Package 'MitoHEAR' January 20, 2025 | · | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Type Package | | Title Quantification of Mitochondrial DNA Heteroplasmy | | Version 0.1.0 | | Author Gabriele Lubatti | | Maintainer Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de></gabriele.lubatti@helmholtz-muenchen.de> | | Description Allows the estimation and downstream statistical analysis of the mitochondrial DNA Heteroplasmy calculated from single-cell datasets https://github.com/ScialdoneLab/MitoHEAR/tree/master . | | License Artistic-2.0 | | Depends R (>= 4.0) | | Imports Biostrings, circlize, ComplexHeatmap, dynamicTreeCut, GenomicRanges, ggplot2, gridExtra, IRanges, magrittr, mcclust, rdist, reshape2, rlist, Rsamtools, | | Suggests clustree, fmsb, gam, karyoploteR, knitr, plotly, regioneR, rmarkdown, testthat | | VignetteBuilder knitr | | biocViews software | | Encoding UTF-8 | | Config/testthat/edition 3 | | RoxygenNote 7.1.1 | | NeedsCompilation no | | Repository CRAN | | Date/Publication 2022-03-01 21:20:02 UTC | | Contents | | choose_features_clustering | ``` Index 25 choose_features_clustering ``` choose_features_clustering #### **Description** choose_features_clustering ### Usage ``` choose_features_clustering(heteroplasmy_matrix, allele_matrix, cluster, top_pos, deepSplit_param, minClusterSize_param, min_value_vector, threshold = 0.2, index, max_frac = 0.7) ``` #### **Arguments** heteroplasmy_matrix Third element returned by *get_heteroplasmy*. allele_matrix Fourth element returned by get_heteroplasmy. cluster Vector specifying a partition of the samples. top_pos Numeric value. Number of bases sorted with decreasing values of distance vari- ance (see section *Details* below) among samples. If *relevant_bases*=NULL, then the bases for performing hierarchical clustering are the ones whose relative variance (variance of the base divided sum of variance among *top_pos* bases) is above min_value. deepSplit_param Integer value between 0 and 4 for the deepSplit parameter of the function cutree- Hybrid. See section Details below. minClusterSize_param Integer value specifying the minClusterSize parameter of the function cutreeHy- brid. See section Details below. min_value_vector Numeric vector. For each value in the vector, the function $clustering_angular_distance$ is run with parameter min_value equal to one element of the vector min_value_vector. threshold Numeric value. If a base has heteroplasmy greater or equal to threshold in more than max_frac of cells, then the base is not considered for down stream analysis. index Fifth element returned by *get_heteroplasmy*. max_frac Numeric value.If a base has heteroplasmy greater or equal to *threshold* in more than max_frac of cells, then the base is not considered for down stream analysis. ### Value Clustree plot returned by function *clustree* from package *clustree*. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### See Also https://cran.r-project.org/package=clustree clustering_angular_distance clustering_angular_distance ### **Description** For each pair of samples and for each base, an angular distance matrix is computed based on the four allele frequencies. Then only the angular distances corresponding to the relevant_bases are kept. If relevant bases is NULL, then only the angular distances corresponding to the bases with relative distance variance among samples above *min_value* are kept. Finally the distance between each pair of samples is defined as the euclidean distance of the angular distances corresponding to the bases that pass the previous filtering step. On this final distance matrix, a hierarchical clustering approach is performed using the function *cutreeHybrid* of the package *dynamicTreeCut*. ### Usage ``` clustering_angular_distance(heteroplasmy_matrix, allele_matrix, cluster, top_pos, deepSplit_param, minClusterSize_param, threshold = 0.2, min_value, index, relevant_bases = NULL, max_frac = 0.7) ``` ### Arguments top_pos heteroplasmy_matrix Third element returned by *get_heteroplasmy*. allele_matrix Fourth element returned by get_heteroplasmy. cluster Vector specifying a partition of the samples. Numeric value. Number of bases sorted with decreasing values of distance variance (see section *Details* below) among samples. If *relevant_bases*=NULL, then the bases for performing hierarchical clustering are the ones whose relative variance (variance of the base divided sum of variance among *top_pos* bases) is above min_value. deepSplit_param Integer value between 0 and 4 for the *deepSplit* parameter of the function *cutree-Hybrid*. See section *Details* below. minClusterSize_param Integer value specifying the *minClusterSize* parameter of the function *cutreeHy*- brid. See section Details below. threshold Numeric value. If a base has heteroplasmy greater or equal to threshold in more than max_frac of cells, then the base is not considered for down stream analysis. min_value Numeric value. If *relevant_bases*=NULL, then the bases for performing hier- archical clustering are the ones whose relative variance (variance of the base divided sum of variance among *top_pos* bases) is above *min_value*. detect_insertion 5 index Fifth element returned by *get_heteroplasmy*. relevant_bases Character vector of bases to consider as features for performing hierarchical clustering on samples.Default=NULL. max_frac Numeric value.If a base has heteroplasmy greater or equal to threshold in more than max_frac of cells, then the base is not considered for down stream analysis. ### Value It returns a list with 4 elements: classification Dataframe with two columns and n_row equal to n_row in heteroplasmy_matrix. The first column is the old cluster annotation provided by cluster. The second columns is the new cluster annotation obtained with hierarchical clustering on distance matrix based on heteroplasmy values. dist_ang_matrix Distance matrix based on heteroplasmy values as defined in the section *Details* top_bases_dist Vector of bases used for hierarchical clustering. If relevant_bases is not NULL, then top_bases_dist=NULL common_idx Vector of indices of samples for which hierarchical clustering is performed. If index is NULL, then common_idx=NULL ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### See Also https://www.rdocumentation.org/packages/dynamicTreeCut/versions/1.63-1/topics/cutreeHybrid detect_insertion detect_insertion #### **Description** detect_insertion ### Usage detect_insertion(ref_sequence, different_sequence, length_comparison = 10) 6 dpt_test ### **Arguments** reference. different_sequence Character vector whose elements are the bases of a DNA sequence different from the reference. length_comparison Integer number. Number of bases to consider for the comparison between the two DNA sequences in order to detect and remove insertions in the non-reference sequence. ### Value Character vector of the different_sequence with length equal to ref_sequence, after having removed the insertions. #### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> dpt_test dpt_test ### **Description** dpt_test ### Usage ``` dpt_test(heteroplasmy_matrix, time, index = NULL, method = "GAM") ``` #### **Arguments** heteroplasmy_matrix Third element returned by *get_heteroplasmy*. time Vector of diffusion pseudo time. index index returned by get_heteroplasmy. method Character name denoting the method to choose for assigning an adjusted p value to each of the bases. Can be one of GAM, pearson and spearman. GAM: For each base, a GAM fit with formula $z \sim lo(t)$ is performed between the heteroplasmy values (z) and the time (t). The p value from the table "Anova for Parametric Effects" is then assigned to the base. pearson, spearman: for each base, a pearson or spearman correlation test is performed between the heteroplasmy values and the time . The p value obtained from the test is then assigned to the base. In all the three possible methods, all the p values are then corrected with the method FDR. filter_bases 7 ### Value A data frame with 2 columns and number of rows equal to n_col in *heteroplasmy_matrix*. In the first column there are the names of the bases while in the second column there are the adjusted p value. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### See Also https://www.rdocumentation.org/packages/gam/versions/1.20/topics/gam filter_bases filter_bases ### Description filter_bases ### Usage ``` filter_bases(heteroplasmy_matrix, min_heteroplasmy, min_cells, index = NULL) ``` ### **Arguments** heteroplasmy_matrix Third element returned by *get_heteroplasmy*. ${\tt min_heteroplasmy}$ Numeric value. min_cells Numeric value. index Fifth element returned by *get_heteroplasmy*. ### Value Character vector of bases that have an heteroplasmy greater than *min_heteroplasmy* in more than *min_cells*. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> 8 get_heteroplasmy get_distribution get_distribution ### Description ``` get_distribution ``` ### Usage ``` get_distribution(heteroplasmy_matrix, FUNCTION, index = NULL) ``` ### **Arguments** heteroplasmy_matrix Third element returned by *get_heteroplasmy*. FUNCTION A character specifying the function to be applied on each column of *matrix*. The possible values are: mean,max,min,median and sum. index index returned by *get_heteroplasmy*. ### Value It returns a numeric vector with length equal to n_col of *matrix* where each element contains the result of the operation defined by *FUNCTION*. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> get_heteroplasmy get_heteroplasmy ### Description It is one of the two main functions of the **MitoHEAR** package (together with *get_raw_counts_allele*). It computes the allele frequencies and the heteroplasmy matrix starting from the counts matrix obtained with *get_raw_counts_allele*. ### Usage ``` get_heteroplasmy(raw_counts_allele, name_position_allele, name_position, number_reads, number_positions, filtering = 1, my.clusters = NULL) ``` get_heteroplasmy 9 #### **Arguments** raw_counts_allele A raw counts matrix obtained from get_raw_counts_allele. name_position_allele A character vector with elements specifying the genomic coordinate of the base and the allele (obtained from *get_raw_counts_allele*). name_position A character vector with elements specifying the genomic coordinate of the base (obtained from get_raw_counts_allele). base covered by the sample. number_positions Integer specifying the minimumnumber of bases that must be covered by the sample (with counts>number_reads), in order to keep the sample for down- stream analysis. filtering Numeric value equal to 1 or 2. If 1 then only the bases that are covered by all the samples are kept for the downstream analysis. If 2 then all the bases that are covered by more than 50% of the the samples in each cluster (specified by my.clusters) are kept for the down-stream analysis. Default is 1. my.clusters Character vector specifying a partition of the samples. It is only used when filtering is equal to 2. Default is NULL ### **Details** Starting from *raw counts allele matrix*, the function performed two consequentially filtering steps. The first one is on the samples, keeping only the ones that cover a number of bases above number_positions. The second one is on the bases, defined by the parameter filtering. The heteroplasmy for each sample-base pair is computed as I-max(f), where f are the frequencies of the four alleles. #### Value It returns a list with 5 elements: sum_matrix A matrix (n_row=number of sample, n_col=number of bases) with the counts for each sample/base, for all the initial samples and bases included in the raw counts allele matrix. sum_matrix_qc A matrix (n_row=number of sample, n_col=number of bases) with the counts for each sample/base, for all the samples and bases that pass the two consequentially filtering steps. heteroplasmy_matrix A matrix with the same dimension of *sum_matrix_qc* where each entry (i,j) is the heteroplasmy for sample i in base j. allele_matrix A matrix (n_row=number of sample, n_col=4*number of bases) with allele fre- quencies, for all the samples and bases that pass the two consequentially filtering steps. index Indices of the samples that cover a base, for all bases and samples that pass the two consequentially filtering steps; if all the samples cover all the bases, then index is NULL #### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> #### **Examples** ``` # Two samples and two bases whose reference allele is A and C. # The two samples have 100 reads in the reference allele and 0 in all the others. sample1_A <- c(100, 0, 0, 0) names_A <- rep("1_A", length(sample1_A))</pre> sample1_C <- c(100, 0, 0, 0) names_C <- rep("2_C", length(sample1_C))</pre> allele <- c("A", "C", "T", "G") names_A_allele <- paste(names_A, allele, sep = " ")</pre> names_C_allele <- paste(names_C, allele, sep = " ")</pre> sample1 <- c(sample1_A, sample1_C)</pre> sample2_A \leftarrow c(100, 0, 0, 0) sample2_C <- c(100, 0, 0, 0) sample2 <- c(sample2_A, sample2_C)</pre> test_allele <- matrix(c(sample1, sample2), byrow = TRUE, ncol = 8, nrow = 2)</pre> colnames(test_allele) <- c(names_A_allele, names_C_allele)</pre> row.names(test_allele) <- c("sample1", "sample2")</pre> name_position_allele_test <- c(names_A_allele, names_C_allele)</pre> name_position_test <- c(names_A, names_C)</pre> test <- get_heteroplasmy(test_allele, name_position_allele_test, name_position_test, 50, 1, 1) ``` ``` get_raw_counts_allele get_raw_counts_allele ``` ### Description It is one the two main function of the **MitoHEAR** package (together with *get_heteroplasmy*). The function allows to obtain a matrix of counts (n_row = number of sample, n_col= 4*number of bases) of the four alleles in each base, for every sample. It takes as input a vector of sorted bam files (one bam file for each sample) and a fasta file for the genomic region of interest. It is based on the *pileup* function of the package Rsamtools. #### Usage ``` get_raw_counts_allele(bam_input, path_fasta, cell_names, cores_number = 1) ``` ### **Arguments** | bam_input | Character vector of sorted bam files (full path). Each sample is defined by one bam file. For each bam file it is needed also the index bam file (.bai) at the same path. | |--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | path_fasta | Character string with full path to the fasta file of the genomic region of interest. | | cell_names | Character vector of sample names. | | cores_number | Number of cores to use. | get_wilcox_test 11 #### Value A list with three elements: matrix_allele_counts Matrix of counts (n_row = number of sample, n_col= 4*number of bases) of the four alleles in each base, for every sample. The row names is equal to cell_names. name_position_allele Character vector with length equal to n_col of matrix_allele_counts. Each element specifies the coordinate of genomic position for a base and the allele. name_position Character vector with length equal to n_col of matrix_allele_counts. Each element specifies the coordinate of genomic position for a base. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> #### See Also https://www.rdocumentation.org/packages/Rsamtools/versions/1.24.0/topics/pileup ### Description ``` get_wilcox_test ``` ### Usage ``` get_wilcox_test(heteroplasmy_matrix, cluster, label_1, label_2, index = NULL) ``` #### Arguments heteroplasmy_matrix Third element returned by *get_heteroplasmy*. cluster Vector specifying a partition of the samples. label_1 Character name of a first label included in cluster. It denotes the first group used for the Wilcoxon test label_2 Character name of a second label included in cluster and different from label_1. it denotes the second group used for the Wilcoxon test. index Fifth element returned by *get_heteroplasmy*. ### Value It returns a numeric vector of length equal to n_row in matrix. Each element stands for a base and it contains the adjusted p-value (FDR), obtained in unpaired two-samples Wilcoxon test from the comparison of the heteroplasmy between the label_1 and label_2 group. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> #### See Also https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test ``` plot_allele_frequency ``` ### **Description** ``` plot_allele_frequency ``` ### Usage ``` plot_allele_frequency(position, heteroplasmy_matrix, allele_matrix, cluster, names_allele_qc, names_position_qc, size_text, index) ``` ### **Arguments** ``` position Character name of the base to plot. ``` heteroplasmy_matrix Third element returned by *get_heteroplasmy*. allele_matrix Fourth element returned by *get_heteroplasmy*. cluster Vector specifying a partition of the samples. names_allele_qc Character vector with length equal to n_col of allele_matrix. Each element spec- ifies the name of the base and the allele. names_position_qc Character vector with length equal to n_col of allele_matrix. Each element spec- ifies the name of the base. size_text Character specifying the size of the text for gridExtra function grid.arrange) index Fifth element returned by *get_heteroplasmy*. ### Value grid.arrange plot of allele frequencies of a specific base across samples divided according to cluster. plot_base_coverage 13 ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### See Also ``` https://cran.r-project.org/package=gridExtra ``` ``` plot_base_coverage ``` ### **Description** ``` plot_base_coverage ``` ### Usage ``` plot_base_coverage(sum_matrix, sum_matrix_qc, selected_cells, interactive = FALSE, text_size = 10) ``` ### **Arguments** ``` sum_matrix First element returned by the function <code>get_heteroplasmy</code>. sum_matrix_qc Second element returned by the function <code>get_heteroplasmy</code>. selected_cells Character vector with cells used fro plotting the coverage. interactive Logical. If TRUE an interactive plot is produced. text_size Character specifying the size of the text for ggplot2. ``` ### Value ``` ggplot2 object (if interactive=FALSE) or plotly object (if interactive=TRUE). ``` #### Author(s) ``` Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ``` ### See Also ``` https://plotly.com/r/ ``` plot_cells_coverage plot_batch plot_batch ### **Description** plot_batch ### Usage plot_batch(position, heteroplasmy_matrix, batch, cluster, text_size, index) ### **Arguments** position Character name of the base to plot. heteroplasmy_matrix Third element returned by get_heteroplasmy. batch Vector of batch names, with length equal to n_row of heteroplasmy_matrix. cluster Vector specifying a partition of the samples. text_size Character specifying the size of the text for ggplot2. index Fifth element returned by *get_heteroplasmy*. ### Value ggplot2 object of the heteroplasmy level of a specific base across samples divided according to batch. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> plot_cells_coverage plot_cells_coverage ### Description plot_cells_coverage ### Usage plot_cells_coverage(sum_matrix, cells_selected, cluster, interactive = FALSE) plot_condition 15 ### **Arguments** sum_matrix First element returned by the function *get_heteroplasmy*. cells_selected Character vector of cells for which the coverage is computed. cluster Character vector with partition information for cells specified in cells_selected interactive Logical. If TRUE an interactive plot is produced. #### Value ``` ggplot2 object (if interactive=FALSE) or plotly object (if interactive=TRUE). ``` #### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### See Also ``` https://plotly.com/r/ ``` plot_condition plot_condition ### **Description** ``` plot_condition ``` ### Usage ``` plot_condition(distribution_1, distribution_2, label_1, label_2, name_x, name_y, name_title) ``` ### **Arguments** ### Value ggplot2 boxplot of the quantities specified by *distribution_1* and *distribution_2*, separated by the conditions denoted by *label_1* and *label_2*. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### Description ``` plot_coordinate_cluster ``` ### Usage ``` plot_coordinate_cluster(coordinate_dm, cluster) ``` ### **Arguments** coordinate_dm Dataframe whit samples on the rows and coordinates names on the columns. cluster Vector specifying a partition of the samples. #### Value ggplot2 object. #### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ``` plot_coordinate_heteroplasmy\\ plot_coordinate_heteroplasmy ``` ### Description plot_coordinate_heteroplasmy plot_correlation_bases 17 ### Usage ``` plot_coordinate_heteroplasmy(coordinate_dm, heteroplasmy_matrix, index, name_base) ``` ### Arguments coordinate_dm Dataframe whit samples on the rows and coordinates names on the columns. heteroplasmy_matrix Third element returned by *get_heteroplasmy*. index Fifth element returned by *get_heteroplasmy*. name_base Character name specifying the base. #### Value ggplot2 object. #### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ``` plot_correlation_bases ``` plot correlation bases ### **Description** ``` plot_correlation_bases ``` ### Usage ``` plot_correlation_bases(bases_vector, index, heteroplasmy_matrix) ``` ### Arguments bases_vector Character vector specifying the bases for which the spearman correlation across samples is computed. index Fifth element returned by *get_heteroplasmy*. heteroplasmy_matrix Third element returned by get_heteroplasmy. ### Value Heatmap plot produced by function *Heatmap* from package *ComplexHeatmap*. 18 plot_distance_matrix ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### See Also https://www.rdocumentation.org/packages/ComplexHeatmap/versions/1.10.2/topics/Heatmap plot_distance_matrix plot_distance_matrix ### **Description** plot_distance_matrix ### Usage ``` plot_distance_matrix(dist_ang_matrix, cluster) ``` ### **Arguments** dist_ang_matrix Distance matrix obtained from $clustering_angular_distance$ (second element of the output). cluster Vector. Can be one of the two partitions returned by function clustering_angular_distance (first element of the output). ### Value Heatmap plot produced by function *Heatmap* from package *ComplexHeatmap*. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### See Also https://www.rdocumentation.org/packages/ComplexHeatmap/versions/1.10.2/topics/Heatmap plot_distribution 19 plot_distribution plot_distribution ### **Description** plot_distribution ### Usage ``` plot_distribution(quantity_counts_cell, name_x, name_title) ``` ### **Arguments** quantity_counts_cell Vector returned by get_distribution name_x Character name specifying the xlab argument in *ggplot2*. name_title Character name specifying the ggtitle argument in *ggplot2*. #### Value ggplot2 density plot of the vector quantity_counts_cell. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### Description plot_dpt ### Usage ``` plot_dpt(position, heteroplasmy_matrix, cluster, time, gam_fit_result, index) ``` ### **Arguments** position Character name of the base to plot. heteroplasmy_matrix Third element returned by *get_heteroplasmy*. cluster Vector specifying a partition of the samples. time Vector of diffusion pseudo time, with length equal to n_row of heteroplasmy_matrix. gam_fit_result Data frame returned by dpt_test. index Fifth element returned by *get_heteroplasmy*. #### Value ggplot2 object of the heteroplasmy level of a specific base across samples and the GAM fitted curve. The title shows the adjusted p value (FDR) for the position obtained from *get_heteroplasmy*. #### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> #### See Also ``` https://cran.r-project.org/package=gam ``` ``` plot_genome_coverage ``` ### **Description** ``` plot_genome_coverage ``` ### Usage ``` plot_genome_coverage(biomart_file, path_fasta, chr_name, heteroplasmy_matrix) ``` ### Arguments | biomart_file | Character string with full | path to the txt file dov | wnloaded from l | BioMart https: | |--------------|----------------------------|--------------------------|-----------------|----------------| |--------------|----------------------------|--------------------------|-----------------|----------------| $\label{lowing_constraint} $$/\text{m.ensembl.org/info/data/biomart/index.html}$. It must have the following five columns: Gene. stable. ID, Gene. name, Gene. start..bp., Gene. end..bp.,$ Chromosome.scaffold.name path_fasta Character string with full path to the fasta file of the genomic region of interest. It should be the same file used in *get_raw_counts_allele*. chr_name Character specifying the name of the chromosome of interest. It must be one of the names in the *Chromosome.scaffold.name* column from the *biomart_file*. heteroplasmy_matrix Third element returned by *get_heteroplasmy*. #### Value KaryoPlot object as returned by *plotKaryotype* function from package *karyoploteR*. #### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### See Also http://bioconductor.org/packages/release/bioc/html/karyoploteR.html plot_heatmap 21 plot_heatmap plot_heatmap ### **Description** ``` plot_heatmap ``` ### Usage ``` plot_heatmap(new_classification, old_classification, dist_ang_matrix, cluster_columns = FALSE, cluster_rows = TRUE, name_legend) ``` ### **Arguments** new_classification Character vector. Second column of the dataframe returned by function *cluster-ing_angular_distance* (first element of the output). old_classification Character vector. First column of the dataframe returned by function *cluster-ing_angular_distance* (first element of the output). dist_ang_matrix Distance matrix obtained from *clustering_angular_distance* (second element of the output). cluster_columns Logical. Parameter for cluster_columns argument of the function *Heatmap* in the package ComplexHeatmap cluster_rows Logical. Parameter for cluster_rows argument of the function *Heatmap*name_legend Character value.Parameter for name argument of the function *Heatmap* #### Value Heatmap plot produced by function *Heatmap* from package *ComplexHeatmap*. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> #### See Also https://www.rdocumentation.org/packages/ComplexHeatmap/versions/1.10.2/topics/Heatmap plot_heteroplasmy plot_heteroplasmy ### **Description** ``` plot_heteroplasmy ``` ### Usage ``` plot_heteroplasmy(position, heteroplasmy_matrix, cluster, index) ``` ### **Arguments** ``` position Character name of the base to plot. ``` heteroplasmy_matrix Third element returned by *get_heteroplasmy*. cluster Vector specifying a partition of the samples. index Fifth element returned by *get_heteroplasmy*. #### Value ggplot2 object of the heteroplasmy level of a specific base across samples divided according to cluster. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ``` plot_heteroplasmy_variability \\ plot_heteroplasmy_variability ``` ### **Description** ``` plot_heteroplasmy_variability ``` ### Usage ``` plot_heteroplasmy_variability(heteroplasmy_matrix, cluster, threshold = 0.1, frac = FALSE, index) ``` plot_spider_chart 23 ### **Arguments** heteroplasmy_matrix Third element returned by *get_heteroplasmy*. cluster Vector specifying a partition of the samples. threshold Numeric value. frac Logical. If FALSE the absolute number of cells that have at least one base with heteroplasmy above threshold are shown separated by cluster. If TRUE, then the fraction of cells are shown. index Fifth element returned by *get_heteroplasmy*. #### Value ggplot2 object. ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### Description plot_spider_chart #### Usage ``` plot_spider_chart(name_base, cluster, heteroplasmy_matrix, index) ``` ### **Arguments** name_base Character name specifying the base. cluster Vector specifying a partition of the samples. heteroplasmy_matrix Third element returned by *get_heteroplasmy*. index Fifth element returned by *get_heteroplasmy*. ### Value radarchart plot produced by function radarchart from package fmsb. #### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> #### See Also https://rdrr.io/cran/fmsb/man/radarchart.html 24 vi_comparison vi_comparison vi_comparison We compute the variation of information (VI) between the partition provided by new_classification and old_classification. The VI between a random partitions (obtained with re-shuffle from original labels in old_classification) and old_classification is also computed. A distribution of VI values from random partitions is built. Finally, from the comparison with this distribution, an empirical p value is given to the VI of the unsupervised cluster analysis. ### **Description** vi_comparison We compute the variation of information (VI) between the partition provided by new_classification and old_classification. The VI between a random partitions (obtained with re-shuffle from original labels in old_classification) and old_classification is also computed. A distribution of VI values from random partitions is built. Finally, from the comparison with this distribution, an empirical p value is given to the VI of the unsupervised cluster analysis. ### Usage vi_comparison(old_classification, new_classification, number_iter) #### Arguments old_classification Character vector. First column of the dataframe returned by function *cluster-ing_angular_distance* (first element of the output). new_classification Character vector. Second column of the dataframe returned by function *cluster-ing_angular_distance* (first element of the output). number_iter Integer value. Specify how many random partition are generated (starting from re-shuffle of labels in *old_classification*). ### Value Numeric value (empirical p value). ### Author(s) Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> ### See Also https://www.rdocumentation.org/packages/mcclust/versions/1.0/topics/vi.dist ## **Index** ``` {\tt choose_features_clustering, 2} clustering_angular_distance, 3 detect_insertion, 5 dpt_test, 6 filter_bases, 7 get_distribution, 8 get_heteroplasmy, 8 get_raw_counts_allele, 10 get_wilcox_test, 11 plot_allele_frequency, 12 plot_base_coverage, 13 plot_batch, 14 plot_cells_coverage, 14 \verb|plot_condition|, 15| plot_coordinate_cluster, 16 plot_coordinate_heteroplasmy, 16 plot_correlation_bases, 17 plot_distance_matrix, 18 plot_distribution, 19 plot_dpt, 19 \verb"plot_genome_coverage", 20" plot_heatmap, 21 plot_heteroplasmy, 22 \verb|plot_heteroplasmy_variability|, 22| plot_spider_chart, 23 vi_comparison, 24 ```