model.

startG Starting estimate of the value of G for model.

col Plot color of observed data in points. For example, "black".

col1 Plot color of predicted data from model 1 (5PL Model). For example, "red".

col2 Plot color of predicted data from model 2 (Gompertz Model). For example,
"blue".

col3 Plot color of predicted data from model 3 (4PL Model). For example, "green".

axisX X Axis Title. Character vector (or expression).

axisY Y Axis Title. Character vector (or expression).

breaksX One of:

• Use ggplot2::waiver() for the default X-axis breaks calculated by the trans-
form object.

• Numerical vector of X-Axis scale positions. For example, seq(0,200,20).

limitsX One of:

• NULL to use the default X-Axis scaling range.
• A numeric vector of length two, giving the limits of the X-axis scale. For

example, c(0,200).

breaksY One of:

• Use ggplot2::waiver() for the default Y-axis breaks calculated by the trans-
form object.

• A numerical vector of Y-Axis scale positions. For example, seq(0,100,10).

limitsY One of:

• NULL to use the default Y-Axis scaling range.

10 plot_fit

• A numeric vector of length two, giving the limits of the Y-axis scale. For
example, c(0,100).

font Base font family

font.size Base font size, given in pts.
legend.position

The position of the caption ("none", "left", "right", "bottom", "top", or a numeric
vector of two elements (X,Y).

show.R2 If TRUE, plots the R2 of the plotted predicted models on the graph. If FALSE,
do not plot the R2 of the plotted predicted models.

save.PDF If TRUE, create a folder (directory) and save each graphic in PDF format. If
FALSE, it does not create a directory or save the graphics in PDF.

dir.save Path of the directory in which a new folder (directory) will be created for saving
graphics in PDF format.

dir.name Folder name (directory name) to be created within the working directory for
saving PDF graphics. Character vector.

width.PDF Width, in cm, of the graphic to be saved in a PDF file.

height.PDF Height, in cm, of the graphic to be saved in a PDF

width.PDF2 Width, in cm, of the multiplot graphic to be saved in a PDF file.

height.PDF2 Height, in cm, of the multiplot graphic to be saved in a PDF

Details

Curve fitting from the observed data is performed by the nlsLM() function in the ’minpack.lm’
package.

Graphs are plotted using the various functions in the ’ggplot2’ package.

Value

Elegant graphics plotted according to observed and predicted data. In addition, a folder (directory)
can be created, in which the PDF graphics will be saved, if desired. In this folder, the graph of
each analyzed fermentation curve is saved in PDF format, with the dimensions stipulated in the
width.PDF and height.PDF arguments. The name of each PDF file will be extracted from the
header of the dependent variable used for the graph. See more in the examples.

Author(s)

Angelo Gava

Examples

#################Example 1#################
#Using only required arguments

#Creating a data.frame.
#First, columns containing independent variable.
#Second, columns containing dependent variable.

plot_fit 11

#The data frame created presents two
#fermentation curves for two yeasts with
#different times and carbon dioxide production.

df <- data.frame('Time_Yeast_A' = seq(0,280, by=6.23),
'Time_Yeast_B' = seq(0,170, by=3.7777778),
'CO2_Production_Yeast_A' = c(0,0.97,4.04,9.62,13.44,17.50,

24.03,27.46,33.75,36.40,40.80,
44.24,48.01,50.85,54.85,57.51,
61.73,65.43,66.50,72.41,75.47,
77.22,78.49,79.26,80.31,81.04,
81.89,82.28,82.56,83.13,83.62,
84.11,84.47,85.02,85.31,85.61,
86.05,86.27,85.29,86.81,86.94,
87.13,87.33,87.45,87.85),

'CO2_Production_Yeast_B' = c(0,0.41,0.70,3.05,15.61,18.41,
21.37,23.23,28.28,41.28,43.98,
49.54,54.43,60.40,63.75,69.29,
76.54,78.38,80.91,83.72,84.66,
85.39,85.81,86.92,87.38,87.61,
88.38,88.57,88.72,88.82,89.22,
89.32,89.52,89.71,89.92,90.11,
90.31,90.50,90.70,90.90,91.09,
91.29,91.49,91.68,91.88))

#Using the plot_fit function to
#generate elegants graphs PDF files
#containing both observed data and
#predicted data.

#Graph plotted only with Model 5PL
#fit (models = 1)

plot_fit(data = df,
models = 1,
startA = 0,
startB = 1.5,
startC = 500,
startD = 92,
startG = 1500)

#Graph plotted with 5PL and Gompertz
#model fits (models = 4)

plot_fit(data = df,
models = 4,
startA = 0,
startB = 1.5,
startC = 500,
startD = 92,
startG = 1500)

12 plot_fit

#################Example 2#################
#Using the various function arguments to
#customize the graph.

#Creating a data.frame.
#First, columns containing independent variable.
#Second, columns containing dependent variable.
#The data frame created presents two
#fermentation curves for two yeasts with
#different times and carbon dioxide production.

df <- data.frame('Time_Treatment_A' = seq(0,200, by=6.45),
'Time_Treatment_B' = seq(0,200, by=6.45),
'CO2_Production_Treatment_A' = c(0,0.47,0.78,3.23,19.15,22.86,

26.81,29.36,36.14,52.61,55.58,
61.38,66.25,71.83,74.8,78.88,
83.47,84.48,85.94,87.45,87.98,
88.42,88.68,89.40,89.72,89.87,
90.41,90.51,90.62,90.70,91.05,
91.185),

'CO2_Production_Treatment_B' = c(0,0.19,0.39,1.36,9.23,11.29,
13.58,15.06,19.34,30.92,33.28,
37.98,42.14,47.17,50.00,54.28,
60.92,62.80,65.54,69.74,71.52,
73.07,73.98,76.75,77.79,78.70,
80.65,81.48,82.07,82.47,84.04,
84.60))

#Using the plot_fit function to
#generate elegants graphs PDF files
#containing both observed data and
#predicted data.

#Graph plotted only with Model 5PL
#fit (models = 1)
#Do not show R^2

plot_fit(data = df,
startA = 0,
startB = 1.5,
startC = 500,
startD = 92,
startG = 1500,
models = 1,
col = "red", #Color of observed data (points)
col1 = "blue", #Predicted data color from model 1 (line). Model = 1 <- 5PL Model
axisX = "Fermentation time (h)", #Title X-Axis
axisY = "Carbon dioxide production (g/L)", #Title Y-Axis
breaksX = seq(0,200,20), #X-Axis scale (positions). 0,20,40,60,80,...
limitsX = c(0,200), #X-Axis Limits

plot_fit 13

breaksY = seq(0,90,5),#Y-Axis scale (positions). 0,5,10,15,20,...
limitsY = c(0,95), #Y-Axis Limits
font = "serif",
font.size = 12,
legend.position = "right",
show.R2 = FALSE) #Do not show R^2

#Graph plotted with 5PL and 4PL
#model fits (models = 5)
#Show R^2
Not run:
plot_fit(data = df,

models = 5,
startA = 0,
startB = 1.5,
startC = 500,
startD = 92,
startG = 1500,
col = "#000000", #Color of observed data (points)

col1 = "#FF0000", #Predicted data color from model 1 (line). Model = 1 <- 5PL Model
col3 = "#0B6121",#Predicted data color from model 3 (line). Model = 3 <- 4PL Model
axisX = "Time (h)", #Title X-Axis
axisY = "CO2 production (g/L)", #Title Y-Axis
breaksX = seq(0,200,20), #X-Axis scale (positions). 0,20,40,60,80,...
limitsX = c(0,200), #X-Axis Limits
breaksY = seq(0,90,10),#Y-Axis scale (positions). 0,10,20,30,40,...
limitsY = c(0,95), #Y-Axis Limits
font = "serif",
font.size = 14,
legend.position = "bottom",
show.R2 = TRUE) #Show R^2

End(Not run)

#Graph plotted with 5PL, Gompertz and 4PL
#model fits (models = 7)
#Do not show R^2
Not run:
plot_fit(data = df,

models = 7,
startA = 0,
startB = 1.5,
startC = 500,
startD = 92,
startG = 1500,
col = "#FF0000", #Color of observed data (points)

col1 = "#FF00FF", #Predicted data color from model 1 (line). Model = 1 <- 5PL Model
col2 = "#0101DF",#Predicted data color from model 2 (line). Model = 2 <- Gompertz Model
col3 = "#088A08",#Predicted data color from model 3 (line). Model = 3 <- 4PL Model
axisX = "Time (h)", #Title X-Axis

14 pred

axisY = "Carbon dioxide production (g/L)", #Title Y-Axis
breaksX = seq(0,200,20), #X-Axis scale (positions). 0,20,40,60,80,...
limitsX = c(0,200), #X-Axis Limits
breaksY = seq(0,90,10),#Y-Axis scale (positions). 0,10,20,30,40,...
limitsY = c(0,95), #Y-Axis Limits
font = "serif",
font.size = 14,
legend.position = "top",
show.R2 = FALSE) #Do not show R^2

End(Not run)

pred Get the model’s predicted values

Description

A function that, based on the observed data, the independent variable (e.g. time in h) and the
dependent variable (e.g. CO2 production in g L−1), performs the modeling of the fermentation
curve based on the chosen model(s) (5PL, Gompertz, or/and 4PL).

From the analyzed data, this function will provide the predicted data for each evaluated fermentation
curve.

Usage

pred(
data,
model,
startA,
startB,
startC,
startD,
startG,
save.xls = FALSE,
dir.save,
xls.name

)

Arguments

data Data frame to be analyzed. The data frame must be in the following order:

• First: All columns containing the independent variable (e.g. time in hours)
• Second: All columns containing dependent variables (e.g. CO2 g L−1 pro-

duction)
• Header: Columns must contain a header. If the treatment ID is in the

header, this ID will be used to name the graphics PDF files for each ana-
lyzed curve.

pred 15

model Model or models to be adjusted:

• Model = 1. 5PL Model.
• Model = 2. Gompertz Model.
• Model = 3. 4PL Model.

startA Starting estimate of the value of A for model.

startB Starting estimate of the value of B for model.

startC Starting estimate of the value of C for model.

startD Starting estimate of the value of D for model.

startG Starting estimate of the value of G for model.

save.xls If TRUE, an xlsx file containing the predicted values of each curve will be saved
in the working directory. If it is FALSE, the xlsx file will not be saved.

dir.save Directory path where the xlsx file is to be saved.

xls.name File name. Must contain the format. For example, "Predicted Values.xlsx".

Details

Curve fitting from the observed data is performed by the nlsLM() function in the ’minpack.lm’
package.

Value

The predicted values of each analyzed curve will be returned in a data.frame. In addition, a file
"Predicted Values.xlsx" can be generated, containing the predicted values of each fermentation
curve studied.

Author(s)

Angelo Gava

Examples

#Creating a data.frame.
#First, columns containing independent variable.
#Second, columns containing dependent variable.
#The data frame created presents two
#fermentation curves for two yeasts with
#different times and carbon dioxide production.

df <- data.frame('Time_Yeast_A' = seq(0,280, by=6.23),
'Time_Yeast_B' = seq(0,170, by=3.7777778),
'CO2_Production_Yeast_A' = c(0,0.97,4.04,9.62,13.44,17.50,

24.03,27.46,33.75,36.40,40.80,
44.24,48.01,50.85,54.85,57.51,
61.73,65.43,66.50,72.41,75.47,
77.22,78.49,79.26,80.31,81.04,
81.89,82.28,82.56,83.13,83.62,
84.11,84.47,85.02,85.31,85.61,
86.05,86.27,85.29,86.81,86.94,

16 pred

87.13,87.33,87.45,87.85),
'CO2_Production_Yeast_B' = c(0,0.41,0.70,3.05,15.61,18.41,

21.37,23.23,28.28,41.28,43.98,
49.54,54.43,60.40,63.75,69.29,
76.54,78.38,80.91,83.72,84.66,
85.39,85.81,86.92,87.38,87.61,
88.38,88.57,88.72,88.82,89.22,
89.32,89.52,89.71,89.92,90.11,
90.31,90.50,90.70,90.90,91.09,
91.29,91.49,91.68,91.88))

#Using the pred() function to find the
#predicted valuesaccording to the adopted model.

pred(data = df,
model = 1,
startA = 0,
startB = 1.5,
startC = 500,
startD = 92,
startG = 1500,
save.xls = FALSE) #5PL Model adopted

pred(data = df,
model = 2,
startA = 92,
startB = 1.5,
startC = 0,
startD = NA,
startG = NA,
save.xls = FALSE) #Gompertz Model adopted

pred(data = df,
startA = 0,
startB = 2.5,
startC = 10,
startD = 92,
startG = NA,
model = 3,
save.xls = FALSE) #4PL Model adopted

#Saving an xlsx file. In this example,
#we will use saving a temporary file in
#the temporary file directories.

Index

kp, 2

metrics, 5

plot_fit, 7
pred, 14

17

	kp
	metrics
	plot_fit
	pred
	Index

