
Package ‘NlinTS’
January 20, 2025

Type Package

Title Models for Non Linear Causality Detection in Time Series

Version 1.4.5

Date 2021-02-01

Maintainer Youssef Hmamouche <hmamoucheyussef@gmail.com>

Description Models for non-linear time series analysis and causality detection. The main functionali-
ties of this package consist of an implementation of the classical causal-
ity test (C.W.J.Granger 1980) <doi:10.1016/0165-1889(80)90069-X>, and a non-linear ver-
sion of it based on feed-forward neural networks. This package contains also an implementa-
tion of the Transfer Entropy <doi:10.1103/PhysRevLett.85.461>, and the continuous Trans-
fer Entropy using an approximation based on the k-nearest neigh-
bors <doi:10.1103/PhysRevE.69.066138>. There are also some other use-
ful tools, like the VARNN (Vector Auto-Regressive Neural Network) prediction model, the Aug-
mented test of stationarity, and the discrete and continuous entropy and mutual information.

License GNU General Public License

Depends Rcpp

Imports methods, timeSeries, Rdpack

RdMacros Rdpack

LinkingTo Rcpp

SystemRequirements C++11

NeedsCompilation yes

RoxygenNote 7.1.1

Author Youssef Hmamouche [aut, cre]

Repository CRAN

Date/Publication 2021-02-02 01:20:05 UTC

Contents
NlinTS-package . 2
causality.test . 2

1

https://doi.org/10.1016/0165-1889(80)90069-X
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1103/PhysRevE.69.066138

2 causality.test

df.test . 3
entropy_cont . 4
entropy_disc . 5
mi_cont . 5
mi_disc . 6
mi_disc_bi . 7
nlin_causality.test . 8
te_cont . 9
te_disc . 10
varmlp . 11

Index 14

NlinTS-package Models for non-linear causality detection in time series.

Description

Globally, this package focuses on non-linear time series analysis, especially on causality detection.
To deal with non-linear dependencies between time series, we propose an extension of the Granger
causality test using feed-forward neural networks. This package includes also an implementation
of the Transfer Entropy, which can be also seen as a causality measure based on information theory.
To do that, the package includes discrete and continuous Transfer entropy using the Kraskov ap-
proximation. The NlinTS package includes also some other useful tools, like the VARNN (Vector
Auto-Regressive Neural Network) model, the Augmented Dickey-Fuller test of stationarity, and the
discrete and continuous entropy and mutual information.

causality.test The Granger causality test

Description

The Granger causality test

Usage

causality.test(ts1, ts2, lag, diff = FALSE)

Arguments

ts1 Numerical dataframe containing one variable.

ts2 Numerical dataframe containing one variable.

lag The lag parameter.

diff Logical argument for the option of making data stationary before making the
test.

df.test 3

Details

This is the classical Granger test of causality. The null hypothesis is that the second time series does
not cause the first one

Value

gci: the Granger causality index.

Ftest: the statistic of the test.

pvalue: the p-value of the test.

summary (): shows the test results.

References

Granger CWJ (1980). “Testing for Causality.” Journal of Economic Dynamics and Control, 2,
329–352. ISSN 0165-1889, doi: 10.1016/01651889(80)90069X.

Examples

library (timeSeries) # to extract time series
library (NlinTS)
data = LPP2005REC
model = causality.test (data[,1], data[,2], 2)
model$summary ()

df.test Augmented Dickey_Fuller test

Description

Augmented Dickey_Fuller test

Usage

df.test(ts, lag)

Arguments

ts Numerical dataframe.

lag The lag parameter.

Details

Computes the stationarity test for a given univariate time series.

https://doi.org/10.1016/0165-1889(80)90069-X

4 entropy_cont

Value

df: returns the value of the test.

summary (): shows the test results.

References

Elliott G, Rothenberg TJ, Stock JH (1992). “Efficient tests for an autoregressive unit root.”

Examples

library (timeSeries)
library (NlinTS)
#load data
data = LPP2005REC
model = df.test (data[,1], 1)
model$summary ()

entropy_cont Continuous entropy

Description

Continuous entropy

Usage

entropy_cont(V, k = 3, log = "loge")

Arguments

V Interger vector.

k Integer argument, the number of neighbors.

log String argument in the set ("log2", "loge","log10"), which indicates the log func-
tion to use. The loge is used by default.

Details

Computes the continuous entropy of a numerical vector using the Kozachenko approximation.

References

Kraskov A, Stogbauer H, Grassberger P (2004). “Estimating mutual information.” Phys. Rev. E,
69, 066138. doi: 10.1103/PhysRevE.69.066138.

https://doi.org/10.1103/PhysRevE.69.066138

entropy_disc 5

Examples

library (timeSeries)
library (NlinTS)
#load data
data = LPP2005REC
print (entropy_cont (data[,1], 3))

entropy_disc Discrete Entropy

Description

Discrete Entropy

Usage

entropy_disc(V, log = "log2")

Arguments

V Integer vector.

log String argument in the set ("log2", "loge","log10"), which indicates the log func-
tion to use. The log2 is used by default.

Details

Computes the Shanon entropy of an integer vector.

Examples

library (NlinTS)
print (entropy_disc (c(3,2,4,4,3)))

mi_cont Continuous Mutual Information

Description

Continuous Mutual Information

Usage

mi_cont(X, Y, k = 3, algo = "ksg1", normalize = FALSE)

6 mi_disc

Arguments

X Integer vector, first time series.

Y Integer vector, the second time series.

k Integer argument, the number of neighbors.

algo String argument specifies the algorithm use ("ksg1", "ksg2"), as tow proposi-
tions of Kraskov estimation are provided. The first one ("ksg1") is used by
default.

normalize Logical argument (FALSE by default) for the option of normalizing the mutual
information by dividing it by the joint entropy.

Details

Computes the Mutual Information between two vectors using the Kraskov estimator.

References

Kraskov A, Stogbauer H, Grassberger P (2004). “Estimating mutual information.” Phys. Rev. E,
69, 066138. doi: 10.1103/PhysRevE.69.066138.

Examples

library (timeSeries)
library (NlinTS)
#load data
data = LPP2005REC
print (mi_cont (data[,1], data[,2], 3, 'ksg1'))
print (mi_cont (data[,1], data[,2], 3, 'ksg2'))

mi_disc Discrete multivariate Mutual Information

Description

Discrete multivariate Mutual Information

Usage

mi_disc(df, log = "log2", normalize = FALSE)

Arguments

df Datafame of type Integer.

log String argument in the set ("log2", "loge","log10"), which indicates the log func-
tion to use. The log2 is used by default.

normalize Logical argument (FALSE by default) for the option of normalizing the mutual
information by dividing it by the joint entropy.

https://doi.org/10.1103/PhysRevE.69.066138

mi_disc_bi 7

Details

Computes the Mutual Information between columns of a dataframe.

Examples

library (NlinTS)
df = data.frame (c(3,2,4,4,3), c(1,4,4,3,3))
mi = mi_disc (df)
print (mi)

mi_disc_bi Discrete bivariate Mutual Information

Description

Discrete bivariate Mutual Information

Usage

mi_disc_bi(X, Y, log = "log2", normalize = FALSE)

Arguments

X Integer vector.

Y Integer vector.

log String argument in the set ("log2", "loge","log10"), which indicates the log func-
tion to use. The log2 is used by default.

normalize Logical argument (FALSE by default) for the option of normalizing the mutual
information by dividing it by the joint entropy.

Details

Computes the Mutual Information between two integer vectors.

Examples

library (NlinTS)
mi = mi_disc_bi (c(3,2,4,4,3), c(1,4,4,3,3))
print (mi)

8 nlin_causality.test

nlin_causality.test A non linear Granger causality test

Description

A non linear Granger causality test

Usage

nlin_causality.test(
ts1,
ts2,
lag,
LayersUniv,
LayersBiv,
iters = 50,
learningRate = 0.01,
algo = "sgd",
batch_size = 10,
bias = TRUE,
seed = 0,
activationsUniv = vector(),
activationsBiv = vector()

)

Arguments

ts1 Numerical series.

ts2 Numerical series.

lag The lag parameter

LayersUniv Integer vector that contains the size of hidden layers of the univariate model.
The length of this vector is the number of hidden layers, and the i-th element is
the number of neurons in the i-th hidden layer.

LayersBiv Integer vector that contains the size of hidden layers of the bivariate model. The
length of this vector is the number of hidden layers, and the i-th element is the
number of neurons in the i-th hidden layer.

iters The number of iterations.

learningRate The learning rate to use, O.1 by default, and if Adam algorithm is used, then it
is the initial learning rate.

algo String argument, for the optimisation algorithm to use, in choice ["sgd", "adam"].
By default "sgd" (stochastic gradient descent) is used. The algorithm ’adam’ is
to adapt the learning rate while using "sgd".

batch_size Integer argument for the batch size used in the back-propagation algorithm.

bias Logical argument for the option of using the bias in the networks.

te_cont 9

seed Integer value for the random seed used in the random generation of the weights
of the network (a value = 0 will use the clock as random generator seed).

activationsUniv

String vector for the activations functions to use (in choice ["sigmoid", "relu",
"tanh"]) for the univariate model. The length of this vector is the number of
hidden layers plus one (the output layer). By default, the relu activation function
is used in hidden layers, and the sigmoid in the last layer.

activationsBiv String vector for the activations functions to use (in choice ["sigmoid", "relu",
"tanh"]) for the bivariate model. The length of this vector is the number of
hidden layers plus one (the output layer). By default, the relu activation function
is used in hidden layers, and the sigmoid in the last layer.

Details

A non-linear test of causality using artificial neural networks. Two MLP artificial neural networks
are evaluated to perform the test, one using just the target time series (ts1), and the second using
both time series. The null hypothesis of this test is that the second time series does not cause the
first one.

Value

gci: the Granger causality index.

Ftest: the statistic of the test.

pvalue: the p-value of the test.

summary (): shows the test results.

Examples

library (timeSeries) # to extract time series
library (NlinTS)
data = LPP2005REC
model = nlin_causality.test (data[,1], data[,2], 2, c(2), c(4), 50, 0.01, "sgd", 30, TRUE, 5)
model$summary ()

te_cont Continuous Transfer Entropy

Description

Continuous Transfer Entropy

Usage

te_cont(X, Y, p = 1, q = 1, k = 3, normalize = FALSE)

10 te_disc

Arguments

X Integer vector, first time series.

Y Integer vector, the second time series.

p Integer, the lag parameter to use for the first vector, (p = 1 by default).

q Integer the lag parameter to use for the first vector, (q = 1 by default).

k Integer argument, the number of neighbors.

normalize Logical argument for the option of normalizing value of TE (transfer entropy)
(FALSE by default). This normalization is different from the discrete case, be-
cause, here the term H (X(t)| X(t-1), ..., X(t-p)) may be negative. Consequently,
we use another technique, we divide TE by H0 - H (X(t)| X(t-1), ..., X(t-p),
Yt-1), ..., Y(t-q)), where H0 is the max entropy (of uniform distribution).

Details

Computes the continuous Transfer Entropy from the second time series to the first one using the
Kraskov estimation

References

Kraskov A, Stogbauer H, Grassberger P (2004). “Estimating mutual information.” Phys. Rev. E,
69, 066138. doi: 10.1103/PhysRevE.69.066138.

Examples

library (timeSeries)
library (NlinTS)
#load data
data = LPP2005REC
te = te_cont (data[,1], data[,2], 1, 1, 3)
print (te)

te_disc Discrete Transfer Entropy

Description

Discrete Transfer Entropy

Usage

te_disc(X, Y, p = 1, q = 1, log = "log2", normalize = FALSE)

https://doi.org/10.1103/PhysRevE.69.066138

varmlp 11

Arguments

X Integer vector, first time series.

Y Integer vector, the second time series.

p Integer, the lag parameter to use for the first vector (p = 1 by default).

q Integer, the lag parameter to use for the first vector (q = 1 by default)..

log String argument in the set ("log2", "loge","log10"), which indicates the log func-
tion to use. The log2 is used by default.

normalize Logical argument for the option of normalizing the value of TE (transfer en-
tropy) (FALSE by default). This normalization is done by deviding TE by H
(X(t)| X(t-1), ..., X(t-p)), where H is the Shanon entropy.

Details

Computes the Transfer Entropy from the second time series to the first one.

References

Schreiber T (2000). “Measuring Information Transfer.” Physical Review Letters, 85(2), 461-464.
doi: 10.1103/PhysRevLett.85.461.

Examples

library (NlinTS)
te = te_disc (c(3,2,4,4,3), c(1,4,4,3,3), 1, 1)
print (te)

varmlp Artificial Neural Network VAR (Vector Auto-Regressive) model using
a MultiLayer Perceptron, with the sigmoid activation function. The
optimization algorithm is based on the stochastic gradient descent.

Description

Artificial Neural Network VAR (Vector Auto-Regressive) model using a MultiLayer Perceptron,
with the sigmoid activation function. The optimization algorithm is based on the stochastic gradient
descent.

Usage

varmlp(
df,
lag,
sizeOfHLayers,
iters = 50,
learningRate = 0.01,
algo = "sgd",

https://doi.org/10.1103/PhysRevLett.85.461

12 varmlp

batch_size = 10,
bias = TRUE,
seed = 5,
activations = vector()

)

Arguments

df A numerical dataframe

lag The lag parameter.

sizeOfHLayers Integer vector that contains the size of hidden layers, where the length of this
vector is the number of hidden layers, and the i-th element is the number of
neurons in the i-th hidden layer.

iters The number of iterations.

learningRate The learning rate to use, O.1 by default, and if Adam algorithm is used, then it
is the initial learning rate.

algo String argument, for the optimisation algorithm to use, in choice ["sgd", "adam"].
By default "sgd" (stochastic gradient descent) is used. The algorithm ’adam’ is
to adapt the learning rate while using "sgd".

batch_size Integer argument for the batch size used in the back-propagation algorithm.

bias Logical, true if the bias have to be used in the network.

seed Integer value for the seed used in the random generation of the weights of the
network (a value = 0 will use the clock as random generator seed).

activations String vector for the activations functions to use (in choice ["sigmoid", "relu",
"tanh"]). The length of this vector is the number of hidden layers plus one (the
output layer). By default, the relu activation function is used in hidden layers,
and the sigmoid in the last layer.

Details

This function builds the model, and returns an object that can be used to make forecasts and can be
updated from new data.

Value

fit (df, iterations, batch_size): fit/update the weights of the model from the dataframe.

forecast (df): makes forecasts of an given dataframe. The forecasts include the forecasted row based
on each previous "lag" rows, where the last one is the next forecasted row of df.

save (filename): save the model in a text file.

load (filename): load the model from a text file.

varmlp 13

Examples

library (timeSeries) # to extract time series
library (NlinTS)
#load data
data = LPP2005REC
Predict the last row of the data
train_data = data[1:(nrow (data) - 1),]
model = varmlp (train_data, 1, c(10), 50, 0.01, "sgd", 30, TRUE, 0);
predictions = model$forecast (train_data)
print (predictions[nrow (predictions),])

Index

causality.test, 2

df.test, 3

entropy_cont, 4
entropy_disc, 5

mi_cont, 5
mi_disc, 6
mi_disc_bi, 7

nlin_causality.test, 8
NlinTS (NlinTS-package), 2
NlinTS-package, 2

te_cont, 9
te_disc, 10

varmlp, 11

14

	NlinTS-package
	causality.test
	df.test
	entropy_cont
	entropy_disc
	mi_cont
	mi_disc
	mi_disc_bi
	nlin_causality.test
	te_cont
	te_disc
	varmlp
	Index

