Package 'OGI'

January 20, 2025

Type Package

Title Objective General Index

Version 1.0.0

Description Consider a data matrix of n individuals with p variates. The objective general index (OGI) is a general index that combines the p variates into a univariate index in order to rank the n individuals. The OGI is always positively correlated with each of the variates. More details can be found in Sei (2016) <doi:10.1016/j.jmva.2016.02.005>.

License GPL-3

Encoding UTF-8

LazyData true

Imports lpSolve (>= 5.6.13), stats (>= 3.3.3), graphics (>= 3.3.3), methods (>= 3.3.3)

Suggests ade4 (>= 1.7.8), bnlearn (>= 4.2), testthat(>= 1.0.2)

RoxygenNote 6.0.1

NeedsCompilation no

Author Tomonari Sei [aut], Masaki Hamada [cre]

Maintainer Masaki Hamada <masaki_hamada@mist.i.u-tokyo.ac.jp>

Repository CRAN

Date/Publication 2017-12-20 12:38:57 UTC

Contents

cov2biu	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	2
cov2weight		•		•	•	•			•		•	•	•	•		•	•				•	•	•	•		•	•	•	•		•							•	3	3
ogi																																							2	4
																																							1	7

Index

cov2biu

Description

cov2biu(S) returns the bi-unit canonical form of S.

Usage

```
cov2biu(S, nu = rep(1, nrow(S)), force = FALSE, detail = FALSE)
```

Arguments

S	Covariance matrix, especially it is positive semi-definite.
nu	Numeric vector of subjective importance. It determines the importance of each of the variates.
force	Logical: if force=FALSE, S should be strictly positive definite. Default: FALSE.
detail	Logical: if detail=TRUE, it returns the list of the bi-unit form and the weight vectors. Default: FALSE.

Value

Numeric matrix of the bi-unit canonical form DSD of S.

Examples

```
S = matrix(0, 5, 5)
S[1,1] = 1
for(j in 2:5) S[1,j] = S[j,1] = -0.5
for(i in 2:5){
    for(j in 2:5){
        if(i == j) S[i,j] = 1
        else S[i,j] = 0.5
    }
B=cov2biu(S)
B
```

cov2weight

Description

cov2weight(S) returns the numeric vector in which the diagonal elements of the matrix D are arranged, where DSD is the bi-unit canonical form of S.

Usage

```
cov2weight(S, Dvec = rep(1, nrow(S)), nu = rep(1, nrow(S)), tol = 1e-06,
force = FALSE)
```

Arguments

S	Covariance matrix, especially it is positive semi-definite.
Dvec	Numeric vector of initial values of iteration.
nu	Numeric vector of subjective importance. It determines the importance of each of the variates.
tol	Numeric number of tolerance. If the minimum eigenvalue of S is less than tol, S is considered not to be positive definite.
force	Logical: if force=FALSE, S should be strictly positive definite. Default: FALSE.

Value

Numeric vector of diagonal elements of D, which appears in the bi-unit canonical form DSD of S.

Examples

```
S = matrix(0, 5, 5)
S[1,1] = 1
for(j in 2:5) S[1,j] = S[j,1] = -0.5
for(i in 2:5){
    for(j in 2:5){
        if(i == j) S[i,j] = 1
        else S[i,j] = 0.5
      }
}
weight=cov2weight(S)
weight
```

Description

ogi(X) returns the objective general index (OGI) of the covariance matrix S of X.

Usage

```
ogi(X, se = FALSE, force = FALSE, se.loop = 1000, nu = rep(1, ncol(X)),
center = TRUE, mar = FALSE)
```

Arguments

Х	Numeric or ordered matrix.
se	Logical: if se=TRUE, it additionally computes w.se and v.se by bootstrap. Default: FALSE.
force	Logical: if force=FALSE, S should be strictly positive definite. Default: FALSE.
se.loop	Iteration number in bootstrap for computation of standard error.
nu	Numeric vector of subjective importance. It determines the importance of each column of X.
center	Logical: if center=TRUE, ogi(X)\$Z is centered. Default:TRUE.
mar	Logical: if mar=TRUE, each of ordered categorical variates of X (if exists) is marginally converted into a numeric vector in advance by the univariate OGI quantification. If mar=FALSE, the simultaneous OGI quantification is applied. Default:FALSE.

Details

Consider a data matrix of n individuals with p variates. The objective general index (OGI) is a general index that combines the p variates into a univariate index in order to rank the n individuals. The OGI is always positively correlated with each of the variates. For more details, see the references.

Value

value	The objective general index (OGI).
Х	The input matrix X.
scaled	The product of Z %*% diag(weight), where Z and weight are as follows.
Z	Numerical matrix converted from X. If center = TRUE, it is centered.
weight	The output of cov2weight(S, nu=nu, force=force), where S is the covariance matrix of X.
rel.weight	The product of weight $*$ sqrt(diag(S)), where S is the covariance matrix of X.
biu	The bi-unit canonical form of the covariance matrix of X.

ogi

idx	Numeric vector. If X has ordered categorical variates, idx has (number of levels) -1 number of indexes.
w.se	If requested, w.se is numeric vector of the standard error of weight. It is calculated by bootstrap.
v.se	If requested, v . se is numeric vector of the standard error of value. It is calculated by bootstrap.

References

Sei, T. (2016). An objective general index for multivariate ordered data, Journal of Multivariate Analysis, 147, 247-264. http://www.sciencedirect.com/science/article/pii/S0047259X16000269

Examples

```
CT = matrix(c(
2,1,1,0,0,
8,3,3,0,0,
0,2,1,1,1,
0,0,0,1,1,
0,0,0,0,1), 5, 5, byrow=TRUE)
X = matrix(0, 0, 2)
for(i in 1:5){
  for(j in 1:5){
   if(CT[i,j]>0){
     X = rbind(X, matrix(c(6-i,6-j), CT[i,j], 2, byrow=TRUE))
   }
  }
}
X0 = X
X = as.data.frame(X0)
X[,1] = factor(X0[,1], ordered=TRUE)
X[,2] = factor(X0[,2], ordered=TRUE)
ogiX = ogi(X)
par(pty="s", cex=1.7, mar=c(4.5,3,1,1))
plot(ogiX$scaled, xlim=c(-3,3), ylim=c(-3,3), xlab="Geometry", ylab="Probability")
for(t in 1:nrow(ogiX$scaled)){
  xy = ogiX$scaled[t,]
  g = rep(sum(xy)/2, 2)
  segments(xy[1], xy[2], g[1], g[2], lty=2)
}
arrows(-3, -3, 3, 3)
text(2.5, 2, "OGI/2")
ogiX
f = ordered(1:10)
f[sample(1:10, 20, replace=TRUE)]
Y = ogi(f)$value
plot((1:10)/(10+1), Y, type="b")
xs = (1:1000)/1001
points(xs, qnorm(xs), type="1", col="red")
```

```
X = USJudgeRatings
ogiX = ogi(X)
nameX = ordered(names(X), names(X))
plot(nameX, ogiX$weight, las=3, cex.axis=0.8, ylim=c(0,1.2), ylab="weight")
```

6

Index

cov2biu, 2
cov2weight, 3, 4

ogi,<mark>4</mark>