
Package ‘NFWdist’
January 20, 2025

Type Package

Title The Standard Distribution Functions for the 3D NFW Profile

Version 0.1.0

Author Aaron Robotham

Maintainer Aaron Robotham <aaron.robotham@uwa.edu.au>

Description Density, distribution function, quantile function and random genera-
tion for the 3D Navarro, Frenk & White (NFW) profile. For de-
tails see Robotham & Howlett (2018) <arXiv:1805.09550>.

License GPL-3

LazyData true

Depends R (>= 3.00)

Suggests knitr, gsl, lamW

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2018-05-29 08:31:03 UTC

Contents
nfw . 1

Index 4

nfw The Standard Distribution Functions for the 3D NFW Profile

Description

Density, distribution function, quantile function and random generation for the 3D NFW profile

1

https://arxiv.org/abs/1805.09550

2 nfw

Usage

dnfw(x, con = 5, log = FALSE)
pnfw(q, con = 5, log.p = FALSE)
qnfw(p, con = 5, log.p = FALSE)
rnfw(n, con = 5)

Arguments

x, q Vector of quantiles. This is scaled such that ‘x’ and ‘q’ are equal to R/Rvir for
NFW. This means the PDF is only defined between 0 and 1.

p Vector of probabilities.

n Number of observations. If length(n) > 1, the length is taken to be the number
required.

con The NFW profile concentration parameter, where c=Rvir/Rs.

log, log.p Logical; if TRUE, probabilities/densities p are returned as log(p).

Details

The novel part of this package is the general solution for the CDF inversion (i.e. qnfw). As far as
I can see this has not been published anywhere, and it is a useful function for populating halos in
something like an HOD.

One of lamW (fastest) or gsl (easier to install) must be installed to use the qnfw and rnfw func-
tions!. Try to install lamW first (since it is about four times faster), but if that is tricky due to Rcpp
dependencies then use gsl instead.

Value

dnfw gives the density, pnfw gives the distribution function, qnfw gives the quantile function, and
rnfw generates random deviates.

Note

This seems to work at least as efficiently as accept reject, but it is ultimately much more elegant
code in any case.

Author(s)

Aaron Robotham

References

Robotham & Howlett, 2018, arXiv 1805.09550

See Also

lambert_W0 (gsl) or lambertW0 (lamW).

nfw 3

Examples

#Both the PDF (dnfw) integrated up to x, and CDF at q (pnfw) should be the same:
#0.373, 0.562, 0.644, 0.712

for(con in c(1,5,10,20)){
print(integrate(dnfw, lower=0, upper=0.5, con=con)$value)
print(pnfw(0.5, con=con))

}

#The qnfw should invert the pnfw, returning the input vector (1:9)/10:
for(con in c(1,5,10,20)){

print(qnfw(p=pnfw(q=(1:9)/10,con=con), con=con))
}

#The sampling from rnfw should recreate the expected PDF from dnfw:

for(con in c(1,5,10,20)){
plot(density(rnfw(1e6,con=con), bw=0.01))
lines(seq(0,1,len=1e3), dnfw(seq(0,1,len=1e3),con=con),col='red')
legend('topright',legend=paste('con =',con))

}

Index

∗ nfw
nfw, 1

dnfw (nfw), 1

NFW (nfw), 1
nfw, 1
NFWdist (nfw), 1

pnfw (nfw), 1

qnfw (nfw), 1

rnfw (nfw), 1

4

	nfw
	Index

