Package ‘NAIR’

January 20, 2025
Type Package

Title Network Analysis of Immune Repertoire
Version 1.0.4

Description Pipelines for studying the adaptive immune repertoire of T cells
and B cells via network analysis based on receptor sequence similarity.
Relate clinical outcomes to immune repertoires based on their network
properties, or to particular clusters and clones within a repertoire.

Yang et al. (2023) <doi:10.3389/fimmu.2023.1181825>.

License GPL (>=3)
Encoding UTF-8
Depends R (>=3.1.0)

Imports Rcpp (>= 1.0.8), lifecycle, igraph, ggraph, ggplot2,
grDevices, utils, Matrix, stats, dplyr, rlang

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
LinkingTo Rcpp, ReppArmadillo (>= 0.10.8.0.0)
VignetteBuilder knitr

Config/testthat/edition 3

URL https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/,
https://github.com/mlizhangx/Network-Analysis-for-Repertoire-Sequencing-
NeedsCompilation yes

Author Brian Neal [aut, cre],
Hai Yang [aut],
Daniil Matveev [aut],
Phi Long Le [aut],
Li Zhang [cph, aut]

Maintainer Brian Neal <Brian.Neal@ucsf.edu>
Repository CRAN
Date/Publication 2024-03-03 00:52:36 UTC

https://doi.org/10.3389/fimmu.2023.1181825
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/
https://github.com/mlizhangx/Network-Analysis-for-Repertoire-Sequencing-

2 NAIR-package

Contents
NAIR-package o i 2
addClusterMembership L 3
addClusterStats e e e e e e e e e e e 6
addNodeNetworkStats L 11
addNodeStats 14
addPlots e e e e e 16
aggregateldenticalClones 20
buildAssociatedClusterNetwork o 23
buildPublicClusterNetwork 26
buildPublicClusterNetworkByRepresentative 31
buildRepSeqNetwork L 37
chooseNodeStats e e e e e e 43
combineSamples e e 46
extractLayout L e 51
filterInputData 52
findAssociatedClones L 53
findAssociatedSeqs 57
findPublicClusters e e e 63
generateAdjacencyMatrixX L. e e e 68
generateNetworkGrapho oL 71
generateNetworkObjects 72
getClusterStats e e e e e 74
getNeighborhood 77
hamDistBounded 79
labelClusters e e 81
labelNodes e e e e e e 83
levDistBounded 85
plotNetworkGraph 87
saveNetwork e e 89
saveNetworkPlots 91
simulateToyData 93

Index 98

NAIR-package NAIR: Network Analysis of Immune Repertoire
Description

To learn about the NAIR package and get started, visit the package website, or browse the package
vignettes offline:

browseVignettes(package = "NAIR")

The following vignette is a good place to start:

vignette("NAIR", package = "NAIR")

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/

addClusterMembership 3

Author(s)

e Brian Neal (<Brian.Neal@ucsf.edu>), Maintainer
* Hai Yang (<Hai.Yang@ucsf.edu>)

* Phi-Long Le (<PhiLong.Le@ucsf.edu>)

* Li Zhang (<Li.Zhang@ucsf.edu>)

See Also
* Package website
* Github page

* Report bugs and issues here

addClusterMembership Partition a Network Graph Into Clusters

Description

Given a list of network objects returned by buildRepSeqNetwork () or generateNetworkObjects(),
partitions the network graph into clusters using the specified clustering algorithm, adding a cluster
membership variable to the node metadata.

Usage

addClusterMembership(
net,
cluster_fun = "fast_greedy”,
cluster_id_name = "cluster_id",
overwrite = FALSE,
verbose = FALSE,

data = deprecated(),
fun = deprecated()

)
Arguments

net A list of network objects conforming to the output of buildRepSeqNetwork()
or generateNetworkObjects(). See details. Alternatively, this argument ac-
cepts the network igraph, with the node metadata passed to the data argument.
However, this alternative functionality is deprecated and will eventually be re-
moved.

cluster_fun A character string specifying the clustering algorithm to use. See details.

cluster_id_name
A character string specifying the name of the cluster membership variable to be
added to the node metadata.

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/
https://github.com/mlizhangx/Network-Analysis-for-Repertoire-Sequencing-
https://github.com/mlizhangx/Network-Analysis-for-Repertoire-Sequencing-/issues

4 addClusterMembership

overwrite Logical. Should the variable specified by cluster_id_name be overwritten if it
already exists?

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().
Named optional arguments to the function specified by cluster_fun.

data [Deprecated] See net.

fun [Deprecated] Replaced by cluster_fun.

Details

The list net must contain the named elements igraph (of class igraph), adjacency_matrix (a
matrix or dgCMatrix encoding edge connections), and node_data (a data. frame containing node
metadata), all corresponding to the same network. The lists returned by buildRepSegNetwork()
and generateNetworkObjects() are examples of valid inputs for the net argument.

Alternatively, the igraph may be passed to net and the node metadata to data. However, this
alternative functionality is deprecated and will eventually be removed.

A clustering algorithm is used to partition the network graph into clusters (densely-connected sub-
graphs). Each cluster represents a collection of clones/cells with similar receptor sequences. The
method used to partition the graph depends on the choice of clustering algorithm, which is specified
using the cluster_fun argument.

The available options for cluster_fun are listed below. Each refers to an igraph function im-
plementing a particular clustering algorithm. Follow the links to learn more about the individual
clustering algorithms.

e "edge_betweenness”
e "fast_greedy"

e "infomap"

e "label_prop"

e "leading_eigen”

e "leiden”
e "louvain”
e "optimal”

* "spinglass”

e "walktrap”

Optional arguments to each clustering algorithm can have their values specified using the ellipses
(...) argument of addClusterMembership().

Each cluster is assigned a numeric cluster ID. A cluster membership variable, whose name is spec-
ified by cluster_id_name, is added to the node metadata, encoding the cluster membership of the
node for each row. The cluster membership is encoded as the cluster ID number of the cluster to
which the node belongs.

The overwrite argument controls whether to overwrite pre-existing data. If the variable specified
by cluster_id_name is already present in the node metadata, then overwrite must be set to TRUE

addClusterMembership 5

in order to perform clustering and overwrite the variable with new cluster membership values. Al-
ternatively, by specifying a value for cluster_id_name that is not among the variables in the node
metadata, a new cluster membership variable can be created while preserving the old cluster mem-
bership variable. In this manner, clustering can be performed multiple times on the same network
using different clustering algorithms, without losing the results.

Value

If the variable specified by cluster_id_name is not present in net$node_data, returns a copy of
net with this variable added to net$node_data encoding the cluster membership of the network
node corresponding to each row. If the variable is already present and overwrite = TRUE, then its
values are replaced with the new values for cluster membership.

Additionally, if net contains a list named details, then the following elements will be added to
net$details if they do not already exist:

clusters_in_network
A named numeric vector of length 1. The first entry’s name is the name of
the clustering algorithm, and its value is the number of clusters resulting from
performing clustering on the network.

cluster_id_variable
A named numeric vector of length 1. The first entry’s name is the name of
the clustering algorithm, and its value is the name of the corresponding cluster
membership variable in the node metadata (i.e., the value of cluster_id_name).

If net$details already contains these elements, they will be updated according to whether the
cluster membership variable specified by cluster_id_name is added to net$node_data or already
exists and is overwritten. In the former case (the cluster membership variable does not already
exist), the length of each vector (clusters_in_network) and (cluster_id_variable)isincreased
by 1, with the new information appended as a new named entry to each. In the latter case (the cluster
membership variable is overwritten), the new information overwrites the name and value of the last
entry of each vector.

In the event where overwrite = FALSE and net$node_data contains a variable with the same name
as the value of cluster_id_name, then an unaltered copy of net is returned with a message noti-
fying the user.

Under the alternative (deprecated) input format where the node metadata is passed to data and the
igraph is passed to net, the node metadata is returned instead of the list of network objects, with
the cluster membership variable added or updated as described above.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

6 addClusterStats

See Also
addClusterStats() labelClusters()

Examples

set.seed(42)
toy_data <- simulateToyData()

net <- generateNetworkObjects(
toy_data, "CloneSeq”
)

Perform cluster analysis,
add cluster membership to net$node_data
net <- addClusterMembership(net)

net$details$clusters_in_network
net$details$cluster_id_variable

overwrite values in net$node_data$cluster_id
with cluster membership values obtained using "cluster_leiden” algorithm
net <- addClusterMembership(

net,
cluster_fun = "leiden"”,
overwrite = TRUE

)

net$details$clusters_in_network
net$details$cluster_id_variable

perform clustering using "cluster_louvain” algorithm

saves cluster membership values to net$node_data$cluster_id_louvain

(net$node_data$cluster_id retains membership values from "cluster_leiden")
net <- addClusterMembership(

net,
cluster_fun = "louvain”,
cluster_id_name = "cluster_id_louvain”,

)

net$details$clusters_in_network
net$details$cluster_id_variable

addClusterStats Compute Cluster-Level Network Properties

Description

Given a list of network objects returned by buildRepSegNetwork () or generateNetworkObjects(),
computes cluster-level network properties, performing clustering first if needed. The list of network
objects is returned with the cluster properties added as a data frame.

addClusterStats 7

Usage

addClusterStats(
net,
cluster_id_name = "cluster_id",
seq_col = NULL,
count_col = NULL,
degree_col = "degree",
cluster_fun = "fast_greedy”,
overwrite = FALSE,
verbose = FALSE,

Arguments

net A list of network objects conforming to the output of buildRepSeqNetwork()
or generateNetworkObjects(). See details.

cluster_id_name
A character string specifying the name of the cluster membership variable in
net$node_data that identifies the cluster to which each node belongs. If the
variable does not exist, it will be added by calling addClusterMembership().
If the variable does exist, its values will be used unless overwrite = TRUE, in
which case its values will be overwritten and the new values used.

seqg_col Specifies the column(s) of net$node_data containing the receptor sequences
upon whose similarity the network is based. Accepts a character or numeric
vector of length 1 or 2, containing either column names or column indices. If
provided, related cluster-level properties will be computed. The default NULL
will use the value contained in net$details$seq_col if it exists and is valid.

count_col Specifies the column of net$node_data containing a measure of abundance
(such as clone count or UMI count). Accepts a character string containing the
column name or a numeric scalar containing the column index. If provided,
related cluster-level properties will be computed.

degree_col Specifies the column of net$node_data containing the network degree of each
node. Accepts a character string containing the column name. If the column
does not exist, it will be added.

cluster_fun A character string specifying the clustering algorithm to use when adding or
overwriting the cluster membership variable in net$node_data specified by
cluster_id_name. Passed to addClusterMembership().

overwrite Logical. If TRUE and net already contains an element named cluster_data, it
will be overwritten. Similarly, if overwrite = TRUE and net$node_data con-
tains a variable whose name matches the value of cluster_id_name, then its
values will be overwritten with new cluster membership values (obtained us-
ing addClusterMembership() with the specified value of cluster_fun), and
cluster properties will be computed based on the new values.

8 addClusterStats

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

Named optional arguments to the function specified by cluster_fun.

Details

The list net must contain the named elements igraph (of class igraph), adjacency_matrix (a
matrix or dgCMatrix encoding edge connections), and node_data (a data. frame containing node
metadata), all corresponding to the same network. The lists returned by buildRepSegNetwork()
and generateNetworkObjects() are examples of valid inputs for the net argument.

If the network graph has previously been partitioned into clusters using addClusterMembership()
and the user wishes to compute network properties for these clusters, the name of the cluster mem-
bership variable in net$node_data should be provided to the cluster_id_name argument.

If the value of cluster_id_name is not the name of a variable in net$node_data, then clustering
is performed using addClusterMembership() with the specified value of cluster_fun, and the
cluster membership values are written to net$node_data using the value of cluster_id_name as
the variable name. If overwrite = TRUE, this is done even if this variable already exists.

Value

A modified copy of net, with cluster properties contained in the element cluster_data. This is a
data.frame containing one row for each cluster in the network and the following variables:

cluster_id The cluster ID number.

node_count The number of nodes in the cluster.
mean_seq_length
The mean sequence length in the cluster. Only present when length(seq_col)

A_mean_seq_length
The mean first sequence length in the cluster. Only present when length(seq_col)

B_mean_seq_length
The mean second sequence length in the cluster. Only present when length(seq_col)

mean_degree The mean network degree in the cluster.

max_degree The maximum network degree in the cluster.

seq_w_max_degree
The receptor sequence possessing the maximum degree within the cluster. Only
present when length(seq_col) ==1.

A_seq_w_max_degree
The first sequence of the node possessing the maximum degree within the clus-
ter. Only present when length(seq_col) == 2.

B_seq_w_max_degree
The second sequence of the node possessing the maximum degree within the
cluster. Only present when length(seq_col) == 2.

addClusterStats 9

agg_count The aggregate count among all nodes in the cluster (based on the counts in
count_col).

max_count The maximum count among all nodes in the cluster (based on the counts in
count_col).

seq_w_max_count
The receptor sequence possessing the maximum count within the cluster. Only
present when length(seq_col) ==1.

A_seg_w_max_count
The first sequence of the node possessing the maximum count within the cluster.
Only present when length(seq_col) == 2.

B_seqg_w_max_count
The second sequence of the node possessing the maximum count within the
cluster. Only present when length(seq_col) == 2.

diameter_length
The longest geodesic distance in the cluster, computed as the length of the vector
returned by get_diameter().

assortativity The assortativity coefficient of the cluster’s graph, based on the degree (minus
one) of each node in the cluster (with the degree computed based only upon the
nodes within the cluster). Computed using assortativity_degree().
global_transitivity
The transitivity (i.e., clustering coefficient) for the cluster’s graph, which es-
timates the probability that adjacent vertices are connected. Computed using
transitivity() with type = "global".

edge_density The number of edges in the cluster as a fraction of the maximum possible num-
ber of edges. Computed using edge_density().
degree_centrality_index
The centrality index of the cluster’s graph based on within-cluster network de-
gree. Computed as the centralization element of the output from centr_degree().
closeness_centrality_index
The centrality index of the cluster’s graph based on closeness, i.e., distance to
other nodes in the cluster. Computed using centralization().
eigen_centrality_index
The centrality index of the cluster’s graph based on the eigenvector centrality
scores, i.e., values of the first eigenvector of the adjacency matrix for the cluster.
Computed as the centralization element of the output from centr_eigen().
eigen_centrality_eigenvalue
The eigenvalue corresponding to the first eigenvector of the adjacency matrix for
the cluster. Computed as the value element of the output from eigen_centrality().

If net$node_data did not previously contain a variable whose name matches the value of cluster_id_name,
then this variable will be present and will contain values for cluster membership, obtained through
a call to addClusterMembership() using the clustering algorithm specified by cluster_fun.

If net$node_data did previously contain a variable whose name matches the value of cluster_id_name
and overwrite = TRUE, then the values of this variable will be overwritten with new values for clus-
ter membership, obtained as above based on cluster_fun.

10 addClusterStats

If net$node_data did not previously contain a variable whose name matches the value of degree_col,
then this variable will be present and will contain values for network degree.

Additionally, if net contains a list named details, then the following elements will be added to
net$details, or overwritten if they already exist:

cluster_data_goes_with
A character string containing the value of cluster_id_name. When net$node_data
contains multiple cluster membership variables (e.g., from applying different
clustering methods), cluster_data_goes_with allows the user to distinguish
which of these variables corresponds to net$cluster_data.

count_col_for_cluster_data
A character string containing the value of count_col. If net$node_data con-
tains multiple count variables, this allows the user to distinguish which of these
variables corresponds to the count-related properties in net$cluster_data,
such as max_count. If count_col = NULL, then the value will be NA.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

See Also

addClusterMembership() getClusterStats() labelClusters()

Examples

set.seed(42)
toy_data <- simulateToyData()

net <- generateNetworkObjects(
toy_data, "CloneSeq”

)

net <- addClusterStats(
net,
count_col = "CloneCount”

)

head(net$cluster_data)
net$details

won't change net since net$cluster_data exists
net <- addClusterStats(
net,

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

addNodeNetworkStats 11

count_col = "CloneCount”,
cluster_fun = "leiden”,
verbose = TRUE

overwrites values in net$cluster_data

and cluster membership values in net$node_data$cluster_id
with values obtained using "cluster_leiden” algorithm

net <- addClusterStats(

net,
count_col = "CloneCount”,
cluster_fun = "leiden”,
overwrite = TRUE

)

net$details

overwrites existing values in net$cluster_data

with values obtained using "cluster_louvain” algorithm

saves cluster membership values to net$node_data$cluster_id_louvain

(net$node_data$cluster_id retains membership values from "cluster_leiden")
net <- addClusterStats(

net,
count_col = "CloneCount”,
cluster_fun = "louvain”,
cluster_id_name = "cluster_id_louvain”,
overwrite = TRUE

)

net$details

perform clustering using "cluster_fast_greedy” algorithm,
save cluster membership values to net$node_data$cluster_id_greedy
net <- addClusterMembership(

net,
cluster_fun = "fast_greedy”,
cluster_id_name = "cluster_id_greedy"”

)

compute cluster properties for the clusters from previous step
overwrites values in net$cluster_data
net <- addClusterStats(

net,
cluster_id_name = "cluster_id_greedy”,
overwrite = TRUE

)

net$details

addNodeNetworkStats Compute Node-Level Network Properties

12 addNodeNetworkStats

Description

Given the node metadata and igraph for a network, computes a specified set of network properties
for the network nodes. The node metadata is returned with each property added as a variable.

This function was deprecated in favor of addNodeStats() in NAIR 1.0.1. The new function
accepts and returns the entire list of network objects returned by buildRepSegNetwork() or by
generateNetworkObjects(). It can compute cluster membership and add the values to the node
metadata. It additionally updates the list element details with further information linking the
node-level and cluster-level metadata.

Usage
addNodeNetworkStats(
data,
net,
stats_to_include = chooseNodeStats(),
cluster_fun = "fast_greedy”,
cluster_id_name = "cluster_id",

overwrite = FALSE,
verbose = FALSE,

)
Arguments
data A data frame containing the node-level metadata for the network, with each row
corresponding to a network node.
net The network igraph.

stats_to_include
Specifies which network properties to compute. Accepts a vector created using
chooseNodeStats() or exclusiveNodeStats(), or the character string "all”
to compute all network properties.

cluster_fun A character string specifying the clustering algorithm to use when comput-
ing cluster membership. Applicable only when stats_to_include = "all” or
stats_to_include["cluster_id"]is TRUE. Passed to addClusterMembership().

cluster_id_name
A character string specifying the name of the cluster membership variable to be
added to data. Applicable only when stats_to_include = "all” or stats_to_include["cluster_id
is TRUE. Passed to addClusterMembership().

overwrite Logical. If TRUE and data contains a variable whose name matches the value of
cluster_id_name, then its values will be overwritten with new cluster mem-
bership values (obtained using addClusterMembership() with the specified
value of cluster_fun). Applicable only when stats_to_include = "all" or
stats_to_include["cluster_id"] is TRUE.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

addNodeNetworkStats 13

Named optional arguments to the function specified by cluster_fun.

Details
Node-level network properties are properties that pertain to each individual node in the network
graph.

Some are local properties, meaning that their value for a given node depends only on a subset of
the nodes in the network. One example is the network degree of a given node, which represents the
number of other nodes that are directly joined to the given node by an edge connection.

Other properties are global properties, meaning that their value for a given node depends on all of
the nodes in the network. An example is the authority score of a node, which is computed using
the entire graph adjacency matrix (if we denote this matrix by A, then the principal eigenvector of
AT A represents the authority scores of the network nodes).

See chooseNodeStats() for a list of the available node-level network properties.

Value

A copy of data with with an additional column for each new network property computed. See
chooseNodeStats() for the network property names, which are used as the column names, except
for the cluster membership variable, whose name is the value of cluster_id_name.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

See Also

addNodeStats() chooseNodeStats()

Examples

set.seed(42)
toy_data <- simulateToyData()

net <-
generateNetworkObjects(
toy_data,
"CloneSeq”
)

net$node_data <-
addNodeNetworkStats(
net$node_data,
net$igraph

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

14 addNodeStats

addNodeStats Compute Node-Level Network Properties

Description

Given a list of network objects returned by buildRepSeqNetwork () or generateNetworkObjects(),
computes a specified set of network properties for the network nodes. The list of network objects is
returned with each property added as a variable to the node metadata.

Usage
addNodeStats(
net,
stats_to_include = chooseNodeStats(),
cluster_fun = "fast_greedy”,
cluster_id_name = "cluster_id",

overwrite = FALSE,
verbose = FALSE,

Arguments

net A list of network objects conforming to the output of buildRepSegNetwork()
or generateNetworkObjects(). See details.

stats_to_include
Specifies which network properties to compute. Accepts a vector created using
chooseNodeStats() or exclusiveNodeStats(), or the character string "all”
to compute all network properties.

cluster_fun A character string specifying the clustering algorithm to use when comput-
ing cluster membership. Applicable only when stats_to_include = "all” or

stats_to_include["cluster_id"]is TRUE. Passed to addClusterMembership().

cluster_id_name
A character string specifying the name of the cluster membership variable to be
added to the node metadata. Applicable only when stats_to_include = "all”

or stats_to_include["cluster_id"]is TRUE. Passed to addClusterMembership().

overwrite Logical. If TRUE and net$node_data contains a variable whose name matches
the value of cluster_id_name, then its values will be overwritten with new
cluster membership values (obtained using addClusterMembership(), to which

the values of cluster_fun, overwrite). Applicable only when stats_to_include

="all” or stats_to_include["cluster_id"] is TRUE.

addNodeStats 15

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

Named optional arguments to the function specified by cluster_fun.

Details

Node-level network properties are properties that pertain to each individual node in the network
graph.

Some are local properties, meaning that their value for a given node depends only on a subset of
the nodes in the network. One example is the network degree of a given node, which represents the
number of other nodes that are directly joined to the given node by an edge connection.

Other properties are global properties, meaning that their value for a given node depends on all of
the nodes in the network. An example is the authority score of a node, which is computed using
the entire graph adjacency matrix (if we denote this matrix by A, then the principal eigenvector of
AT A represents the authority scores of the network nodes).

See chooseNodeStats() for a list of the available node-level network properties.

The list net must contain the named elements igraph (of class igraph), adjacency_matrix (a
matrix or dgCMatrix encoding edge connections), and node_data (a data. frame containing node
metadata), all corresponding to the same network. The lists returned by buildRepSegNetwork()
and generateNetworkObjects() are examples of valid inputs for the net argument.

Value

A modified copy of net, with net$node_data containing an additional column for each new net-
work property computed. See chooseNodeStats() for the network property names, which are
used as the column names, except for the cluster membership variable, whose name is the value of
cluster_id_name.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

See Also

chooseNodeStats()

Examples

set.seed(42)
toy_data <- simulateToyData()

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

16 addPlots

net <- generateNetworkObjects(
toy_data, "CloneSeq”
)

Add default set of node properties
net <- addNodeStats(net)

Modify default set of node properties
net <- addNodeStats(
net,
stats_to_include =
chooseNodeStats(
closeness = TRUE,
page_rank = FALSE
)
)

Add only the spepcified node properties
net <- addNodeStats(
net,
stats_to_include =
exclusiveNodeStats(
degree = TRUE,
transitivity = TRUE
)
)

Add all node-level network properties
net <- addNodeStats(

net,
stats_to_include = "all”
)
addPlots Generate Plots of a Network Graph
Description

Generates one or more ggraph plots of the network graph according to the user specifications.

addPlots() accepts and returns a list of network objects, adding the plots to the existing list con-
tents. If the list already contains plots, the new plots will be created using the same coordinate
layout as the existing plots.

generateNetworkGraphPlots() accepts the network igraph and node metadata, and returns a list
containing plots.

addPlots

Usage

addPlots(
net,
print_plots
plot_title

plot_subtitle

17

FALSE,

NULL,

= "auto”,

color_nodes_by = NULL,
color_scheme = "default”,
color_legend = "auto”,

color_title
edge_width =

"auto” ,

0.1,

size_nodes_by = 0.5,
node_size_limits = NULL,

size_title

Ilauton ,

verbose = FALSE

)

generateNetworkGraphPlots(

igraph,
data,
print_plots
plot_title

= FALSE,
NULL,

plot_subtitle = NULL,
color_nodes_by = NULL,

color_scheme = "default”,
color_legend = "auto”,
color_title "auto”,

edge_width = 0.1,
size_nodes_by = 0.5,
node_size_limits = NULL,
size_title = "auto”,
layout = NULL,

verbose = FALSE

Arguments

net

igraph
data

print_plots
plot_title
plot_subtitle

A list of network objects conforming to the output of buildRepSegNetwork ()
or generateNetworkObjects(). See details.

An igraph object containing the network graph to be plotted.

A data frame containing the node metadata for the network, with each row cor-
responding to a node.

A logical scalar; should plots be printed in the R plotting window?
A character string containing the plot title.

A character string containing the plot subtitle. The default value "auto” gen-
erates a subtitle describing the settings used to construct the network, including
the distance type and distance cutoff.

18

addPlots

color_nodes_by A vector specifying one or more node metadata variables used to encode the

color_scheme

color_legend

color_title

edge_width

size_nodes_by

color of the nodes. One plot is generated for each entry, with each plot coloring
the nodes according to the variable in the corresponding entry. This argument
accepts a character vector where each entry is a column name of the node meta-
data. If this argument is NULL, generates a single plot with uncolored nodes.

A character string specifying the color scale to use for all plots, or a character
vector whose length matches that of color_nodes_by, with each entry specify-
ing the color scale for the corresponding plot. "default” specifies the default
ggplot () color scale. Other options are one of the viridis color scales (e.g.,

"plasma”, "A" or other valid inputs to the option argument of scale_color_viridis())

or (for discrete variables) a palette from hcl.pals() (e.g., "RdY1Gn"). Each of
the viridis color scales can include the suffix "-1" to reverse its direction (e.g.,
"plasma-1" or "A-1").

A logical scalar specifying whether to display the color legend in plots. The
default value of "auto” shows the color legend if nodes are colored according to
a continuous variable or according to a discrete variable with at most 20 distinct
values.

A character string specifying the title of the color legend in all plots, or a char-
acter vector whose length matches that of color_nodes_by, with each entry
specifying the title of the color legend in the corresponding plot. Only appli-
cable for plots with colored nodes. The value "auto"” uses the corresponding
value of color_nodes_by.

A numeric scalar specifying the width of the graph edges in the plot. Passed to
the width argument of geom_edge_1inkd().

A numeric scalar specifying the size of the nodes in all plots, or the column
name of a node metadata variable used to encode the size of the nodes in all
plots. Alternatively, an argument value of NULL uses the default ggraph size for
all nodes. Passed to the size aesthetic mapping of geom_node_point().

node_size_limits

size_title

layout

verbose

A numeric vector of length 2, specifying the minimum and maximum node size.
Only applicable if nodes are sized according to a variable. If node_size_limits
= NULL, the default size scale will be used.

A character string (or NULL) specifying the title for the size legend. Only ap-
plicable if nodes are sized according to a variable. The value "auto” uses the
value of size_nodes_by.

A matrix specifying the coordinate layout of the network nodes, with one row
for each node in the network and two columns. Each row specifies the x and
y coordinates for the corresponding node. If NULL, the layout matrix is cre-
ated using [igraph:layout_components]{layout_components()}. This ar-
gument can be used to create plots conforming to the same layout as previously-
generated plots. It can also be used to generate plots with custom layouts.

Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

addPlots 19

Details

The list net must contain the named elements igraph (of class igraph), adjacency_matrix (a
matrix or dgCMatrix encoding edge connections), and node_data (a data. frame containing node
metadata), all corresponding to the same network. The lists returned by buildRepSegNetwork()
and generateNetworkObjects() are examples of valid inputs for the net argument.

The arguments color_nodes_by and size_nodes_by accept the names of variables in the node
metadata. For addPlots(), this is the data frame node_data contained in the list provided to the
net argument. For generateNetworkGraphPlots(), this is the data frame provided to the data
argument.

addPlots() adds the generated plots to the list plots contained in the list of network objects
provided to net. The plots element is created if it does not already exist. If plots already exist,
the new plots will be generated with the same coordinate layout as the existing plots. Each plot is
named according to the variable used to color the nodes. If a plot already exists with the same name
as one of the new plots, it will be overwritten with the new plot. If the plots list does not already
contain an element named graph_layout, it will be added. This element contains the coordinate
layout for the plots as a two-column matrix.

When calling generateNetworkGraphPlots(), if one wishes for the plots to be generated with the
same coordinate layout as an existing plot, the layout matrix for the existing plot must be passed to
the layout argument.

The plots can be printed to a pdf using saveNetworkPlots().

Value

addPlots() returns a modified copy of net with the new plots contained in the element named
plots (a list), in addition to any previously existing plots.

generateNetworkGraphPlots() returns a list containing the new plots.

Each plot is an object of class ggraph. Within the list of plots, each plot is named after the variable
used to color the nodes. For a plot with uncolored nodes, the name is uniform_color.

The list containing the new plots also contains an element named graph_layout. This is a matrix
specifying the coordinate layout of the nodes in the plots. It contains one row for each node in the
network and two columns. Each row specifies the x and y coordinates for the corresponding node.
This matrix can be used to generate additional plots with the same layout as the plots in the returned
list.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Network Visualization article on package website

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/network_visualization.html

20 aggregateldenticalClones

See Also

labelNodes() labelClusters() saveNetworkPlots()

Examples

set.seed(42)
toy_data <- simulateToyData()

net <- buildNet(toy_data, "CloneSeq"”, node_stats = TRUE)

net <- addPlots(

net,
color_nodes_by =
c("SampleID”, "transitivity", "coreness"),

color_scheme =

c("Set 2", "mako-1", "plasma-1"),
color_title =

c("", "Transitvity”, "Coreness"”),
size_nodes_by = "degree”,
node_size_limits = c(0.1, 1.5),
plot_subtitle = NULL,
print_plots = TRUE

aggregateldenticalClones
Aggregate Counts/Frequencies for Clones With Identical Receptor Se-
quences

Description

Given bulk Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq) data with clones in-
dexed by row, returns a data frame containing one row for each unique receptor sequence. Includes
the number of clones sharing each sequence, as well as aggregate values for clone count and clone
frequency across all clones sharing each sequence. Clones can be grouped according to metadata,
in which case aggregation is performed within (but not across) groups.

Usage

aggregateldenticalClones(
data,
clone_col,
count_col,
freq_col,
grouping_cols = NULL,
verbose = FALSE

aggregateldenticalClones 21

Arguments

data A data frame containing the bulk AIRR-Seq data, with clones indexed by row.

clone_col Specifies the column of data containing the receptor sequences. Accepts a char-
acter string containing the column name or a numeric scalar containing the col-
umn index.

count_col Specifies the column of data containing the clone counts. Accepts a character
string containing the column name or a numeric scalar containing the column
index.

freq_col Specifies the column of data containing the clone frequencies. Accepts a char-
acter string containing the column name or a numeric scalar containing the col-
umn index.

grouping_cols An optional character vector of column names or numeric vector of column in-
dices, specifying one or more columns of data used to assign clones to groups.
If provided, aggregation occurs within groups, but not across groups. See de-

tails.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

Details

If grouping_cols is left unspecified, the returned data frame will contain one row for each unique
receptor sequence appearing in data.

If one or more columns of data are specified using the grouping_cols argument, then each clone
(row) in data is assigned to a group based on its combination of values in these columns. If two
clones share the same receptor sequence but belong to different groups, their receptor sequence will
appear multiple times in the returned data frame, with one row for each group in which the sequence
appears. In each such row, the aggregate clone count, aggregate clone frequency, and number of
clones sharing the sequence are reported within the group for that row.

Value

A data frame whose first column contains the receptor sequences and has the same name as the
column of data specified by clone_col. One additional column will be present for each column
of data that is specified using the grouping_cols argument, with each having the same column
name. The remaining columns are as follows:

AggregatedCloneCount
The aggregate clone count across all clones (within the same group, if applica-
ble) that share the receptor sequence in that row.

AggregatedCloneFrequency
The aggregate clone frequency across all clones (within the same group, if ap-
plicable) that share the receptor sequence in that row.

UniqueCloneCount
The number of clones (rows) in data (within the same group, if applicable)
possessing the receptor sequence for the current row.

22 aggregateldenticalClones

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Examples

my_data <- data.frame(
clone_seq = c("ATCG", rep("ACAC", 2), rep("GGGG", 4)),
clone_count = rep(1, 7),
clone_freq = rep(1/7, 7),
time_point = c("t_0", rep(c(”"t_0", "t_1"), 3)),
subject_id = c(rep(1, 5), rep(2, 2))

)

my_data

aggregateldenticalClones(
my_data,
"clone_seq",
"clone_count”,
"clone_freq”,

)

group clones by time point
aggregateldenticalClones(
my_data,
"clone_seq",
"clone_count”,
"clone_freq",
grouping_cols = "time_point”

)

group clones by subject ID
aggregateldenticalClones(
my_data,
"clone_seq",
"clone_count”,
"clone_freq",
grouping_cols = "subject_id"

)

group clones by time point and subject ID
aggregateldenticalClones(

my_data,

"clone_seq",

"clone_count”,

"clone_freq",

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

buildAssociatedClusterNetwork 23

grouping_cols =
c("subject_id", "time_point")

buildAssociatedClusterNetwork
Build Global Network of Associated TCR/BCR Clusters

Description

Part of the workflow Searching for Associated TCR/BCR Clusters. Intended for use following
findAssociatedClones().

Given data containing a neighborhood of similar clones around each associated sequence, combines
the data into a global network and performs network analysis and cluster analysis.

Usage

buildAssociatedClusterNetwork(
file_list,
input_type = "rds",
data_symbols = "data", header = TRUE, sep,
read.args = list(row.names = 1),
seq_col,
min_seqg_length = NULL,
drop_matches = NULL,
drop_isolated_nodes = FALSE,
node_stats = TRUE,
stats_to_include =

chooseNodeStats(cluster_id = TRUE),

cluster_stats = TRUE,
color_nodes_by = "GroupID”,
output_name = "AssociatedClusterNetwork",
verbose = FALSE,

)
Arguments
file_list A character vector of file paths, or a list containing connections and file paths.
Each element corresponds to a single file containing the data for a single sample.
Passed to loadDataFromFilelList().
input_type A character string specifying the file format of the neighborhood data files. Op-

n n non

tions are "table”, "txt", "tsv"”, "csv”, "rds"” and "rda". Passed to loadDataFromFileList().

data_symbols Used when input_type = "rda". Specifies the name of each neighborhood’s
data frame within its respective Rdata file. Passed to loadDataFromFilelList().

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/associated_clusters.html

24 buildAssociatedClusterNetwork

header For values of input_type other than "rds"” and "rda", this argument is used to
specify the value of the header argument to read. table(), read.csv(), etc.

sep For values of input_type other than "rds” and "rda”, this argument can be
used to specify a non-default value of the sep argument to read.table(),
read.csv(), etc.

read.args For values of input_type other than "rds"” and "rda”, this argument is used
to specify values of optional arguments to read. table(), read.csv(), etc.
Accepts a named list of argument values. Values of header and sep in this list
take precedence over values specified via the header and sep arguments.

seqg_col Specifies the column of each neighborhood’s data frame containing the TCR/BCR
sequences. Accepts a character string containing the column name or a numeric
scalar containing the column index.

min_seq_length Passed to buildRepSegNetwork() when constructing the global network.

drop_matches Passed to buildRepSeqNetwork () when constructing the global network.
drop_isolated_nodes

Passed to buildRepSeqNetwork() when constructing the global network.
node_stats Passed to buildRepSegqNetwork () when constructing the global network.
stats_to_include

Passed to buildRepSeqNetwork() when constructing the global network.
cluster_stats Passed to buildRepSegNetwork() when constructing the global network.

color_nodes_by Passed to buildRepSegNetwork() when constructing the global network.

output_name Passed to buildRepSeqNetwork() when constructing the global network.
verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().
Other arguments to buildRepSegqNetwork() when constructing the global net-
work.
Details

Each associated sequence’s neighborhood contains clones (from all samples) with TCR/BCR se-
quences similar to the associated sequence. The neighborhoods are assumed to have been previ-
ously identified using findAssociatedClones().

The neighborhood data for all associated sequences are used to construct a single global network.
Cluster analysis is used to partition the global network into clusters, which are considered as the
associated TCR/BCR clusters. Network properties for the nodes and clusters are computed and
returned as metadata. A plot of the global network graph is produced, with the nodes colored
according to the binary variable of interest.

See the Searching for Associated TCR/BCR Clusters article on the package website for more details.

Value

A list of network objects as returned by buildRepSeqNetwork(). The list is returned invisibly. If
the input data contains a combined total of fewer than two rows, or if the global network contains
no nodes, then the function returns NULL, invisibly, with a warning.

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/associated_clusters.html

buildAssociatedClusterNetwork 25

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package
Searching for Associated TCR/BCR Clusters article on package website

See Also

findAssociatedSeqs() findAssociatedClones()

Examples

set.seed(42)

Simulate 30 samples from two groups (treatment/control)
n_control <- n_treatment <- 15
n_samples <- n_control + n_treatment
sample_size <- 30 # (segs per sample)
base_seqs <- # first five are associated with treatment
c("CASSGAYEQYF", "CSVDLGKGNNEQFF", "CASSIEGQLSTDTQYF",
"CASSEEGQLSTDTQYF", "CASSPEGQLSTDTQYF",
"RASSLAGNTEAFF", "CASSHRGTDTQYF", "CASDAGVFQPQHF")
Relative generation probabilities by control/treatment group
pgen_c <- matrix(rep(c(rep(1, 5), rep(30, 3)), times = n_control),
nrow = n_control, byrow = TRUE)
pgen_t <- matrix(rep(c(1, 1, rep(1/3, 3), rep(2, 3)), times = n_treatment),
nrow = n_treatment, byrow = TRUE)
pgen <- rbind(pgen_c, pgen_t)
simulateToyData(
samples = n_samples,
sample_size = sample_size,
prefix_length = 1,
prefix_chars = c("", ""),
prefix_probs = cbind(rep(1, n_samples), rep(@, n_samples)),
affixes = base_seqs,
affix_probs = pgen,
num_edits = 0,
output_dir = tempdir(),
no_return = TRUE

)

Step 1: Find Associated Sequences #i
sample_files <-
file.path(tempdir(),
paste@("Sample”, 1:n_samples, ".rds")
)

group_labels <- c(rep("reference”, n_control),

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/associated_clusters.html

26 buildPublicClusterNetwork

rep("comparison”, n_treatment))
associated_seqgs <-

findAssociatedSeqs(
file_list = sample_files,
input_type = "rds”,
group_ids = group_labels,
seg_col = "CloneSeq",
min_seq_length = NULL,
drop_matches = NULL,
min_sample_membership = 0,
pval_cutoff = 0.1

)

head(associated_seqs[, 1:51)

Step 2: Find Associated Clones
dir_step2 <- tempfile()
findAssociatedClones(
file_list = sample_files,
input_type = "rds”,
group_ids = group_labels,
seq_col = "CloneSeq”,
assoc_seqs = associated_seqs$ReceptorSeq,
min_seq_length = NULL,
drop_matches = NULL,
output_dir = dir_step2
)

Step 3: Global Network of Associated Clusters
associated_clusters <-
buildAssociatedClusterNetwork(
file_list = list.files(dir_step2,
full.names = TRUE

),

seg_col = "CloneSeq",

size_nodes_by = 1.5,

print_plots = TRUE

buildPublicClusterNetwork
Build Global Network of Public TCR/BCR Clusters

Description
Part of the workflow Searching for Public TCR/BCR Clusters. Intended for use following findPublicClusters().

Given node-level metadata for each sample’s filtered clusters, combines the data into a global net-
work and performs network analysis and cluster analysis.

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/public_clusters.html

buildPublicClusterNetwork 27

Usage

buildPublicClusterNetwork(

Input
file_list,
input_type = "rds",
data_symbols = "ndat”,

header = TRUE, sep,

read.args = list(row.names = 1),
seq_col,

Network Settings
drop_isolated_nodes = FALSE,
node_stats = deprecated(),
stats_to_include = deprecated(),
cluster_stats = deprecated(),

Visualization

color_nodes_by = "SampleID”,

color_scheme = "turbo"”,

plot_title = "Global Network of Public Clusters”,

Output

output_dir = NULL,

output_name = "PublicClusterNetwork”,
verbose = FALSE,

)
Arguments
file_list A character vector of file paths, or a list containing connections and file paths.
Each element corresponds to a single file containing the data for a single sample.
loadDataFromFilelList().
input_type A character string specifying the file format of the input files. Options are "csv",

"rds" and "rda". Passed to loadDataFromFileList().

data_symbols Used when input_type = "rda”. Specifies the name of the data frame within
each Rdata file. Passed to loadDataFromFileList().

header For values of input_type other than "rds” and "rda"”, this argument can be
used to specify a non-default value of the header argument to read. table(),
read.csv(), etc.

sep For values of input_type other than "rds” and "rda"”, this argument can be
used to specify a non-default value of the sep argument to read.table(),
read.csv(), etc.

28

read.args

seq_col

buildPublicClusterNetwork

For values of input_type other than "rds” and "rda"”, this argument can be
used to specify non-default values of optional arguments to read.table(),
read.csv(), etc. Accepts a named list of argument values. Values of header
and sep in this list take precedence over values specified via the header and sep
arguments.

Specifies the column in the node-level metadata that contains the TCR/BCR
sequences. Accepts a character string containing the column name or a numeric
scalar containing the column index.

drop_isolated_nodes

node_stats

Passed to buildRepSegqNetwork () when constructing the global network.

[Deprecated] All network properties are automatically computed.

stats_to_include

cluster_stats

color_nodes_by

color_scheme
plot_title
output_dir
output_name

verbose

Details

[Deprecated] All network properties are automatically computed.
[Deprecated] All network properties are automatically computed.

Passed to buildRepSegNetwork() when constructing the global network. The
node-level network properties for the global network (see details) are included
among the valid options.

Passed to addPlots() when constructing the global network.

Passed to buildRepSeqNetwork() when constructing the global network.
Passed to buildRepSeqNetwork() when constructing the global network.
Passed to buildRepSeqNetwork() when constructing the global network.

Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

Other arguments to buildRepSegqNetwork () (including arguments to addPlots())
when constructing the global network. Does not include node_stats, stats_to_include,
cluster_stats or cluster_id_name.

The node-level metadata for the filtered clusters from all samples is combined and the global net-
work is constructed by calling buildNet () with node_stats = TRUE, stats_to_include = "all"”,
cluster_stats = TRUE and cluster_id_name = "ClusterIDPublic”.

The computed node-level network properties are renamed to reflect their correspondence to the
global network. This is done to distinguish them from the network properties that correspond to the
sample-level networks. The names are:

e ClusterIDPublic

* PublicNetworkDegree

* PublicTransitivity

e PublicCloseness

* PublicCentralityByCloseness

e PublicEigenCentrality

buildPublicClusterNetwork 29

* PublicCentralityByEigen

* PublicBetweenness

e PublicCentralityByBetweenness
* PublicAuthorityScore

* PublicCoreness

¢ PublicPageRank

See the Searching for Public TCR/BCR Clusters article on the package website.

Value

A list of network objects as returned by buildRepSegNetwork(). The list is returned invisibly. If
the input data contains a combined total of fewer than two rows, or if the global network contains
no nodes, then the function returns NULL, invisibly, with a warning.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package
Searching for Public TCR/BCR Clusters article on package website

See Also

findPublicClusters()
buildPublicClusterNetworkByRepresentative()

Examples

set.seed(42)

Simulate 30 samples with a mix of public/private sequences

samples <- 30

sample_size <- 30 # (segs per sample)

base_seqs <- c(
"CASSIEGQLSTDTQYF", "CASSEEGQLSTDTQYF", "CASSSVETQYF",
"CASSPEGQLSTDTQYF", "RASSLAGNTEAFF”, "CASSHRGTDTQYF”, "CASDAGVFQPQHF”,
"CASSLTSGYNEQFF”, "CASSETGYNEQFF”, "CASSLTGGNEQFF”, "CASSYLTGYNEQFF",
"CASSLTGNEQFF", "CASSLNGYNEQFF", "CASSFPWDGYGYTF", "CASTLARQGGELFF",
"CASTLSRQGGELFF", "CSVELLPTGPLETSYNEQFF", "CSVELLPTGPSETSYNEQFF",
"CVELLPTGPSETSYNEQFF", "CASLAGGRTQETQYF"”, "CASRLAGGRTQETQYF",
"CASSLAGGRTETQYF", "CASSLAGGRTQETQYF", "CASSRLAGGRTQETQYF",
"CASQYGGGNQPQHF", "CASSLGGGNQPQHF", "CASSNGGGNQPQHF", "CASSYGGGGNQPQHF",
"CASSYGGGQPQHF", "CASSYKGGNQPQHF", "CASSYTGGGNQPQHF",
"CAWSSQETQYF", "CASSSPETQYF", "CASSGAYEQYF", "CSVDLGKGNNEQFF")

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/public_clusters.html
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/public_clusters.html

30

Relative generation probabilities
pgen <- cbind(
stats::toeplitz(0.6"(0: (sample_size - 1))),
matrix(1, nrow = samples, ncol = length(base_seqgs) - samples)
)
simulateToyData(
samples = samples,
sample_size = sample_size,
prefix_length = 1,
prefix_chars = c("", ""),
prefix_probs = cbind(rep(1, samples), rep(@, samples)),
affixes = base_seqs,
affix_probs = pgen,
num_edits = 0,
output_dir = tempdir(),
no_return = TRUE

1. Find Public Clusters in Each Sample
sample_files <-
file.path(tempdir(),
paste@("Sample”, 1:samples, ".rds")
)
findPublicClusters(
file_list = sample_files,
input_type = "rds",
seg_col = "CloneSeq"”,
count_col = "CloneCount”,
min_seq_length = NULL,
drop_matches = NULL,
top_n_clusters = 3,
min_node_count = 5,
min_clone_count = 15000,
output_dir = tempdir()
)

2. Build Global Network of Public Clusters
public_clusters <-
buildPublicClusterNetwork(
file_list =
list.files(
file.path(tempdir(), "node_meta_data"),
full.names = TRUE

)!
seq_col = "CloneSeq”,
count_col = "CloneCount”,

plot_title = NULL,
plot_subtitle = NULL,
print_plots = TRUE

buildPublicClusterNetwork

buildPublicClusterNetworkByRepresentative 31

buildPublicClusterNetworkByRepresentative
Build Global Network of Public TCR/BCR Clusters Using Represen-
tative Clones

Description

Alternative step in the workflow Searching for Public TCR/BCR Clusters. Intended for use follow-
ing findPublicClusters() in cases where buildPublicClusterNetwork() cannot be practically
used due to the size of the full global network.

Given cluster-level metadata for each sample’s filtered clusters, selects a representative TCR/BCR
from each cluster, combines the representatives into a global network and performs network analysis
and cluster analysis.

Usage

buildPublicClusterNetworkByRepresentative(

Input

file_list,

input_type = "rds",
data_symbols = "cdat”,
header, sep, read.args,
seq_col = "seq_w_max_count”,
count_col = "agg_count”,

Network Settings
dist_type = "hamming",
dist_cutoff =1,

cluster_fun = "fast_greedy”,

Visualization

plots = TRUE,

print_plots = FALSE,
plot_title = "auto”,
plot_subtitle = "auto”,
color_nodes_by = "SampleID”,
color_scheme = "turbo”,

L

Output
output_dir = NULL,
output_type = "rds",
output_name = "PubClustByRepresentative”,
pdf_width = 12,

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/public_clusters.html

pdf_height =

buildPublicClusterNetworkByRepresentative

10,

verbose = FALSE

Arguments

file_list

input_type

data_symbols

header

sep

read.args

seq_col

count_col

dist_type
dist_cutoff

cluster_fun

plots
print_plots

plot_title
plot_subtitle

color_nodes_by

A vector of file paths where each file contains the cluster-level metadata for one
sample’s filtered clusters. Passed to loadDataFromFilelList().

A character string specifying the file format of the input files. Options are "csv”,
"rds" and "rda". Passed to loadDataFromFilelList().

Used when input_type = "rda”. Specifies the name of the data frame within
each Rdata file. Passed to loadDataFromFileList().

For values of input_type other than "rds” and "rda”, this argument can be
used to specify a non-default value of the header argument to read. table(),
read.csv(), etc.

For values of input_type other than "rds” and "rda”, this argument can be
used to specify a non-default value of the sep argument to read.table(),
read.csv(), etc.

For values of input_type other than "rds” and "rda", this argument can be
used to specify non-default values of optional arguments to read.table(),
read.csv(), etc. Accepts a named list of argument values. Values of header
and sep in this list take precedence over values specified via the header and sep
arguments.

Specifies the column in the cluster-level metadata that contains the representa-
tive TCR/BCR sequence for each cluster. Accepts a character string containing
the column name or a numeric scalar containing the column index. By default,
uses the sequence with the maximum clone count in each cluster.

Specifies the column in the cluster-level metadata that contains the aggregate
clone count for each cluster. Accepts a character string containing the column
name or a numeric scalar containing the column index.

Passed to buildRepSeqNetwork() when constructing the global network.
Passed to buildRepSeqNetwork() when constructing the global network.

Passed to buildRepSegNetwork () when performing cluster analysis on the global
network.

Logical. Should plots of the global network graph be produced?

Logical. If plots of the global network graph are produced, should they be
printed to the R plotting window?

Passed to addPlots() when producing plots of the global network graph.
Passed to addPlots() when producing plots of the global network graph.

Passed to addPlots() when producing plots of the global network graph. Valid
options include the default "SampleID”, as well as node-level properties (see

addNodeNetworkStats) and sample-level cluster properties (see getClusterStats),

which correspond to the representative TCRs/BCRs and the original sample-
level clusters they represent, respectively.

buildPublicClusterNetworkByRepresentative 33

color_scheme Passed to addPlots() when producing plots of the global network graph.
Other arguments to addPlots() when producing plots of the global network

graph.

output_dir Passed to saveNetwork () after constructing the global network.

output_type Passed to saveNetwork() after constructing the global network.

output_name Passed to saveNetwork() after constructing the global network.

pdf_width Passed to saveNetwork() after constructing the global network. Only applica-
ble if plots = TRUE.

pdf_height Passed to saveNetwork() after constructing the global network. Only applica-
ble if plots = TRUE.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

Details

From each filtered cluster in each sample’s network, a representative TCR/BCR is selected. By
default, this is the sequence with the greatest clone count in each cluster. The representatives from
all clusters and all samples are then used to construct a single global network. Cluster analysis is
used to partition this global network into clusters. Network properties for the nodes and clusters are
computed and returned as metadata. A plot of the global network graph is produced, with the nodes
colored according to sample ID.

Within this network, clusters containing nodes from multiple samples can be considered as the
skeletons of the complete public clusters. The filtered cluster data for each sample can then be
subset to keep the sample-level clusters whose representative TCR/BCRs belong to the skeletons of
the public clusters. After subsetting in this manner, buildPublicClusterNetwork() can be used
to construct the global network of complete public clusters.

See the Searching for Public TCR/BCR Clusters article on the package website.

Value

If the input data contains a combined total of fewer than two rows, or if the global network contains
no nodes, then the function returns NULL, invisibly, with a warning. Otherwise, invisibly returns
a list of network objects as returned by buildRepSeqNetwork(). The global cluster membership
variable in the data frame node_data is named ClusterIDPublic.

The data frame cluster_data includes the following variables that represent properties of the
clusters in the global network of representative TCR/BCRs:

cluster_id The global cluster ID number.

node_count The number of global network nodes in the global cluster.
TotalSamplelLevelNodes
For each representative TCR/BCR in the global cluster, we record the number
of nodes in the sample-level cluster for which it is the representative TCR/BCR.
We then sum these node counts across all the representative TCR/BCRs in the
global cluster.

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/public_clusters.html

34

buildPublicClusterNetworkByRepresentative

TotalCloneCount
For each representative TCR/BCR in the global cluster, we record the aggregate
clone count from all nodes in the sample-level cluster for which it is the repre-
sentative TCR/BCR. We then sum these aggregate clone counts across all the
representative TCR/BCRs in the global cluster.

MeanOfMeanSeqLength
For each representative TCR/BCR in the global cluster, we record the mean
sequence length over all clones (nodes) in the sample-level cluster for which it
is the representative TCR/BCR. We then average these mean sequence lengths
over all the representative TCR/BCRs in the global cluster.

MeanDegreeInPublicNet
For each representative TCR/BCR in the global cluster, we record the mean
network degree over all nodes in the sample-level cluster for which it is the
representative TCR/BCR. We then average these mean degree values over all
the representative TCR/BCRs in the global cluster.

MaxDegreeInPublicNet
For each representative TCR/BCR in the global cluster, we record the maximum
network degree across all nodes in the sample-level cluster for which it is the
representative TCR/BCR. We then take the maximum of these maximum degree
values over all the representative TCR/BCRs in the global cluster.

SeqWithMaxDegree
For each representative TCR/BCR in the global cluster, we record the maxi-
mum network degree across all nodes in the sample-level cluster for which it
is the representative TCR/BCR. We then identify the representative TCR/BCR
with the maximum value of these maximum degrees over all the representative
TCR/BCRs in the global cluster. The TCR/BCR sequence of the identified rep-
resentative TCR/BCR is recorded in this variable.

MaxCloneCount For each representative TCR/BCR in the global cluster, we record the maximum
clone count across all clones (nodes) in the sample-level cluster for which it is
the representative TCR/BCR. We then take the maximum of these maximum
clone counts over all the representative TCR/BCRs in the global cluster.

SampleWithMaxCloneCount
For each representative TCR/BCR in the global cluster, we record the maximum
clone count across all clones (nodes) in the sample-level cluster for which it
is the representative TCR/BCR. We then identify the representative TCR/BCR
with the maximum value of these maximum clone counts over all the repre-
sentative TCR/BCRs in the global cluster. The sample to which the identified
representative TCR/BCR belongs is recorded in this variable.

SegWithMaxCloneCount
For each representative TCR/BCR in the global cluster, we record the maxi-
mum clone count across all clones (nodes) in the sample-level cluster for which
it is the representative TCR/BCR. We then identify the representative TCR/BCR
with the maximum value of these maximum clone counts over all the represen-
tative TCR/BCRs in the global cluster. The TCR/BCR sequence of the identified
representative TCR/BCR is recorded in this variable.

MaxAggCloneCount
For each representative TCR/BCR in the global cluster, we record the aggregate
clone count across all clones (nodes) in the sample-level cluster for which it

buildPublicClusterNetworkByRepresentative 35

is the representative TCR/BCR. We then take the maximum of these aggregate
clone counts over all the representative TCR/BCRs in the global cluster.

SampleWithMaxAggCloneCount

For each representative TCR/BCR in the global cluster, we record the aggregate
clone count across all clones (nodes) in the sample-level cluster for which it
is the representative TCR/BCR. We then identify the representative TCR/BCR
with the maximum value of these aggregate clone counts over all the repre-
sentative TCR/BCRs in the global cluster. The sample to which the identified
representative TCR/BCR belongs is recorded in this variable.

SegWithMaxAggCloneCount

DiameterLength

For each representative TCR/BCR in the global cluster, we record the aggregate
clone count across all clones (nodes) in the sample-level cluster for which it
is the representative TCR/BCR. We then identify the representative TCR/BCR
with the maximum value of these aggregate clone counts over all the representa-
tive TCR/BCRs in the global cluster. The TCR/BCR sequence of the identified
representative TCR/BCR is recorded in this variable.

See getClusterStats. Based on edge connections between representative TCR/BCRs

in the global cluster.

Assortativity SeegetClusterStats. Based onedge connections between representative TCR/BCRs
in the global cluster.

GlobalTransitivity
See getClusterStats. Based on edge connections between representative TCR/BCRs
in the global cluster.

EdgeDensity See getClusterStats. Based on edge connections between representative TCR/BCRs

in the global cluster.

DegreeCentralityIndex

See getClusterStats. Based on edge connections between representative TCR/BCRs

in the global cluster.

ClosenessCentralityIndex

See getClusterStats. Based on edge connections between representative TCR/BCRs

in the global cluster.

EigenCentralityIndex

See getClusterStats. Based on edge connections between representative TCR/BCRs

in the global cluster.

EigenCentralityEigenvalue

Author(s)

See getClusterStats. Based on edge connections between representative TCR/BCRs

in the global cluster.

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network

Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full

36 buildPublicClusterNetworkByRepresentative

Webpage for the NAIR package
Searching for Public TCR/BCR Clusters article on package website

See Also

findPublicClusters() buildPublicClusterNetwork()

Examples

set.seed(42)

Simulate 30 samples with a mix of public/private sequences
samples <- 30
sample_size <- 30 # (segs per sample)
base_seqs <- c(
"CASSIEGQLSTDTQYF", "CASSEEGQLSTDTQYF", "CASSSVETQYF",
"CASSPEGQLSTDTQYF", "RASSLAGNTEAFF", "CASSHRGTDTQYF", "CASDAGVFQPQHF",
"CASSLTSGYNEQFF", "CASSETGYNEQFF", "CASSLTGGNEQFF", "CASSYLTGYNEQFF",
"CASSLTGNEQFF", "CASSLNGYNEQFF", "CASSFPWDGYGYTF", "CASTLARQGGELFF",
"CASTLSRQGGELFF", "CSVELLPTGPLETSYNEQFF", "CSVELLPTGPSETSYNEQFF",
"CVELLPTGPSETSYNEQFF", "CASLAGGRTQETQYF"”, "CASRLAGGRTQETQYF",
"CASSLAGGRTETQYF", "CASSLAGGRTQETQYF", "CASSRLAGGRTQETQYF",
"CASQYGGGNQPQHF ", "CASSLGGGNQPQHF", "CASSNGGGNQPQHF", "CASSYGGGGNQPQHF",
"CASSYGGGQPQHF", "CASSYKGGNQPQHF", "CASSYTGGGNQPQHF",
"CAWSSQETQYF", "CASSSPETQYF", "CASSGAYEQYF", "CSVDLGKGNNEQFF")
Relative generation probabilities
pgen <- chind(
stats::toeplitz(0.6"(0: (sample_size - 1))),
matrix(1, nrow = samples, ncol = length(base_seqs) - samples)
)
simulateToyData(
samples = samples,
sample_size = sample_size,
prefix_length = 1,
prefix_chars = c("", ""),
prefix_probs = cbind(rep(1, samples), rep(@, samples)),
affixes = base_seqs,
affix_probs = pgen,
num_edits = 0,
output_dir = tempdir(),
no_return = TRUE

1. Find Public Clusters in Each Sample
sample_files <-

file.path(tempdir(),

paste@("Sample”, 1:samples, ".rds")

)
findPublicClusters(

file_list = sample_files,

input_type = "rds",

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/public_clusters.html

buildRepSeqNetwork 37

seg_col = "CloneSeq"”,
count_col = "CloneCount”,
min_seq_length = NULL,
drop_matches = NULL,
top_n_clusters = 3,
min_node_count = 5,
min_clone_count = 15000,
output_dir = tempdir()

)

2. Build Public Cluster Network by Representative TCR/BCRs
buildPublicClusterNetworkByRepresentative(
file_list =
list.files(
file.path(tempdir(), "cluster_meta_data"),
full.names = TRUE
),
size_nodes_by = 1,
print_plots = TRUE
)

buildRepSeqgNetwork Network Analysis of Immune Repertoire

Description

Given Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq) data, builds the network
graph for the immune repertoire based on sequence similarity, computes specified network proper-
ties and generates customized visualizations.

buildNet () is identical to buildRepSeqNetwork(), existing as an alias for convenience.

Usage

buildRepSegNetwork(

Input

data,

seqg_col,

count_col = NULL,
subset_cols = NULL,
min_seqg_length = 3,
drop_matches = NULL,

Network #i#
dist_type = "hamming",
dist_cutoff =1,

38

)

drop_isolated_nodes = TRUE,
node_stats = FALSE,

stats_to_include = chooseNodeStats(),
cluster_stats = FALSE,

cluster_fun = "fast_greedy”,
cluster_id_name = "cluster_id",

Visualization
plots = TRUE,
print_plots = FALSE,
plot_title = "auto”,
plot_subtitle = "auto”,
color_nodes_by = "auto”,

0

Output
output_dir = NULL,
output_type = "rds",
output_name = "MyRepSeqgNetwork”,
pdf_width = 12,

pdf_height = 10,

verbose = FALSE

Alias for buildRepSegNetwork()

buildNet(

data,

seq_col,

count_col = NULL,
subset_cols = NULL,
min_seq_length = 3,
drop_matches = NULL,
dist_type = "hamming",
dist_cutoff = 1,
drop_isolated_nodes = TRUE,
node_stats = FALSE,
stats_to_include = chooseNodeStats(),
cluster_stats = FALSE,

cluster_fun = "fast_greedy”,
cluster_id_name = "cluster_id",
plots = TRUE,

print_plots = FALSE,
plot_title = "auto”,
plot_subtitle = "auto”,
color_nodes_by = "auto",

L

output_dir = NULL,

buildRepSeqNetwork

buildRepSeqNetwork 39

n n

output_type rds”,
output_name = "MyRepSeqgNetwork”,
pdf_width = 12,
pdf_height = 10,
verbose = FALSE

)
Arguments

data A data frame containing the AIRR-Seq data, with variables indexed by column
and observations (e.g., clones or cells) indexed by row.

seq_col Specifies the column(s) of data containing the receptor sequences to be used as
the basis of similarity between rows. Accepts a character string containing the
column name or a numeric scalar containing the column index. Also accepts a
vector of length 2 specifying distinct sequence columns (e.g., alpha chain and
beta chain), in which case similarity between rows depends on similarity in both
sequence columns (see details).

count_col Optional. Specifies the column of data containing a measure of abundance,
e.g., clone count or unique molecular identifier (UMI) count. Accepts either the
column name or column index. Passed to addClusterStats(); only relevant if
cluster_stats = TRUE.

subset_cols Specifies which columns of the AIRR-Seq data are included in the output. Ac-

cepts a vector of column names or a vector of column indices. The default NULL
includes all columns. The receptor sequence column is always included regard-
less of this argument’s value. Passed to filterInputData().

min_seq_length A numeric scalar, or NULL. Observations whose receptor sequences have fewer
than min_seq_length characters are removed prior to network analysis.

drop_matches Optional. Passed to filterInputData(). Accepts a character string containing
aregular expression (see regex). Checks receptor sequences for a pattern match
using grep(). Those returning a match are removed prior to network analysis.

dist_type Specifies the function used to quantify the similarity between sequences. The
similarity between two sequences determines the pairwise distance between
their respective nodes in the network graph, with greater similarity correspond-
ing to shorter distance. Valid options are "hamming"” (the default), which uses
hamDistBounded(), and "levenshtein”, which uses levDistBounded().

dist_cutoff A nonnegative scalar. Specifies the maximum pairwise distance (based on dist_type)

for an edge connection to exist between two nodes. Pairs of nodes whose dis-
tance is less than or equal to this value will be joined by an edge connection
in the network graph. Controls the stringency of the network construction and
affects the number and density of edges in the network. A lower cutoff value
requires greater similarity between sequences in order for their respective nodes
to be joined by an edge connection. A value of @ requires two sequences to be
identical in order for their nodes to be joined by an edge.

buildRepSeqNetwork

drop_isolated_nodes
A logical scalar. When TRUE, removes each node that is not joined by an edge
connection to any other node in the network graph.
node_stats A logical scalar. Specifies whether node-level network properties are computed.
stats_to_include
A named logical vector returned by chooseNodeStats() or exclusiveNodeStats().
Specifies the node-level network properties to compute. Also accepts the value
"all”. Only relevant if node_stats = TRUE.
cluster_stats A logical scalar. Specifies whether to compute cluster-level network properties.
cluster_fun Passed to addClusterMembership(). Specifies the clustering algorithm used
when cluster analysis is performed. Cluster analysis is performed when cluster_stats
= TRUE or when node_stats = TRUE with the cluster_id property enabled via
the stats_to_include argument.
cluster_id_name
Passed to addClusterMembership(). Specifies the name of the cluster mem-
bership variable added to the node metadata when cluster analysis is performed
(see cluster_fun).
plots A logical scalar. Specifies whether to generate plots of the network graph.

print_plots A logical scalar. If plots = TRUE, specifies whether the plots should be printed
to the R plotting window.

plot_title A character string or NULL. If plots = TRUE, this is the title used for each plot.
The default value "auto” generates the title based on the value of the output_name
argument.

plot_subtitle A character string or NULL. If plots = TRUE, this is the subtitle used for each
plot. The default value "auto” generates a subtitle based on the values of the
dist_type and dist_cutoff arguments.

color_nodes_by Optional. Specifies a variable to be used as metadata for coloring the nodes
in the network graph plot. Accepts a character string. This can be a column
name of data or (if node_stats = TRUE) the name of a computed node-level
network property (based on stats_to_include). Also accepts a character vec-
tor specifying multiple variables, in which case one plot will be generated for
each variable. The default value "auto” attempts to use one of several potential
variables to color the nodes, depending on what is available. A value of NULL
leaves the nodes uncolored.

Other named arguments to addPlots().

output_dir A file path specifying the directory for saving the output. The directory will be
created if it does not exist. If NULL, output will be returned but not saved.

output_type A character string specifying the file format to use when saving the output. The
default value "individual” saves each element of the returned list as an in-
dividual uncompressed file, with data frames saved in csv format. For better
compression, the values "rda” and "rds"” save the returned list as a single file
using the rda and rds format, respectively (in the former case, the list will be
named net within the rda file). Regardless of the argument value, any plots
generated will saved to a pdf file containing one plot per page.

output_name A character string. All files saved will have file names beginning with this value.

buildRepSeqNetwork 41

pdf_width Sets the width of each plot when writing to pdf. Passed to saveNetwork().
pdf_height Sets the height of each plot when writing to pdf. Passed to saveNetwork().
verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().
Details

To construct the immune repertoire network, each TCR/BCR clone (bulk data) or cell (single-cell
data) is modeled as a node in the network graph, corresponding to a single row of the AIRR-Seq
data. For each node, the corresponding receptor sequence is considered. Both nucleotide and
amino acid sequences are supported for this purpose. The receptor sequence is used as the basis of
similarity and distance between nodes in the network.

Similarity between sequences is measured using either the Hamming distance or Levenshtein (edit)
distance. The similarity determines the pairwise distance between nodes in the network graph. The
more similar two sequences are, the shorter the distance between their respective nodes. Two nodes
in the graph are joined by an edge if the distance between them is sufficiently small, i.e., if their
receptor sequences are sufficiently similar.

For single-cell data, edge connections between nodes can be based on similarity in both the alpha
chain and beta chain sequences. This is done by providing a vector of length 2 to seq_cols speci-
fying the two sequence columns in data. The distance between two nodes is then the greater of the
two distances between sequences in corresponding chains. Two nodes will be joined by an edge if
their alpha chain sequences are sufficiently similar and their beta chain sequences are sufficiently
similar.

See the buildRepSeqNetwork package vignette for more details. The vignette can be accessed
offline using vignette("buildRepSegNetwork™).
Value

If the constructed network contains no nodes, the function will return NULL, invisibly, with a warn-
ing. Otherwise, the function invisibly returns a list containing the following items:

details A list containing information about the network and the settings used during its
construction.

igraph An object of class igraph containing the list of nodes and edges for the network
graph.

adjacency_matrix

The network graph adjacency matrix, stored as a sparse matrix of class dgCMatrix
from the Matrix package. See dgCMatrix-class.

node_data A data frame containing containing metadata for the network nodes, where each
row corresponds to a node in the network graph. This data frame contains all
variables from data (unless otherwise specified via subset_cols) in addition to
the computed node-level network properties if node_stats = TRUE. Each row’s
name is the name of the corresponding row from data.

cluster_data A data frame containing network properties for the clusters, where each row
corresponds to a cluster in the network graph. Only included if cluster_stats
= TRUE.

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/buildRepSeqNetwork.html

42 buildRepSeqNetwork

plots A list containing one element for each plot generated as well as an additional
element for the matrix that specifies the graph layout. Each plot is an object of
class ggraph. Only included if plots = TRUE.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package
buildRepSeqNetwork vignette

Examples

set.seed(42)
toy_data <- simulateToyData()

Simple call
network = buildNet(

toy_data,
seq_col = "CloneSeq",
print_plots = TRUE

)

Customized:

network <- buildNet(
toy_data, "CloneSeq",
dist_type = "levenshtein”,
node_stats = TRUE,
cluster_stats = TRUE,

cluster_fun = "louvain”,

cluster_id_name = "cluster_membership”,

count_col = "CloneCount”,

color_nodes_by = c("SampleID"”, "cluster_membership”, "coreness"),
color_scheme = c("default”, "Viridis”, "plasma-1"),

size_nodes_by = "degree”,

node_size_limits = c(0.1, 1.5),
plot_title = NULL,
plot_subtitle = NULL,
print_plots = TRUE,
verbose = TRUE

)

typeof (network)
names (network)

network$details

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/buildRepSeqNetwork.html

chooseNodeStats 43

head(network$node_data)

head(network$cluster_data)

chooseNodeStats Specify Node-level Network Properties to Compute

Description

Create a vector specifying node-level network properties to compute. Intended for use with buildRepSegNetwork ()
or addNodeNetworkStats

node_stat_settings() is a deprecated equivalent of chooseNodeStats().

Usage

chooseNodeStats(
degree = TRUE,
cluster_id = FALSE,
transitivity = TRUE,
closeness = FALSE,
centrality_by_closeness = FALSE,
eigen_centrality = TRUE,
centrality_by_eigen = TRUE,
betweenness = TRUE,
centrality_by_betweenness = TRUE,
authority_score = TRUE,
coreness = TRUE,
page_rank = TRUE,
all_stats = FALSE

)

exclusiveNodeStats(
degree = FALSE,
cluster_id = FALSE,
transitivity = FALSE,
closeness = FALSE,
centrality_by_closeness = FALSE,
eigen_centrality = FALSE,
centrality_by_eigen = FALSE,
betweenness = FALSE,
centrality_by_betweenness = FALSE,
authority_score = FALSE,
coreness = FALSE,
page_rank = FALSE

44 chooseNodeStats

Arguments
degree Logical. Whether to compute network degree.
cluster_id Logical. Whether to perform cluster analysis and record the cluster membership

of each node. See addClusterMembership().

transitivity Logical. Whether to compute node-level network transitivity using transitivity()
with type = "local”. The local transitivity of a node is the the number of tri-
angles connected to the node relative to the number of triples centered on that
node.

closeness Logical. Whether to compute network closeness using closeness().
centrality_by_closeness
Logical. Whether to compute network centrality by closeness. The values are
the entries of the res element of the list returned by centr_clo().
eigen_centrality
Logical. Whether to compute the eigenvector centrality scores of node network
positions. The scores are the entries of the vector element of the list returned by
eigen_centrality() with weights = NA. The centrality scores correspond to
the values of the first eigenvector of the adjacency matrix for the cluster graph.
centrality_by_eigen
Logical. Whether to compute node-level network centrality scores based on
eigenvector centrality scores. The scores are the entries of the vector element
of the list returned by centr_eigen().

betweenness Logical. Whether to compute network betweenness using betweenness().

centrality_by_betweenness

Logical. Whether to compute network centrality scores by betweenness. The
scores are the entires of the res element of the list returned by centr_betw().

authority_score
Logical. Whether to compute the authority score using authority_score().

coreness Logical. Whether to compute network coreness using coreness().
page_rank Logical. Whether to compute page rank. The page rank values are the entries of
the vector element of the list returned by page_rank().
all_stats Logical. If TRUE, all other argument values are overridden and set to TRUE.
Details

These functions return a vector that can be passed to the stats_to_include argument of addNodeStats()
(or buildRepSegNetwork(), if node_stats = TRUE) in order to specify which node-level network
properties to compute.

chooseNodeStats and exclusiveNodeStats each have default argument values suited to a differ-
ent use case, in order to reduce the number of argument values that must be set manually.

chooseNodeStats has most arguments TRUE by default. It is best suited for including a majority of
the available properties. It can be called with all_stats = TRUE to set all values to TRUE.

exclusiveNodeStats has all of its arguments set to FALSE by default. It is best suited for including
only a few properties.

chooseNodeStats 45

Value

A named logical vector with one entry for each of the function’s arguments (except for all_stats).
Each entry has the same name as the corresponding argument, and its value matches the argument’s
value.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

See Also

addNodeStats()

Examples

set.seed(42)
toy_data <- simulateToyData()

net <- generateNetworkObjects(
toy_data, "CloneSeq”
)

Add default set of node properties
net <- addNodeStats(net)

Modify default set of node properties
net <- addNodeStats(
net,
stats_to_include =
chooseNodeStats(
closeness = TRUE,
page_rank = FALSE
)
)

Add only the spepcified node properties
net <- addNodeStats(
net,
stats_to_include =
exclusiveNodeStats(
degree = TRUE,
transitivity = TRUE
)

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

46 combineSamples

Add all node-level network properties
net <- addNodeStats(

net,
stats_to_include = "all”
)
combineSamples Load and Combine Data From Multiple Samples
Description

Given multiple data frames stored in separate files, loadDataFromFilelList() loads and combines
them into a single data frame.

combineSamples() has the same default behavior as loadDataFromFilelList(), but possesses
additional arguments that allow the data frames to be filtered, subsetted and augmented with sample-
level variables before being combined.

Usage

loadDataFromFileList(
file_list,
input_type,
data_symbols = NULL,
header, sep, read.args

)

combineSamples(
file_list,
input_type,
data_symbols = NULL,
header, sep, read.args,
seq_col = NULL,
min_seq_length = NULL,
drop_matches = NULL,
subset_cols = NULL,
sample_ids = NULL,
subject_ids = NULL,
group_ids = NULL,
verbose = FALSE

Arguments

file_list A character vector of file paths, or a list containing connections and file paths.
Each element corresponds to a single file containing the data for a single sample.

combineSamples 47

input_type A character string specifying the file format of the sample data files. Options are

n on

"rds”, "rda", "csv", "csv2", "tsv", "table". See details.

data_symbols Used when input_type = "rda”. Specifies the name of each sample’s data
frame within its respective Rdata file. Accepts a character vector of the same
length as file_list. Alternatively, a single character string can be used if all
data frames have the same name.

header For values of input_type other than "rds” and "rda", this argument can be
used to specify a non-default value of the header argument to read. table(),
read.csv(), etc.

sep For values of input_type other than "rds” and "rda"”, this argument can be
used to specify a non-default value of the sep argument to read.table(),
read.csv(), etc.

read.args For values of input_type other than "rds” and "rda"”, this argument can be
used to specify non-default values of optional arguments to read.table(),
read.csv(), etc. Accepts a named list of argument values. Values of header
and sep in this list take precedence over values specified via the header and sep
arguments.

seqg_col If provided, each sample’s data will be filtered based on the values of min_seq_length
and drop_matches. Passed to filterInputData() for each sample.

min_seq_length Passedto filterInputData() for each sample.

drop_matches Passed to filterInputData() for each sample.

subset_cols Passed to filterInputData() for each sample.

sample_ids A character or numeric vector of sample IDs, whose length matches that of
file_list.

subject_ids An optional character or numeric vector of subject IDs, whose length matches
that of file_list. Used to assign a subject ID to each sample.

group_ids A character or numeric vector of group IDs whose length matches that of file_list.
Used to assign each sample to a group.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

Details

Each file is assumed to contain the data for a single sample, with observations indexed by row, and
with the same columns across samples.

Valid options for input_type (and the corresponding function used to load each file) include:

e "rds": readRDS()
"rds": readRDS()
e "rda": load()

e "csv": read.csv()

e "csv2": read.csv2()

48 combineSamples

e "tsv": read.delim()

e "table": read.table()

If input_type = "rda”, the data_symbols argument specifies the name of each data frame within
its respective file.

When calling combineSamples(), for each of sample_ids, subject_ids and group_ids that is
non-null, a corresponding variable will be added to the combined data frame; these variables are
named SamplelD, SubjectID and GroupID.

Value

A data frame containing the combined data rows from all files.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Examples

Generate example data

set.seed(42)

samples <- simulateToyData(sample_size = 5)
sample_1 <- subset(samples, SampleID == "Samplel”)
sample_2 <- subset(samples, SampleID == "Sample2")

RDS format

rdsfiles <- tempfile(c("samplel”, "sample2"), fileext = ".rds")
saveRDS(sample_1, rdsfiles[1])

saveRDS(sample_2, rdsfiles[2])

loadDataFromFilelList(

rdsfiles,

input_type = "rds”
)
With filtering and subsetting
combineSamples(

rdsfiles,

input_type = "rds",

seg_col = "CloneSeq"”,

min_seq_length = 13,
drop_matches = "GGG",
subset_cols = "CloneSeq”,
sample_ids = c("ideo1"”, "ide2"),
verbose = TRUE

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

combineSamples

)

RData, different data frame names

rdafiles <- tempfile(c("samplel”, "sample2"), fileext = ".rda")
save(sample_1, file = rdafiles[1])

save(sample_2, file = rdafiles[2])

loadDataFromFilelList(

rdafiles,
input_type = "rda",
data_symbols = c("sample_1", "sample_2")

)

RData, same data frame names
df <- sample_1

save(df, file = rdafiles[1])
df <- sample_2

save(df, file = rdafiles[2])
loadDataFromFilelList(

rdafiles,
input_type = "rda",
data_symbols = "df"

)

comma-separated values with header row; row names in first column
csvfiles <- tempfile(c("samplel”, "sample2"), fileext = ".csv")
utils::write.csv(sample_1, csvfiles[1], row.names = TRUE)
utils::write.csv(sample_2, csvfiles[2], row.names = TRUE)
loadDataFromFilelList(

csvfiles,
input_type = "csv",
read.args = list(row.names = 1)

)

semicolon-separated values with decimals as commas;
header row, row names in first column
utils::write.csv2(sample_1, csvfiles[1], row.names = TRUE)
utils::write.csv2(sample_2, csvfiles[2], row.names = TRUE)
loadDataFromFilelList(

csvfiles,

input_type = "csv2",

read.args = list(row.names = 1)

)

tab-separated values with header row and decimals as commas
tsvfiles <- tempfile(c("”samplel”, "sample2"), fileext = ".tsv")

non

utils::write.table(sample_1, tsvfiles[1], sep = "\t", dec = ",")
utils::write.table(sample_2, tsvfiles[2], sep = "\t", dec = ",")
loadDataFromFilelList(

tsvfiles,

input_type = "tsv",

header = TRUE,

read.args = list(dec = ",")

50 combineSamples

space-separated values with header row and NAs encoded as as "No Value”
txtfiles <- tempfile(c("samplel”, "sample2"), fileext = ".txt")
utils::write.table(sample_1, txtfiles[1], na = "No Value")
utils::write.table(sample_2, txtfiles[2], na = "No Value")
loadDataFromFilelList(
txtfiles,
input_type = "table",
read.args = list(
header = TRUE,
na.strings = "No Value”
)
)

custom value separator and row names in first column
utils::write.table(sample_1, txtfiles[1],

sep = "@", row.names = TRUE, col.names = FALSE
)
utils::write.table(sample_2, txtfiles[2],
sep = "@", row.names = TRUE, col.names = FALSE
)
loadDataFromFilelList(
txtfiles,
input_type = "table”,
sep = "@",

read.args = list(
row.names = 1,
col.names = c("rownames”,
"CloneSeq"”, "CloneFrequency”,
"CloneCount”, "SampleID”

same as previous example
(value of sep in read.args overrides value in sep argument)
loadDataFromFilelList(

txtfiles,

input_type = "table”,

sep = "\t”",

read.args = list(
sep = "@”,

row.names = 1,

col.names = c("rownames”,
"CloneSeq"”, "CloneFrequency”,
"CloneCount”, "SampleID"”

extractLayout 51

extractLayout Get Coordinate Layout From Graph Plot

Description

Given a ggraph plot, extract the coordinate layout of the graph nodes as a two-column matrix.

Usage

extractLayout(plot)
Arguments

plot An object of class ggraph.
Details

Equivalent to as.matrix(plot$datalc("x", "y")1).

Value

A matrix with two columns and one row per network node. Each row contains the Cartesian coor-
dinates of the corresponding node.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Examples

set.seed(42)
toy_data <- simulateToyData()
net <- buildRepSegNetwork(toy_data, "CloneSeq”, print_plots = TRUE)

my_layout <- extractlLayout(net$plots[[11])

same as ~graph_layout™ element in the plot list
all.equal(my_layout, net$plots$graph_layout, check.attributes = FALSE)

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

52

filterInputData

filterInputData

Filter Data Rows and Subset Data Columns

Description

Given a data frame with a column containing receptor sequences, filter data rows by sequence length
and sequence content. Keep all data columns or choose which columns to keep.

Usage

filterInputData(

data,
seg_col,

min_seq_length = NULL,

drop_matches

= NULL,

subset_cols = NULL,
count_col = deprecated(),
verbose = FALSE

Arguments

data

seq_col

min_seq_length

drop_matches

subset_cols

count_col

verbose

Value

A data frame.

A data frame.

Specifies the column(s) of data containing the receptor sequences. Accepts a
character or numeric vector of length 1 or 2, containing either column names
or column indices. Each column specified will be coerced to a character vec-
tor. Data rows containing a value of NA in any of the specified columns will be
dropped.

Observations whose receptor sequences have fewer than min_seq_length char-
acters are dropped.

Accepts a character string containing a regular expression (see regex). Checks
values in the receptor sequence column for a pattern match using grep(). Rows
in which a match is found are dropped.

Specifies which columns of the AIRR-Seq data are included in the output. Ac-
cepts a character vector of column names or a numeric vector of column indices.
The default NULL includes all columns. The receptor sequence column is always
included regardless of this argument’s value.

[Deprecated] Does nothing.

Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

findAssociatedClones 53

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Examples

set.seed(42)
raw_data <- simulateToyData()

Remove sequences shorter than 13 characters,
as well as sequences containing the subsequence "GGGG".
Keep variables for clone sequence, clone frequency and sample ID
filterInputData(

raw_data,

seq_col = "CloneSeq”,

min_seq_length = 13,

drop_matches = "GGGG",

subset_cols =

c("CloneSeq”, "CloneFrequency”, "SampleID"),
verbose = TRUE

findAssociatedClones Identify TCR/BCR Clones in a Neighborhood Around Each Associated
Sequence

Description

Part of the workflow Searching for Associated TCR/BCR Clusters. Intended for use following
findAssociatedSeqs() and prior to buildAssociatedClusterNetwork().

Given multiple samples of bulk Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq)
data and a vector of associated sequences, identifies for each associated sequence a global "neigh-
borhood" comprised of clones with TCR/BCR sequences similar to the associated sequence.

Usage
findAssociatedClones(
Input

file_list, input_type,
data_symbols = NULL,

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/associated_clusters.html

54 findAssociatedClones

header, sep, read.args,
sample_ids =
paste@("Sample”, 1:length(file_list)),
subject_ids = NULL,
group_ids,
seg_col,
assoc_sedqs,

Neighborhood Criteria
nbd_radius = 1,

dist_type = "hamming",
min_seqg_length = 6,
drop_matches = NULL,

Output
subset_cols = NULL,
output_dir,
output_type =
verbose = FALSE

n n

rds”,

)
Arguments
file_list A character vector of file paths, or a list containing connections and file paths.
Each element corresponds to a single file containing the data for a single sample.
Passed to loadDataFromFilelList().
input_type A character string specifying the file format of the sample data files. Options are

"table”, "txt", "tsv", "csv”, "rds" and "rda". Passed to loadDataFromFileList().

data_symbols Used when input_type = "rda”. Specifies the name of each sample’s data
frame within its respective Rdata file. Passed to loadDataFromFileList().

header For values of input_type other than "rds” and "rda"”, this argument can be
used to specify a non-default value of the header argument to read. table(),
read.csv(), etc.

sep For values of input_type other than "rds” and "rda”, this argument can be
used to specify a non-default value of the sep argument to read.table(),
read.csv(), etc.

read.args For values of input_type other than "rds” and "rda", this argument can be
used to specify non-default values of optional arguments to read.table(),
read.csv(), etc. Accepts a named list of argument values. Values of header
and sep in this list take precedence over values specified via the header and sep
arguments.

sample_ids A character or numeric vector of sample IDs, whose length matches that of
file_list. Each entry is assigned as the sample ID to the corresponding entry
of file_list.

subject_ids An optional character or numeric vector of subject IDs, whose length matches
that of file_list. Used to assign a subject ID to each sample.

findAssociatedClones 55

group_ids A character or numeric vector of group IDs whose length matches thatof file_list.
Used to assign each sample to a group. The two groups represent the levels of
the binary variable of interest.

seq_col Specifies the column of each sample’s data frame containing the TCR/BCR se-
quences. Accepts a character string containing the column name or a numeric
scalar containing the column index.

assoc_seqs A character vector containing the TCR/BCR sequences associated with the bi-
nary variable of interest.

nbd_radius The maximum distance (based on dist_type) between an associated sequence
and other TCR/BCR sequences belonging to its neighborhood. Lower values re-
quire sequences to be more similar to an associated sequence in order to belong
to its neighborhood.

dist_type Specifies the function used to quantify the similarity between sequences. The
similarity between two sequences determines their pairwise distance, with greater
similarity corresponding to shorter distance. Valid options are "hamming” (the
default), which uses hamDistBounded(), and "levenshtein”, which uses 1levDistBounded().

min_seq_length Clones with TCR/BCR sequences below this length will be removed. Passed to
filterInputData() when loading each sample.

drop_matches Passed to filterInputData(). Accepts a character string containing a regular
expression (see regex). Checks TCR/BCR sequences for a pattern match using
grep(). Those returning a match are dropped. By default, sequences containing
any of the characters *, | or _ are dropped.

subset_cols Controls which columns of the AIRR-Seq data from each sample are included
in the output. Accepts a character vector of column names or a numeric vector of
column indices. The default NULL includes all columns. Passed to filterInputData().

output_dir A file path to a directory for saving the output. A valid output directory is
required, since no output is returned in R. The specified directory will be created
if it does not already exist.

output_type A character string specifying the file format to use for saving the output. Valid
options are "rda", "csv", "csv2", "tsv"” and"table". For "rda", data frames
are named data in the R environment. For the remaining options, write. table()
is called with row.names = TRUE.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().
Details

For each associated sequence, its neighborhood is defined to include all clones with TCR/BCR
sequences that are sufficiently similar to the associated sequence. The arguments dist_type and
nbd_radius control how the similarity is measured and the degree of similarity required for neigh-
borhood membership.

For each associated sequence, a data frame is saved to an individual file. The data frame contains
one row for each clone in the associated sequence’s neighborhood (from all samples). It includes
variables for sample ID, group ID and (if provided) subject ID, as well as variables from the AIRR-
Seq data.

56 findAssociatedClones

The files saved by this function are intended for use with buildAssociatedClusterNetwork().
See the Searching for Associated TCR/BCR Clusters article on the package website for more details.

Value

Returns TRUE, invisibly. The function is called for its side effects.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package
Searching for Associated TCR/BCR Clusters article on package website

See Also

findAssociatedSeqs() buildAssociatedClusterNetwork()

Examples

set.seed(42)

Simulate 30 samples from two groups (treatment/control)
n_control <- n_treatment <- 15
n_samples <- n_control + n_treatment
sample_size <- 30 # (seqs per sample)
base_seqs <- # first five are associated with treatment
c("CASSGAYEQYF", "CSVDLGKGNNEQFF", "CASSIEGQLSTDTQYF",
"CASSEEGQLSTDTQYF", "CASSPEGQLSTDTQYF",
"RASSLAGNTEAFF", "CASSHRGTDTQYF", "CASDAGVFQPQHF")
Relative generation probabilities by control/treatment group
pgen_c <- matrix(rep(c(rep(1, 5), rep(30, 3)), times = n_control),
nrow = n_control, byrow = TRUE)
pgen_t <- matrix(rep(c(1, 1, rep(1/3, 3), rep(2, 3)), times = n_treatment),
nrow = n_treatment, byrow = TRUE)
pgen <- rbind(pgen_c, pgen_t)
simulateToyData(
samples = n_samples,
sample_size = sample_size,
prefix_length = 1,
prefix_chars = c("", ""),
prefix_probs = cbind(rep(1, n_samples), rep(@, n_samples)),
affixes = base_segs,
affix_probs = pgen,
num_edits = 0,
output_dir = tempdir(),
no_return = TRUE

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/associated_clusters.html
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/associated_clusters.html

findAssociatedSeqs

)

Step 1: Find Associat
sample_files <-
file.path(tempdir(),
pasted("Samp
)
group_labels <- c(rep("r
rep("c
associated_seqs <-
findAssociatedSeqs(

ed Sequences ##

le", 1:n_samples, ".rds")

eference”, n_control),
omparison”, n_treatment))

file_list = sample_files,

input_type = "rds”,
group_ids = group_la
seq_col = "CloneSeq”
min_seq_length = NUL
drop_matches = NULL,
min_sample_membershi
pval_cutoff = 0.1
)

head(associated_seqs[, 1

bels,

L)

p:OJ

:51)

Step 2: Find Associated Clones

dir_step2 <- tempfile()
findAssociatedClones(

file_list = sample_files,

input_type = "rds",

group_ids = group_labels,

seq_col = "CloneSeq",

assoc_seqs = associated_seqs$ReceptorSeq,

min_seq_length = NULL,
drop_matches = NULL,

output_dir = dir_step2

)

Step 3: Global Network of Associated Clusters

associated_clusters <-

buildAssociatedClusterNetwork(
file_list = list.files(dir_step2,

)!

seq_col = "CloneSeq’

full.names = TRUE

'
’

size_nodes_by = 1.5,

print_plots = TRUE

57

findAssociatedSeqs

Identify TCR/BCR Sequences Associated With a Binary Variable

58 findAssociatedSeqs

Description

Part of the workflow Searching for Associated TCR/BCR Clusters.

Given multiple samples of bulk Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq)
data and a binary variable of interest such as a disease condition, treatment or clinical outcome,
identify receptor sequences that exhibit a statistically significant difference in frequency between
the two levels of the binary variable.

findAssociatedSeqs() is designed for use when each sample is stored in a separate file. findAssociatedSeqs2()
is designed for use with a single data frame containing all samples.

Usage

findAssociatedSeqs(
Input
file_list,
input_type,
data_symbols = NULL,
header, sep, read.args,
sample_ids = deprecated(),
subject_ids = NULL,
group_ids,
groups = deprecated(),
seq_col,
freqg_col = NULL,

Search Criteria
min_seqg_length = 7,
drop_matches = "[*|_]",
min_sample_membership = 5,
pval_cutoff = 0.05,

Output
outfile = NULL,
verbose = FALSE

findAssociatedSeqs2(
Input
data,
seqg_col,
sample_col,
subject_col = sample_col,
group_col,
groups = deprecated(),
freq_col = NULL,

Search Criteria #i#
min_seqg_length = 7,

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/associated_clusters.html

findAssociatedSeqs 59

drop_matches = "[x|_]",
min_sample_membership = 5,
pval_cutoff = 0.05,

Ouptut
outfile = NULL,
verbose = FALSE

)
Arguments
file_list A character vector of file paths, or a list containing connections and file paths.
Each element corresponds to a single file containing the data for a single sample.
Passed to loadDataFromFilelList().
input_type A character string specifying the file format of the sample data files. Options are

"table”, "txt", "tsv", "csv”, "rds" and "rda". Passed to loadDataFromFileList().

data_symbols Used when input_type = "rda"”. Specifies the name of each sample’s data
frame within its respective Rdata file. Passed to loadDataFromFilelList().

header For values of input_type other than "rds” and "rda", this argument can be
used to specify a non-default value of the header argument to read. table(),
read.csv(), etc.

sep For values of input_type other than "rds” and "rda", this argument can be
used to specify a non-default value of the sep argument to read.table(),
read.csv(), etc.

read.args For values of input_type other than "rds” and "rda", this argument can be
used to specify non-default values of optional arguments to read.table(),
read.csv(), etc. Accepts a named list of argument values. Values of header
and sep in this list take precedence over values specified via the header and sep

arguments.
sample_ids [Deprecated] Does nothing.
subject_ids A character or numeric vector of subject IDs, whose length matches that of

file_list. Only relevant when the binary variable of interest is subject-specific
and multiple samples belong to the same subject.

group_ids A character or numeric vector of group IDs containing exactly two unique values
and with length matching that of file_list. The two groups correspond to the
two values of the binary variable of interest.

groups [Deprecated] Does nothing.

seq_col Specifies the column of each sample’s data frame containing the TCR/BCR se-
quences. Accepts a character string containing the column name or a numeric
scalar containing the column index.

freq_col Optional. Specifies the column of each sample’s data frame containing the clone
frequency (i.e., clone count divided by the sum of the clone counts across all
clones in the sample). Accepts a character string containing the column name
or a numeric scalar containing the column index. If this argument is specified,

60 findAssociatedSeqs

the maximum clone frequency (across all samples) for each associated sequence
will be included in the content of the label variable of the returned data frame.

min_seq_length Controls the minimum TCR/BCR sequence length considered when searching
for associated sequences. Passed to filterInputData().

drop_matches Passed to filterInputData(). Accepts a character string containing a regular
expression (see regex). Checks TCR/BCR sequences for a pattern match using
grep(). Those returning a match are excluded from consideration as associated
sequences. It is recommended to filter out sequences containing special charac-
ters that are invalid for use in file names. By default, sequences containing any
of the characters *, | or _ are dropped.

min_sample_membership
Controls the minimum number of samples in which a TCR/BCR sequence must
be present in order to be considered when searching for associated sequences.
Setting this value to NULL bypasses the check.

pval_cutoff Controls the P-value cutoff below which an association is detected by Fisher’s
exact test (see details).

outfile A file path for saving the output (using write.csv()).

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

data A data frame containing the combined AIRR-seq data for all samples.

sample_col The column of data containing the sample IDs. Accepts a character string con-

taining the column name or a numeric scalar containing the column index.

subject_col Optional. The column of data containing the subject IDs. Accepts a character
string containing the column name or a numeric scalar containing the column
index. Only relevant when the binary variable of interest is subject-specific and
multiple samples belong to the same subject.

group_col The column of data containing the group IDs. Accepts a character string con-
taining the column name or a numeric scalar containing the column index. The
groups correspond to the two values of the binary variable of interest. Thus there
should be exactly two unique values in this column.

Details

The TCR/BCR sequences from all samples are first filtered according to minimum sequence length
and sequence content based on the specified values in min_seq_length and drop_matches, re-
spectively. The sequences are further filtered based on sample membership, removing sequences
appearing in fewer than min_sample_membership samples.

For each remaining TCR/BCR sequence, a P-value is computed for Fisher’s exact test of indepen-
dence between the binary variable of interest and the presence of the sequence within a repertoire.
The samples/subjects are divided into two groups based on the levels of the binary variable. If sub-
ject IDs are provided, then the test is based on the number of subjects in each group for whom the
sequence appears in one of their samples. Without subject IDs, the test is based on the number of
samples possessing the sequence in each group.

Fisher’s exact test is performed using fisher.test(). TCR/BCR sequences with a P-value below
pval_cutoff are sorted by P-value and returned along with some additional information.

findAssociatedSeqs 61

The returned ouput is intended for use with the findAssociatedClones() function. See the
Searching for Associated TCR/BCR Clusters article on the package website.

Value

A data frame containing the TCR/BCR sequences found to be associated with the binary variable
using Fisher’s exact test (see details). Each row corresponds to a unique TCR/BCR sequence and
includes the following variables:

ReceptorsSeq The unique receptor sequence.

fisher_pvalue The P-value on Fisher’s exact test for independence between the receptor se-
quence and the binary variable of interest.

shared_by_n_samples
The number of samples in which the sequence was observed.

samples_go@ Of the samples in which the sequence was observed, the number of samples
belonging to the first group.

samples_g1 Of the samples in which the sequence was observed, the number of samples
belonging to the second group.
shared_by_n_subjects

The number of subjects in which the sequence was observed (only present if
subject IDs are specified).

subjects_g0 Of the subjects in which the sequence was observed, the number of subjects
belonging to the first group (only present if subject IDs are specified).

subjects_g1 Of the subjects in which the sequence was observed, the number of subjects
belonging to the second group (only present if subject IDs are specified).

max_freq The maximum clone frequency across all samples. Only present if freqg_col is
non-null.

label A character string summarizing the above information. Also includes the maxi-

mum in-sample clone frequency across all samples, if available.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package
Searching for Associated TCR/BCR Clusters article on package website

See Also

findAssociatedClones() buildAssociatedClusterNetwork()

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/associated_clusters.html
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/associated_clusters.html

62 findAssociatedSeqs

Examples

set.seed(42)

Simulate 30 samples from two groups (treatment/control)
n_control <- n_treatment <- 15
n_samples <- n_control + n_treatment
sample_size <- 30 # (seqs per sample)
base_seqs <- # first five are associated with treatment
c("CASSGAYEQYF", "CSVDLGKGNNEQFF", "CASSIEGQLSTDTQYF",
"CASSEEGQLSTDTQYF", "CASSPEGQLSTDTQYF",
"RASSLAGNTEAFF", "CASSHRGTDTQYF", "CASDAGVFQPQHF")
Relative generation probabilities by control/treatment group
pgen_c <- matrix(rep(c(rep(1, 5), rep(30, 3)), times = n_control),
nrow = n_control, byrow = TRUE)
pgen_t <- matrix(rep(c(1, 1, rep(1/3, 3), rep(2, 3)), times = n_treatment),
nrow = n_treatment, byrow = TRUE)
pgen <- rbind(pgen_c, pgen_t)
simulateToyData(
samples = n_samples,
sample_size = sample_size,
prefix_length = 1,
prefix_chars = c("", ""),
prefix_probs = cbind(rep(1, n_samples), rep(@, n_samples)),
affixes = base_segs,
affix_probs = pgen,
num_edits = 0,
output_dir = tempdir(),
no_return = TRUE

)

Step 1: Find Associated Sequences
sample_files <-
file.path(tempdir(),
paste@("Sample”, 1:n_samples, ".rds")
)
group_labels <- c(rep("reference”, n_control),
rep("”comparison”, n_treatment))
associated_seqs <-
findAssociatedSeqs(
file_list = sample_files,
input_type = "rds”,
group_ids = group_labels,
seq_col = "CloneSeq”,
min_seq_length = NULL,
drop_matches = NULL,
min_sample_membership = 0,
pval_cutoff = 0.1
)
head(associated_seqs[, 1:5])

Step 2: Find Associated Clones
dir_step2 <- tempfile()

findPublicClusters 63

findAssociatedClones(
file_list = sample_files,
input_type = "rds",
group_ids = group_labels,
seq_col = "CloneSeq",
assoc_seqs = associated_seqs$ReceptorSeq,
min_seq_length = NULL,
drop_matches = NULL,
output_dir = dir_step2
)

Step 3: Global Network of Associated Clusters
associated_clusters <-
buildAssociatedClusterNetwork(
file_list = list.files(dir_step2,
full.names = TRUE

),

seq_col = "CloneSeq”,

size_nodes_by = 1.5,

print_plots = TRUE

findPublicClusters Find Public Clusters Among RepSeq Samples

Description

Part of the workflow Searching for Public TCR/BCR Clusters.

Given multiple samples of bulk Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq)
data, construct the repertoire network for each sample. Within each sample’s network, perform
cluster analysis and filter the clusters based on node count and aggregate clone count.

Usage

findPublicClusters(

Input
file_list,
input_type,
data_symbols = NULL,
header, sep, read.args,
sample_ids =
paste@("Sample”, 1:length(file_list)),
seq_col,
count_col = NULL,

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/public_clusters.html

64 findPublicClusters

Search Criteria
min_seqg_length = 3,
drop_matches = "[*|_]",
top_n_clusters = 20,
min_node_count = 10,
min_clone_count = 100,

Optional Visualization
plots = FALSE,

print_plots = FALSE,
plot_title = "auto”,
color_nodes_by = "cluster_id",

Output
output_dir,
output_type = "rds"”,

Optional Output
output_dir_unfiltered = NULL,
output_type_unfiltered = "rds",

verbose = FALSE,

)
Arguments
file_list A character vector of file paths, or a list containing connections and file paths.
Each element corresponds to a single file containing the data for a single sample.
Passed to loadDataFromFilelList().
input_type A character string specifying the file format of the sample data files. Options are

"table”, "txt", "tsv"”, "csv", "rds" and "rda". Passed to loadDataFromFilelList().

data_symbols Used when input_type = "rda"”. Specifies the name of each sample’s data
frame within its respective Rdata file. Passed to loadDataFromFilelList().

header For values of input_type other than "rds” and "rda", this argument can be
used to specify a non-default value of the header argument to read. table(),
read.csv(), etc.

sep For values of input_type other than "rds” and "rda"”, this argument can be
used to specify a non-default value of the sep argument to read.table(),
read.csv(), etc.

read.args For values of input_type other than "rds” and "rda”, this argument can be
used to specify non-default values of optional arguments to read.table(),
read.csv(), etc. Accepts a named list of argument values. Values of header
and sep in this list take precedence over values specified via the header and sep
arguments.

findPublicClusters

sample_ids

seg_col

count_col

min_seq_length

drop_matches

top_n_clusters

min_node_count

min_clone_count

plots

print_plots

plot_title

color_nodes_by

output_dir

output_type

65

A character or numeric vector of sample IDs, whose length matches that of
file_list. The values should be valid for use as filenames and should avoid
using the forward slash or backslash characters (/ or \).

Specifies the column of each sample’s data frame containing the TCR/BCR se-
quences. Accepts a character string containing the column name or a numeric
scalar containing the column index.

Specifies the column of each sample’s data frame containing the clone count
(measure of clonal abundance). Accepts a character string containing the col-
umn name or a numeric scalar containing the column index. If NULL, the clusters
in each sample’s network will be selected solely based upon node count.

Passed to buildRepSegNetwork () when constructing the network for each sam-
ple.

Passed to buildRepSegNetwork () when constructing the network for each sam-
ple. Accepts a character string containing a regular expression (see regex).
Checks TCR/BCR sequences for a pattern match using grep(). Those return-
ing a match are dropped. By default, sequences containing any of the characters
*, | or _ are dropped.

The number of clusters from each sample to be automatically be included among
the filtered clusters, based on greatest node count.

Clusters with at least this many nodes will be included among the filtered clus-
ters.

Clusters with an aggregate clone count of at least this value will be included
among the filtered clusters. A value of NULL ignores this criterion and does not
select additional clusters based on clone count.

Passed to buildRepSegNetwork () when constructing the network for each sam-
ple.

Passed to buildRepSegNetwork () when constructing the network for each sam-
ple.

Passed to buildRepSegNetwork () when constructing the network for each sam-
ple.

Passed to buildRepSegNetwork () when constructing the network for each sam-
ple.

The file path of the directory for saving the output. The directory will be created
if it does not already exist.

A character string specifying the file format to use for saving the output. Valid

non

options include "csv”, "rds"” and "rda".

output_dir_unfiltered

An optional directory for saving the unfiltered network data for each sample. By
default, only the filtered results are saved.

output_type_unfiltered

A character string specifying the file format to use for saving the unfiltered net-
work data for each sample. Only applicable if output_dir_unfiltered is non-
null. Passed to buildRepSegNetwork() when constructing the network for each
sample.

66 findPublicClusters

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

Other arguments to buildRepSeqNetwork when constructing the network for
each sample, not including node_stats, stats_to_include, cluster_stats,
cluster_id_name or output_name (see details).

Details

Each sample’s network is constructed using an individual call to buildNet () with node_stats =

TRUE, stats_to_include = "all”, cluster_stats = TRUE and cluster_id_name = "ClusterIDInSample”.
The node-level properties are renamed to reflect their correspondence to the sample-level network.
Specifically, the properties are named:

e SampleLevelNetworkDegree

e SampleLevelTransitivity

e SamplelLevelCloseness

e SampleLevelCentralityByCloseness

e SampleLevelCentralityByEigen

e SampleLevelEigenCentrality

e SamplelLevelBetweenness

e SamplelLevelCentralityByBetweenness
e SamplelLevelAuthorityScore

e SamplelLevelCoreness

* SamplelLevelPageRank

A variable SampleID is added to both the node-level and cluster-level meta data for each sample.

After the clusters in each sample are filtered, the node-level and cluster-level metadata are saved
in the respective subdirectories node_meta_data and cluster_meta_data of the output directory
specified by output_dir.

The unfiltered network results for each sample can also be saved by supplying a directory to
output_dir_unfiltered, if these results are desired for downstream analysis. Each sample’s
unfiltered network results will then be saved to its own subdirectory created within this directory.

The files containing the node-level metadata for the filtered clusters can be supplied to buildPublicClusterNetwork()
in order to construct a global network of public clusters. If the full global network is too large to

practically construct, the files containing the cluster-level meta data for the filtered clusters can be

supplied to buildPublicClusterNetworkByRepresentative() to build a global network using

only a single representative sequence from each cluster. This allows prominent public clusters to

still be identified.

See the Searching for Public TCR/BCR Clusters article on the package website.

Value

Returns TRUE, invisibly.

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/public_clusters.html

findPublicClusters 67

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package
Searching for Public TCR/BCR Clusters vignette

See Also

buildPublicClusterNetwork()
buildPublicClusterNetworkByRepresentative()

Examples

set.seed(42)

Simulate 30 samples with a mix of public/private sequences
samples <- 30
sample_size <- 30 # (seqs per sample)
base_seqs <- c(
"CASSIEGQLSTDTQYF", "CASSEEGQLSTDTQYF", "CASSSVETQYF",
"CASSPEGQLSTDTQYF", "RASSLAGNTEAFF”, "CASSHRGTDTQYF”, "CASDAGVFQPQHF”,
"CASSLTSGYNEQFF", "CASSETGYNEQFF", "CASSLTGGNEQFF", "CASSYLTGYNEQFF",
"CASSLTGNEQFF", "CASSLNGYNEQFF", "CASSFPWDGYGYTF", "CASTLARQGGELFF",
"CASTLSRQGGELFF", "CSVELLPTGPLETSYNEQFF", "CSVELLPTGPSETSYNEQFF",
"CVELLPTGPSETSYNEQFF", "CASLAGGRTQETQYF", "CASRLAGGRTQETQYF",
"CASSLAGGRTETQYF", "CASSLAGGRTQETQYF", "CASSRLAGGRTQETQYF",
"CASQYGGGNQPQHF ", "CASSLGGGNQPQHF", "CASSNGGGNQPQHF", "CASSYGGGGNQPQHF",
"CASSYGGGQPQHF ", "CASSYKGGNQPQHF", "CASSYTGGGNQPQHF",
"CAWSSQETQYF", "CASSSPETQYF", "CASSGAYEQYF", "CSVDLGKGNNEQFF")
Relative generation probabilities
pgen <- cbind(
stats::toeplitz(0.6%(0: (sample_size - 1))),
matrix(1, nrow = samples, ncol = length(base_seqgs) - samples)
)
simulateToyData(
samples = samples,
sample_size = sample_size,
prefix_length = 1,
prefix_chars = c("", ""),
prefix_probs = cbind(rep(1, samples), rep(@, samples)),
affixes = base_seqs,
affix_probs = pgen,
num_edits = 0,
output_dir = tempdir(),
no_return = TRUE

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/public_clusters.html

68 generateAdjacencyMatrix

sample_files <-

file.path(tempdir(),
paste@("Sample”, 1:samples, ".rds")

)

findPublicClusters(
file_list = sample_files,
input_type = "rds",
seq_col = "CloneSeq”,
count_col = "CloneCount”,
min_seq_length = NULL,
drop_matches = NULL,
top_n_clusters = 3,
min_node_count = 5,
min_clone_count = 15000,
output_dir = tempdir()

generateAdjacencyMatrix
Compute Graph Adjacency Matrix for Immune Repertoire Network

Description

Given a list of receptor sequences, computes the adjacency matrix for the network graph based on
sequence similarity.

sparseAdjacencyMatFromSeqs() is a deprecated equivalent of generateAdjacencyMatrix().

Usage

generateAdjacencyMatrix(
segs,
dist_type = "hamming",
dist_cutoff =1,
drop_isolated_nodes = TRUE,
method = "default”,
verbose = FALSE

Deprecated equivalent:
sparseAdjacencyMatFromSeqgs(
segs,
dist_type = "hamming"”,
dist_cutoff =1,
drop_isolated_nodes = TRUE,

generateAdjacencyMatrix 69

method = "default”,
verbose = FALSE,
max_dist = deprecated()

)
Arguments

seqs A character vector containing the receptor sequences.

dist_type Specifies the function used to quantify the similarity between sequences. The
similarity between two sequences determines the pairwise distance between
their respective nodes in the network graph, with greater similarity correspond-
ing to shorter distance. Valid options are "hamming"” (the default), which uses
hamDistBounded, and "levenshtein”, which uses levDistBounded.

dist_cutoff A nonnegative scalar. Specifies the maximum pairwise distance (based on dist_type)

for an edge connection to exist between two nodes. Pairs of nodes whose dis-
tance is less than or equal to this value will be joined by an edge connection
in the network graph. Controls the stringency of the network construction and
affects the number and density of edges in the network. A lower cutoff value
requires greater similarity between sequences in order for their respective nodes
to be joined by an edge connection. A value of @ requires two sequences to be
identical in order for their nodes to be joined by an edge.

drop_isolated_nodes

Logical. When TRUE, removes each node that is not joined by an edge connec-
tion to any other node in the network graph.

method A character string specifying the algorithm to use. Choices are "default” and
"pattern”. "pattern” is only valid when dist_cutoff < 3, but tends to be
faster than "default” for sparsely connected networks, at the cost of greater
memory usage (can cause crashes for large or densely-connected networks, par-
ticularly for dist_cutoff =2). The default algorithm tends to be faster for
densely-connected networks or long sequences.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr.
max_dist [Deprecated] Equivalent to dist_cutoff.
Details

The adjacency matrix of a graph with n nodes is the symmetric n x n matrix for which entry (4, j)
is equal to 1 if nodes ¢ and j are connected by an edge in the network graph and 0 otherwise.

To construct the graph of the immune repertoire network, each receptor sequence is modeled as
a node. The similarity between receptor sequences, as measured using either the Hamming or
Levenshtein distance, determines the distance between nodes in the network graph. The more
similar two sequences are, the shorter the distance between their respective nodes. Two nodes in the
graph are joined by an edge if the distance between them is sufficiently small, i.e., if their receptor
sequences are sufficiently similar.

70 generateAdjacencyMatrix

Value

A sparse matrix of class dgCMatrix (see dgCMatrix-class).

If drop_isolated_nodes = TRUE, the row and column names of the matrix indicate which receptor
sequences in the seqs vector correspond to each row and column of the matrix. The row and column
names can be accessed using dimnames. This returns a list containing two character vectors, one
for the row names and one for the column names. The name of the ith matrix row is the index of the
seqs vector corresponding to the ith row and ¢th column of the matrix. The name of the jth matrix
column is the receptor sequence corresponding to the jth row and jth column of the matrix.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Examples

generateAdjacencyMatrix(
c("fee”, "fie”, "foe”, "fum”, "foo")

)

No edge connections exist based on a Hamming distance of 1
(returns a 0x@ sparse matrix)
generateAdjacencyMatrix(

c("foo", "foobar", "fubar"”, "bar")

)

Same as the above example, but keeping all nodes
(returns a 4x4 sparse matrix)
generateAdjacencyMatrix(
c("foo", "foobar"”, "fubar”, "bar"),
drop_isolated_nodes = FALSE
)

Relaxing the edge criteria using a Hamming distance of 2
(still results in no edge connections)
generateAdjacencyMatrix(

c("foo", "foobar”, "fubar"”, "bar"),

dist_cutoff = 2
)

Using a Levenshtein distance of 2, however,
does result in edge connections
generateAdjacencyMatrix(
c("foo", "foobar"”, "fubar”, "bar"),
dist_type = "levenshtein”,

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

generateNetworkGraph 71

dist_cutoff = 2
)

Using a Hamming distance of 3
also results in (different) edge connections
generateAdjacencyMatrix(
c("foo", "foobar”, "fubar"”, "bar"),
dist_cutoff = 3

)

generateNetworkGraph Generate the igraph for a Network Adjacency Matrix

Description

Given the adjacency matrix of an undirected graph, returns the corresponding igraph containing
the list of nodes and edges.

generateNetworkFromAdjacencyMat () is a deprecated equivalent of generateNetworkGraph().

Usage

generateNetworkGraph(
adjacency_matrix

)

Deprecated equivalent:
generateNetworkFromAdjacencyMat
adjacency_matrix

)

Arguments

adjacency_matrix
A symmetric matrix. Passed to graph_from_adjacency_matrix().

Value

An object of class igraph, containing the list of nodes and edges corresponding to adjacency_matrix.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

72 generateNetworkObjects

Examples

set.seed(42)
toy_data <- simulateToyData(sample_size = 10)

adj_mat <-
generateAdjacencyMatrix(
toy_data$CloneSeq
)

igraph <-
generateNetworkGraph(
adj_mat
)

generateNetworkObjects
Generate Basic Output for an Immune Repertoire Network

Description

Given Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq) data, builds the network
graph for the immune repertoire based on sequence similarity.

Usage

generateNetworkObjects(
data,
seg_col,
dist_type = "hamming"”,
dist_cutoff =1,
drop_isolated_nodes = TRUE,
verbose = FALSE

)
Arguments

data A data frame containing the AIRR-Seq data, with variables indexed by column
and observations (e.g., clones or cells) indexed by row.

seqg_col Specifies the column(s) of data containing the receptor sequences to be used as
the basis of similarity between rows. Accepts a character string containing the
column name or a numeric scalar containing the column index. Also accepts a
vector of length 2 specifying distinct sequence columns (e.g., alpha chain and
beta chain), in which case similarity between rows depends on similarity in both
sequence columns (see details).

dist_type Specifies the function used to measure the similarity between sequences. The

similarity between two sequences determines the pairwise distance between
their respective nodes in the network graph. Valid options are "hamming" (the
default), which uses hamDistBounded(), and "levenshtein”, which uses levDistBounded().

generateNetworkObjects 73

dist_cutoff A nonnegative scalar. Specifies the maximum pairwise distance (based on dist_type)

for an edge connection to exist between two nodes. Pairs of nodes whose dis-
tance is less than or equal to this value will be joined by an edge connection
in the network graph. Controls the stringency of the network construction and
affects the number and density of edges in the network. A lower cutoff value
requires greater similarity between sequences in order for their respective nodes
to be joined by an edge connection. A value of @ requires two sequences to be
identical in order for their nodes to be joined by an edge.

drop_isolated_nodes
A logical scalar. When TRUE, removes each node that is not joined by an edge
connection to any other node in the network graph.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().
Details

To construct the immune repertoire network, each TCR/BCR clone (bulk data) or cell (single-cell
data) is modeled as a node in the network graph, corresponding to a single row of the AIRR-Seq
data. For each node, the corresponding receptor sequence is considered. Both nucleotide and
amino acid sequences are supported for this purpose. The receptor sequence is used as the basis of
similarity and distance between nodes in the network.

Similarity between sequences is measured using either the Hamming distance or Levenshtein (edit)
distance. The similarity determines the pairwise distance between nodes in the network graph. The
more similar two sequences are, the shorter the distance between their respective nodes. Two nodes
are joined by an edge if their receptor sequences are sufficiently similar, i.e., if the distance between
the nodes is sufficiently small.

For single-cell data, edge connections between nodes can be based on similarity in both the alpha
chain and beta chain sequences. This is done by providing a vector of length 2 to seq_cols speci-
fying the two sequence columns in data. The distance between two nodes is then the greater of the
two distances between sequences in corresponding chains. Two nodes will be joined by an edge if
their alpha chain sequences are sufficiently similar and their beta chain sequences are sufficiently
similar.

See the buildRepSeqNetwork package vignette for more details. The vignette can be accessed
offline using vignette("buildRepSegNetwork™).

Value

If the constructed network contains no nodes, the function will return NULL, invisibly, with a warn-
ing. Otherwise, the function invisibly returns a list containing the following items:

igraph An object of class igraph containing the list of nodes and edges for the network
graph.

adjacency_matrix
The network graph adjacency matrix, stored as a sparse matrix of class dgCMatrix
from the Matrix package. See dgCMatrix-class.

https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/buildRepSeqNetwork.html

74 getClusterStats

node_data A data frame containing containing metadata for the network nodes, where each
row corresponds to a node in the network graph. This data frame contains all
variables from data (unless otherwise specified via subset_cols) in addition to
the computed node-level network properties if node_stats = TRUE. Each row’s
name is the name of the corresponding row from data.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825
Webpage for the NAIR package

buildRepSeqNetwork vignette

Examples

set.seed(42)
toy_data <- simulateToyData()

net <-
generateNetworkObjects(
toy_data,
"CloneSeq”
)
getClusterStats Compute Cluster-Level Network Properties
Description

Given the node-level metadata and adjacency matrix for a network graph that has been partitioned
into clusters, computes network properties for the clusters and returns them in a data frame.

addClusterStats() is preferred to getClusterStats() in most situations.

Usage

getClusterStats(
data,
adjacency_matrix,
seq_col = NULL,
count_col = NULL,
cluster_id_col = "cluster_id",
degree_col = NULL,
cluster_fun = deprecated(),
verbose = FALSE

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/buildRepSeqNetwork.html

getClusterStats 75

Arguments

data A data frame containing the node-level metadata for the network, with each row
corresponding to a network node.

adjacency_matrix
The adjacency matrix for the network.

seq_col Specifies the column(s) of data containing the receptor sequences upon whose
similarity the network is based. Accepts a character or numeric vector of length
1 or 2, containing either column names or column indices. If provided, then
related cluster-level properties will be computed.

count_col Specifies the column of data containing a measure of abundance (such as clone
count or UMI count). Accepts a character string containing the column name or
a numeric scalar containing the column index. If provided, related cluster-level
properties will be computed.

cluster_id_col Specifies the column of data containing the cluster membership variable that
identifies the cluster to which each node belongs. Accepts a character string
containing the column name or a numeric scalar containing the column index.

degree_col Specifies the column of data containing the network degree of each node. Ac-
cepts a character string containing the column name or a numeric scalar contain-
ing the column index. If the column does not exist, the network degree will be

computed.

cluster_fun [Deprecated] Does nothing.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

Details

To use getClusterStats(), the network graph must first be partitioned into clusters, which can be
done using addClusterMembership(). The name of the cluster membership variable in the node
metadata must be provided to the cluster_id_col argument when calling getClusterStats().

Value

A data frame containing one row for each cluster in the network and the following variables:

cluster_id The cluster ID number.

node_count The number of nodes in the cluster.
mean_seq_length
The mean sequence length in the cluster. Only present when length(seq_col)

A_mean_seq_length
The mean first sequence length in the cluster. Only present when length(seq_col)

B_mean_seq_length
The mean second sequence length in the cluster. Only present when length(seq_col)

76

getClusterStats

mean_degree The mean network degree in the cluster.

max_degree The maximum network degree in the cluster.

seq_w_max_degree
The receptor sequence possessing the maximum degree within the cluster. Only
present when length(seq_col) == 1.

A_seq_w_max_degree
The first sequence of the node possessing the maximum degree within the clus-
ter. Only present when length(seq_col) == 2.

B_seq_w_max_degree
The second sequence of the node possessing the maximum degree within the
cluster. Only present when length(seq_col) == 2.

agg_count The aggregate count among all nodes in the cluster (based on the counts in
count_col).

max_count The maximum count among all nodes in the cluster (based on the counts in
count_col).

seq_w_max_count
The receptor sequence possessing the maximum count within the cluster. Only
present when length(seq_col) == 1.

A_seq_w_max_count
The first sequence of the node possessing the maximum count within the cluster.
Only present when length(seq_col) == 2.

B_seqg_w_max_count
The second sequence of the node possessing the maximum count within the
cluster. Only present when length(seq_col) == 2.

diameter_length
The longest geodesic distance in the cluster, computed as the length of the vector
returned by get_diameter().

assortativity The assortativity coefficient of the cluster’s graph, based on the degree (minus
one) of each node in the cluster (with the degree computed based only upon the
nodes within the cluster). Computed using assortativity_degree().

global_transitivity
The transitivity (i.e., clustering coefficient) for the cluster’s graph, which es-
timates the probability that adjacent vertices are connected. Computed using
transitivity() with type = "global".

edge_density The number of edges in the cluster as a fraction of the maximum possible num-
ber of edges. Computed using edge_density().

degree_centrality_index
The centrality index of the cluster’s graph based on within-cluster network de-

gree. Computed as the centralization element of the output from centr_degree().

closeness_centrality_index
The centrality index of the cluster’s graph based on closeness, i.e., distance to
other nodes in the cluster. Computed using centralization().
eigen_centrality_index
The centrality index of the cluster’s graph based on the eigenvector centrality
scores, i.e., values of the first eigenvector of the adjacency matrix for the cluster.
Computed as the centralization element of the output from centr_eigen().

getNeighborhood 77

eigen_centrality_eigenvalue

The eigenvalue corresponding to the first eigenvector of the adjacency matrix for
the cluster. Computed as the value element of the output from eigen_centrality().

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

See Also

addClusterStats() addClusterMembership() labelClusters()

Examples

set.seed(42)
toy_data <- simulateToyData()

net <-
generateNetworkObjects(
toy_data, "CloneSeq”
)

net <- addClusterMembership(net)

net$cluster_data <-
getClusterStats(
net$node_data,
net$adjacency_matrix,

seq_col = "CloneSeq”,
count_col = "CloneCount”
)
getNeighborhood Identify Cells or Clones in a Neighborhood Around a Target Sequence
Description

Given Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq) data and a target receptor
sequence that is present within the data, identifies a "neighborhood" comprised of cells/clones with
receptor sequences sufficiently similar to the target sequence.

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

78 getNeighborhood

Usage
getNeighborhood(
data,
seq_col,
target_seq,
dist_type = "hamming”,
max_dist = 1
)
Arguments
data A data frame containing the AIRR-Seq data.
seg_col Specifies the column of data containing the receptor sequences. Accepts a char-
acter string containing the column name or a numeric scalar containing the col-
umn index.
target_seq A character string containing the target receptor sequence. Must be a receptor
sequence possessed by one of the clones/cells in the AIRR-Seq data.
dist_type Specifies the function used to quantify the similarity between receptor sequences.
The similarity between two sequences determines their pairwise distance, with
greater similarity corresponding to shorter distance. Valid options are "hamming”
(the default), which uses hamDistBounded(), and "levenshtein”, which uses
levDistBounded().
max_dist Determines whether each cell/clone belongs to the neighborhood based on its
receptor sequence’s distance from the target sequence. The distance is based on
the dist_type argument. max_dist specifies the maximum distance at which a
cell/clone belongs to the neighborhood. Lower values require greater similarity
between the target sequence and the receptor sequences of cells/clones in its
neighborhood.
Value

A data frame containing the rows of data corresponding to the cells/clones in the neighborhood.

If no cell/clone in the AIRR-Seq data possesses the target sequence as its receptor sequence, then a
value of NULL is returned.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

hamDistBounded 79

Examples

set.seed(42)
toy_data <- simulateToyData(sample_size = 500)

Get neighborhood around first clone sequence
nbd <-
getNeighborhood(
toy_data,
seq_col = "CloneSeq”,
target_seq = "GGGGGGGAATTGG"
)

head(nbd)

hamDistBounded Bounded Computation of Hamming Distance

Description

Computes the Hamming distance between two strings subject to a specified upper bound.

Usage

hamDistBounded(a, b, k)

Arguments
a A character string.
A character string to be compared to a.
k The upper bound on the Hamming distance between a and b.
Details

For two character strings of equal length, the Hamming distance measures the total number of
character differences between characters in corresponding positions. That is, for each position in
one string, the character in that position is checked to see whether it differs from the character in
the same position of the other string.

For two character strings of different lengths, the Hamming distance is not defined. However,
hamDistBounded() will accommodate strings of different lengths, doing so in a conservative fash-
ion that seeks to yield a meaningful result for the purpose of checking whether two strings are
sufficiently similar. If the two strings differ in length, placeholder characters are appended to the
shorter string until its length matches that of the longer string. Each appended placeholder char-
acter is treated as different from the character in the corresponding position of the longer string.
This is effectively the same as truncating the end of the longer string and adding the number of
deleted characters to the Hamming distance between the shorter string and the truncated longer
string (which is what is actually done in practice, as the computation is faster).

80 hamDistBounded

The above method used by hamDistBounded() to accommodate unequal string lengths results in
distance values whose meaning may be questionable, depending on context, when the two strings
have different lengths. The decision to append placeholder characters to the end of the shorter string
(as opposed to prepending them to the beginning) is ad hoc and somewhat arbitrary. In effect, it
allows two strings of different lengths to be considered sufficiently similar if the content of the
shorter string sufficiently matches the beginning content of the longer string and the difference in
string length is not too great.

For comparing sequences of different lengths, the Levenshtein distance (see levDistBounded()) is
more appropriate and meaningful than using hamDistBounded(), but comes at the cost of greater
computational burden.

Computation is aborted early if the Hamming distance is determined to exceed the specified upper
bound. This functionality is designed for cases when distinguishing between values above the upper
bound is not meaningful, taking advantage of this fact to reduce the computational burden.

Value
An integer. If the Hamming distance exceeds the specified upper bound k, then a value of -1 is
returned. Otherwise, returns the Hamming distance between a and b.

Note

The computed value may be invalid when the length of either string is close to or greater than the
value of INT_MAX in the compiler that was used at build time (typically 2147483647).

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

See Also

levDistBounded()

Examples

using an upper bound of 3

(trivial since strings have length 3)
hamDistBounded("foo", "foo", 3)
hamDistBounded(”"foo"”, "fee", 3)
hamDistBounded("foo", "fie", 3)
hamDistBounded("foo", "foe", 3)
hamDistBounded(”foo"”, "fum”, 3)
hamDistBounded("foo", "bar", 3)

using an upper bound of 1

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

labelClusters 81

(most distances exceed the upper bound)
hamDistBounded(”"foo"”, "fee", 1)
hamDistBounded(”"foo"”, "fie", 1)
hamDistBounded("foo", "foe", 1)
hamDistBounded(”"foo"”, "fum”, 1)
hamDistBounded(”"foo"”, "bar"”, 1)

comparing strings of nonmatching length
hamDistBounded("foo"”, "fubar"”, 10)
hamDistBounded("foo", "foobar"”, 10)
hamDistBounded("foo", "barfoo”, 10)

labelClusters Label Clusters in a Network Graph Plot

Description

Functions for labeling the clusters in network graph plots with their cluster IDs. The user can
specify a cluster-level property by which to rank the clusters, labeling only those clusters above a
specified rank.

Usage

labelClusters(
net,
plots = NULL,
top_n_clusters = 20,
cluster_id_col = "cluster_id",
criterion = "node_count”,
size = 5, color = "black”,
greatest_values = TRUE

)

addClusterlLabels(
plot,
net,
top_n_clusters = 20,
cluster_id_col = "cluster_id",
criterion = "node_count”,
size = 5,
color = "black”,
greatest_values = TRUE

)

Arguments
net A list of network objects conforming to the output of buildRepSeqNetwork()

or generateNetworkObjects(). See details.

82 labelClusters

plots Specifies which plots in net$plots to annotate. Accepts a character vector of
element names or a numeric vector of element position indices. The default
NULL annotates all plots.

plot A ggraph object containing the network graph plot.

top_n_clusters A positive integer specifying the number of clusters to label. Those with the
highest rank according to the criterion argument will be labeled.

cluster_id_col Specifies the column of net$node_data containing the variable for cluster mem-
bership. Accepts a character string containing the column name.

criterion Can be used to specify a cluster-level network property by which to rank the
clusters. Non-default values are ignored unless net$cluster_data exists and
corresponds to the cluster membership variable specified by cluster_id_col.
Accepts a character string containing a column name of net$cluster_data.
The property must be quantitative for the ranking to be meaningful. By de-
fault, clusters are ranked by node count, which is computed based on the cluster
membership values if necessary.

size The font size of the cluster ID labels. Passed to the size argument of geom_node_text ().

color The color of the cluster ID labels. Passed to the color argument of geom_node_text ().
greatest_values
Logical. Controls whether clusters are ranked according to the greatest or least
values of the property specified by the criterion argument. If TRUE, clusters
with greater values will be ranked above those with lower values, thereby re-
ceiving a higher priority to be labeled.

Details

The list net must contain the named elements igraph (of class igraph), adjacency_matrix (a
matrix or dgCMatrix encoding edge connections), and node_data (a data. frame containing node
metadata), all corresponding to the same network. The lists returned by buildRepSegNetwork()
and generateNetworkObjects() are examples of valid inputs for the net argument.

Value

labelClusters() returns a copy of net with the specified plots annotated.

addClusterLabels() returns an annotated copy of plot.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

See Also
addClusterMembership(), getClusterStats(), generateNetworkGraphPlots()

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

labelNodes

Examples

set.seed(42)

toy_data <- simulateToyData()

network <- buildRepSegNetwork(
toy_data, "CloneSeq",
cluster_stats = TRUE,
color_nodes_by = "cluster_id",
color_scheme = "turbo”,
color_legend = FALSE,

)

network <- labelClusters(network)

network$plots$cluster_id

plot_title = NULL,

plot_subtitle = NULL,

size_nodes_by = 1

83

labelNodes

Label Nodes in a Network Graph Plot

Description

Functions for annotating a graph plot to add custom labels to the nodes.

Usage

labelNodes(

net,
node_labels,
plots = NULL,
size = 5,

color = "black”

addGraphLabels(

plot,
node_labels,
size = 5,

color = "black”

Arguments

net

plot

A ggraph object containing the network graph plot.

A list of network objects conforming to the output of buildRepSeqNetwork()
or generateNetworkObjects(). See details.

84 labelNodes

node_labels A vector containing the node labels, where each entry is the label for a single
node. The length should match the number of nodes in the plot.

plots Specifies which plots in net$plots to annotate. Accepts a character vector of
element names or a numeric vector of element position indices. The default
NULL annotates all plots.

size The font size of the node labels. Passed to the size argument of geom_node_text ().
color The color of the node labels. Passed to the size argument of geom_node_text ().
Details

The list net must contain the named elements igraph (of class igraph), adjacency_matrix (a
matrix or dgCMatrix encoding edge connections), and node_data (a data. frame containing node
metadata), all corresponding to the same network. The lists returned by buildRepSegNetwork()
and generateNetworkObjects() are examples of valid inputs for the net argument.

Labels are added using geom_node_text().

Value

labelNodes () returns a copy of net with the specified plots annotated.

addGraphLabels() returns a ggraph object containing the original plot annotated with the node
labels.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Examples

set.seed(42)
toy_data <-
simulateToyData(
samples = 1,
sample_size = 10,
prefix_length = 1
)

Generate network
network <-
buildNet(
toy_data,
seg_col = "CloneSeq",
plot_title = NULL,
plot_subtitle = NULL

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

levDistBounded 85

)

Label each node with its receptor sequence
network <- labelNodes(network, "CloneSeq"”, size = 3)

network$plots[[1]1]

levDistBounded Bounded Computation of Levenshtein Distance

Description

Computes the Levenshtein distance between two strings subject to a specified upper bound.

Usage

levDistBounded(a, b, k)

Arguments
a A character string.
b A character string to be compared to a.
k An integer specifying the upper bound on the Levenshtein distance between a
and b.
Details

The Levenshtein distance (sometimes referred to as edit distance) between two character strings
measures the minimum number of single-character edits (insertions, deletions and transformations)
needed to transform one string into the other.

Compared to the Hamming distance (see hamDistBounded()), the Levenshtein distance is par-
ticularly useful for comparing sequences of different lengths, as it can account for insertions and
deletions, whereas the Hamming distance only accounts for single-character transformations. How-
ever, the computational burden for the Levenshtein distance can be significantly greater than for the
Hamming distance.

Computation is aborted early if the Levenshtein distance is determined to exceed the specified upper
bound. This functionality is designed for cases when distinguishing between values above the upper
bound is not meaningful, taking advantage of this fact to reduce the computational burden.

Value

An integer. If the Levenshtein distance exceeds the specified upper bound k, then a value of -1 is
returned. Otherwise, returns the Levenshtein distance between a and b.

86 levDistBounded

Note

The computed value may be invalid when the length of either string is close to or greater than the
value of INT_MAX in the compiler that was used at build time (typically 2147483647).

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

See Also

hamDistBounded

Examples

equal string lengths,

character transmutations only

levDistBounded("foo"”, "bar", 3)

hamDistBounded(”foo"”, "bar"”, 3) # agrees with Hamming distance

one insertion, one deletion
levDistBounded("”1234567", "1.23457", 7)
hamDistBounded("1234567", "1.23457", 7) # compare to Hamming distance

same as above, but with a different lower bound
levDistBounded(”1234567", "1.23457", 3) # within the bound
hamDistBounded("1234567", "1.23457", 3) # exceeds the bound

one deletion (last position)
levDistBounded("”1234567890", "123456789", 10)
hamDistBounded("”1234567890", "123456789", 10)

note the Hamming distance agrees with the Levenshtein distance
for the above example, since the deletion occurs in the final
character position. This is due to how hamDistBounded() handles
strings of different lengths. In the example below, however...

one deletion (first position)
levDistBounded("”1234567890", "234567890", 10)
hamDistBounded(”1234567890", "234567890", 10) # compare to Hamming distance

one deletion, one transmutation
levDistBounded("foobar”, "fubar”, 6)
hamDistBounded("foobar"”, "fubar", 6) # compare to Hamming distance

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

plotNetworkGraph 87

plotNetworkGraph Plot the Graph of an Immune Repertoire Network

Description

Given the igraph of an immune repertoire network, generates a plot of the network graph according
to the user specifications.

Deprecated. Replaced by addPlots().

Usage

plotNetworkGraph(
igraph,
plot_title = NULL,
plot_subtitle = NULL,
color_nodes_by = NULL,

color_scheme = "default”,
color_legend = "auto”,
color_title = "auto”,

edge_width = 0.1,
size_nodes_by = 0.5,
node_size_limits = NULL,
size_title = "auto”,
outfile = NULL,
pdf_width = 12,
pdf_height = 8

)
Arguments
igraph An object of class igraph.
plot_title A character string containing the plot title. Passed to labs().

plot_subtitle A character string containing the plot subtitle. Passed to labs().

color_nodes_by A vector whose length matches the number of nodes in the network. The values
are used to encode the color of each node. An argument value of NULL (the
default) leaves the nodes uncolored. Passed to the color aesthetic mapping of
geom_node_point().

color_scheme A character string specifying the color scale used to color the nodes. "default”
uses default ggplot() colors. Other options are one of the viridis color scales
(e.g., "plasma”, "A" or other valid inputs to the option argument of scale_color_viridis())
or (for discrete variables) a palette from hcl.pals() (e.g., "RdY1Gn"). Each of
the viridis color scales can include the suffix "-1" to reverse its direction (e.g.,
"plasma-1"or "A-1").
color_legend A logical scalar specifying whether to display the color legend in the plot. The
default value of "auto” shows the color legend if color_nodes_by is a contin-
uous variable or a discrete variable with at most 20 distinct values.

88 plotNetworkGraph

color_title A character string (or NULL) specifying the title for the color legend. Only
applicable if color_nodes_by is a vector. If color_title = "auto” (the de-
fault), the title for the color legend will be the name of the vector provided to
color_nodes_by.

edge_width A numeric scalar specifying the width of the graph edges in the plot. Passed to
the width argument of geom_edge_1ink@().

size_nodes_by A numeric scalar specifying the size of the nodes, or a numeric vector with
positive entires that encodes the size of each node (and whose length matches the
number of nodes in the network). Alternatively, an argument value of NULL uses
the default ggraph() size for all nodes. Passed to the size aesthetic mapping of
geom_node_point().

size_title A character string (or NULL) specifying the title for the size legend. Only applica-
bleif size_nodes_byis avector. If size_title = "auto” (the default), the title
for the color legend will be the name of the vector provided to size_nodes_by.

node_size_limits
A numeric vector of length 2, specifying the minimum and maximum node size.

Only applicable if size_nodes_by is a vector. If node_size_limits =NULL,
the default size scale will be used.

outfile An optional file path for saving the plot as a pdf. If NULL (the default), no pdf
will be saved.
pdf_width Sets the plot width when writing to pdf. Passed to the width argument of pdf' ().
pdf_height Sets the plot height when writing to pdf. Passed to the height argument of
pdf ().
Value

A ggraph object.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Network Visualization article on package website

See Also

addPlots()

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/articles/network_visualization.html

saveNetwork 89

Examples

set.seed(42)
toy_data <- simulateToyData()

Generate network for data
net <- buildNet(toy_data, "CloneSeq")

Plot network graph
net_plot <- plotNetworkGraph(
net$igraph,
color_nodes_by =
net$node_data$SamplelD,
color_title = NULL,
size_nodes_by =
net$node_data$CloneCount,
size_title = "Clone Count”,
node_size_limits = c(0.5, 1.5))

print(net_plot)

saveNetwork Save List of Network Objects

Description

Given a list of network objects such as that returned by buildRepSegNetwork() or generateNetworkObjects,
saves its contents according to the specified file format scheme.

Usage

saveNetwork (
net,
output_dir,
output_type = "rds”,
output_name = "MyRepSeqNetwork",
pdf_width = 12,
pdf_height = 10,
verbose = FALSE,
output_filename = deprecated()

n

)
Arguments
net A list of network objects returned by buildRepSegNetwork() or generateNetworkObjects().
output_dir A file path specifying the directory in which to write the file(s).
output_type A character string specifying the file format scheme to use when writing output

to file. Valid options are "individual”, "rds"” and "rda". See detials.

90 saveNetwork

output_name A character string. All files saved will have file names beginning with this value.

pdf_width If the list contains plots, this controls the width of each plot when writing to pdf.
Passed to the width argument of the pdf function.

pdf_height If the list contains plots, this controls the height of each plot when writing to
pdf. Passed to the height argument of the pdf function.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().

output_filename
[Deprecated] Equivalent to output_name.

Details

The list net must contain the named elements igraph (of class igraph), adjacency_matrix (a
matrix or dgCMatrix encoding edge connections), and node_data (a data. frame containing node
metadata), all corresponding to the same network. The list returned by buildRepSegNetwork () and
generateNetworkObjects() is an example of a valid input for the net argument.

The additional elements cluster_data (a data.frame) and plots (a list containing objects of
class ggraph and possibly one matrix named graph_layout) will also be saved, if present.

By default, the list net is saved to a compressed data file in the RDS format, while any plots present
are printed to a single pdf containing one plot per page.

The name of each saved file begins with the value of output_name. When output_type is one of
"rds"” or "rda”, only two files are saved (the rds/rda and the pdf); for each file, output_name is
followed by the appropriate file extension.

When output_type = "individual”, each element of net is saved as a separate file, where output_name
is followed by:

* _NodeMetadata.csv for node_data

* _ClusterMetadata.csv for cluster_data

e _Edgelist.txt for igraph

e _AdjacencyMatrix.mtx for adjacency_matrix

e _Plots.rda for plots

e _GraphLayout. txt for plots$graph_layout

* _Details.rds for details
node_data and cluster_data are saved using write.csv(), with row.names being TRUE for
node_data and FALSE for cluster_data. The igraph is saved using write_graph() with format

= "edgelist”. The adjacency matrix is saved using writeMM(). The graph layout is saved using
write() with ncolumns = 2.

Value

Returns TRUE if output is saved, otherwise returns FALSE (with a warning if output_dir is non-null
and the specified directory does not exist and could not be created).

saveNetworkPlots 91

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Examples

set.seed(42)
toy_data <- simulateToyData()

net <- buildRepSegNetwork(
toy_data,
seq_col = "CloneSeq",
node_stats = TRUE,
cluster_stats = TRUE,
color_nodes_by = c("transitivity”, "SampleID")

)

save as single RDS file
saveNetwork (
net,
output_dir = tempdir(),
verbose = TRUE
)

saveNetwork (
net,
output_dir = tempdir(),
output_type = "individual”,
verbose = TRUE

saveNetworkPlots Write Plots to a PDF

Description

Given a list of plots, write all plots to a single pdf file containing one plot per page, and optionally
save the graph layout as a csv file.

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

92 saveNetworkPlots

Usage
saveNetworkPlots(
plotlist,
outfile,
pdf_width = 12,
pdf_height = 10,
outfile_layout = NULL,
verbose = FALSE
)
Arguments
plotlist A named list whose elements are of class ggraph. May also contain an element
named graph_layout with the matrix specifying the graph layout.
outfile A connection or a character string containing the file path used to save the pdf.
pdf_width Sets the page width. Passed to the width argument of pdf ().
pdf_height Sets the page height. Passed to the height argument of pdf ().

outfile_layout An optional connection or file path for saving the graph layout. Passed to the
file argument of write(), which is called with ncolumns = 2.

verbose Logical. If TRUE, generates messages about the tasks performed and their progress,
as well as relevant properties of intermediate outputs. Messages are sent to
stderr().
Value

Returns TRUE, invisibly.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

References

Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network
Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825

Webpage for the NAIR package

Examples

set.seed(42)
toy_data <- simulateToyData()

net <-
generateNetworkObjects(
toy_data,
"CloneSeq”
)

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1181825/full
https://mlizhangx.github.io/Network-Analysis-for-Repertoire-Sequencing-/index.html

simulateToyData 93

net <-
addPlots(
net,
color_nodes_by =
c("SampleID", "CloneCount"),
print_plots = TRUE
)

saveNetworkPlots(
net$plots,
outfile =
file.path(tempdir(), "network.pdf"),
outfile_layout =
file.path(tempdir(), "graph_layout.txt")
)

Load saved graph layout

graph_layout <- matrix(
scan(file.path(tempdir(), "graph_layout.txt"”), quiet = TRUE),
ncol = 2

)

all.equal(graph_layout, net$plots$graph_layout)

simulateToyData Generate Toy AIRR-Seq Data

Description

Generates toy data that can be used to test or demonstrate the behavior of functions in the NAIR
package. Created as a lightweight tool for use in tests, examples and vignettes. This function is not
intended to simulate realistic data.

Usage
simulateToyData(
samples = 2,
chains = 1,

sample_size = 100,
prefix_length = 7,
prefix_chars = c("G", "A", "T", "C"),
prefix_probs = rbind(

"samplel” = c(12, 4, 1, 1),

"sample2"” = c(4, 12, 1, 1)),
affixes = c("AATTGG", "AATCGG", "AATTCG",

"AATTGC", "AATTG", "AATTC"),

affix_probs = rbind(

94

"samplel”
"sample2”
num_edits
edit_pos_pro
stats::dno

3,
edit_ops
edit_probs
new_chars
new_probs
output_dir
no_return

C

Arguments

samples
chains
sample_size

prefix_length

prefix_chars

prefix_probs

affixes

affix_probs

num_edits

edit_pos_probs

edit_ops

edit_probs

simulateToyData

c(1o, 4, 2, 2, 1, 1),
=c(, 1,1, 2, 2.5, 2.5)),

o,

bs = function(seq_length) {

rm(seq(-4, 4, length.out = seq_length))

("insertion”,
c(5, 1, 4),
prefix_chars,
prefix_probs,
NULL,
FALSE

"deletion”, "transmutation”),

The number of distinct samples to include in the data.
The number of chains (either 1 or 2) for which to generate receptor sequences.
The number of observations to generate per sample.

The length of the random prefix generated for each observed sequence. Specif-
ically, the number of elements of prefix_chars that are sampled with replace-
ment and concatenated to form each prefix.

A character vector containing characters or strings from which to sample when
generating the prefix for each observed sequence.

A numeric matrix whose column dimension matches the length of prefix_chars
and with row dimension matching the value of samples. The ith row speci-
fies the relative probability weights assigned to each element of prefix_chars
when sampling to form the prefix for each sequence in the ¢th sample.

A character vector containing characters or strings from which to sample when
generating the suffix for each observed sequence.

A numeric matrix whose column dimension matches the length of affixes and
with row dimension matching the value of samples. The ith row specifies the
relative probability weights assigned to each element of af fixes when sampling
to form the suffix for each sequence in the ith sample.

A nonnegative integer specifying the number of random edit operations to per-
form on each observed sequence after its initial generation.

A function that accepts a nonnegative integer (the character length of a se-
quence) as its argument and returns a vector of this length containing probability
weights. Each time an edit operation is performed on a sequence, the character
position at which to perform the operation is randomly determined according to
the probabilities given by this function.

A character vector specifying the possible operations that can be performed for
each edit. The default value includes all valid operations (insertion, deletion,
transmutation).

A numeric vector of the same length as edit_ops, specifying the relative prob-
ability weights assigned to each edit operation.

simulateToyData

new_chars

new_probs

output_dir

no_return

Details

95

A character vector containing characters or strings from which to sample when
performing an insertion edit operation.

A numeric matrix whose column dimension matches the length of new_chars
and with row dimension matching the value of samples. The ith row specifies,
for the ith sample, the relative probability weights assigned to each element
of new_chars when performing a transmutation or insertion as a random edit
operation.

An optional character string specifying a file directory to save the generated
data. One file will be generated per sample.

A logical flag that can be used to prevent the function from returning the gener-
ated data. If TRUE, the function will instead return TRUE once all processes are
complete.

Each observed sequence is obtained by separately generating a prefix and suffix according to the
specified settings, then joining the two and performing sequential rounds of edit operations random-
ized according to the user’s specifications.

Count data is generated for each observation; note that this count data is generated independently
from the observed sequences and has no relationship to them.

Value

If no_return = FALSE (the default), a data.frame whose contents depend on the value of the

chains argument.

For chains = 1, the data frame contains the following variables:

CloneSeq

CloneFrequency

CloneCount
SamplelD

The "receptor sequence” for each observation.

The "clone frequency" for each observation (clone count as a proportion of the
aggregate clone count within each sample).

The "clone count" for each observation.

The sample ID for each observation.

For chains = 2, the data frame contains the following variables:

AlphaSeq
AlphaSeq
UMIs
Count

SamplelD

The "alpha chain" receptor sequence for each observation.
The "beta chain" receptor sequence for each observation.
The "unique molecular identifier count” for each observation.
The "count" for each observation.

The sample ID for each observation.

If no_return = TRUE, the function returns TRUE upon completion.

Author(s)

Brian Neal (<Brian.Neal@ucsf.edu>)

96 simulateToyData

Examples

set.seed(42)

Bulk data from two samples
dat1 <- simulateToyData()

Single-cell data with alpha and beta chain sequences
dat2 <- simulateToyData(chains = 2)

Write data to file, return nothing

simulateToyData(sample_size = 500,
num_edits = 10,
no_return = TRUE,
output_dir = tempdir())

Example customization
dat4 <-
simulateToyData(
samples = 5,
sample_size = 50,
prefix_length = 0,
prefix_chars = ""
prefix_probs = matrix(1, nrow = 5),
affixes = c("CASSLGYEQYF", "CASSLGETQYF",
"CASSLGTDTQYF", "CASSLGTEAFF",
"CASSLGGTEAFF", "CAGLGGRDQETQYF",
"CASSQETQYF", "CASSLTDTQYF",
"CANYGYTF", "CANTGELFF",
"CSANYGYTF"),
affix_probs = matrix(1, ncol = 11, nrow = 5),

)

Simulate 30 samples with a mix of public/private sequences

samples <- 30

sample_size <- 30 # (segs per sample)

base_seqs <- c(
"CASSIEGQLSTDTQYF", "CASSEEGQLSTDTQYF", "CASSSVETQYF",
"CASSPEGQLSTDTQYF", "RASSLAGNTEAFF", "CASSHRGTDTQYF", "CASDAGVFQPQHF",
"CASSLTSGYNEQFF", "CASSETGYNEQFF", "CASSLTGGNEQFF", "CASSYLTGYNEQFF",
"CASSLTGNEQFF", "CASSLNGYNEQFF", "CASSFPWDGYGYTF", "CASTLARQGGELFF",
"CASTLSRQGGELFF", "CSVELLPTGPLETSYNEQFF", "CSVELLPTGPSETSYNEQFF",
"CVELLPTGPSETSYNEQFF", "CASLAGGRTQETQYF"”, "CASRLAGGRTQETQYF",
"CASSLAGGRTETQYF", "CASSLAGGRTQETQYF", "CASSRLAGGRTQETQYF",
"CASQYGGGNQPQHF", "CASSLGGGNQPQHF", "CASSNGGGNQPQHF", "CASSYGGGGNQPQHF",
"CASSYGGGQPQHF ", "CASSYKGGNQPQHF”, "CASSYTGGGNQPQHF”,
"CAWSSQETQYF", "CASSSPETQYF", "CASSGAYEQYF", "CSVDLGKGNNEQFF")

Relative generation probabilities

pgen <- cbind(
stats::toeplitz(0.6"(0: (sample_size - 1))),
matrix(1, nrow = samples, ncol = length(base_seqs) - samples))

dat5 <-
simulateToyData(

simulateToyData

samples = samples,

sample_size = sample_size,

prefix_length = 1,

prefix_chars = c("", ""),

prefix_probs = cbind(rep(1, samples), rep(@, samples)),
affixes = base_seqs,

affix_probs = pgen,

num_edits = @

)

Simulate 30 samples from two groups (treatment/control)
samples_c <- samples_t <- 15 # Number of samples by control/treatment group
samples <- samples_c + samples_t
sample_size <- 30 # (seqs per sample)
base_seqs <- # first five are associated with treatment
c("CASSGAYEQYF", "CSVDLGKGNNEQFF", "CASSIEGQLSTDTQYF",
"CASSEEGQLSTDTQYF", "CASSPEGQLSTDTQYF",
"RASSLAGNTEAFF", "CASSHRGTDTQYF", "CASDAGVFQPQHF")

Relative generation probabilities by control/treatment group
pgen_c <- matrix(rep(c(rep(1, 5), rep(30, 3)), times = samples_c),
nrow = samples_c, byrow = TRUE)

pgen_t <- matrix(rep(c(1, 1, rep(1/3, 3), rep(2, 3)), times = samples_t),
nrow = samples_t, byrow = TRUE)
pgen <- rbind(pgen_c, pgen_t)
daté <-
simulateToyData(

samples = samples,

sample_size = sample_size,

prefix_length = 1,

prefix_chars = c("", ""),

prefix_probs =

cbind(rep(1, samples), rep(@, samples)),

affixes = base_segs,

affix_probs = pgen,

num_edits = @

Index

addClusterLabels (labelClusters), 81
addClusterMembership, 3
addClusterMembership(), 7-10, 12, 14, 40,
44,75,77, 82
addClusterStats, 6
addClusterStats(), 6, 39, 74, 77
addGraphLabels (1abelNodes), 83
addNodeNetworkStats, 11, 32, 43
addNodeStats, 14
addNodeStats(), 12, 13, 44, 45
addPlots, 16
addPlots(), 28, 32, 33, 40, 87, 88
aggregateldenticalClones, 20
assortativity_degree(), 9, 76
authority_score(), 44

betweenness(), 44
buildAssociatedClusterNetwork, 23
buildAssociatedClusterNetwork(), 53, 56,
61
buildNet (buildRepSegNetwork), 37
buildNet (), 28, 66
buildPublicClusterNetwork, 26
buildPublicClusterNetwork(), 31, 33, 36,
66, 67
buildPublicClusterNetworkByRepresentative,
31
buildPublicClusterNetworkByRepresentative(),
29, 66, 67
buildRepSeqgNetwork, 37
buildRepSegNetwork(), 3, 4, 6-8, 12, 14, 15,
17,19, 24, 28, 29, 32, 33,43, 44, 65,
81-84, 89, 90

centr_betw(), 44
centr_clo(), 44
centr_degree(), 9, 76
centr_eigen(), 9, 44,76
centralization(), 9, 76
chooseNodeStats, 43

98

chooseNodeStats(), 12-15, 40
closeness(), 44
combineSamples, 46
connection, 92
connections, 23, 27, 46, 54, 59, 64
coreness(), 44

data.frame, 4, 8, 15, 19, 82, 84, 90
dgCMatrix, 4, 8, 15, 19, 82, 84, 90
dimnames, 70

edge_density(), 9, 76
eigen_centrality(), 9,44,77
exclusiveNodeStats (chooseNodeStats), 43
exclusiveNodeStats(), 12, 14,40
extractLayout, 51

filterInputData, 52
filterInputData(), 39,47, 55, 60
findAssociatedClones, 53
findAssociatedClones(), 23-25, 61
findAssociatedSeqs, 57
findAssociatedSeqs(), 25, 53, 56
findAssociatedSeqs?2
(findAssociatedSeqs), 57
findPublicClusters, 63
findPublicClusters(), 26, 29, 31, 36
fisher.test(), 60

generateAdjacencyMatrix, 68
generateNetworkFromAdjacencyMat
(generateNetworkGraph), 71
generateNetworkGraph, 71
generateNetworkGraphPlots (addPlots), 16
generateNetworkGraphPlots(), 82
generateNetworkObjects, 72, 89
generateNetworkObjects(), 3, 4, 6-8, 12,
14, 15,17, 19, 81-84, 89, 90
geom_edge_linko (), 18, 88
geom_node_point(), 18, 87, 88

INDEX

geom_node_text(), 82, 84
get_diameter(), 9, 76
getClusterStats, 32, 35, 74
getClusterStats(), 10, 82
getNeighborhood, 77
ggplot(), 18, 87

ggraph, 16, 18,42, 51, 82-84, 88, 90, 92
ggraph(), 88
graph_from_adjacency_matrix(), 71
grep(), 39, 52, 55, 60, 65

hamDistBounded, 69, 79, 86
hamDistBounded(), 39, 55, 72, 78, 85
hcl.pals(), 18,87

igraph, 3, 4,8, 12, 15-17,19,41,71,73, 82,
84, 87, 90

labelClusters, 81

labelClusters(), 6, 10, 20, 77

labelNodes, 83

labelNodes (), 20

labs(), 87

levDistBounded, 69, 85

levDistBounded(), 39, 55, 72, 78, 80

list, 3,7,14,17,81, 83

load(), 47

loadDataFromFilelList (combineSamples),
46

loadDataFromFileList(), 23, 27, 32, 54, 59,
64

matrix, 4,8, 15, 19, 82, 84, 90

NAIR (NAIR-package), 2
NAIR-package, 2
node_stat_settings (chooseNodeStats), 43

page_rank(), 44
pdf, 90

pdf (), 88, 92
plotNetworkGraph, 87

read.csv(), 24, 27, 28, 32,47, 54, 59, 64

read.csv2(), 47

read.delim(), 48

read.table(), 24, 27, 28, 32,47, 48, 54, 59,
64

readRDS(), 47

regex, 39, 52, 55, 60, 65

99

saveNetwork, 89
saveNetwork (), 33, 41
saveNetworkPlots, 91
saveNetworkPlots(), 19, 20
scale_color_viridis(), 18,87
simulateToyData, 93
sparseAdjacencyMatFromSeqs
(generateAdjacencyMatrix), 68
stderr, 69
stderr(),4,8, 12,15, 18, 21, 24, 28, 33,41,
47,52, 55, 60, 66, 73, 75, 90, 92

transitivity(), 9,44, 76

write(), 90, 92
write.csv(), 60, 90
write.table(), 55
write_graph(), 90
writeMM(), 90

	NAIR-package
	addClusterMembership
	addClusterStats
	addNodeNetworkStats
	addNodeStats
	addPlots
	aggregateIdenticalClones
	buildAssociatedClusterNetwork
	buildPublicClusterNetwork
	buildPublicClusterNetworkByRepresentative
	buildRepSeqNetwork
	chooseNodeStats
	combineSamples
	extractLayout
	filterInputData
	findAssociatedClones
	findAssociatedSeqs
	findPublicClusters
	generateAdjacencyMatrix
	generateNetworkGraph
	generateNetworkObjects
	getClusterStats
	getNeighborhood
	hamDistBounded
	labelClusters
	labelNodes
	levDistBounded
	plotNetworkGraph
	saveNetwork
	saveNetworkPlots
	simulateToyData
	Index

