Package ‘Modeler’

May 27, 2025

Version 3.4.9
Date 2025-05-27

Title Classes and Methods for Training and Using Binary Prediction
Models

Depends R (>=4.4), ClassDiscovery, ClassComparison, oompaBase

Imports methods, stats, class, rpart, TailRank, e1071, randomForest,
nnet, neuralnet

Suggests Biobase

Description Defines classes and methods to learn models and use them
to predict binary outcomes. These are generic tools, but we also
include specific examples for many common classifiers.

License Apache License (== 2.0)
LazyLoad yes

biocViews Microarray, Clustering

URL http://oompa.r-forge.r-project.org/
NeedsCompilation no

Author Kevin R. Coombes [aut, cre]

Maintainer Kevin R. Coombes <krc@silicovore.com>
Repository CRAN

Date/Publication 2025-05-27 18:30:02 UTC

Contents

feature.filters L
feature.selection L. e e e e e e e e e
FittedModel e
FittedModel-class e
learn e e e e
learnCCP e e e e
learnKINN e e

http://oompa.r-forge.r-project.org/

2 feature.filters

learnLR L e e 12
learnNNET e 14
learnNNET2 e e 16
learnPCALR e e e e 18
learnRF e 20
learnRPART e 22
learnSelectedLR e e 24
learnSVM L e e e e 26
learnTailRank 28
Modeler e e e e e e e e 30
Modeler-class e 32

Index 33

feature.filters Feature Filtering
Description

Functions to create functions that filter potential predictive features using statistics that do not access
class labels.

Usage

filterMean(cutoff)
filterMedian(cutoff)
filterSD(cutoff)
filterMin(cutoff)
filterMax(cutoff)
filterRange(cutoff)
filterIQR(cutoff)

Arguments

cutoff A real number, the level above which features with this statistic should be re-
tained and below which should be discarded.

Details

Following the usual conventions introduced from the world of gene expression microarrays, a typ-
ical data matrix is constructed from columns representing samples on which we want to make
predictions amd rows representing the features used to construct the predictive model. In this con-
text, we define a filter to be a function that accepts a data matrix as its only argument and returns
a logical vector, whose length equals the number of rows in the matrix, where "TRUE’ indicates
features that should be retrained. Most filtering functions belong to parametrized families, with one
of the most common examples being "retain all features whose mean is above some pre-specified
cutoff”. We implement this idea using a set of function-generating functions, whose arguments are
the parameters that pick out the desired member of the family. The return value is an instantiation

feature.selection 3

of a particular filtering function. The decison to define things this way is to be able to apply the
methods in cross-validation (or other) loops where we want to ensure that we use the same filtering
rule each time.

Value
Each of the seven functions described here return a filter function, f, that can be used by code that
basically looks like logicalVector <- filter(data).

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models.

Examples

set.seed(246391)

data <- matrix(rnorm(1000%30), nrow=1000, ncol=30)
fm <- filterMean(1)

summary (fm(data))

summary (filterMedian(1) (data))
summary (filterSD(1) (data))

feature.selection Feature Selection

Description

Functions to create functions that perform feature selection (or at least feature reduction) using
statistics that access class labels.

Usage

keepAll(data, group)

fsTtest(fdr, ming=500)

fsModifiedFisher(q)

fsPearson(q = NULL, rho)

fsSpearman(q = NULL, rho)

fsMedSplitOddsRatio(q = NULL, OR)

fsChisquared(q = NULL, cutoff)

fsEntropy(q = 0.9, kind=c("information.gain”, "gain.ratio”, "symmetric.uncertainty"”))
fsFisherRandomForest(q)

fsTailRank(specificity=0.9, tolerance=0.5, confidence=0.5)

4 feature.selection

Arguments

data A matrix containng the data; columns are samples and rows are features.

group A factor with two levels defining the sample classes.

fdr A real number between 0 and 1 specifying the target false discovery rate (FDR).

ming An integer specifing the minimum number of features to return; overrides the
FDR.

q A real number between 0.5 and 1 specifiying the fraction of features to discard.

rho A real number between 0 and 1 specifying the absolute value of the correlation
coefficient used to filter features.

OR A real number specifying the desired odds ratio for filtering features.

cutoff A real number specifiyng the targeted cutoff rate when using the statistic to filter
features.

kind The kind of information metric to use for filtering features.

specificity See TailRankTest.

tolerance See TailRankTest.
confidence See TailRankTest.
Details

Following the usual conventions introduced from the world of gene expression microarrays, a typ-
ical data matrix is constructed from columns representing samples on which we want to make pre-
dictions amd rows representing the features used to construct the predictive model. In this context,
we define a feature selector or pruner to be a function that accepts a data matrix and a two-level
factor as its only arguments and returns a logical vector, whose length equals the number of rows in
the matrix, where *"TRUE’ indicates features that should be retrained. Most pruning functions be-
long to parametrized families. We implement this idea using a set of function-generating functions,
whose arguments are the parameters that pick out the desired member of the family. The return
value is an instantiation of a particular filtering function. The decison to define things this way is to
be able to apply the methods in cross-validaiton (or other) loops where we want to ensure that we
use the same feature selection rule each time.

We have implemented the following algorithms:

* keepAll: retain all features; do nothing.

* fsTtest: Keep features based on the false discovery rate from a two-goup t-test, but always
retain a specified minimum number of genes.

* fsModifiedFisher Retain the top quantile of features for the statistic

(ma —m)* + (mp —m)?
va +vB

where m is the mean and v is the variance.

* fsPearson: Retain the top quantile of features based on the absolute value of the Pearson
correlation with the binary outcome.

» fsSpearman: Retain the top quantile of features based on the absolute value of the Spearman
correlation with the binary outcome.

feature.selection 5

* fsMedSplitOddsRatio: Retain the top quantile of features based on the odds ratio to predict
the binary outcome, after first dichotomizing the continuous predictor using a split at the
median value.

» fsChisquared: retain the top quantile of features based on a chi-squared test comparing the
binary outcome to continous predictors discretized into ten bins.

* fsEntropy: retain the top quantile of features based on one of three information-theoretic
measures of entropy.

» fsFisherRandomForest: retain the top features based on their importance in a random forest
analysis, after first filtering using the modified Fisher statistic.

* fsTailRank: Retain features that are significant based on the TailRank test, which is a mea-
sure of whether the tails of the distributions are different.

Value

The keepAll function is a "pruner"; it takes the data matrix and grouping factor as arguments, and
returns a logical vector indicating which features to retain.

Each of the other nine functions described here return uses its arguments to contruct and return a
pruning function, f, that has the same interface as keepAll.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models.

Examples

set.seed(246391)

data <- matrix(rnorm(1000%36), nrow=1000, ncol=36)
data[1:50, 1:18] <- data[1:50, 1:18] + 1

status <- factor(rep(c("A", "B"), each=18))

fsel <- fsPearson(q = 0.9)
summary (fsel(data, status))
fsel <- fsPearson(rho=0.3)
summary(fsel(data, status))

fsel <- fsEntropy(kind="gain.ratio")
summary(fsel(data, status))

6 FittedModel

FittedModel Creating FittedModel objects

Description

Construct an object of the FittedModel-class.

Usage
FittedModel (predict, data, status, details, ...)
Arguments
predict A function that applies the model to predict outcomes on new test data.
data A matrix containing the training data.
status A vector containing the training outcomes, which should either be a binary-
valued factor or a numeric vector of contiuous outcomes.
details A list of the fitted parameters for the specified model.
Any extra information that is produced while learning the model; these wil be
saved in the extras slot of the FittedModel object.
Details

Most users will never need to use this function; instead, they will first use an existing object
of the Modeler-class, call the learn method of that object with the training data to obtain a
FittedModel object, and then apply its predict method to test data. Only people who want to
implement the learn-predict interface for a new classification algorithm are likely to need to call
this function directly.

Value

Returns an object of the FittedModel-class.

Author(s)

Kevin R. Coombes <krc @silicovore.com.

See Also

See the descriptions of the learn function and the predict method for details on how to fit models
on training data and make predictions on new test data.

See the description of the Modeler-class for details about the kinds of objects produced by learn.

Examples

see the examples for learn and predict and for specific
implementations of classifiers.

FittedModel-class 7

FittedModel-class Class "FittedModel"

Description

Objects of this class represent parametrized statistical models (of the Modeler-class) after they
have been fit to a training data set. These objects can be used to predict binary outcomes on new
test data sets.

Objects from the Class

Objects can be created by calls to the constructor function, FittedModel. In practice, however,
most FittedModel objects are created as the result of applying the learn function to an object of
the Modeler-class.

Slots

predictFunction: Object of class "function” that implemnts the ability to make predictions
using the fitted model.

trainData: Object of class "matrix” containing the trainng data set. Rowes are features and
columns are samples.

trainStatus: Object of class "vector”. Should either be a numeric vector representing outcome
or a factor with two levels, containing the classes of the training data set.

details: Object of class "1ist"” containing the fitted parameters for the specific model.

extras: Object of class "1ist"” containing any extra information (such as diagnostics) produced a
a result of learning the model from the training data set.

fsVector: Logical vector indicating which features should be retained (TRUE) of discared (FALSE)
after performing featgure selection on the training data.

Methods

predict signature(object = "FittedModel”): Predict the binary outcome on a new data set.

Author(s)

Kevin R. Coombes <krcoombes @mdanderson.org>

See Also

See Modeler-class and learn for details on how to fit a model to data.

Examples

showClass("FittedModel™”)

8 learn

learn Learning models from data

Description
The learn function provides an abstraction that can be used to fit a binary classification model to a
training data set.

Usage

learn(model, data, status, prune=keepAll)

Arguments
model An object of the Modeler-class
data A matrix containing the training data, with rows as features and columns as
samples to be classified.
status A factor, with two levels, containing the known classification of the training
data.
prune A "pruning" funciton; that is, a funciton that takes two arguments (a data matrix
and a class factor) and returns a logical vector indicating which features to retain.
Details

Objects of the Modeler-class contain functions to learn models from training data to make pre-
dictions on new test data. These functions have to be prepared as pairs, since they have a shared
opinion about how to record and use specific details about the parameters of the model. As a result,
the learn function is implemented by:

learn <- function(model, data, status) {
model@learn(data, status, model@params, model@predict)

3

Value

An object of the FittedModel-class.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See predict for how to make predictions on new test data from an object of the FittedModel-class.

learnCCP 9

Examples

set up a generic RPART model
rpart.mod <- Modeler(learnRPART, predictRPART, minsplit=2, minbucket=1)

simulate fake data
data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

learn the specific RPART model
fm <- learn(rpart.mod, data, status)

show the predicted results from the model on the trianing data
predict(fm)

set up a nearest neighbor model
knn.mod <- Modeler(learnKNN, predictkKNN, k=3)

fit the 3NN model on the same data
fm3 <- learn(knn.mod, data, status)
show its performance

predict(fm3)

learnCCP Fit models and make predictions with a PCA-LR classifier

Description

These functions are used to apply the generic modeling mechanism to a classifier that combines
principal component analysis (PCA) with logistic regression (LR).

Usage
learnCCP(data, status, params, pfun)
predictCCP(newdata, details, status, ...)
Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictCCP.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;

see Details.

Optional extra parameters required by the generic "predict" method.

10 learnCCP

Details

The input arguments to both learnCCP and predictCCP are dictated by the requirements of the
general train-and-test mechanism provided by the Modeler-class.

The CCP classifier is similar in spirit to the "supervised principal components" method implemented
in the superpc package. We start by performing univariate two-sample t-tests to identify features
that are differentially expressed between two groups of training samples. We then set a cutoff to
select features using a bound (alpha) on the false discovery rate (FDR). If the number of selected
features is smaller than a prespecified goal (minNgenes), then we increase the FDR until we get
the desired number of features. Next, we perform PCA on the selected features from the trqining
data. we retain enough principal components (PCs) to explain a prespecified fraction of the variance
(perVar). We then fit a logistic regression model using these PCs to predict the binary class of the
training data. In order to use this model to make binary predictions, you must specify a prior
probability that a sample belongs to the first of the two groups (where the ordering is determined by
the levels of the classification factor, status).

In order to fit the model to data, the params argument to the learnCCP function should be a list
containing components named alpha, minNgenes, perVar, and prior. It may also contain a logical
value called verbose, which controls the amount of information that is output as the algorithm runs.

The result of fitting the model using 1learnCCP is a member of the FittedModel-class. In additon
to storing the prediction function (pfun) and the training data and status, the FittedModel stores
those details about the model that are required in order to make predictions of the outcome on
new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictCCP function in order to make predictions with the model on new data. Note that the status
vector here is the one used for the fraining data, since the prediction function only uses the levels
of this factor to make sure that the direction of the predicitons is interpreted correctly.

Value

The learnCCP function returns an object of the FittedModel-class, representing a CCP classifier
that has been fitted on a training data set.

The predictCCP function returns a factor containing the predictions of the model when applied to
the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by 1earnCCP.

learnKNN 11

Examples

simulate some data
data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
ccp.params <- list(minNgenes=10, alpha=0.10, perVar=0.80, prior=0.5)

learn the model
fm <- learnCCP(data, status, ccp.params, predictCCP)

Make predictions on some new simulated data
newdata <- matrix(rnorm(100%30), ncol=30)
predictCCP(newdata, fm@details, status)

learnkKNN Fit models and make predictions with a KNN classifier

Description

These functions are used to apply the generic train-and-test mechanism to a K-nearest neighbors
(KNN) classifier.

Usage
learnkKNN(data, status, params, pfun)
predictKNN(newdata, details, status, ...)
Arguments
data The data matrix, with rows as features and columns as the samples to be classi-
fied.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;

see Details.

Optional extra parameters required by the generic "predict" method.

Details

The input arguments to both learnKNN and predictKNN are dictated by the requirements of the
general train-and-test mechanism provided by the Modeler-class.

The implementation uses the knn method from the class package. The params argument to
learnkNN must be alist that at least includes the component k that specifies the number of neighbors
used.

12 learnL.R

Value

The learnkNN function returns an object of the FittedModel-class, logically representing a KNN
classifier that has been fitted on a training data set.

The predictKNN function returns a factor containing the predictions of the model when applied to
the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

References

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by learnPCALR.

Examples

simulate some data
data <- matrix(rnorm(100*20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
knn.params <- list(k=5)

learn the model
fm <- learnKNN(data, status, knn.params, predictKNN)

Make predictions on some new simulated data
newdata <- matrix(rnorm(100%30), ncol=30)
predictKNN(newdata, fm@details, status)

learnLR Fit models and make predictions with a logistic regression classifier

Description

These functions are used to apply the generic train-and-test mechanism to a logistic regression (LR)
classifier.

Usage

learnLR(data, status, params, pfun)
predictLR(newdata, details, status, type ="response”, ...)

learnLR 13

Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictLR.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;
see Details.
type A character string indicating the type of prediciton to make.
Optional extra parameters required by the generic "predict" method.
Details

The input arguments to both learnLR and predictLR are dictated by the requirements of the general
train-and-test mechanism provided by the Modeler-class.

The LR classifier is similar in spirit to the "supervised principal components" method implemented
in the superpc package. We start by performing univariate two-sample t-tests to identify features
that are differentially expressed between two groups of training samples. We then set a cutoff to
select features using a bound (alpha) on the false discovery rate (FDR). If the number of selected
features is smaller than a prespecified goal (minNgenes), then we increase the FDR until we get
the desired number of features. Next, we perform PCA on the selected features from the trqining
data. we retain enough principal components (PCs) to explain a prespecified fraction of the variance
(perVar). We then fit a logistic regression model using these PCs to predict the binary class of the
training data. In order to use this model to make binary predictions, you must specify a prior
probability that a sample belongs to the first of the two groups (where the ordering is determined by
the levels of the classification factor, status).

In order to fit the model to data, the params argument to the learnLR function should be a list
containing components named alpha, minNgenes, perVar, and prior. It may also contain a logical
value called verbose, which controls the amount of information that is output as the algorithm runs.

The result of fitting the model using learnLR is a member of the FittedModel-class. In additon
to storing the prediction function (pfun) and the training data and status, the FittedModel stores
those details about the model that are required in order to make predictions of the outcome on
new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictLR function in order to make predictions with the model on new data. Note that the status
vector here is the one used for the fraining data, since the prediction function only uses the levels
of this factor to make sure that the direction of the predicitons is interpreted correctly.

14 learnNNET

Value

The learnLR function returns an object of the FittedModel-class, representing a LR classifier
that has been fitted on a training data set.

The predictLR function returns a factor containing the predictions of the model when applied to
the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by learnLR.

Examples

Not run:

simulate some data

data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
lr.params <- list(minNgenes=10, alpha=0.10, perVar=0.80, prior=0.5)

learn the model -- this is slow
fm <- learnLR(data, status, lr.params, predictLR)

Make predictions on some new simulated data
newdata <- matrix(rnorm(100%30), ncol=30)

predictLR(newdata, fm@details, status)

End(Not run)

learnNNET Fit models and make predictions with a PCA-LR classifier

Description
These functions are used to apply the generic train-and-test mechanism to a classifier that combines
principal component analysis (PCA) with logistic regression (LR).

Usage

learnNNET (data, status, params, pfun)
predictNNET(newdata, details, status, ...)

learnNNET 15

Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictNNET.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;
see Details.
Optional extra parameters required by the generic "predict" method.
Details

The input arguments to both learnNNET and predictNNET are dictated by the requirements of the
general train-and-test mechanism provided by the Modeler-class.

The NNET classifier is similar in spirit to the "supervised principal components" method imple-
mented in the superpc package. We start by performing univariate two-sample t-tests to identify
features that are differentially expressed between two groups of training samples. We then set a
cutoff to select features using a bound (alpha) on the false discovery rate (FDR). If the number of
selected features is smaller than a prespecified goal (minNgenes), then we increase the FDR until
we get the desired number of features. Next, we perform PCA on the selected features from the
trqining data. we retain enough principal components (PCs) to explain a prespecified fraction of
the variance (perVar). We then fit a logistic regression model using these PCs to predict the binary
class of the training data. In order to use this model to make binary predictions, you must spec-
ify a prior probability that a sample belongs to the first of the two groups (where the ordering is
determined by the levels of the classification factor, status).

In order to fit the model to data, the params argument to the learnNNET function should be a list
containing components named alpha, minNgenes, perVar, and prior. It may also contain a logical
value called verbose, which controls the amount of information that is output as the algorithm runs.

The result of fitting the model using LearnNNET is a member of the FittedModel-class. In additon
to storing the prediction function (pfun) and the training data and status, the FittedModel stores
those details about the model that are required in order to make predictions of the outcome on
new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictNNET function in order to make predictions with the model on new data. Note that the status
vector here is the one used for the fraining data, since the prediction function only uses the levels
of this factor to make sure that the direction of the predicitons is interpreted correctly.

16 learnNNET?2

Value

The learnNNET function returns an object of the FittedModel-class, representing a NNET clas-
sifier that has been fitted on a training data set.

The predictNNET function returns a factor containing the predictions of the model when applied to
the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by 1earnNNET.

Examples

simulate some data
data <- matrix(rnorm(100*20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
nnet.params <- list()

learn the model
#fm <- learnNNET(data, status, nnet.params, predictNNET)

Make predictions on some new simulated data
#newdata <- matrix(rnorm(100%*30), ncol=30)
#predictNNET (newdata, fm@details, status)

learnNNET2 Fit models and make predictions with a multi-level neural network
classifier

Description

These functions are used to apply the generic train-and-test mechanism to a classifier usinfg neural
networks.

Usage

learnNNET2(data, status, params, pfun)
predictNNET2(newdata, details, status, ...)

learnNNET2 17

Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictNNET2.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;
see Details.
Optional extra parameters required by the generic "predict" method.
Details

The input arguments to both learnNNET2 and predictNNET2 are dictated by the requirements of
the general train-and-test mechanism provided by the Modeler-class.

The NNET?2 classifier is similar in spirit to the "supervised principal components" method imple-
mented in the superpc package. We start by performing univariate two-sample t-tests to identify
features that are differentially expressed between two groups of training samples. We then set a
cutoff to select features using a bound (alpha) on the false discovery rate (FDR). If the number of
selected features is smaller than a prespecified goal (minNgenes), then we increase the FDR until
we get the desired number of features. Next, we perform PCA on the selected features from the
trqining data. we retain enough principal components (PCs) to explain a prespecified fraction of
the variance (perVar). We then fit a logistic regression model using these PCs to predict the binary
class of the training data. In order to use this model to make binary predictions, you must spec-
ify a prior probability that a sample belongs to the first of the two groups (where the ordering is
determined by the levels of the classification factor, status).

In order to fit the model to data, the params argument to the learnNNET2 function should be a list
containing components named alpha, minNgenes, perVar, and prior. It may also contain a logical
value called verbose, which controls the amount of information that is output as the algorithm runs.

The result of fitting the model using 1earnNNET2 is a member of the FittedModel-class. In
additon to storing the prediction function (pfun) and the training data and status, the FittedModel
stores those details about the model that are required in order to make predictions of the outcome
on new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictNNET2 function in order to make predictions with the model on new data. Note that the
status vector here is the one used for the training data, since the prediction function only uses the
levels of this factor to make sure that the direction of the predicitons is interpreted correctly.

18 learnPCALR

Value

The learnNNET2 function returns an object of the FittedModel-class, representing a NNET2
classifier that has been fitted on a training data set.

The predictNNET2 function returns a factor containing the predictions of the model when applied
to the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by 1learnNNET2.

Examples

simulate some data
data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
nnet.params <- list()

learn the model
#fm <- learnNNET2(data, status, nnet.params, predictNNET2)

Make predictions on some new simulated data
#tnewdata <- matrix(rnorm(100%*30), ncol=30)
#predictNNET2(newdata, fm@details, status)

learnPCALR Fit models and make predictions with a PCA-LR classifier

Description

These functions are used to apply the generic train-and-test mechanism to a classifier that combines
principal component analysis (PCA) with logistic regression (LR).

Usage

learnPCALR(data, status, params, pfun)
predictPCALR(newdata, details, status, ...)

learnPCALR 19

Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictPCALR.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;
see Details.
Optional extra parameters required by the generic "predict" method.
Details

The input arguments to both learnPCALR and predictPCALR are dictated by the requirements of
the general train-and-test mechanism provided by the Modeler-class.

The PCALR classifier is similar in spirit to the "supervised principal components" method imple-
mented in the superpc package. We start by performing univariate two-sample t-tests to identify
features that are differentially expressed between two groups of training samples. We then set a
cutoff to select features using a bound (alpha) on the false discovery rate (FDR). If the number of
selected features is smaller than a prespecified goal (minNgenes), then we increase the FDR until
we get the desired number of features. Next, we perform PCA on the selected features from the
trqining data. we retain enough principal components (PCs) to explain a prespecified fraction of
the variance (perVar). We then fit a logistic regression model using these PCs to predict the binary
class of the training data. In order to use this model to make binary predictions, you must spec-
ify a prior probability that a sample belongs to the first of the two groups (where the ordering is
determined by the levels of the classification factor, status).

In order to fit the model to data, the params argument to the learnPCALR function should be a list
containing components named alpha, minNgenes, perVar, and prior. It may also contain a logical
value called verbose, which controls the amount of information that is output as the algorithm runs.

The result of fitting the model using learnPCALR is a member of the FittedModel-class. In
additon to storing the prediction function (pfun) and the training data and status, the FittedModel
stores those details about the model that are required in order to make predictions of the outcome
on new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictPCALR function in order to make predictions with the model on new data. Note that the
status vector here is the one used for the training data, since the prediction function only uses the
levels of this factor to make sure that the direction of the predicitons is interpreted correctly.

20 learnRF

Value

The learnPCALR function returns an object of the FittedModel-class, representing a PCALR
classifier that has been fitted on a training data set.

The predictPCALR function returns a factor containing the predictions of the model when applied
to the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by learnPCALR.

Examples

simulate some data
data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
pcalr.params <- list(minNgenes=10, alpha=0.10, perVar=0.80, prior=0.5)

learn the model
fm <- learnPCALR(data, status, pcalr.params, predictPCALR)

Make predictions on some new simulated data
newdata <- matrix(rnorm(100%30), ncol=30)
predictPCALR(newdata, fm@details, status)

learnRF Fit models and make predictions with a PCA-LR classifier

Description

These functions are used to apply the generic train-and-test mechanism to a classifier that combines
principal component analysis (PCA) with logistic regression (LR).

Usage

learnRF (data, status, params, pfun)
predictRF (newdata, details, status, ...)

learnRF 21

Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictRF.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;
see Details.
Optional extra parameters required by the generic "predict" method.
Details

The input arguments to both 1earnRF and predictRF are dictated by the requirements of the general
train-and-test mechanism provided by the Modeler-class.

The RF classifier is similar in spirit to the "supervised principal components" method implemented
in the superpc package. We start by performing univariate two-sample t-tests to identify features
that are differentially expressed between two groups of training samples. We then set a cutoff to
select features using a bound (alpha) on the false discovery rate (FDR). If the number of selected
features is smaller than a prespecified goal (minNgenes), then we increase the FDR until we get
the desired number of features. Next, we perform PCA on the selected features from the trqining
data. we retain enough principal components (PCs) to explain a prespecified fraction of the variance
(perVar). We then fit a logistic regression model using these PCs to predict the binary class of the
training data. In order to use this model to make binary predictions, you must specify a prior
probability that a sample belongs to the first of the two groups (where the ordering is determined by
the levels of the classification factor, status).

In order to fit the model to data, the params argument to the learnRF function should be a list
containing components named alpha, minNgenes, perVar, and prior. It may also contain a logical
value called verbose, which controls the amount of information that is output as the algorithm runs.

The result of fitting the model using learnRF is a member of the FittedModel-class. In additon
to storing the prediction function (pfun) and the training data and status, the FittedModel stores
those details about the model that are required in order to make predictions of the outcome on
new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictRF function in order to make predictions with the model on new data. Note that the status
vector here is the one used for the fraining data, since the prediction function only uses the levels
of this factor to make sure that the direction of the predicitons is interpreted correctly.

22 learnRPART

Value

The learnRF function returns an object of the FittedModel-class, representing a RF classifier
that has been fitted on a training data set.

The predictRF function returns a factor containing the predictions of the model when applied to
the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by learnRF.

Examples

simulate some data
data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
svm.params <- list(minNgenes=10, alpha=0.10, perVar=0.80, prior=0.5)

learn the model
#fm <- learnRF(data, status, svm.params, predictRF)

Make predictions on some new simulated data
#tnewdata <- matrix(rnorm(100%*30), ncol=30)
#predictRF (newdata, fm@details, status)

learnRPART Fit models and make predictions with a PCA-LR classifier

Description

These functions are used to apply the generic train-and-test mechanism to a classifier that combines
principal component analysis (PCA) with logistic regression (LR).

Usage

learnRPART (data, status, params, pfun)
predictRPART (newdata, details, status, ...)

learnRPART 23

Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictRPART.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;
see Details.
Optional extra parameters required by the generic "predict" method.
Details

The input arguments to both learnRPART and predictRPART are dictated by the requirements of
the general train-and-test mechanism provided by the Modeler-class.

The RPART classifier is similar in spirit to the "supervised principal components" method imple-
mented in the superpc package. We start by performing univariate two-sample t-tests to identify
features that are differentially expressed between two groups of training samples. We then set a
cutoff to select features using a bound (alpha) on the false discovery rate (FDR). If the number of
selected features is smaller than a prespecified goal (minNgenes), then we increase the FDR until
we get the desired number of features. Next, we perform PCA on the selected features from the
trqining data. we retain enough principal components (PCs) to explain a prespecified fraction of
the variance (perVar). We then fit a logistic regression model using these PCs to predict the binary
class of the training data. In order to use this model to make binary predictions, you must spec-
ify a prior probability that a sample belongs to the first of the two groups (where the ordering is
determined by the levels of the classification factor, status).

In order to fit the model to data, the params argument to the 1earnRPART function should be a list
containing components named alpha, minNgenes, perVar, and prior. It may also contain a logical
value called verbose, which controls the amount of information that is output as the algorithm runs.

The result of fitting the model using 1earnRPART is a member of the FittedModel-class. In
additon to storing the prediction function (pfun) and the training data and status, the FittedModel
stores those details about the model that are required in order to make predictions of the outcome
on new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictRPART function in order to make predictions with the model on new data. Note that the
status vector here is the one used for the training data, since the prediction function only uses the
levels of this factor to make sure that the direction of the predicitons is interpreted correctly.

24 learnSelectedLR

Value

The learnRPART function returns an object of the FittedModel-class, representing a RPART
classifier that has been fitted on a training data set.

The predictRPART function returns a factor containing the predictions of the model when applied
to the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by learnRPART.

Examples

simulate some data
data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
rpart.params <- list(minsplit = 10)

learn the model
fm <- learnRPART(data, status, rpart.params, predictRPART)

Make predictions on some new simulated data
newdata <- matrix(rnorm(100%30), ncol=30)
predictRPART (newdata, fm@details, status)

learnSelectedLR Fit models and make predictions with a PCA-LR classifier

Description

These functions are used to apply the generic train-and-test mechanism to a classifier that combines
principal component analysis (PCA) with logistic regression (LR).

Usage

learnSelectedLR(data, status, params, pfun)
predictSelectedLR(newdata, details, status, ...)

learnSelectedLR 25

Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictSelectedLR.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;
see Details.
Optional extra parameters required by the generic "predict” method.
Details

The input arguments to both learnSelectedLR and predictSelectedLR are dictated by the re-
quirements of the general train-and-test mechanism provided by the Modeler-class.

The SelectedLR classifier is similar in spirit to the "supervised principal components" method im-
plemented in the superpc package. We start by performing univariate two-sample t-tests to identify
features that are differentially expressed between two groups of training samples. We then set a cut-
off to select features using a bound (alpha) on the false discovery rate (FDR). If the number of
selected features is smaller than a prespecified goal (minNgenes), then we increase the FDR until
we get the desired number of features. Next, we perform PCA on the selected features from the
trqining data. we retain enough principal components (PCs) to explain a prespecified fraction of
the variance (perVar). We then fit a logistic regression model using these PCs to predict the binary
class of the training data. In order to use this model to make binary predictions, you must spec-
ify a prior probability that a sample belongs to the first of the two groups (where the ordering is
determined by the levels of the classification factor, status).

In order to fit the model to data, the params argument to the learnSelectedLR function should be
a list containing components named alpha, minNgenes, perVar, and prior. It may also contain
a logical value called verbose, which controls the amount of information that is output as the
algorithm runs.

The result of fitting the model using learnSelectedLR is a member of the FittedModel-class.
In additon to storing the prediction function (pfun) and the training data and status, the FittedModel
stores those details about the model that are required in order to make predictions of the outcome
on new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictSelectedLR function in order to make predictions with the model on new data. Note that
the status vector here is the one used for the training data, since the prediction function only uses
the levels of this factor to make sure that the direction of the predicitons is interpreted correctly.

26 learnSVM

Value

The learnSelectedLR function returns an object of the FittedModel-class, representing a Se-
lectedLR classifier that has been fitted on a training data set.

The predictSelectedLR function returns a factor containing the predictions of the model when
applied to the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to tain and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by learnSelectedLR.

Examples

simulate some data
data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
slr.params <- list(minNgenes=10, alpha=0.10, perVar=0.80, prior=0.5)

learn the model
fm <- learnSelectedLR(data, status, slr.params, predictSelectedLR)

Make predictions on some new simulated data
newdata <- matrix(rnorm(100%30), ncol=30)
predictSelectedLR(newdata, fm@details, status)

learnsvM Fit models and make predictions with a PCA-LR classifier

Description

These functions are used to apply the generic train-and-test mechanism to a classifier that combines
principal component analysis (PCA) with logistic regression (LR).

Usage

learnSVM(data, status, params, pfun)
predictSVM(newdata, details, status, ...)

learnSVM 27

Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictSVM.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;
see Details.
Optional extra parameters required by the generic "predict" method.
Details

The input arguments to both learnSVM and predictSVM are dictated by the requirements of the
general train-and-test mechanism provided by the Modeler-class.

The SVM classifier is similar in spirit to the "supervised principal components” method imple-
mented in the superpc package. We start by performing univariate two-sample t-tests to identify
features that are differentially expressed between two groups of training samples. We then set a
cutoff to select features using a bound (alpha) on the false discovery rate (FDR). If the number of
selected features is smaller than a prespecified goal (minNgenes), then we increase the FDR until
we get the desired number of features. Next, we perform PCA on the selected features from the
trqining data. we retain enough principal components (PCs) to explain a prespecified fraction of
the variance (perVar). We then fit a logistic regression model using these PCs to predict the binary
class of the training data. In order to use this model to make binary predictions, you must spec-
ify a prior probability that a sample belongs to the first of the two groups (where the ordering is
determined by the levels of the classification factor, status).

In order to fit the model to data, the params argument to the learnSVM function should be a list
containing components named alpha, minNgenes, perVar, and prior. It may also contain a logical
value called verbose, which controls the amount of information that is output as the algorithm runs.

The result of fitting the model using learnSVM is a member of the FittedModel-class. In additon
to storing the prediction function (pfun) and the training data and status, the FittedModel stores
those details about the model that are required in order to make predictions of the outcome on
new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictSVM function in order to make predictions with the model on new data. Note that the status
vector here is the one used for the fraining data, since the prediction function only uses the levels
of this factor to make sure that the direction of the predicitons is interpreted correctly.

28 learnTailRank

Value

The learnSVM function returns an object of the FittedModel-class, representing a SVM classifier
that has been fitted on a training data set.

The predictSVM function returns a factor containing the predictions of the model when applied to
the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by learnSVvM.

Examples

simulate some data
data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
svm.params <- list(minNgenes=10, alpha=0.10, perVar=0.80, prior=0.5)

learn the model
fm <- learnSVM(data, status, svm.params, predictSVM)

Make predictions on some new simulated data
newdata <- matrix(rnorm(100%30), ncol=30)
predictSVM(newdata, fm@details, status)

learnTailRank Fit models and make predictions with a PCA-LR classifier

Description

These functions are used to apply the generic train-and-test mechanism to a classifier that combines
principal component analysis (PCA) with logistic regression (LR).

Usage

learnTailRank(data, status, params, pfun)
predictTailRank(newdata, details, status, ...)

learnTailRank 29

Arguments
data The data matrix, with rows as features ("genes") and columns as the samples to
be classified.
status A factor, with two levels, classifying the samples. The length must equal the
number of data columns.
params A list of additional parameters used by the classifier; see Details.
pfun The function used to make predictions on new data, using the trained classifier.
Should always be set to predictTailRank.
newdata Another data matrix, with the same number of rows as data.
details A list of additional parameters describing details about the particular classifier;
see Details.
Optional extra parameters required by the generic "predict” method.
Details

The input arguments to both learnTailRank and predictTailRank are dictated by the require-
ments of the general train-and-test mechanism provided by the Modeler-class.

The TailRank classifier is similar in spirit to the "supervised principal components" method imple-
mented in the superpc package. We start by performing univariate two-sample t-tests to identify
features that are differentially expressed between two groups of training samples. We then set a
cutoff to select features using a bound (alpha) on the false discovery rate (FDR). If the number of
selected features is smaller than a prespecified goal (minNgenes), then we increase the FDR until
we get the desired number of features. Next, we perform PCA on the selected features from the
trqining data. we retain enough principal components (PCs) to explain a prespecified fraction of
the variance (perVar). We then fit a logistic regression model using these PCs to predict the binary
class of the training data. In order to use this model to make binary predictions, you must spec-
ify a prior probability that a sample belongs to the first of the two groups (where the ordering is
determined by the levels of the classification factor, status).

In order to fit the model to data, the params argument to the learnTailRank function should be
a list containing components named alpha, minNgenes, perVar, and prior. It may also contain
a logical value called verbose, which controls the amount of information that is output as the
algorithm runs.

The result of fitting the model using learnTailRank is a member of the FittedModel-class. In
additon to storing the prediction function (pfun) and the training data and status, the FittedModel
stores those details about the model that are required in order to make predictions of the outcome
on new data. In this acse, the details are: the prior probability, the set of selected features (sel, a
logical vector), the principal component decomposition (spca, an object of the SamplePCA class),
the logistic regression model (mmod, of class glm), the number of PCs used (nCompUsed) as well
as the number of components available (nCompAvail) and the number of gene-features selected
(nGenesSelecets). The details object is appropriate for sending as the second argument to the
predictTailRank function in order to make predictions with the model on new data. Note that the
status vector here is the one used for the training data, since the prediction function only uses the
levels of this factor to make sure that the direction of the predicitons is interpreted correctly.

30 Modeler

Value

The learnTailRank function returns an object of the FittedModel-class, representing a TailRank
classifier that has been fitted on a training data set.

The predictTailRank function returns a factor containing the predictions of the model when ap-
plied to the new data set.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See Modeler-class and Modeler for details about how to train and test models. See FittedModel-class
and FittedModel for details about the structure of the object returned by learnTailRank.

Examples

Not run:

simulate some data

data <- matrix(rnorm(100%20), ncol=20)
status <- factor(rep(c("A", "B"), each=10))

set up the parameter list
tr.params <- list(minNgenes=10, alpha=0.10, perVar=0.80, prior=0.5)

learn the model -- this is slow
fm <- learnTailRank(data, status, tr.params, predictTailRank)

Make predictions on some new simulated data
newdata <- matrix(rnorm(100%30), ncol=30)

predictTailRank(newdata, fm@details, status)

End(Not run)

Modeler Constructor for "Modeler" objects

Description

The Modeler-class represents (parametrized but not yet fit) statistical models that can predict
binary outcomes. The Modeler function is used to construct objects of this class.

Usage

Modeler(learn, predict, ...)

Modeler 31

Arguments
learn Object of class "function” that will be used to fit the model to a data set. See
learn for details.
predict Object of class "function” that will be used to make predictions on new data
from a fitted model. See predict for details.
Additional parameters required for the specific kind of classificaiton model that
will be constructed. See Details.
Details

Objects of the Modeler-class provide a general abstraction for classification models that can be
learned from one data set and then applied to a new data set. Each type of classifier is likely to have
its own specific parameters. For instance, a K-nearest neighbors classifier requires you to specify k.
The more complex classifier, PCA-LR has many more parameters, including the false discovery rate
(alpha) used to select features and the percentage of variance (perVar) that should be explained by
the number of principal components created from those features. All additional parameters should
be suplied as named arguments to the Modeler constructor; these additional parameters will be
bundled into a list and inserted into the params slot of the resulting object of the Modeler-class.

Value

Returns an object of the Modeler-class.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See the descriptions of the learn function and the predict,FittedModel-method method for
details on how to fit models on training data and make predictions on new test data.

See the description of the FittedModel-class for details about the kinds of objects produced by
learn.

Examples

learnNNET

predictNNET

modelerNNET <- Modeler(learnNNET, predictNNET, size=5)
modelerNNET

32 Modeler-class

Modeler-class Class "Modeler"”

Description
The Modeler class represents (parametrized but not yet fit) statistical models that can predict binary
outcomes.

Objects from the Class

Objects can be created by calls to the constructor fuinction, Modeler.

Slots

learnFunction: Object of class "function” that is used to fit the model to a data set. See learn
for details.

predictFunction: Object of class "function” that is used to make predictions on new data from
a fitted model. See predict,FittedModel-method for details.

paramList: Object of class "1ist"” that contains parameters that are specific for one type of clas-
sifier.

Methods

No methods are defined with class "Modeler" in the signature. The only function that can be applied
to a Modeler object is learn, which has not been made into a generic funtion.

Author(s)

Kevin R. Coombes <krc @silicovore.com>

See Also

See the description of the FittedModel-class for details about the kinds of objects produced by
learn.

Examples

showClass("”Modeler™)

Index

* classes
FittedModel-class, 7
Modeler-class, 32

x classif
FittedModel, 6
learn, 8
learnCCP, 9
learnkNN, 11
learnLR, 12
learnNNET, 14
learnNNET2, 16
learnPCALR, 18
learnRF, 20
learnRPART, 22
learnSelectedLR, 24
learnSvM, 26
learnTailRank, 28
Modeler, 30

+ multivariate
feature.filters, 2
feature.selection, 3
FittedModel, 6
learn, 8
learnCCP, 9
learnkNN, 11
learnlLR, 12
learnNNET, 14
learnNNET2, 16
learnPCALR, 18
learnRF, 20
learnRPART, 22
learnSelectedlLR, 24
learnSwM, 26
learnTailRank, 28
Modeler, 30

feature.filters, 2
feature.selection, 3
filterIQR (feature.filters), 2
filterMax (feature.filters), 2

33

filterMean (feature.filters), 2
filterMedian (feature.filters), 2
filterMin (feature.filters), 2
filterRange (feature.filters), 2
filterSD (feature.filters), 2
FittedModel, 6, 7, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30
FittedModel-class, 7
fsChisquared (feature.selection), 3
fsEntropy (feature.selection), 3
fsFisherRandomForest
(feature.selection), 3
fsMedSplitOddsRatio
(feature.selection), 3
fsModifiedFisher (feature.selection), 3
fsPearson (feature.selection), 3
fsSpearman (feature.selection), 3
fsTailRank (feature.selection), 3
fsTtest (feature.selection), 3

glm, 10, 13, 15,17, 19, 21, 23, 25, 27,29

keepAll (feature.selection), 3
knn, 11

learn, 6, 7,8, 31, 32
learnCCP, 9
learnKNN, 11
learnLR, 12
learnNNET, 14
learnNNET2, 16
learnPCALR, 18
learnRF, 20
learnRPART, 22
learnSelectedLR, 24
learnSwM, 26
learnTailRank, 28

Modeler, 3, 5, 10, 12, 14, 16, 18, 20, 22, 24,
26, 28, 30, 30, 32

34

Modeler-class, 32

modeler3NN (1learnkNN), 11
modeler5NN (1learnkNN), 11
modelerCCP (learnCCP), 9

modelerLR (learnLR), 12

modelerNNET (learnNNET), 14
modelerNNET2 (learnNNET2), 16
modelerPCALR (learnPCALR), 18
modelerRF (learnRF), 20
modelerRPART (learnRPART), 22
modelerSelectedlLR (learnSelectedLR), 24
modelerSVM (learnSvM), 26
modelerTailRank (learnTailRank), 28

predict, 6-8, 31
predict,FittedModel-method
(FittedModel-class), 7
predictCCP (learnCCP), 9
predictkKNN (learnkNN), 11
predictLR (learnLR), 12
predictNNET (learnNNET), 14
predictNNET2 (1learnNNET2), 16
predictPCALR (learnPCALR), 18
predictRF (learnRF), 20
predictRPART (learnRPART), 22
predictSelectedLR (learnSelectedLR), 24
predictSVM (learnSVM), 26
predictTailRank (learnTailRank), 28

SamplePCA, 10, 13, 15,17, 19, 21, 23, 25, 27,
29

TailRankTest, 4

INDEX

	feature.filters
	feature.selection
	FittedModel
	FittedModel-class
	learn
	learnCCP
	learnKNN
	learnLR
	learnNNET
	learnNNET2
	learnPCALR
	learnRF
	learnRPART
	learnSelectedLR
	learnSVM
	learnTailRank
	Modeler
	Modeler-class
	Index

