Package ‘NFCP’

June 17, 2025

Title N-Factor Commodity Pricing Through Term Structure Estimation
Version 1.2.2

Description Commodity pricing models are (systems of) stochastic differential equations that are uti-
lized for the valuation and hedging of commodity contingent claims (i.e. derivative prod-
ucts on the commodity) and other commodity related investments. Commodity pricing mod-
els that capture market dynamics are of great importance to commodity market participants in or-
der to exercise sound investment and risk-management strategies. Parameters of commodity pric-
ing models are estimated through maximum likelihood estimation, using available term struc-
ture futures data of a commodity. 'NFCP' (n-factor commodity pricing) provides a frame-
work for the modeling, parameter estimation, probabilistic forecasting, option valuation and sim-
ulation of commodity prices through state space and Monte Carlo methods, risk-neutral valua-
tion and Kalman filtering. NFCP" allows the commodity pricing model to consist of n corre-
lated factors, with both random walk and mean-reverting elements. The n-factor commodity pric-
ing model framework was first presented in the work of Cor-
tazar and Naranjo (2006) <doi:10.1002/fut.20198>. Examples presented in 'NFCP' repli-
cate the two-factor crude oil commodity pricing model presented in the pro-
lific work of Schwartz and Smith (2000) <doi:10.1287/mnsc.46.7.893.12034> with the approxi-
mate term structure futures data applied within this study provided in the 'NFCP' package.

Depends R (>=3.5.0)
License GPL-3

Encoding UTF-8

LazyData true
RoxygenNote 7.3.2
RdMacros mathjaxr, Rdpack
Suggests knitr, rmarkdown

Imports FKF.SP, LSMRealOptions, MASS, numDeriv, parallel, rgenoud,
stats, mathjaxr, Rdpack

VignetteBuilder knitr
NeedsCompilation no

Author Thomas Aspinall [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6968-1989>),
Adrian Gepp [aut] (ORCID: <https://orcid.org/0000-0003-1666-5501>),

1

https://doi.org/10.1002/fut.20198
https://doi.org/10.1287/mnsc.46.7.893.12034
https://orcid.org/0000-0002-6968-1989
https://orcid.org/0000-0003-1666-5501

2 American_option_value

Geoff Harris [aut] (ORCID: <https://orcid.org/0000-0003-4284-8619>),
Simone Kelly [aut] (ORCID: <https://orcid.org/0000-0002-6528-8557>),
Colette Southam [aut] (ORCID: <https://orcid.org/0000-0001-7263-2347>),
Bruce Vanstone [aut] (ORCID: <https://orcid.org/0000-0002-3977-2468>)

Maintainer Thomas Aspinall <tomaspinall2512@gmail.com>
Repository CRAN
Date/Publication 2025-06-16 22:20:07 UTC

Contents
American_option_value e e 2
European_option_value 5
futures_price_forecast. 8
futures_price_simulate 10
NFCP_domains e e e e e e 12
NFCP_Kalman_filter e 14
NFCP_MLE e e e 21
NFCP_parameters o o v v it et e e e e e e 26
spot_price_forecast L 29
spot_price_simulate L. e 31
SS_oil . . . e e 34
stitch_contracts e e e e e e 35
TSfit_volatility 37

Index 39

American_option_value N-factor model American options on futures contracts valuation

Description

Value American options on futures contracts under the parameters of an N-factor model

Usage

American_option_value(
X_0,
parameters,
futures_maturity,
option_maturity,

K}
r’
call = FALSE,
N_simulations,
dt,

orthogonal = "Power",

https://orcid.org/0000-0003-4284-8619
https://orcid.org/0000-0002-6528-8557
https://orcid.org/0000-0001-7263-2347
https://orcid.org/0000-0002-3977-2468

American_option_value 3

degree = 2,
verbose = FALSE,
debugging = FALSE

)
Arguments
X_0 vector. Initial values of the state variables, where the length must correspond
to the number of factors specified in the parameters.
parameters vector. A named vector of parameter values of a specified N-factor model.

Function NFCP_parameters is recommended.
futures_maturity

numeric. Time, in years, when the underlying futures contract matures.
option_maturity

numeric. Time, in years, when the American option expires.

K numeric. Strike price of the American Option.
r numeric. Annualized risk-free interest rate.
call logical. Is the American option a call or put option?

N_simulations numeric. Total number of simulated price paths.
dt numeric. Discrete time step, in years, of the Monte Carlo simulation.

orthogonal character. The orthogonal polynomial used to approximate the continuation
value of the option in the LSM simulation method. Orthogonal polynomial argu-
ments available are: "Power", "Laguerre", "Jacobi", "Legendre", "Chebyshev",

"Hermite".
degree numeric. The degree of polynomials used in the least squares fit.
verbose logical. Should additional option value information be output? see details.
debugging logical Should the simulated state variables and futures prices be output?

Details

The American_option_value function calculates numerically the value of American options on
futures contracts within the N-factor model. An American option on a commodity futures contract
gives the holder the right, but not the obligation, to buy (call) or sell (put) the underlying asset at any
time before option maturity. If the American option is exercised, the option devolves into buying or
selling of the underlying futures asset at the exercise price.

The ’ American_option_value’ function uses Monte Carlo simulation and the Least-Squares Monte
Carlo (LSM) simulation approach to numerically calculate the value of American options on fu-
tures contracts under the N-factor model. LSM simulation is a method that values options with
early exercise opportunities, first presented by Longstaff and Schwartz (2001). LSM simulation
uses discrete time steps to approximate the value of the American option and thus technically val-
ues Bermudan-style options, converging to American option values as the size of the time step
approaches zero. For more information on LSM simulation, see help(LSM_American_option’) of
the "'LSMRealOption’ package or Longstaff and Schwartz (2001).

For a provided N-factor model,the * American_option_value’ function simulates state variables un-
der the N-factor framework through the *spot_price_simulate’ function, developing expected futures

4 American_option_value

prices from these simulated state variables. The function then uses the ’LSM_American_option’ of
the "’LSMRealOption’ package to calculate the value of the American option with early exercise
opportunities.

The number of simulations has a large influence on the standard error and accuracy of calculated
option values at the cost of computational expense. Large numbers of simulations are suggested to
converge upon appropriate values.

Orthogonal polynomials are used in the LSM simulation method to approximate the value of con-
tinuing to hold the American option. In general, increasing the degree of orthogonal polynomials
used should increase the accuracy of results, at the cost of increased computational expense.

Value

The ’American_option_value’ function by default returns a numeric object corresponding to the
calculated value of the American option.

When verbose =T, 6 objects related to the American option value are returned within a 1ist class
object. The objects returned are:

Value The calculated option value.

Standard Error The standard error of the calculated option value.

Expected Timing The expected time of early exercise.

Expected Timing SE The standard error of the expected time of early exercise.
Exercise Probability The probability of early exercise of the option being exercised.

Cumulative Exercise Probability vector. The cumulative probability of option exercise at each discrete observation po

When debugging = T, an additional 2 simulation objects are returned within the 1ist class object.
These objects can have high dimensions and thus memory usage, so caution should be applied. The
objects returned are:

Simulated State Variables An array of simulated state variables. The three dimensions of the array correspond to a discre
Simulated Futures Prices A matrix of simulated futures contract price paths. Each row represents one simulated discrete

References

Longstaff, F.A., and E.S. Schwartz, (2001). Valuing American Options by Simulation: A Simple
Least-Squares Approach. The Review of Financial Studies., 14:113-147.

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Aspinall, T., A. Gepp, G. Harris, S. Kelly, C. Southam, and B. Vanstone, (2021). LSMRealOptions:
Value American and Real Options Through LSM Simulation. R package version 0.1.1.

European_option_value

Examples

Example 1 - An American put option on a futures contract following 'GBM'
American_option_value(x_0 = log(36),

parameters = c(mu_rn = .06, sigma_1 = 0.2),

N_simulations = 1e2,

futures_maturity = 1,

option_maturity = 1,

dt = 1/50,

K = 40,

r=20.06,

verbose = FALSE,

orthogonal = "Laguerre”,

degree = 3)

Example 2 - An American put option under a two-factor crude oil model:

Step 1 - Obtain current (i.e. most recent) state vector by filtering the

two-factor oil model:

Schwartz_Smith_oil <- NFCP_Kalman_filter(parameter_values = SS_oil$two_factor,
parameter_names = names(SS_oil$two_factor),
log_futures = log(SS_oil$stitched_futures),
dt = SS_oilsdt,
futures_TTM = SS_oil$stitched_TTM,
verbose = TRUE)

##Step 2 - Calculate 'put' option price:
American_option_value(x_@ = Schwartz_Smith_oil$x_t,
parameters = SS_oil$two_factor,
futures_maturity = 2,
option_maturity = 1,
K = 20,
r=20.05,
call = FALSE,
N_simulations = 1e2,
dt = 1/12,
verbose = TRUE,
orthogonal = "Power"”,
degree = 2)

European_option_value N-factor model European options on futures contracts valuation

Description

Value European Option Put and Calls under the parameters of an N-factor model.

Usage

European_option_value(

6 European_option_value

X_0,

parameters,
futures_maturity,
option_maturity,

K,
r,
call = FALSE,
verbose = FALSE

)

Arguments
X_0 vector. Initial values of the state variables, where the length must correspond
to the number of factors specified in the parameters.
parameters vector. A named vector of parameter values of a specified N-factor model.

Function NFCP_parameters is recommended.
futures_maturity

numeric. Time, in years, when the underlying futures contract matures.
option_maturity

numeric. Time, in years, when the American option expires.

K numeric. Strike price of the American Option.

r numeric. Annualized risk-free interest rate.

call logical. Is the American option a call or put option?

verbose logical. Should additional option value information be output? see details.
Details

The European_option_value function calculates analytic expressions of the value of European
call and put options on futures contracts within the N-factor model. A European option on a com-
modity futures contract gives the holder the right, but not the obligation, to buy (call) or sell (put)
the underlying asset at option maturity. If the European option is exercised, the option devolves into
buying or selling of the underlying futures asset.

State variables (i.e., the states of the factors of an N-factor model) are generally unobservable. Fil-
tering the commodity pricing model using term structure data will provide the most recent optimal
estimates of state variables, which can then be used to forecast and value European options.

Under the assumption that future futures prices are log-normally distributed under the risk-neutral
process, there exist analytic expressions of the value of European call and put options on futures
contracts. The value of a European option on a futures contract is given by calculating the current
expected futures price and the average instantaneous variance of the futures return innovations over
the life of the option.

Consider a European option with strike price K and a risk-free interest rate of ry. The option
maturity is at time 7T and futures maturity at time 73. The particular model features a state vector
of length N (i.e., N-factors) z(t)

The value of a European call option would thus be:

e "0 B* max(F (2(Ty), Ty, Ty) — K, 0)]

European_option_value 7

The analytic solution to call and put options are given by:
Call options:
e "0 (F(2(0),0,T1)N(d1) — KN(d))

Put options:
e "I (KN (—dy) — F(x(0),0,T1)N(—d1))
Where:
Where:
~ In(F/K) + 202

dy =
v

d2:d1_v

Parameter N (d) indicates cumulative probabilities for the standard normal distribution (i.e. P(Z <
d)).

Finally, parameter v, the annualized option volatility, is given by:

Var*[In(F(z(Tp), To, Th))] = v* = Z TRt RD =10 Cov* (2,(Ty), 5 (Th))

ij=1

The annualized option volatility approaches 02T} as both Ty and 7} increase, as most uncertainty
about spot prices at futures contract maturity and option expiration are a result of uncertainty about
spot prices, rather than the cost of carry (Schwartz and Smith, 2000).

The presented option valuation formulas are analogous to the Black-Scholes formulas for valuing
European options on stocks that do not pay dividends

When verbose =T, the European_option_value function numerically calculates the sensitivity
of option prices to underlying option and model parameters. Gradients are calculated numerically
through the grad function of the numDeriv package.

Value

The European_option_value function returns a numeric value corresponding to the present value
of an option when verbose = F. When verbose =T, European_option_value returns a list with
three objects:

option value Present value of the option.

annualized volatility Annualized volatility of the option.

parameter sensitivity Sensitivity of option value to model parameters.
greeks Sensitivity of option value to option parameters.

References
Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Paul Gilbert and Ravi Varadhan (2016). numDeriv: Accurate Numerical Derivatives. R package
version 2016.8-1. https://CRAN.R-project.org/package=numDeriv

8 futures_price_forecast

Examples

##Example 1 - A European 'put' option on a futures contract following 'GBM'

European_option_value(x_0 = log(20), parameters = c(mu_rn = .06, sigma_1 = 0.2),
futures_maturity = 1, option_maturity =1,
K =20, r = 0.06, call = FALSE, verbose = TRUE)

##Example 2 - A European put option under a two-factor crude oil model:

##Step 1 - Obtain current (i.e. most recent) state vector by filtering the

##two-factor oil model:

Schwartz_Smith_oil <- NFCP_Kalman_filter(parameter_values = SS_oil$two_factor,
parameter_names = names(SS_oil$two_factor),
log_futures = log(SS_oil$stitched_futures),
dt = SS_oilsdt,
futures_TTM = SS_oil$stitched_TTM,
verbose = TRUE)

##Step 2 - Calculate 'call' option price:

European_option_value(x_0 = Schwartz_Smith_oil$x_t,
parameters = SS_oil$two_factor,
futures_maturity = 2,
option_maturity = 1,

K = 20,
r=20.05,
call = FALSE,

verbose = FALSE)

futures_price_forecast
Forecast the futures prices of an N-factor model

Description

Analytically forecast future expected Futures prices under the risk-neutral version of a specified
N-factor model.

Usage
futures_price_forecast(
X_0,
parameters,
t =0,
futures_TTM = 1:10,
percentiles = NULL

futures_price_forecast 9

Arguments
X_0 vector. Initial values of the state variables, where the length must correspond
to the number of factors specified in the parameters.
parameters vector. A named vector of parameter values of a specified N-factor model.
Function NFCP_parameters is recommended.
t numeric. The time point, in years, at which to forecast futures prices.
futures_TTM vector. the time-to-maturity, in years, of futures contracts to forecast.
percentiles vector. Optional. Probabilistic forecasting percentile intervals.
Details

Under the assumption or risk-neutrality, futures prices are equal to the expected future spot price.
Additionally, under deterministic interest rates, forward prices are equal to futures prices. Let Frpr;
denote the market price of a futures contract at time ¢ with time 7" until maturity. let * denote the
risk-neutral expectation and variance of futures prices. The following equations assume that the
first factor follows a Brownian Motion.

N
E*(In(Fr4)]) = season(T) + Z e " T (0) 4+ p*t + AT — t)
i=1
Where:
. Nooq_ e~miT=t), 1 1 — e~ (witri)(T—1)
AT = @=L w4 Y s,
i=1 i ij#1 Ri + K

The variance is given by:
" 9 —(Ritr;)(T—t) 1— e—(m—‘rm‘)t
Var*[ln(Fr.)] = o1t + Z e\ 0i0pi
g1 K + Ry

Value

futures_price_forecast returns a vector of expected Futures prices under a given N-factor
model with specified time to maturities at time ¢. When percentiles are specified, the function
returns a matrix with the corresponding confidence bands in each column of the matrix.

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

10 futures_price_simulate

Examples

Forecast futures prices of the Schwartz and Smith (2000) two-factor oil model:

Step 1 - Run the Kalman filter for the two-factor oil model:

SS_2F_filtered <- NFCP_Kalman_filter(parameter_values = SS_oil$two_factor,
parameter_names = names(SS_oil$two_factor),
log_futures = log(SS_oil$stitched_futures),
dt = SS_oilsgdt,
futures_TTM = SS_oil$stitched_TTM,
verbose = TRUE)

Step 2 - Probabilistic forecast of the risk-neutral two-factor
stochastic differential equation (SDE):
futures_price_forecast(x_0 = SS_2F_filtered$x_t,

parameters = SS_oil$two_factor,

t =0,

futures_TTM = seq(0,9,1/12),

percentiles = c(0.1, 0.9))

futures_price_simulate
Simulate futures prices of an N-factor model through Monte Carlo
simulation

Description

Simulate Futures price data with dynamics that follow the parameters of an N-factor model through
Monte Carlo simulation.

Usage

futures_price_simulate(
X_0,
parameters,
dt,
N_obs,
futures_TTM,
ME_TTM = NULL,
verbose = TRUE

Arguments

X_0 vector. Initial values of the state variables, where the length must correspond
to the number of factors specified in the parameters.

parameters vector. A named vector of parameter values of a specified N-factor model.
Function NFCP_parameters is recommended.

dt numeric. Discrete time step, in years, of the Monte Carlo simulation.

futures_price_simulate 11

N_obs numeric. Number of discrete observations to simulate.

futures_TTM vector or matrix. The time-to-maturity of observed futures contracts, in years,
at a given observation date. This time-to-maturity can either be constant (ie.
class ’vector’) or variable (ie. class 'matrix’) across observations. The number
of rows of object ’futures_TTM’ must be either 1 or equal to argument 'N_obs’.
NA values are allowed.

ME_TTM vector. the time-to-maturity groupings to consider for observed futures prices.
The length of ME_TTM must be equal to the number of "ME’ parameters speci-
fied in object ’parameter_names’. The maximum of "ME_TTM’ must be greater
than the maximum value of *futures_TTM’. When the number of "ME’ parame-
ter values is equal to one or the number of columns of object ’log_futures’, this
argument is ignored.

verbose logical. Should simulated state variables be output?

Details

The futures_price_simulate function simulates futures price data using the Kalman filter algo-
rithm, drawing from a normal distribution for the shocks in the transition and measurement equa-
tions at each discrete time step. At each discrete time point, an observation of the state vector is
generated through the transition equation, drawing from a normal distribution with a covariance
equal to ;. Following this, simulated futures prices are generated through the measurement equa-
tion, drawing from a normal distribution with covariance matrix equal to H.

Input futures_TTM can be either a matrix specifying the constant time to maturity of futures con-
tracts to simulate, or it can be a matrix where nrow(futures_TTM) == N_obs for the time-varying
time to maturity of the futures contracts to simulate. This allows for the simulation of both aggregate
stitched data and individual futures contracts.

Value

futures_price_simulate returns a list with three objects when verbose = T and a matrix of sim-
ulated futures prices when verbose = F. The list objects returned are:
#,
state_vector A matrix of Simulated state variables at each discrete time point. The columns represent each factor of th

futures_prices A matrix of Simulated futures prices, with each column representing a simulated futures contract.
spot_prices A vector of simulated spot prices

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

12 NFCP_domains

Examples

Example 1 - Simulate Crude 0il with constant time-to-maturity:

simulated_futures <- futures_price_simulate(x_0 = c(log(SS_oil$spot[1,1]), @),
parameters = SS_oil$two_factor,
dt = SS_oilsdt,
N_obs = nrow(SS_oil$stitched_futures),
futures_TTM = SS_oil$stitched_TTM)

##Simulate Crude 0il Contracts with a rolling-window of measurement error:

simulated_futures_prices <- futures_price_simulate(x_0 = c(log(SS_oil$spot[1,1]), @),
parameters = SS_oil$two_factor,
dt = SS_oilsdt,
N_obs = nrow(SS_oil$contracts),
futures_TTM = SS_oil$contract_maturities,
ME_TTM = c(1/4, 1/2, 1, 2, 5))

NFCP_domains N-Factor MLE search boundaries

Description

Generate boundaries for the domain of parameters of the N-factor model for parameter estimation.

Usage

NFCP_domains(
parameters,
kappa = NULL,
lambda = NULL,
sigma = NULL,
mu = NULL,
mu_rn = NULL,
rho = NULL,
season = NULL,
ME = NULL,

_0 = NULL,

X =
E = NULL

Arguments

parameters a vector of parameter names of an N-factor model. Function NFCP_parameters
is recommended.

kappa A vector of length two specifying the lower and upper bounds for the "kappa’
parameter

NFCP_domains 13

lambda A vector of length two specifying the lower and upper bounds for the ’lambda’
parameter

sigma A vector of length two specifying the lower and upper bounds for the ’sigma’
parameter

mu A vector of length two specifying the lower and upper bounds for the 'mu’
parameter

mu_rn A vector of length two specifying the lower and upper bounds for the mu_rn’
parameter

rho A vector of length two specifying the lower and upper bounds for the 'rho’
parameter

season A vector of length two specifying the lower and upper bounds for the ’season’
parameter

ME A vector of length two specifying the lower and upper bounds for the "ME’ (i.e.,
measurement error) parameter

X_0 A vector of length two specifying the lower and upper bounds for the 'x_0’
parameter

E A vector of length two specifying the lower and upper bounds for the 'E’ pa-
rameter

Details

The NFCP_domains function generates lower and upper bounds for the parameter estimation pro-
cedure in the format required of the ’Domains’ argument of the ’genoud’ function. NFCP_domains
allows easy setting of custom boundaries for parameter estimation, whilst also providing default
domains of parameters.

Value

A matrix of defaulted domains for the given unknown parameters. The first column corresponds
to the lower bound of the allowable search space for the parameter, whilst the second column cor-
responds to the upper bound. These values were set to allow for the ’realistic’ possible values
of given parameters as well as restricting some parameters (such as variance and mean-reverting
terms) from taking negative values. The format of the returned matrix matches that required by the
Domains argument of the Genoud function from the package RGenoud.

References

Mebane, W. R., and J. S. Sekhon, (2011). Genetic Optimization Using Derivatives: The rgenoud
Package for R. Journal of Statistical Software, 42(11), 1-26. URL http://www.jstatsoft.org/v42/i11/.

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Examples

##Specify the Schwartz and Smith (2000) two-factor model
##with fixed measurement error:
parameters_2F <- NFCP_parameters(N_factors = 2,

14

NFCP_Kalman_filter

GBM = TRUE,
initial_states = TRUE,
N_ME = 1)

###Generate the default 'domains' argument of 'NFCP_MLE' function:
NFCP_MLE_bounds <- NFCP_domains(parameters_2F)

NFCP_Kalman_filter Filter an N-factor commodity pricing model though the Kalman filter

Description

Given a set of parameters of the N-factor model, filter term structure data using the Kalman filter.

Usage

NFCP_Kalman_filter(
parameter_values,
parameter_names,

log_futures,

dt,
futures_TTM,
ME_TTM = NULL

’

verbose = FALSE,
debugging = FALSE,
seasonal_trend = NULL

Arguments

parameter_values

parameter_names

log_futures

dt
futures_TTM

vector. Numeric parameter values of an N-factor model.

vector. Parameter names, where each element of parameter_names must cor-
respond to its respective value element in object parameter_values.

matrix. The natural logarithm of observed futures prices. Each row must cor-
respond to quoted futures prices at a particular date and every column must
correspond to a unique futures contract. NA values are allowed.

numeric. Constant, discrete time step of observations, in years.

vector or matrix. The time-to-maturity of observed futures contracts, in years,
at a given observation date. This time-to-maturity can either be constant (ie.
class ’vector’) or variable (ie. class 'matrix’) across observations. The number
of columns of ’futures_TTM’ must be identical to the number of columns of
object ’log_futures’. The number of rows of object ’futures_TTM’ must be
either 1 or equal to the number of rows of object "log_futures’.

NFCP_Kalman_filter 15

ME_TTM vector. the time-to-maturity groupings to consider for observed futures prices.
The length of ME_TTM must be equal to the number of "ME’ parameters speci-
fied in object *parameter_names’. The maximum of "ME_TTM’ must be greater
than the maximum value of *futures_TTM’. When the number of "ME’ parame-
ter values is equal to one or the number of columns of object ’log_futures’, this
argument is ignored.

verbose logical. Should additional information be output? see values. When verbose
= F, the NFCP_Kalman_f1ilter function is significantly faster, see details.

debugging logical. Should additional filtering information be output? see values.

seasonal_trend numeric. Optional parameter. This details the trend of the deterministic sea-
sonal component (i.e., where in the season the first observation is located).
When not listed, the Kalman filter assumes that observations are at the beginning
of the seasonal component.

Details

NFCP_Kalman_filter applies the Kalman filter algorithm for observable log_futures prices against
the input parameters of an N-factor model provided through the parameter_values and parameter_names
input vectors.

The NFCP_Kalman_filter function is designed for subsequent input into optimization functions
and is called within the N-factor parameter estimation function NFCP_MLE. The first input to the
NFCP_Kalman_filter function is a vector of parameters of an N-factor model, with elements of this
vector corresponding to the parameter names within the elements of input vector parameter_names.
When logical input verbose = F, the NFCP_Kalman_filter function calls the fkf_SP function of
the FKF_SP package, which itself is a wrapper of a routine of the Kalman filter written in C utilizing
Sequential Processing for maximum computational efficiency (see fkf_SP for more details). When
verbose =T, the NFCP_Kalman_filter instead applies a Kalman filter algorithm written in base R
and outputs several other 1ist objects, including filtered values and measures for model fit and
robustness (see Returns)

The N-factor model The N-factor framework was first presented in the work of Cortazar and
Naranjo (2006, equations 1-3). It is a risk-premium class of commodity pricing model, in which
futures prices are given by discounted expected future spot prices, where these spot prices are dis-
counted at a given level of risk-premium, known as the cost-of-carry.

The N-factor framework describes the spot price process of a commodity as the correlated sum of N
state variables x;. The "NFCP’ package also allows for a deterministic, cyclical seasonal function
season(t) to be considered.

When GBM = TRUE:
N
log(S:) = season(t) + Z Tit
i=1
When GBM = FALSE:

N
log(S:) = E + season(t) + Z Tit
i=1

Where GBM determines whether the first factor follows a Brownian Motion or Ornstein-Uhlenbeck
process to induce a unit root in the spot price process.

16

NFCP_Kalman_filter

When GBM = TRUE, the first factor corresponds to the spot price, and additional N-1 factors model
the cost-of-carry.

When GBM = FALSE, the commodity model assumes that there is a long-term equilibrium the com-
modity price will tend towards over time, with model volatility a decreasing function of time. This
is not the standard approach made in the commodity pricing literature (Cortazar and Naranjo, 2006).

State variables are thus assumed to follow the following processes:
When GBM = TRUE:
dzi ¢ = p*dt + ordwst

‘When GBM = FALSE:
driy = —(M + K121,)dt + o1dwt

And:
dzi s =iz1 —(Ni + ki ¢)dt + oydw;t

where:
E(w;)E(w;) = pi;

Additionally, the deterministic seasonal function (if specified) is given by:

season(t) = Z(seasoniylcos(%ﬂ) + season; 2sin(2im)
i=1

The addition of deterministic, cyclical seasonality as a function of trigonometric variables was first
suggested by Hannan, Terrell, and Tuckwell (1970) and first applied to model commodities by
Sgrensen (2002).

The following constant parameters are defined as:

var p: long-term growth rate of the Brownian Motion process.

var E: Constant equilibrium level.

var u* = u — Ap: Long-term risk-neutral growth rate

var \;: Risk premium of state variable 7.

var k;: Reversion rate of state variable 7.

var o;: Instantaneous volatility of state variable i.

var p; ; € [—1, 1]: Instantaneous correlation between state variables 4 and j.

Including additional factors within the spot-price process allow for additional flexibility (and pos-
sibly fit) to the term structure of a commodity. The N-factor model nests simpler models within
its framework, allowing for the fit of different N-factor models (applied to the same term structure
data), represented by the log-likelihood, to be directly compared with statistical testing possible
through a chi-squared test.

Disturbances - Measurement Error:

The Kalman filtering algorithm assumes a given measure of measurement error or disturbance in
the measurement equation (ie. matrix H). Measurement errors can be interpreted as error in the
model’s fit to observed prices, or as errors in the reporting of prices (Schwartz and Smith, 2000).
These disturbances are typically assumed independent.

var M E; measurement error of contract <.

NFCP_Kalman_filter 17

where the measurement error of futures contracts M F; is equal to '"ME_" [i] (i.e. 'ME_1"', 'ME_2",
...) specified in arguments parameter_values and parameter_names.

There are three particular cases on how the measurement error of observations can be treated in the
NFCP_Kalman_filter function:

Case 1: Only one ME is specified. The Kalman filter assumes that the measurement error of
observations are independent and identical.

Case 2: One ME is specified for every observed futures contract. The Kalman filter assumes that
the measurement error of observations are independent and unique.

Case 3: A series of ME’s are specified for a given grouping of maturities of futures contracts. The
Kalman filter assumes that the measurement error of observations are independent and unique to
their respective time-to-maturity.

Grouping of maturities for case 3 is specified through the ME_TTM argument. This is a vector that
specifies the maximum maturity to consider for each respective ME parameter argument.

in other words, ME_1 is considered for observations with TTM less than ME_TTM[1], ME_2 is
considered for observations with TTM less than ME_TTM][2], ..., etc.

The first case is clearly the simplest to estimate, but can be a restrictive assumption. The second
case is clearly the most difficult to estimate, but can be an infeasible assumption when considering
all available futures contracts that make up the term structure of a commodity.

Case 3 thus serves to ease the restriction of case 1, and allow the user to make the modeling of
measurement error as simple or complex as desired for a given set of maturities.

Kalman Filtering
The following section describes the Kalman filter equations used to filter the N-factor model.

The Kalman filter iteration is characterised by a transition and measurement equation. The transition
equation develops the vector of state variables between discretised time steps (whilst considering a
given level of covariance between state variables over time). The measurement equation relates the
unobservable state vector to a vector of observable measurements (whilst also considering a given
level of measurement error). The typical Kalman filter algorithm is a Gaussian process state space
model.

Transition Equation:
Zyp—1 = et + Gidp—1 + Qe

Measurement Equation:
Ot = di + ZtZye—1 + Hie

t=1,---,n

Where 7; and €; are IID N (0, I(m)) and iid N (0, I(d)) respectively.

The state vector follows a normal distribution, 21 ~ N (a1, Py), with a; and P; as the mean vector
and variance matrix of the initial state vector x1, respectively.

The Kalman filter can be used for parameter estimation through the maximization of the Log-
Likelihood value. See NFCP_MLE.

Filtering the N-factor model

let m represent the number of observations at time ¢

NFCP_Kalman_filter

let n represent the number of factors in the N-factor model

observable futures prices: y; = [In(F(¢t,T1)), In(F(t,T2)), - ,In(F(t,Tn))]
State vector: x; = [x1t, zat, - -+, xut]

Measurement error: diag(H) = [ME}, ME3,--- , ME?]

When the number of specified ME terms is one, 1 = s = --- =5, = M E%

var Z is an m X n matrix, where each element [z, j] is equal to:
Zij=e"h
var d; is an m x 1 vector:

dy = [season(Ty) + A(Th), season(Ty) + A(Ty), - , season(Ty,) + A(T))

Under the assumption that Factor 1 follows a Brownian Motion, A(T') is given by:

N
. L—e X 1, ., 1 — e~ (Ritry)T
A(T) =W T — Z *T + 5(01T+ Z O—io—jpi’jTﬁj
i=1 1.j#1
var vy is a n x 1 vector of serially uncorrelated Guassian disturbances with F(V;) = 0 and
cov(v;) = R?
Where:
diag(Gy) = [e7 "7, e 27, ... e]

Where =T — ¢

var wy is an n X 1 vector of serially uncorrelated Guassian disturbances where:
E (’U}t) =0

and cov(w) = Qy
var ¢; = [pAt,0,---,0]" isan N X 1 vector of the intercept of the transition equation.

var @; is equal to the covariance function, given by:

CO’ULl(fELt, xl,t) = U%t

1— e—(m+n_7~)t
Cov; j(miy, Tjt) = Uiojpi,jT/ij
(see also cov_func)

Penalising poorly specified models

The Kalman filter returns non-real log-likelihood scores when the prediction error variance ma-
trix becomes singular or its determinant becomes negative. This generally occurs when a poorly
specified parameter set is input, such as when measurement error is zero. Non-real log-likelihood
scores can break optimization and gradients algorithms and functions. To circumvent this, the
NFCP_Kalman_filter returns a heavily penalized log-likelihood score when verbose = F. Penal-
ized log-likelihood scores are calculated by:

NFCP_Kalman_filter 19

stats::runif(1, -2e6, -1e6)
Diffuse Kalman filtering

If the initial values of the state vector are not supplied within the parameter_names and parameter_values
vectors, a “diffuse’ assumption is used within the Kalman filtering algorithm. Initial states of factors

that follow an Ornstein-Uhlenbeck are assumed to equal zero. The initial state of the first factor,

given that it follows a Brownian motion, is assumed equal to the first element of log_futures. This

is an assumption that the initial estimate of the spot price is equal to the closest to maturity observed
futures price.

The initial states of factors that follow an Ornstein-Uhlenbeck have a transient effect on future
observations. This makes the diffuse assumption reasonable and further means that initial states
cannot generally be accurately estimated.

Value

NFCP_Kalman_filter returns a numeric object when verbose = F, which corresponds to the log-
likelihood of observations. When verbose = T, the NFCP_Kalman_filter function returns a 1list
object of length seven with the following objects:

Log-Likelihood Log-Likelihood of observations.

Information Criteria vector. The Akaikie and Bayesian Information Criterion.

X_t vector. The final observation of the state vector.

X matrix. Optimal one-step-ahead state vector.

Y matrix. Estimated futures prices.

\% matrix. Estimation error.

Filtered Error matrix. positive mean error (high bias), negative mean error (low bias), mean error (bias
Term Structure Fit matrix. The mean error (Bias), mean absolute error, standard deviation of error and root

Term Structure Volatility Fit matrix. Theoretical and empirical volatility of observed futures contract returns.

When debugging = T, 9 objects are returned in addition to those returned when verbose = T:

o
~+

array. Covariance matrix of state variables, with the third dimension indexing across time
vector. Prediction error variance matrix, with the third dimension indexing across time
matrix. Kalman Gain, with the third dimension indexing across time

matrix. d; (see details)

matrix. Z; (see details)

matrix. G; (see details)

vector. C} (see details)

matrix. Q; (see details)

matrix. H (see details)

|
&+

[
&+ o+

T O 0O ONOo X ™M

References

Hannan, E. J., et al. (1970). "The seasonal adjustment of economic time series." International
economic review, 11(1): 24-52.

Anderson, B. D. O. and J. B. Moore, (1979). Optimal filtering Englewood Cliffs: Prentice-Hall.

20 NFCP_Kalman_filter

Fahrmeir, L. and G. tutz,(1994) Multivariate Statistical Modelling Based on Generalized Linear
Models. Berlin: Springer.

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Sgrensen, C. (2002). "Modeling seasonality in agricultural commodity futures." Journal of Futures
Markets: Futures, Options, and Other Derivative Products 22(5): 393-426.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Durbin, J., and S. J. Koopman, (2012). Time series analysis by state space methods. Oxford univer-
sity press.

Examples

##Example 1 - complete, stitched data.
##Replicating the Schwartz and Smith (2000)
##Two-Factor commodity pricing model applied to crude oil:

SS_stitched_filtered <- NFCP_Kalman_filter(
parameter_values = SS_oil$two_factor,
parameter_names = names(SS_oil$two_factor),
log_futures = log(SS_oil$stitched_futures),
futures_TTM = SS_oil$stitched_TTM,

maturity groupings need not be considered here:
ME_TTM = NULL,

dt = SS_oilsdt,

verbose = FALSE)

##Example 2 - incomplete, contract data.

##Replicating the Schwartz and Smith (2000)

##Two-Factor commodity pricing model applied to all available
##crude oil contracts:

SS_2F <- SS_oil$two_factor

##omit stitched contract white noise

SS_2F <- SS_2F[!grepl("ME",
names(SS_2F))]

Evaluate two different measurement errors
SS_2F[c("ME_1", "ME_2")] <- c(0.01, 0.04)

Separate measurement error into two different maturity groupings
SS_ME_TTM <- c(1,3)

ME_1 is applied for observed contracts with less than one year
maturity, whilst ME_2 considers contracts with maturity greater
than one year, and less than three years

#Kalman filter
SS_contract_filtered <- NFCP_Kalman_filter(
parameter_values = SS_2F,

NFCP_MLE 21

parameter_names = names(SS_2F),

All available contracts are considered

log_futures = log(SS_oil$contracts),

Respective 'futures_TTM' of these contracts are input:
futures_TTM = SS_oil$contract_maturities,

ME_TTM = SS_ME_TTM,

dt = SS_oilsdt,

verbose = FALSE)

NFCP_MLE N-factor model parameter estimation through the Kalman filter and
maximum likelihood estimation

Description

The NFCP_MLE function performs parameter estimation of commodity pricing models under the N-
factor framework of Cortazar and Naranjo (2006). It uses term structure futures data and estimates
unknown parameters through maximum likelihood estimation. NFCP_MLE allows for missing ob-
servations, a variable number of state variables, deterministic seasonality and a variable number of
measurement error terms.

Usage

NFCP_MLE(
log_futures,
dt,
futures_TTM,
N_factors,
N_season = 0,
N_ME = 1,
ME_TTM = NULL,
GBM = TRUE,
estimate_initial_state = FALSE,

Domains = NULL,

cluster = FALSE,
)
Arguments

log_futures matrix. The natural logarithm of observed futures prices. Each row must cor-
respond to quoted futures prices at a particular date and every column must
correspond to a unique futures contract. NA values are allowed.

dt numeric. Constant, discrete time step of observations, in years.

futures_TTM vector or matrix. The time-to-maturity of observed futures contracts, in years,

at a given observation date. This time-to-maturity can either be constant (ie.
class ’vector’) or variable (ie. class *matrix’) across observations. The number

22

NFCP_MLE

of columns of ’futures_ TTM’ must be identical to the number of columns of
object ’log_futures’. The number of rows of object *futures_ TTM’ must be
either 1 or equal to the number of rows of object "log_futures’.

N_factors numeric. Number of state variables in the spot price process.

N_season numeric. The number of deterministic, cyclical seasonal factors to include in
the spot price process.

N_ME numeric. The number of independent measuring errors of observable futures
contracts to consider in the Kalman filter.

ME_TTM vector. the time-to-maturity groupings to consider for observed futures prices.
The length of ME_TTM must be equal to the number of "ME’ parameters speci-
fied in object ’parameter_names’. The maximum of "ME_TTM’ must be greater
than the maximum value of *futures_TTM’. When the number of "ME’ parame-
ter values is equal to one or the number of columns of object ’log_futures’, this
argument is ignored.

GBM logical. When TRUE, factor 1 of the model is assumed to follow a Brownian
Motion, inducing a unit-root in the spot price process.
estimate_initial_state
logical. Should the initial state vector be specified as unknown parameters of
the commodity pricing model? These are generally estimated with low precision
(see details).

Domains matrix. An option matrix of two columns specifying the lower and upper
bounds for parameter estimation. The 'NFCP_domains’ function is recom-
mended. When not specified, the default parameter bounds returned by the
"NFCP_domains’ function are used.

cluster cluster. An optional object returned by one of the makeCluster commands in
the parallel package to allow for parameter estimation to be performed across
multiple cluster nodes.

additional arguments to be passed into the genoud genetic algorithm numeric
optimization. These can highly influence the maximum likelihood estimation
procedure. See help(genoud)

Details

The NFCP_MLE function facilitates parameter estimation of commodity pricing models under the
N-factor framework through the Kalman filter and maximum likelihood estimation. NFCP_MLE uses
genetic algorithms through the genoud function of the rgenoud package to numerically optimize
the log-likelihood score returned from the NFCP_Kalman_filter function.

Parameter estimation of commodity pricing models can involve a large number of observations,
state variables and unknown parameters. It also features an objective log-likelihood function that
is nonlinear and discontinuous with respect to model parameters. NFCP_MLE is designed to perform
parameter estimation as efficiently as possible, maximizing the likelihood of attaining a global
optimum.

Arguments passed to the genoud function can greatly influence estimated parameters as well as
computation time and must be considered when performing parameter estimation. All arguments
of the genoud function may be passed through the NFCP_MLE function.

NFCP_MLE 23

When grad is not specified, the grad function from the numDeriv package is called to approximate
the gradient within the genoud optimization algorithm through Richardsons extrapolation.

Richardsons extrapolation is regarded for its ability to improve the approximation of estimation
methods, which may improve the likelihood of obtained a global maxmimum estimate of the log-
likelihood.

The population size can highly influence parameter estimates at the expense of increased compu-
tation time. For commodity pricing models with a large number of unknown parameters, large
population sizes may be necessary to maximize the estimation process.

NFCP_MLE by default performs boundary constrained optimization of log-likelihood scores and does
not allow does not allow for out-of-bounds evaluations within the genoud optimization process,
preventing candidates from straying beyond the bounds provided by argument Domains.

When Domains is not specified, the default bounds specified by the NFCP_domains function are
used. The size of the search domains of unknown parameters can highly influence the computa-
tion time of the NFCP_MLE function, however setting domains that are too restrictive may result in
estimated parameters returned at the upper or lower bounds. Custom search domains can be used
through the NFCP_domains function and subsequently the Domains argument of this function.

Finally, the maximum likelihood estimation process of parameters provides no in-built guarantee
that the estimated parameters of commodity models are financially sensible results. When the
commodity model has been over-parameterized (i.e., the number of factors N specified is too high)
or the optimization algorithm has failed to attain a global maximum likelihood estimate, estimated
parameters may be irrational.

Evidence of irrational parameter estimates include correlation coefficients that are extremely large
(e.g., > 0.95 or < -0.95), risk-premiums or drift terms that are unrealistic, filtered state variables
that are unrealistic and extremely large/small mean-reverting terms with associated large standard
errors.

Irrational parameter estimates may indicate that the number of stochastic factors (i.e., N_factors)
of the model or number of seasonal factors (i.e., N_season) are too high.

The N-factor model The N-factor framework was first presented in the work of Cortazar and
Naranjo (2006, equations 1-3). It is a risk-premium class of commodity pricing model, in which
futures prices are given by discounted expected future spot prices, where these spot prices are dis-
counted at a given level of risk-premium, known as the cost-of-carry.

The N-factor framework describes the spot price process of a commodity as the correlated sum of N
state variables x;. The "NFCP’ package also allows for a deterministic, cyclical seasonal function
season(t) to be considered.

When GBM = TRUE:
N
log(Sy) = season(t) + Z Tit
i=1
When GBM = FALSE:

N
log(S:) = E + season(t) + Z Tit
i=1

Where GBM determines whether the first factor follows a Brownian Motion or Ornstein-Uhlenbeck
process to induce a unit root in the spot price process.

24

NFCP_MLE

When GBM = TRUE, the first factor corresponds to the spot price, and additional N-1 factors model
the cost-of-carry.

When GBM = FALSE, the commodity model assumes that there is a long-term equilibrium the com-
modity price will tend towards over time, with model volatility a decreasing function of time. This
is not the standard approach made in the commodity pricing literature (Cortazar and Naranjo, 2006).

State variables are thus assumed to follow the following processes:
When GBM = TRUE:
dzi ¢ = p*dt + ordwst

‘When GBM = FALSE:
driy = —(M + K121,)dt + o1dwt

And:
dzi s =iz1 —(Ni + ki ¢)dt + oydw;t

where:
E(w;)E(w;) = pi;

Additionally, the deterministic seasonal function (if specified) is given by:

season(t) = Z(seasoniylcos(%ﬂ) + season; 2sin(2im)
i=1

The addition of deterministic, cyclical seasonality as a function of trigonometric variables was first
suggested by Hannan, Terrell, and Tuckwell (1970) and first applied to model commodities by
Sgrensen (2002).

The following constant parameters are defined as:

var p: long-term growth rate of the Brownian Motion process.

var E: Constant equilibrium level.

var u* = u — Ap: Long-term risk-neutral growth rate

var \;: Risk premium of state variable 7.

var k;: Reversion rate of state variable 7.

var o;: Instantaneous volatility of state variable i.

var p; ; € [—1, 1]: Instantaneous correlation between state variables 4 and j.

Including additional factors within the spot-price process allow for additional flexibility (and pos-
sibly fit) to the term structure of a commodity. The N-factor model nests simpler models within
its framework, allowing for the fit of different N-factor models (applied to the same term structure
data), represented by the log-likelihood, to be directly compared with statistical testing possible
through a chi-squared test. The AIC or BIC can also be used to compare models.

Disturbances - Measurement Error:

The Kalman filtering algorithm assumes a given measure of measurement error or disturbance in
the measurement equation (ie. matrix H). Measurement errors can be interpreted as error in the
model’s fit to observed prices, or as errors in the reporting of prices (Schwartz and Smith, 2000).
These disturbances are typically assumed independent.

var M E; measurement error of contract <.

NFCP_MLE 25

where the measurement error of futures contracts M F; is equal to '"ME_" [i] (i.e. 'ME_1"', 'ME_2",
...) specified in arguments parameter_values and parameter_names.

There are three particular cases on how the measurement error of observations can be treated in the
NFCP_Kalman_filter function:

Case 1: Only one ME is specified. The Kalman filter assumes that the measurement error of
observations are independent and identical.

Case 2: One ME is specified for every observed futures contract. The Kalman filter assumes that
the measurement error of observations are independent and unique.

Case 3: A series of ME’s are specified for a given grouping of maturities of futures contracts. The
Kalman filter assumes that the measurement error of observations are independent and unique to
their respective time-to-maturity.

Grouping of maturities for case 3 is specified through the ME_TTM argument. This is a vector that
specifies the maximum maturity to consider for each respective ME parameter argument.

in other words, ME_1 is considered for observations with TTM less than ME_TTM[1], ME_2 is
considered for observations with TTM less than ME_TTM][2], ..., etc.

The first case is clearly the simplest to estimate, but can be a restrictive assumption. The second
case is clearly the most difficult to estimate, but can be an infeasible assumption when considering
all available futures contracts that make up the term structure of a commodity.

Case 3 thus serves to ease the restriction of case 1, and allow the user to make the modeling of
measurement error as simple or complex as desired for a given set of maturities.

Diffuse Kalman filtering

If the initial values of the state vector are not supplied within the parameter_names and parameter_values

vectors, a diffuse’ assumption is used within the Kalman filtering algorithm. Initial states of factors
that follow an Ornstein-Uhlenbeck are assumed to equal zero. The initial state of the first factor,
given that it follows a Brownian motion, is assumed equal to the first element of log_futures. This
is an assumption that the initial estimate of the spot price is equal to the closest to maturity observed
futures price.

The initial states of factors that follow an Ornstein-Uhlenbeck have a transient effect on future
observations. This makes the diffuse assumption reasonable and further means that initial states
cannot generally be accurately estimated.

Value

NFCP_MLE returns a 1ist with 10 objects. 9 objects are returned when the user has specified not to
calculate the hessian matrix at solution.

MLE numeric The Maximum-Likelihood-Estimate of the solution.

estimated_parameters vector. Estimated parameters.

standard_errors vector. Standard error of the estimated parameters. Returned only when hessian =T is
Information Criteria vector. The Akaikie and Bayesian Information Criterion.

x_t vector. The final observation of the state vector. When deterministic seasonality is cons:
X matrix. Optimal one-step-ahead state vector. When deterministic seasonality is consider
Y matrix. Estimated futures prices.

Vv matrix. Estimation error.

FilteredError matrix. positive mean error (high bias), negative mean error (low bias), mean error (bias

26 NFCP_parameters

Term Structure Fit matrix. The mean error (Bias), mean absolute error, standard deviation of error and root
Term Structure Volatility Fit matrix. Theoretical and empirical volatility of observed futures contract returns
proc_time list. The real and CPU time (in seconds) the NFCP_MLE function has taken.
genoud_value list. Outputs of genoud.

References

Hannan, E. J., et al. (1970). "The seasonal adjustment of economic time series." International
economic review, 11(1): 24-52.

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Sgrensen, C. (2002). "Modeling seasonality in agricultural commodity futures." Journal of Futures
Markets: Futures, Options, and Other Derivative Products 22(5): 393-426.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Mebane, W. R., and J. S. Sekhon, (2011). Genetic Optimization Using Derivatives: The rgenoud
Package for R. Journal of Statistical Software, 42(11), 1-26. URL http://www.jstatsoft.org/v42/i11/.

Examples

Estimate a 'one-factor' geometric Brownian motion model:
0il_1F_estimated_model <- NFCP_MLE(

Arguments

log_futures = log(SS_oil$contracts)[1:20,1:5],

dt = SS_oilsdt,

futures_TTM= SS_oil$contract_maturities[1:20,1:5],
N_factors = 1, N_ME =1,

Genoud arguments:

pop.size = 4, print.level = @, gr = NULL,

max.generations = 0)

NFCP_parameters Specify the constant parameters of an N-factor model

Description

the NFCP_parameters function specifies the parameters of a commodity pricing model under the N-
factor framework first described by Cortazar and Naranjo (2006). This function is a recommended
starting position for the application of N-factor models within the NFCP package.

Usage

NFCP_parameters(
N_factors,
GBM,
initial_states,
N_ME,

NFCP_parameters 27

N_season = 0,
verbose = TRUE

)
Arguments
N_factors numeric. Number of state variables in the spot price process.
GBM logical. If GBM =T, factor 1 of the model is assumed to follow a Brownian

Motion, inducing a unit-root in the spot price process.

initial_states logical.Ifinitial_states =T, the initial state vector is specified as unknown
parameters of the commodity pricing model.

N_ME numeric. The number of independent measuring errors of observable futures
contracts to consider in the Kalman filter.

N_season numeric. The number of deterministic, cyclical seasonal factors to include in
the spot price process.

verbose logical. If verbose =T, the stochastic differential equation of the spot price
process is printed when the function is called.

Details

The N-factor model The N-factor framework was first presented in the work of Cortazar and
Naranjo (2006, equations 1-3). It is a risk-premium class of commodity pricing model, in which
futures prices are given by discounted expected future spot prices, where these spot prices are dis-
counted at a given level of risk-premium, known as the cost-of-carry.

The N-factor framework describes the spot price process of a commodity as the correlated sum of N
state variables x;. The "NFCP’ package also allows for a deterministic, cyclical seasonal function
season(t) to be considered.

‘When GBM = TRUE:

N
log(S;) = season(t) + Z Tit
i=1

When GBM = FALSE:
N
log(S:) = E + season(t) + Z Tit
i=1

Where GBM determines whether the first factor follows a Brownian Motion or Ornstein-Uhlenbeck
process to induce a unit root in the spot price process.

When GBM = TRUE, the first factor corresponds to the spot price, and additional N-1 factors model
the cost-of-carry.

When GBM = FALSE, the commodity model assumes that there is a long-term equilibrium the com-
modity price will tend towards over time, with model volatility a decreasing function of time. This
is not the standard approach made in the commodity pricing literature (Cortazar and Naranjo, 2006).

State variables are thus assumed to follow the following processes:

When GBM = TRUE:
dl’l’t = /L*dt + O'ld’wlt

28

NFCP_parameters

‘When GBM = FALSE:
driy = —(M\ + k121,¢)dt 4 o1dwt

And:
dzi s =iz1 —(Ni + ki ¢)dt + oydw;t

where:
E(wi)E(w;) = pi,j

Additionally, the deterministic seasonal function (if specified) is given by:

season(t) = Z(seasoniylcos(%w) + season; 2sin(2im)
i=1

The addition of deterministic, cyclical seasonality as a function of trigonometric variables was first
suggested by Hannan, Terrell, and Tuckwell (1970) and first applied to model commodities by
Sgrensen (2002).

The following constant parameters are defined as:

var y: long-term growth rate of the Brownian Motion process.

var E: Constant equilibrium level.

var u* = i — A1: Long-term risk-neutral growth rate

var \;: Risk premium of state variable 7.

var k;: Reversion rate of state variable 7.

var o;: Instantaneous volatility of state variable ;.

var p; ; € [—1, 1]: Instantaneous correlation between state variables ¢ and j.

Including additional factors within the spot-price process allow for additional flexibility (and pos-
sibly fit) to the term structure of a commodity. The N-factor model nests simpler models within
its framework, allowing for the fit of different N-factor models (applied to the same term structure
data), represented by the log-likelihood, to be directly compared with statistical testing possible
through a chi-squared test.

Disturbances - Measurement Error:

The Kalman filtering algorithm assumes a given measure of measurement error or disturbance in
the measurement equation (ie. matrix H). Measurement errors can be interpreted as error in the
model’s fit to observed prices, or as errors in the reporting of prices (Schwartz and Smith, 2000).
These disturbances are typically assumed independent by the commodity pricing literature.

var M E; measurement error of contract i.

where the measurement error of futures contracts M E; is equal to 'ME_" [i] (i.e. 'ME_1', 'ME_2",
...) specified in arguments parameter_values and parameter_names.

There are three particular cases on how the measurement error of observations can be treated in the
NFCP_Kalman_filter function:

Case 1: Only one ME is specified. The Kalman filter assumes that the measurement error of
observations are independent and identical.

Case 2: One ME is specified for every observed futures contract. The Kalman filter assumes that
the measurement error of observations are independent and unique.

spot_price_forecast 29

Case 3: A series of ME’s are specified for a given grouping of maturities of futures contracts. The
Kalman filter assumes that the measurement error of observations are independent and unique to
their respective time-to-maturity.

Grouping of maturities for case 3 is specified through the ME_TTM argument. This is a vector that
specifies the maximum maturity to consider for each respective ME parameter argument.

in other words, ME_1 is considered for observations with TTM less than ME_TTM[1], ME_2 is
considered for observations with TTM less than ME_TTM][2], ..., etc.

The first case is clearly the simplest to estimate, but can be a restrictive assumption. The second
case is clearly the most difficult to estimate, but can be an infeasible assumption when considering
all available futures contracts that make up the term structure of a commodity.

Case 3 thus serves to ease the restriction of case 1, and allow the user to make the modeling of
measurement error as simple or complex as desired for a given set of maturities.

Value

A vector of parameter names for a specified N-factor spot price process. This vector is ideal for
application within many other functions within the NFCP package

References
Hannan, E. J,, et al. (1970). "The seasonal adjustment of economic time series." International
economic review 11(1): 24-52.

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Sgrensen, C. (2002). "Modeling seasonality in agricultural commodity futures." Journal of Futures
Markets: Futures, Options, and Other Derivative Products 22(5): 393-426.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

##Generate parameter of a Two-factor model Crude 0il model
##as first presented by Schwartz and Smith (2000):
two_factor_parameters <- NFCP_parameters(N_factors = 2,

GBM = TRUE,
initial_states = FALSE,
N_ME = 5)

print(two_factor_parameters)

spot_price_forecast Forecast spot prices of an N-factor model

Description

Analytically forecast expected spot prices following the "true" process of a given n-factor stochastic
model

30 spot_price_forecast

Usage

spot_price_forecast(x_0, parameters, t, percentiles = NULL)

Arguments
X_0 vector. Initial values of the state variables, where the length must correspond
to the number of factors specified in the parameters.
parameters vector. A named vector of parameter values of a specified N-factor model.
Function NFCP_parameters is recommended.
t vector. Discrete time points, in years, to forecast spot prices
percentiles vector. Optional. Probabilistic forecasting percentile intervals.
Details

Future expected spot prices under the N-factor model can be forecasted through the analytic expres-
sion of expected future prices under the "true" N-factor process.

Given that the log of the spot price is equal to the sum of the state variables (equation 1), the spot
price is log-normally distributed with the expected prices given by:

E[S;] = exp(E[In(Sy)] + %Var[ln(St)])
Where:

N
E[ln(S)] = season(t) + Z e i (0) + pt

Where x; = 0 when GBM=T and yt = O when GBM = F

1 — e—(mitny)t
Var[ln(St)] = J%t + Z Uiajpi,j €

i.j#1 e
and thus:
o —kK;t 1 —¢ (H +I{J)t
E[S] = exp(season(t) + z;e i (0) + (n+ 0'1 i+ 27;1 E L A)
i= 2

Under the assumption that the first factor follows a Brownian Motion, in the long-run expected spot
prices grow over time at a constant rate of + 2 as the e—"i* and e~ (")t terms approach
ZEero.

An important consideration when forecasting spot prices using parameters estimated through max-
imum likelihood estimation is that the parameter estimation process takes the assumption of risk-
neutrality and thus the true process growth rate p is not estimated with a high level of precision.
This can be shown from the higher standard error for . than other estimated parameters, such as the
risk-neutral growth rate u*. See Schwartz and Smith (2000) for more details.

spot_price_simulate 31

Value

spot_price_forecast returns a vector of expected future spot prices under a given N-factor model
at specified discrete future time points. When percentiles are specified, the function returns a
matrix with the corresponding confidence bands in each column of the matrix.

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

Forecast the Schwartz and Smith (2000) two-factor oil model:

##Step 1 - Kalman filter of the two-factor oil model:
SS_2F_filtered <- NFCP_Kalman_filter(SS_oil$two_factor,
names (SS_oil$two_factor),
log(SS_oil$stitched_futures),
SS_oilsdt,
SS_oil$stitched_TTM,
verbose = TRUE)

##Step 2 - Probabilistic forecast of N-factor stochastic differential equation (SDE):
spot_price_forecast(x_0 = SS_2F_filtered$x_t,

parameters = SS_oil$two_factor,

t = seq(0,9,1/12),

percentiles = c(0.1, 0.9))

spot_price_simulate Simulate spot prices of an N-factor model through Monte Carlo simu-
lation

Description

Simulate risk-neutral price paths of an an N-factor commodity pricing model through Monte Carlo
Simulation.

Usage

spot_price_simulate(
X_0,
parameters,
t =1,
dt =1,
N_simulations = 2,

32 spot_price_simulate

antithetic = TRUE,
verbose = FALSE

)
Arguments

X_0 vector. Initial values of the state variables, where the length must correspond
to the number of factors specified in the parameters.

parameters vector. A named vector of parameter values of a specified N-factor model.
Function NFCP_parameters is recommended.

t numeric. Number of years to simulate.

dt numeric. Discrete time step, in years, of the Monte Carlo simulation.

N_simulations numeric. The total number of Monte Carlo simulations.

antithetic logical. Should antithetic price paths be simulated?
verbose logical. Should simulated state variables be output?
Details

The spot_price_simulate function is able to quickly and efficiently simulate a large number of
state variables and risk-neutral price paths of a commodity following the N-factor model. Simulat-
ing risk-neutral price paths of a commodity under an N-factor model through Monte Carlo simula-
tions allows for the valuation of commodity related investments and derivatives, such as American
options and real Options through dynamic programming methods. The spot_price_simulate
function quickly and efficiently simulates an N-factor model over a specified number of years, sim-
ulating antithetic price paths as a simple variance reduction technique. The spot_price_simulate
function uses the mvrnorm function from the MASS package to draw from a multivariate normal
distribution for the correlated simulation shocks of state variables.

The N-factor model stochastic differential equation is given by:

Brownian Motion processes (ie. factor one when GBM = T) are simulated using the following solu-
tion:

Tit41 =Tt + WAL+ 01 AL Z 4

Where At is the discrete time step, p* is the risk-neutral growth rate and o4 is the instantaneous
volatility. Z; represents the independent standard normal at time ¢.

Ornstein-Uhlenbeck Processes are simulated using the following solution:
t
— kit Ai — kit KiS
Ty =z 0 T — —(1—e ")+ | e dW
K/i 0

Where a numerical solution is obtained by numerically discretising and approximating the integral
term using the Euler-Maruyama integration scheme:

t t
/ et dWy = E eI dW
0 §=0

Finally, deterministic seasonality is considered within the spot prices of simulated price paths.

spot_price_simulate 33

Value

spot_price_simulate returns a list when verbose = T and a matrix of simulated price paths when
verbose = F. The returned objects in the list are:

State_Variables A matrix of simulated state variables for each factor is returned when verbose = T. The number of factor
Prices A matrix of simulated price paths. Each column represents one simulated price path and each row represc

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

Example 1
Simulate a geometric Brownian motion (GBM) process:
simulated_spot_prices <- spot_price_simulate(

x_0 = log(20),

parameters = c(mu_rn = (0.05 - (1/2) * @.2*2), sigma_1 = 0.2),
t=1,

dt = 1/12,

N_simulations = 1e3)

Example 2
Simulate the Short-Term/Long-Term model:

Step 1 - Obtain contemporary state variable estimates through the Kalman Filter:
SS_2F_filtered <- NFCP_Kalman_filter(parameter_values = SS_oil$two_factor,
parameter_names = names(SS_oil$two_factor),
log_futures = log(SS_oil$stitched_futures),
dt = SS_oilsgdt,
futures_TTM = SS_oil$stitched_TTM,
verbose = TRUE)

#i## Step 2 - Use these state variable estimates to simulate futures spot prices:
simulated_spot_prices <- spot_price_simulate(

X_0 = SS_2F_filtered$x_t,

parameters = SS_oil$two_factor,

t =1,

dt = 1/12,

N_simulations = 1e3,

antithetic = TRUE,

verbose = TRUE)

34 SS_oil

SS_oil Crude oil term structure futures data (1990 - 1995)

Description

The SS_oil 1list object features the approximate weekly observations of Crude Oil (WTI) futures
contracts used to develop a two-factor commodity pricing model within the prominent work of
Schwartz and Smith (2000) titled: "Short-Term Variations and long-Term Dynamics in Commodity
Prices". The two-factor commodity pricing model presented within this study is also included. The
SS_oil list object is used extensively within the NFCP package to provide working examples and
showcase the features of the package.

Usage
data(SS_oil)

Format

A list Containing eight objects:

contracts A data frame with 268 rows and 82 columns. Each column represents a Crude Oil futures
contract, and each row represents a closing weekly price for that futures contract. Observa-
tion dates of the contract object are weekly in frequency from 1990-02-06 to 1995-02-14.
Contracts without observations on a particular date are represented as NA.

stitched_futures Schwartz and Smith (2000) applied stitched contract observation data to estimate
commodity pricing models, which are approximated within this object. The stitched_futures
object was developed using the stitch_contracts function (see stitch_contracts ex-
amples for more details). Contracts were stitched according to the contract numbers spec-
ified within the object stitched_TTM. stitched_futures is identical to the futures data
made available within the MATLAB program "SchwartzSmithModel" developed by Good-
win (2013).

spot A data.frame of spot prices of Crude Oil. weekly in frequency from 1990-02-06 to 1995-02-14.

final_trading_days Named vector listing the final trading days of each observed futures contract
within the contracts object. Each element of final_trading_days corresponds to a column
of the contracts object. The final trading day of a futures contract is used to calculate the
number of business days from a given observation to the maturity of the contract (ie. a contract
time to maturity).

contract_maturities A data frame with identical dimensions to the contracts data frame. This
data frame lists the time to maturity of a given futures contract in years at each observation
point. This is identical to the number of business days (in years) between the observed date and
the final trading day of a particular futures contract. The maturity matrix assumes 262 trading
days a year. If the contract is not yet available or has expired, the contract_maturities
element is NA.

stitched_TTM A vector corresponding to the constant time to maturities that was assumed within
the original study of Schwartz and Smith (2000).

stitch_contracts 35

dt The discrete time step used to estimate parameters with this data. The time step is 5/262, which
represents a weekly frequency of observations where each weekday is a business day (ie. there
are no business days on weekends).

two_factor The crude oil two-factor commodity pricing model parameters presented within the
work of Schwartz and Smith (2000). These parameter estimates are prolific, benchmarked
within several subsequent publications.

References

Dominice Goodwin (2013). Schwartz-Smith 2-factor model - Parameter estimation (https://www.mathworks.com/matlabcent
schwartz-smith-2-factor-model-parameter-estimation), MATLAB Central File Exchange. Retrieved
November 21, 2020.

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

stitch_contracts Stitch futures contracts

Description

Aggregate futures contract price data by stitching according to either approximate maturities and
rollover frequency or contract number from closest maturity.

Usage

stitch_contracts(
futures,
futures_TTM = NULL,
maturity_matrix = NULL,
rollover_frequency = NULL,
contract_numbers = NULL,
verbose = FALSE

)
Arguments
futures Contract futures price data. Each row of Futures should represent one obser-
vation of futures prices and each column should represent one quoted futures
contract. NA’s in Futures are allowed, representing missing observations.
futures_TTM A vector of contract maturities to stitch

maturity_matrix

The time-to-maturity (in years) for each contract at each given observation point.
The dimensions of maturity_matrix should match those of Futures

rollover_frequency
the frequency (in years) at which contracts should be rolled over

36 stitch_contracts

contract_numbers

A vector of contract numbers offset from the closest-to-maturity contract at
which to stitch contracts.

verbose logical. Should additional information be output? see details

Details

This function aggregates a set of futures contract data by stitching contract data over an observation
period, resulting in a set of futures observations that is ’complete’ (ie. Does not feature missing
observations). Aggregated futures data benefit from several computational efficiencies compared to
raw contract data, but results in the loss of futures price information.

There are two methods of the stitch_contracts function that can be utilized the stitch contracts:
Method 1

stitch_contracts(futures, contract_numbers, verbose = T) Futures data may be aggregated
by stitching prices according to maturity matching. This method requires the inputs futures_TTM,
maturity_matrix and rollover_frequency. This method stitched contracts by matching the ob-
servation prices according to which contract has the closest time-to-maturity of the desired maturity
specified in futures_TTM. Contracts are rolled over at the frequency specified in rollover_frequency.

Method 2

stitch_contracts(futures, futures_TTM, maturity_matrix, rollover_frequency, verbose
=T) Futures data may be stitched according to the contract numbers offset from the closest-to-
maturity contract. This method requires only the input contract_numbers specifying which con-
tracts should be included. This method is most appropriate when the maturity of available contracts
are consistent (ie. contracts expire every month or three months).

Value

stitch_contracts returns a matrix of stitched futures prices if verbose = T and a list with two or
three objects otherwise (see below).

prices A data frame of Stitched futures prices. Each row represents an observation of the specified contracts.

maturities A data frame of the time-to-maturity of observed futures prices. Each row represents an observation of the spe:

tickers A data frame of the named columns of observed futures prices (e.g. contract tickers). Returned only when Futi
References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

##These examples approximately replicate the Crude 0il data utilized within the
##prominent work of Schwartz and Smith (2000):

TSfit_volatility 37

###Method 1 - Stitch crude oil contracts according to maturity matching:
SS_stitched_M1 <- stitch_contracts(futures = SS_oil$contracts,
futures_TTM = c(1, 5, 9, 13, 17)/12,
maturity_matrix = SS_oil$contract_maturities,
rollover_frequency = 1/12, verbose = TRUE)

###Method 2 - Stitch crude oil contracts according to nearest contract numbers:
SS_stitched_M2 <- stitch_contracts(futures = SS_oil$contracts,
contract_numbers = c(1, 5, 9, 13, 17), verbose = TRUE)

TSfit_volatility Calculate the volatility term structure of futures returns

Description

Estimate the theoretical and empirical volatility term structure of futures returns

Usage

TSfit_volatility(parameters, futures, futures_TTM, dt)

Arguments
parameters vector. A named vector of parameters of an N-factor model. Function NFCP_parameters
is recommended.
futures matrix. Historical observes futures price data. Each column must correspond to
a listed futures contract and each row must correspond to a discrete observation
of futures contracts. NA’s are permitted.
futures_TTM vector. Each element of ’futures_TTM’ must correspond to the time-to-maturity
from the current observation point of futures contracts listed in object *futures’.
dt numeric. Constant, discrete time step of observations, in years.
Details

The fit of an N-factor models theoretical volatility term structure of futures returns to those obtained
directly from observed futures prices can be used as a measure of robustness for the models ability
to explain the behaviour of a commodities term structure.

The theoretical model volatility term structure of futures returns is given by the following equation:

N N

op(T) = Z Z O'io'jpiyje_(ﬁi'f'/ij)T

i=1 j=1

Under the case that ; = 0, the model volatility term structure converges to o as T grows large.

The empirical volatility term structure of futures returns is given by:

38 TSfit_volatility

N
F2(7) = 5 So(log(F (1) /F(t; — AL, 7)) ~)

i=1

According to Cortazar and Naranjo (2006): "A larger number of factors gives more flexibility to
adjust first and second moments simultaneously, hence explaining why (a) four-factor (may) out-
perform (a) three-factor one in fitting the volatility term structure.”

Value

TSfit_volatility returns a matrix with the theoretical and empirical volatility term structure of
futures returns, with the number of columns of this matrix coinciding with the number of input
futures contracts.

References

Schwartz, E. S., and J. E. Smith, (2000). Short-Term Variations and Long-Term Dynamics in
Commodity Prices. Manage. Sci., 46, 893-911.

Cortazar, G., and L. Naranjo, (2006). An N-factor Gaussian model of oil futures prices. Journal of
Futures Markets: Futures, Options, and Other Derivative Products, 26(3), 243-268.

Examples

Test the volatility term structure fit of the Schwartz-Smith two-factor model on crude oil:
V_TSFit <- TSfit_volatility(

parameters = SS_oil$two_factor,

futures = SS_oil$stitched_futures,

futures_TTM = SS_oil$stitched_TTM,

dt = SS_oilsdt)

Index

x datasets
SS_oil, 34

American_option_value, 2
European_option_value, 5

futures_price_forecast, 8
futures_price_simulate, 10

NFCP_domains, 12
NFCP_Kalman_filter, 14
NFCP_MLE, 21
NFCP_parameters, 26

spot_price_forecast, 29
spot_price_simulate, 31
SS_oil, 34
stitch_contracts, 35

TSfit_volatility, 37

	American_option_value
	European_option_value
	futures_price_forecast
	futures_price_simulate
	NFCP_domains
	NFCP_Kalman_filter
	NFCP_MLE
	NFCP_parameters
	spot_price_forecast
	spot_price_simulate
	SS_oil
	stitch_contracts
	TSfit_volatility
	Index

