Package ‘MazamaTimeSeries’

May 18, 2025
Type Package

Version 0.3.1

Title Core Functionality for Environmental Time Series

Maintainer Jonathan Callahan <jonathan.s.callahan@gmail.com>

Description Utility functions for working with environmental time series data from known
locations. The compact data model is structured as a list with two dataframes. A
'meta’ dataframe contains spatial and measuring device metadata associated with
deployments at known locations. A 'data’ dataframe contains a 'datetime’ column
followed by columns of measurements associated with each "~ device-deployment".
Ephemerides calculations are based on code originally found in NOAA's
**Solar Calculator" <https://gml.noaa.gov/grad/solcalc/>.

License GPL-3

URL https://github.com/MazamaScience/MazamaTimeSeries,

https://mazamascience.github.io/MazamaTimeSeries/

BugReports https://github.com/MazamaScience/MazamaTimeSeries/issues
Depends R (>=4.0.0)

Imports dplyr, geodist, lubridate, magrittr, methods, MazamaCoreUltils
(>=0.5.3), MazamaRollUtils (>= 0.1.4), rlang, stringr

Suggests knitr, markdown, testthat (>= 2.1.0), rmarkdown, roxygen2
Encoding UTF-8

VignetteBuilder knitr

LazyData true

RoxygenNote 7.3.1

NeedsCompilation no

Author Jonathan Callahan [aut, cre],
Hans Martin [ctb],
Eli Grosman [ctb],
Roger Bivand [ctb],
Sebastian Luque [ctb]
Repository CRAN

Date/Publication 2025-05-17 22:00:10 UTC

https://gml.noaa.gov/grad/solcalc/
https://github.com/MazamaScience/MazamaTimeSeries
https://mazamascience.github.io/MazamaTimeSeries/
https://github.com/MazamaScience/MazamaTimeSeries/issues

2 Contents

Contents
Camp_Fire e 3
Carmel_Valley e 4
eXample_MLS e e e e e e e e 4
XAMPIE_Taws L e e e e e e e 5
eXample_StS e e e e e e 6
MazamaTimeSeries e 6
MES_AITANZE . .« . v v v v v e 7
mts_check e 8
mts_collapse L e 9
MES_COMDINE e e e 10
mts_distinct 11
mts_extractDataFrame 12
mts_filterData e 13
mts_filterDate e e e e e e 14
mts_filterDatetime e e e 15
mts_filterMeta e e 17
mts_getDistance e 18
mts_isEmpty 19
mts_isValid e 19
mts_pullo e 20
mts_sample e e e e e 21
mts_select e 23
mts_selectWhere e e 24
mts_setTIMEAXIS e e e e 25
mts_slice_head 26
MES_SUMMATIZE o v v o v e e e e e e e e e e e e e e e 27
MES_LOM o o e e e e e e e e e 29
mts_trimDate e e 29
requiredMetaNames 30
sts_check e e e 31
SIS_COMDINE e e 32
StS_AIStINCt e e e e e 33
sts_extractDataFrame 34
sts_MIlter e, 34
sts_filterDate L e e 35
sts_filterDatetime e, 37
Sts_iSEmpty L e e e 38
sts_isValid e e 39
SES_SUMMATIIZE & v v v v e e e e e e e e e e e e e e e e 40
sts_trimDate L e e 41
timelnfo e 42

Index 45

Camp_Fire 3

Camp_Fire Camp Fire example dataset

Description

The Camp_Fire dataset provides a quickly loadable version of a mts_monitor object for practicing
and code examples.

Usage

Camp_Fire

Format

A mts object with 360 rows and 134 columns of data.

Details

The 2018 Camp Fire was the deadliest and most destructive wildfire in California’s history, and the
most expensive natural disaster in the world in 2018 in terms of insured losses. The fire caused at
least 85 civilian fatalities and injured 12 civilians and five firefighters. It covered an area of 153,336
acres and destroyed more than 18,000 structures, most with the first 4 hours. Smoke from the fire
resulted in the worst air pollution ever for the San Francisco Bay Area and Sacramento Valley.

This dataset was was generated on 2022-10-12 by running:

library(AirMonitor)

Camp_Fire <-
monitor_loadAnnual (2018) %>%
monitor_filter(stateCode == 'CA') %>%
monitor_filterDate(
startdate = 20181108,
enddate = 20181123,
timezone = "America/Los_Angeles”
) %>%
monitor_dropEmpty ()

save(Camp_Fire, file = "data/Camp_Fire.rda")

4 example_mts

Carmel_Valley Carmel Valley example dataset

Description

The Carmel_Valley dataset provides a quickly loadable version of a single-sensor mts_monitor
object for practicing and code examples.

Usage

Carmel_Valley

Format

An mts object with 600 rows and 2 columns of data.

Details

In August of 2016, the Soberanes fire in California burned along the Big Sur coast. It was at the
time the most expensive wildfire in US history. This dataset contains PM2.5 monitoring data for
the monitor in Carmel Valley which shows heavy smoke as well as strong diurnal cycles associated
with sea breezes. Data are stored as an mts object and are used in some examples in the package
documentation.

This dataset was generated on 2022-10-12 by running:

library(AirMonitor)

Carmel_Valley <-
airnow_loadAnnual (2016) %>%
monitor_filterMeta(deviceDeploymentID == "a9572a904a4ed46d_840060530002") %>%
monitor_filterDate(20160722, 20160815)

save(Carmel_Valley, file = "data/Carmel_Valley.rda")

example_mts Example mts dataset

Description

The example_mts dataset provides a quickly loadable version of an mts object for practicing and
code examples.

This dataset was was generated on 2021-10-07 by running:

example_raws 5

library(AirSensor)
communities <- c("Alhambra/Monterey Park”, "E1 Monte")
example_mts <-

example_sensor_scaqmd %>%

sensor_filterMeta(communityRegion %in% communities)

Add required "locationName"
example_mts$meta$locationName <- example_mts$meta$siteName

save(example_mts, file = "data/example_mts.rda")

Usage

example_mts

Format

An mts object composed of "meta" and "data" dataframes.

example_raws Example RAWS dataset

Description

The example_raws dataset provides a quickly loadable example of the data generated by the **RAW Smet**
package. This data is a sts object containing hourly measurements from a RAWS weather station
in Saddle Mountain, WA, between July 2002 and December 2017.

This dataset was was generated on 2022-02-17 by running:

library(RAWSmet)
setRawsDataDir ("~/Data/RAWS")
example_raws <-
cefa_load(nwsID = "452701") %>%
raws_filterDate (20160701, 20161001)

save(example_raws, file = "data/example_raws.rda")

Usage

example_raws

Format

An sts object composed of "meta" and "data" dataframes.

6 MazamaTimeSeries

example_sts Example sts dataset

Description

The example_sts dataset provides a quickly loadable version of an sts object for practicing and
code examples.

This dataset was was generated on 2021-01-08 by running:
library(AirSensor)

example_sts <- example_pat
example_sts$meta$elevation <- as.numeric(NA)

example_sts$meta$locationName <- example_sts$meta$label

save(example_sts, file = "data/example_sts.rda")

Usage

example_sts

Format

An sts object composed of "meta" and "data" dataframes.

MazamaTimeSeries Core functionality for environmental time series

Description

Utility functions for working with environmental time series data from known locations. The com-
pact data model is structured as a list with two dataframes. A meta’ dataframe contains spatial and
measuring device metadata associated with deployments at known locations. A ’data’ dataframe
contains a ’datetime’ column followed by columns of measurements associated with each "device-
deployment".

Author(s)

Maintainer: Jonathan Callahan <jonathan.s.callahan@gmail.com>

Other contributors:

e Hans Martin <hansmrtn@gmail.com> [contributor]
¢ Eli Grosman <eligrosmani@gmail.com> [contributor]
* Roger Bivand <roger.bivand@nhh.no> [contributor]

* Sebastian Luque <spluque@gmail.com> [contributor]

mts_arrange 7

See Also
Useful links:
* https://github.com/MazamaScience/MazamaTimeSeries

* https://mazamascience.github.io/MazamaTimeSeries/

* Report bugs at https://github.com/MazamaScience/MazamaTimeSeries/issues

mts_arrange Order mts time series by metadata values
Description
The variable(s) in ... are used to specify columns of mts$meta to use for ordering. Under the

hood, this function uses arrange on mts$meta and then reorders mts$data to match.

Usage
mts_arrange(mts, ...)
Arguments
mts mts object.
variables in mts$meta.
Value

A reorderd version of the incoming mts time series object. (A list with meta and data dataframes.)

Examples

library(MazamaTimeSeries)
example_mts$meta$latitude[1:10]
Filter for all labels with "SCSH"
byElevation <-

example_mts %>%

mts_arrange(latitude)

byElevation$meta$latitude[1:10]

https://github.com/MazamaScience/MazamaTimeSeries
https://mazamascience.github.io/MazamaTimeSeries/
https://github.com/MazamaScience/MazamaTimeSeries/issues

8 mts_check

mts_check Check mts object for validity

Description

Checks on the validity of an mts object. If any test fails, this function will stop with a warning
message.

Usage

mts_check(mts)

Arguments

mts mts object.

Value

Returns TRUE invisibly if the mts object is valid.

See Also

mts_isValid

Examples
library(MazamaTimeSeries)
sts_check(example_mts)

This would throw an error
if (FALSE) {

broken_mts <- example_mts
names (broken_mts) <- c('meta', 'bop')
sts_check(broken_mts)

mts_collapse 9

mts_collapse Collapse an mts time series object into a single time series

Description

Collapses data from all time series in mts into a single-time series mts object using the function
provided in the FUN argument. The single-time series result will be located at the mean longitude
and latitude unless longitude and latitude are specified.

Any columns of mts$meta that are constant across all records will be retained in the returned
mts$meta.

The core metadata associated with this location (e.g. countryCode, stateCode, timezone, ...)
will be determined from the most common (or average) value found in mts$meta. This will be a
reasonable assumption for the vast majority of intended use cases where data from multiple devices
in close proximity are averaged together.

Usage

mts_collapse(
mts,
longitude = NULL,
latitude = NULL,

devicelD = "generatedID"”,
FUN = mean,
na.rm = TRUE,
)
Arguments
mts mts object.
longitude Longitude of the collapsed time series.
latitude Latitude of the collapsed time series.
devicelD Device identifier for the collapsed time series.
FUN Function used to collapse multiple time series.
na.rm Logical specifying whether NA values should be ignored when FUN is applied.
additional arguments to be passed on to the apply() function.
Value

An mts time series object representing a single time series. (A list with meta and data dataframes.)

Note

After FUN is applied, values of +/-Inf and NaN are converted to NA. This is a convenience for the
common case where FUN =min/max or FUN = mean and some of the time steps have all missing
values. See the R documentation for min for an explanation.

10 mts_combine

Examples

library(MazamaTimeSeries)

mon <-
mts_collapse(
mts = example_mts,
devicelD = "example_ID"

)

mon$data now only has 2 columns
names(mon$data)

plot(mon$data, type = 'b', main = mon$meta$devicelD)

mts_combine Combine multiple mts time series objects

Description

Create a combined mts from any number of mts objects or from a list of mts objects. The resulting
mts object with contain all deviceDeploymentIDs found in any incoming mts and will have a
regular time axis covering the the entire range of incoming data.

If incoming time ranges are non-contiguous, the resulting mts will have gaps filled with NA values.

An error is generated if the incoming mts objects have non-identical metadata for the same deviceDeploymentID
unless replaceMeta = TRUE.

Usage

mts_combine(

replaceMeta = FALSE,
overlapStrategy = c("replace all”, "replace na")

)

Arguments

Any number of valid mts objects.

replaceMeta Logical specifying whether to allow replacement of metadata associated with
deviceDeploymentIDs.

overlapStrategy
Strategy to use when data found in time series overlaps.

Value

An mts time series object containing all time series found in the incoming mts objects. (A list with
meta and data dataframes.)

mts_distinct 11

Note

Data for any deviceDeploymentIDs shared among mts objects are combined with a "later is better"
sensibility where any data overlaps exist. To handle this, incoming mts objects are first split into
"shared" and "unshared" parts.

Any "shared" parts are ordered based on the time stamp of their last record. Then dplyr: :distinct()
is used to remove records with duplicate datetime fields.

With overlapStrategy = "replace all”, any data records found in "later" mts objects are prefer-
entially retained before the "shared" data are finally reordered by ascending datetime.

With overlapStrategy = "replace missing”, only missing values in "earlier" mts objects are
replaced with data records from "later" time series.

The final step is combining the "shared" and "unshared" parts and placing them on a uniform time
axis.

Examples

library(MazamaTimeSeries)

ids1 <- example_mts$meta$deviceDeploymentID[1:5]
ids2 <- example_mts$meta$deviceDeploymentID[4:6]
ids3 <- example_mts$meta$deviceDeploymentID[8:10]

mts1 <-
example_mts %>%
mts_filterMeta(deviceDeploymentID %in% ids1) %>%
mts_filterDate(20190701, 20190703)

mts2 <-
example_mts %>%
mts_filterMeta(deviceDeploymentID %in% ids2) %>%
mts_filterDate (20190704, 20190706)

mts3 <-
example_mts %>%
mts_filterMeta(deviceDeploymentID %in% ids3) %>%
mts_filterDate (20190705, 20190708)

mts <- mts_combine(mts1, mts2, mts3)
Should have 1:6 + 8:10 = 9 meta records and the full date range

nrow(mts$meta)
range(mts$data$datetime)

mts_distinct Retain only distinct data records in mts$data

12 mts_extractDataFrame

Description
This function is primarily for internal use.

Two successive steps are used to guarantee that the datetime axis contains no repeated values:

1. remove any duplicate records

2. guarantee that rows are in datetime order

Usage

mts_distinct(mts)

Arguments

mts mts object

Value

An mts object where each record is associated with a unique time. (A list with meta and data
dataframes.)

mts_extractDataFrame Extract dataframes from mts objects

Description

These functions are convenient wrappers for extracting the dataframes that comprise an mts object.
These functions are designed to be useful when manipulating data in a pipeline chain using %>%.

mts_extractData(mts) is equivalent to mts$data.

mts_extractMeta(mts) is equivalent to mts$meta.

Usage
mts_extractData(mts)
mts_extractMeta(mts)

Arguments

mts mts object to extract dataframe from.

Value

A dataframe from the mts object.

mts_filterData 13

mts_filterData General purpose data filtering for mts time series objects

Description

A generalized data filter for mts objects to choose rows/cases where conditions are true. Multiple
conditions may be combined with & or separated by a comma. Only rows where the condition
evaluates to TRUE are kept. Rows where the condition evaluates to NA are dropped.

Usage
mts_filterData(mts, ...)
Arguments
mts mts object.
Logical predicates defined in terms of the variables in mts$data.
Value

A subset of the incoming mts time series object. (A list with meta and data dataframes.)

Note

Filtering is done on variables in mts$data and results in an incomplete and irregular time axis.

See Also

mts_filterMeta

Examples

library(MazamaTimeSeries)

Are there any times when data exceeded 1507
sapply(example_mts$data, function(x) { any(x > 150, na.rm = TRUE) })

Show all times where da4cadd2d6ea5302_4686 > 150
example_mts %>%
mts_filterData(dad4cadd2d6ea5302_4686 > 150) %>%
mts_extractData() %>%
dplyr: :pull(datetime)

14 mts_filterDate

mts_filterDate Date filtering for mts time series objects

Description

Subsets an mts object by date. This function always filters to day-boundaries. For sub-day filtering,
use mts_setTimeAxis().

Dates can be anything that is understood by MazamaCoreUtils: :parseDatetime() including ei-
ther of the following recommended formats:

* "YYYYmmdd"
* "YYYY-mm-dd"

Timezone determination precedence assumes that if you are passing in POSIXct values then you
know what you are doing:

1. get timezone from startdate if it is POSIXct
2. use passed in timezone

3. get timezone from mts

Usage

mts_filterDate(
mts = NULL,
startdate = NULL,
enddate = NULL,
timezone = NULL,
unit = "sec”,
ceilingStart = FALSE,
ceilingEnd = FALSE

)
Arguments
mts mts object.
startdate Desired start date (ISO 8601).
enddate Desired end date (ISO 8601).
timezone Olson timezone used to interpret dates.
unit Units used to determine time at end-of-day.

ceilingStart Logical instruction to apply ceiling_date to the startdate rather than floor_date.

ceilingEnd Logical instruction to apply ceiling_date to the enddate rather than floor_date.

Value

A subset of the incoming mts time series object. (A list with meta and data dataframes.)

mts_filterDatetime 15

Note

The returned data will run from the beginning of startdate until the beginning of enddate — i.e.
no values associated with enddate will be returned. The exception being when enddate is less than
24 hours after startdate. In that case, a single day is returned.

See Also

mts_setTimeAxis

Examples

library(MazamaTimeSeries)

example_mts %>%
mts_filterDate(
startdate = 20190703,
enddate = 20190706
) %%
mts_extractData() %>%
dplyr::pull(datetime) %>%
range()

mts_filterDatetime Datetime filtering for mts time series objects

Description

DEPRECATED — use mts_setTimeAxis.

Subsets an mts object by datetime. This function allows for sub-day filtering as opposed tomts_filterDate()
which always filters to day-boundaries. Both the startdate and the enddate will be included in
the subset.

Datetimes can be anything that is understood by MazamaCoreUtils: :parseDatetime(). For non-
POSIXct values, the recommended format is "YYYY-mm-dd HH:MM:SS".

Timezone determination precedence assumes that if you are passing in POSIXct values then you
know what you are doing:

1. get timezone from startdate if it is POSIXct
2. use passed in timezone

3. get timezone from mts

16

Usage

mts_filterDatetime

mts_filterDatetime(

mts = NULL,
startdate =

timezone =

n

unit = "sec

n
’

NULL,
enddate = NULL,
NULL,

ceilingStart = FALSE,
ceilingEnd = FALSE,
includeEnd = FALSE

Arguments

mts
startdate
enddate
timezone
unit

ceilingStart

ceilingEnd

includeEnd

Value

mts object.

Desired start datetime (ISO 8601).

Desired end datetime (ISO 8601).

Olson timezone used to interpret dates.
Datetimes will be rounded to the nearest unit.

Logical instruction to apply ceiling_date to the startdate rather than floor_date
when rounding.

Logical instruction to apply ceiling_date to the enddate rather than floor_date
when rounding.

Logical specifying that records associated with enddate should be included.

A subset of the incoming mts time series object. (A list with meta and data dataframes.)

Note

This function is deprecated as of MazamaTimeSeries 0.2.15. Please use mts_setTimeAxis to
shorten or lengthen the time axis of an mfs object.

See Also

mts_filterData
mts_filterDate

mts_filterMeta

mts_filterMeta 17

mts_filterMeta General purpose metadata filtering for mts time series objects

Description

A generalized metadata filter for mts objects to choose rows/cases where conditions are true. Mul-
tiple conditions are combined with & or separated by a comma. Only rows where the condition
evaluates to TRUE are kept. Rows where the condition evaluates to FALSE or NA are dropped.

If an empty mts object is passed in, it is immediately returned, allowing for multiple filtering steps
to be piped together and only checking for an empty mts object at the end of the pipeline.

Usage
mts_filterMeta(mts, ...)
Arguments
mts mts object.
Logical predicates defined in terms of the variables in mts$meta.
Value

A subset of the incoming mts time series object. (A list with meta and data dataframes.)

Note

Filtering is done on variables in mts$meta.

See Also

mts_filterData

Examples

library(MazamaTimeSeries)

Filter for all labels with "SCSH"

scap <-
example_mts %>%
mts_filterMeta(communityRegion == "E1 Monte")

dplyr::select(scap$meta, ID, label, longitude, latitude, communityRegion)

head(scap$data)

18 mts_getDistance

mts_getDistance Calculate distances from mts time series locations to a location of
interest

Description

This function uses the [geodist] package to return the distances (meters) between mts locations and
a location of interest. These distances can be used to create a mask identifying monitors within a
certain radius of the location of interest.

Usage

mts_getDistance(
mts = NULL,
longitude = NULL,
latitude = NULL,

measure = c("geodesic”, "haversine"”, "vincenty”, "cheap")

)
Arguments

mts mts object.

longitude Longitude of the location of interest.

latitude Latitude of the location of interest.

measure One of "geodesic", "haversine", "vincenty" or "cheap"
Value

Vector of of distances (meters) named by deviceDeploymentID.

Note

The measure "cheap” may be used to speed things up depending on the spatial scale being consid-
ered. Distances calculated with measure = "cheap” will vary by a few meters compared with those
calculated using measure = "geodesic”.

Examples

library(MazamaTimeSeries)

Garfield Medical Center in LA
longitude <- -118.12321
latitude <- 34.06775

distances <- mts_getDistance(
mts = example_mts,
longitude = longitude,
latitude = latitude

mts_isEmpty 19

)

Which sensors are within 1000 meters of Garfield Med Ctr?
distances[distances <= 1000]

mts_isEmpty Test for an empty mts object

Description

Convenience function for nrow(mts$data) == 0. This makes for more readable code in functions
that need to test for this.

Usage

mts_isEmpty(mts)

Arguments

mts mts object

Value

TRUE if no data exist in mts, FALSE otherwise.

Examples

library(MazamaTimeSeries)

mts_isEmpty(example_mts)

mts_isValid Test mts object for correct structure

Description

The mts is checked for the presence of core meta and data columns.

Core meta columns include:

* deviceDeploymentID — unique identifier (see MazmaLocationUtils)
* devicelID — device identifier
* locationID — location identifier (see Mazmal.ocationUtils)

* locationName — English language name

https://mazamascience.github.io/MazamaLocationUtils/
https://mazamascience.github.io/MazamaLocationUtils/

20

* longitude — decimal degrees E

* latitude — decimal degrees N

* elevation — elevation of station in m
* countryCode — ISO 3166-1 alpha-2

* stateCode —ISO 3166-2 alpha-2

e timezone — Olson time zone
Core data columns include:
* datetime — measurement time (UTC)

Usage
mts_isValid(mts = NULL, verbose = FALSE)

Arguments

mts mts object

verbose Logical specifying whether to produce detailed warning messages.
Value

Invisibly returns TRUE if mts has the correct structure, FALSE otherwise.

See Also

mts_check

Examples

library(MazamaTimeSeries)

print(mts_isValid(example_mts))

mts_pull

mts_pull Extract a column of metadata or data

Description

This function acts similarly to dplyr::pull() working on mts$meta or mts$data. Data are re-

turned as a simple array. Data are pulled from whichever dataframe contains var.

Usage
mts_pull(mts = NULL, var = NULL)

mts_sample 21

Arguments
mts mts object.
var A variable name found in the meta or data dataframe of the incoming mts time
series object.
Value

An array of values.

Examples

library(MazamaTimeSeries)

Metadata

example_mts %>%
mts_pull("communityRegion") %>%
table() %>%
sort(decreasing = TRUE)

Data for a specific ID
example_mts %>%
mts_pull("”da4cadd2d6ea5302_4686")

mts_sample Sample time series for an mts time series object

Description

Reduce the number of records (timesteps) in the data dataframe of the incoming mts through
random sampling.

Usage

mts_sample(
mts = NULL,
sampleSize = 5000,
seed = NULL,
keepOutliers
width = 5,
thresholdMin

FALSE,

1
w

22

Arguments

mts
sampleSize
seed

keepOutliers

width
thresholdMin

Details

mts_sample

mts object.
Non-negative integer giving the number of rows to choose.
Integer passed to set. seed for reproducible sampling.

Logical specifying a graphics focused sampling algorithm that retains outliers
(see Details).

Integer width of the rolling window used for outlier detection.

Numeric threshold for outlier detection.

When keepOutliers = FALSE, random sampling is used to provide a statistically relevant subsam-

ple of the data.

Value

A subset of the given mts object.

An mts time series object with fewer timesteps. (A list with meta and data dataframes.)

Outlier Detection

When keepOutliers = TRUE, a customized sampling algorithm is used that attempts to create sub-
sets for use in plotting that create plots that are visually identical to plots using all data. This is
accomplished by preserving outliers and only sampling data in regions where overplotting is ex-

pected.

The process is as follows:

1. find outliers using MazamaRol1lUtils: : findOutliers()

create a subset consisting of only outliers

2.
3. sample the remaining data
4.

merge the outliers and sampled data

This algorithm works best when the mts object has only one or two timeseries.

The width and thresholdMin parameters determine the number of outliers detected. For hourly
data, awidth of 5 and a thresholdMin of 3 or 4 seem to find many visually obvious outliers.

Users attempting to optimize plotting speed for lengthy time series are encouraged to experiment
with these two parameters along with sampleSize and review the results visually.

See MazamaRollUtils: :findOutliers().

mts_select 23

mts_select Reorder and subset time series within an mts time series object

Description

This function acts similarly to dplyr::select() working on mts$data. The returned mts object
will contain only those time series identified by deviceDeploymentID in the order specified.

This can be used the specify a preferred order and is helpful when using faceted plot functions based
on ggplot such as those found in the AirMonitorPlots package.

Usage
mts_select(mts = NULL, deviceDeploymentID = NULL)

Arguments
mts mts object.
deviceDeploymentID
Vector of timeseries unique identifiers.
Value

A reordered (subset) of the incoming mts time series object. (A list with meta and data dataframes.)

See Also

mts_selectWhere

Examples

library(MazamaTimeSeries)

Filter for "El Monte”

E1l_Monte <-
example_mts %>%
mts_filterMeta(communityRegion == "E1 Monte")

ids <- El_Monte$meta$deviceDeploymentID
rev_ids <- rev(ids)

print(ids)
print(rev_ids)

rev_El_Monte <-
example_mts %>%

mts_select(rev_ids)

print(rev_El_Monte$meta$deviceDeploymentID)

https://ggplot2.tidyverse.org
https://mazamascience.github.io/AirMonitorPlots/

24 mts_selectWhere

mts_selectWhere Data-based subsetting of time series within an mts object.

Description

Subsetting of mts acts similarly to tidyselect: :where() working on mts$data. The returned mts
object will contain only those time series where FUN applied to the time series data returns TRUE.

Usage

mts_selectWhere(mts, FUN)

Arguments

mts mts object.

FUN A function applied to time series data that returns TRUE or FALSE.
Value

A subset of the incoming mts object. (A list with meta and data dataframes.)

See Also

mts_select

Examples

library(MazamaTimeSeries)

Show all Camp_Fire locations
Camp_Fire$meta$locationName

Set a threshold
threshold <- 500

Find time series with data at or above this threshold
worst_sites <-
Camp_Fire %>%
mts_selectWhere(
function(x) { any(x >= threshold, na.rm = TRUE) }

)

Show the worst locations
worst_sites$meta$locationName

mts_setTimeAxis 25

mts_setTimeAxis Extend/contract mts time series to new start and end times

Description

Extends or contracts the time range of an mts object by adding/removing time steps at the start and
end and filling any new time steps with missing values. The resulting time axis is guaranteed to be
a regular, hourly axis with no gaps using the same timezone as the incoming mts object. This is
useful when you want to place separate mts objects on the same time axis for plotting.

Dates can be anything that is understood by MazamaCoreUtils: :parseDatetime() including ei-
ther of the following recommended formats:

* "YYYYmmdd"

* "YYYY-mm-dd”
Timezone determination precedence assumes that if you are passing in POSIXct values then you
know what you are doing:

1. get timezone from startdate if it is POSIXct

2. use passed in timezone

3. get timezone from mts

If either startdate or enddate is missing, the start or end of the timeseries in mts will be used.

If neither startdate nor enddate is a POSIXct value AND no timezone is supplied, the timezone
will be inferred from the most common timezone found in mts.

Usage

mts_setTimeAxis(mts = NULL, startdate = NULL, enddate = NULL, timezone = NULL)

Arguments

mts mts object.

startdate Desired start date (ISO 8601).

enddate Desired end date (ISO 8601).

timezone Olson timezone used to interpret startdate and enddate.
Value

The incoming mts time series object defined on a new time axis. (A list with meta and data
dataframes.)

26

Examples

library(MazamaTimeSeries)

#

Default range

range (example_mts$data$datetime)

#

One-sided extend with user specified timezone

example_mts %>%

#

mts_setTimeAxis(enddate = 20190815, timezone = "UTC") %>%
mts_extractData() %»>%

dplyr::pull(datetime) %>%

range()

Two-sided extend with user specified timezone

example_mts %>%

#

mts_setTimeAxis(20190615, 20190815, timezone = "UTC") %>%
mts_extractData() %>%

dplyr::pull(datetime) %>%

range()

Two-sided extend without timezone (uses timezone from mts$meta$timezone)

example_mts %>%

mts_setTimeAxis (20190615, 20190815) %>%
mts_extractData() %>%
dplyr::pull(datetime) %>%

range()

mts_slice_head

mts_slice_head Subset time series based on their position

Description

An mts object is reduced so as to contain only the first or last n timeseries. These functions work
similarly to dplyr::slice_head and dplyr::slice_tail but apply to both dataframes in the mts
object.

This is primarily useful when the mts object has been ordered by a previous call to mts_arrange or
by some other means.

slice_head() selects the first and slice_tail() the last timeseries in the object.

Usage

mts_slice_head(mts, n

mts_slice_tail(mts, n

5)

5)

mts_summarize 27

Arguments

mts mts object.

n Number of rows of mts$meta to select.
Value

A subset of the incoming mts time series object. (A list with meta and data dataframes.)

Examples

library(MazamaTimeSeries)

Find lowest elevation sites

Camp_Fire %>%
mts_filterMeta(!is.na(elevation)) %>%
mts_arrange(elevation) %>%
mts_slice_head(n = 5) %>%
mts_extractMeta() %>%
dplyr::select(elevation, locationName)

Find highest elevation sites

Camp_Fire %>%
mts_filterMeta(!is.na(elevation)) %>%
mts_arrange(elevation) %>%
mts_slice_tail(n = 5) %>%
mts_extractMeta() %>%
dplyr::select(elevation, locationName)

mts_summarize Create summary time series for an mts time series object

Description

Individual time series in mts$data are grouped by unit and then summarized using FUN.

The most typical use case is creating daily averages where each day begins at midnight. This func-
tion interprets times using the mts$data$datetime tzone attribute so be sure that is set properly.

Day boundaries are calculated using the specified timezone or, if NULL, the most common (hope-
fully only!) time zone found in mts$meta$timezone. Leaving timezone = NULL, the default, results
in "local time" date filtering which is the most common use case.

Usage

mts_summarize(
mts,
timezone = NULL,
unit = c("day”, "week”, "month"”, "year"),

28 mts_sumimarize

FUN = NULL,

L

minCount = NULL

)
Arguments
mts mts object.
timezone Olson timezone used to interpret dates.
unit Unit used to summarize by (e.g. "day").
FUN Function used to summarize time series.
Additional arguments to be passed to FUN (_e.g._ na.rm = TRUE).
minCount Minimum number of valid data records required to calculate summaries. Time
periods with fewer valid records will be assigned NA.
Value

An mts time series object containing daily (or other) statistical summaries. (A list with meta and
data dataframes.)

Note

Because the returned mts object is defined on a daily axis in a specific time zone, it is important that
the incoming mts contain timeseries associated with a single time zone.

Examples
library(MazamaTimeSeries)

daily <-
mts_summarize(
mts = Carmel_Valley,
timezone = NULL,

unit = "day"”,
FUN = mean,
na.rm = TRUE,

minCount = 18

)

Daily means
head(daily$data)

mts_trim 29

mts_trim Trim mts time series by removing missing values

Description
Trims the time range of an mts object by removing time steps from the start and end that contain
only missing values.

Usage
mts_trim(mts = NULL)

Arguments

mts mts object.

Value

A subset of the incoming mts time series object. (A list with meta and data dataframes.)

Examples

library(MazamaTimeSeries)

Untrimmed range
range (example_mts$data$datetime)

Replace the first 50 data values for all non-"datetime" columns
example_mts$datal1:50, -1] <- NA

Trimmed range
mts_trimmed <- mts_trim(example_mts)
range(mts_trimmed$data$datetime)

mts_trimDate Trim mts time series object to full days

Description

Trims the date range of an mts object to local time date boundaries which are within the time range
of the mts object. This has the effect of removing partial-day data records at the start and end of the
timeseries and is useful when calculating full-day statistics.

By default, multi-day periods of all-missing data at the beginning and end of the timeseries are
removed before trimming to date boundaries. If trimEmptyDays = FALSE all records are retained
except for partial days beyond the first and after the last date boundary.

Day boundaries are calculated using the specified timezone or, if NULL, mts$meta$timezone.
Leaving timezone = NULL, the default, results in "local time" date filtering which is the most com-
mon use case.

30 requiredMetaNames

Usage

mts_trimDate(mts = NULL, timezone = NULL, trimEmptyDays = TRUE)

Arguments
mts mts object.
timezone Olson timezone used to interpret dates.

trimEmptyDays Logical specifying whether to remove days with no data at the beginning and
end of the time range.

Value

A subset of the incoming mts time series object. (A list with meta and data dataframes.)

Examples

library(MazamaTimeSeries)

UTC_week <- mts_filterDate(
example_mts,
startdate = 20190703,
enddate = 20190706,
timezone = "UTC"

)

UTC day boundaries
range (UTC_week$datasdatetime)

Trim to local time day boundaries
local_week <- mts_trimDate(UTC_week)
range(local_week$datasdatetime)

requiredMetaNames Required columns for the 'meta’ dataframe

Description

The "meta’ dataframe found in szs and mts objects is required to have a minimum set of information
for proper functioning of the package. The names of these columns are specified in requiredMetaNames
and include:

* deviceDeploymentID — unique identifier (see Mazmal.ocationUtils)
e devicelD - device identifier
e locationID — location identifier (see Mazmal.ocationUtils)

* locationName — English language name

https://mazamascience.github.io/MazamaLocationUtils/
https://mazamascience.github.io/MazamaLocationUtils/

sts_check 31

* longitude — decimal degrees E

* latitude — decimal degrees N

* elevation — elevation of station in m
* countryCode — ISO 3166-1 alpha-2

* stateCode —ISO 3166-2 alpha-2

e timezone — Olson time zone

Usage

requiredMetaNames

Format

A vector with 10 elements

Details

requiredMetaNames

sts_check Check sts object for validity

Description
Checks on the validity of an sts object. If any test fails, this function will stop with a warning
message.

Usage

sts_check(sts)

Arguments

sts sts object.

Value

Returns TRUE invisibly if the sts object is valid.

See Also

sts_isValid

32 sts_combine

Examples

library(MazamaTimeSeries)
sts_check(example_sts)

This would throw an error
if (FALSE) {

broken_sts <- example_sts
names(broken_sts) <- c('meta', 'bop')
sts_check(broken_sts)

sts_combine Combine multiple sts time series objects

Description

Create a merged timeseries using of any number of sts objects for a single sensor. If sts objects are
non-contiguous, the resulting sts will have gaps.

An error is generated if the incoming sts objects have non-identical deviceDeploymentIDs.

Usage
sts_combine(..., replaceMeta = FALSE)
Arguments
Any number of valid SingleTimeSeries sts objects associated with a single deviceDeploymentID.
replaceMeta Logical specifying whether to allow replacement of metadata.
Value

A SingleTimeSeries sts time series object containing records from all incoming sts time series
objects. (A list with meta and data dataframes.)

Note

Data are combined with a "later is better" sensibility where any data overlaps exist. To handle this,
incoming sts objects are first split into "shared" and "unshared" parts.

Any "shared" parts are ordered based on the time stamp of their last record. Then dplyr: :distinct()
is used to remove records with duplicate datetime fields. Any data records found in "later"
sts objects are preferentially retained before the "shared" data are finally reordered by ascending
datetime.

The final step is combining the "shared" and "unshared" parts.

sts_distinct 33

Examples
library(MazamaTimeSeries)
augo1_08 <-
example_sts %>%
sts_filterDate (20180801, 20180808)
augl15_22 <-
example_sts %>%
sts_filterDate(20180815, 20180822)
augd1_22 <- sts_combine(augd1_08, augl5_22)

plot(aug@1_22%data$datetime)

sts_distinct Retain only distinct data records in sts$data

Description

Three successive steps are used to guarantee that the datetime axis contains no repeated values:

1. remove any duplicate records
2. guarantee that rows are in datetime order

3. average together fields for any remaining records that share the same datetime

Usage

sts_distinct(sts)

Arguments

sts sts object

Value

An sts object where each record is associated with a unique time. (A list with meta and data
dataframes.)

34 sts_filter

sts_extractDataFrame Extract dataframes from sts objects

Description

These functions are convenient wrappers for extracting the dataframes that comprise a sts object.
These functions are designed to be useful when manipulating data in a pipeline using %>%.

Below is a table showing equivalent operations for each function.
sts_extractData(sts) is equivalent to sts$data.

sts_extractMeta(sts) is equivalent to sts$meta.

Usage

sts_extractData(sts)

sts_extractMeta(sts)

Arguments

sts sts object to extract dataframe from.

Value

A dataframe from the sts object.

sts_filter General purpose data filtering for sts time series objects

Description

A generalized data filter for sts objects to choose rows/cases where conditions are true. Multiple
conditions are combined with & or separated by a comma. Only rows where the condition evaluates
to TRUE are kept. Rows where the condition evaluates to NA are dropped.

If an empty sts object is passed in, it is immediately returned, allowing for multiple filtering steps
to be piped together and only checking for an empty szs object at the end of the pipeline.

Usage

sts_filter(sts, ...)
Arguments

sts sts object.

Logical predicates defined in terms of the variables in sts$data.

sts_filterDate 35

Value

A subset of the incoming sts time series object. (A list with meta and data dataframes.)

Note

Filtering is done on values in sts$data.

See Also

sts_filterDate

sts_filterDatetime

Examples

library(MazamaTimeSeries)

unhealthy <- sts_filter(example_sts, pm25_A > 55.5, pm25_B > 55.5)
head(unhealthy$data)

sts_filterDate Date filtering for sts time series objects

Description

Subsets a MazamaSingleTimeseries object by date. This function always filters to day-boundaries.
For sub-day filtering, use sts_filterDatetime().

Dates can be anything that is understood by MazamaCoreUtils: :parseDatetime() including ei-
ther of the following recommended formats:

* "YYYYmmdd"
* "YYYY-mm-dd"

Timezone determination precedence assumes that if you are passing in POSIXct values then you
know what you are doing.

1. get timezone from startdate if it is POSIXct
2. use passed in timezone

3. get timezone from sts

36 sts_filterDate

Usage

sts_filterDate(
sts = NULL,
startdate = NULL,
enddate = NULL,
timezone = NULL,
unit = "sec”,
ceilingStart = FALSE,
ceilingEnd = FALSE

)

Arguments
sts MazamaSingleTimeseries sts object.
startdate Desired start datetime (ISO 8601).
enddate Desired end datetime (ISO 8601).
timezone Olson timezone used to interpret dates.
unit Units used to determine time at end-of-day.

ceilingStart Logical instruction to apply ceiling_date to the startdate rather than floor_date

ceilingEnd Logical instruction to apply ceiling_date to the enddate rather than floor_date

Value

A subset of the incoming sts time series object. (A list with meta and data dataframes.)

Note

The returned data will run from the beginning of startdate until the beginning of enddate — i.e.
no values associated with enddate will be returned. The exception being when enddate is less than
24 hours after startdate. In that case, a single day is returned.

See Also

sts_filter

sts_filterDatetime

Examples

library(MazamaTimeSeries)

example_sts %>%
sts_filterDate(startdate = 20180808, enddate = 20180815) %>%
sts_extractData() %>%
head()

sts_filterDatetime

37

sts_filterDatetime Datetime filtering for sts time series objects

Description

Subsets a MazamaSingleTimeseries object by datetime. This function allows for sub-day filtering
as opposed to sts_filterDate() which always filters to day-boundaries.

Datetimes can be anything that is understood by MazamaCoreUtils: :parseDatetime(). For non-
POSIXct values, the recommended format is "YYYY-mm-dd HH:MM:SS".

Timezone determination precedence assumes that if you are passing in POSIXct values then you
know what you are doing.

1. get timezone from startdate if it is POSIXct

2. use passed in timezone

3. get timezone from sts

Usage

sts_filterDatetime(

sts = NULL,
startdate =

timezone =

unit = "sec

n
’

NULL,
enddate = NULL,
NULL,

ceilingStart = FALSE,
ceilingEnd = FALSE,
includeEnd = FALSE

Arguments

sts
startdate
enddate
timezone
unit
ceilingStart
ceilingEnd

includeEnd

Value

MazamaSingleTimeseries sts object.

Desired start datetime (ISO 8601).

Desired end datetime (ISO 8601).

Olson timezone used to interpret dates.

Units used to determine time at end-of-day.

Logical instruction to apply ceiling_date to the startdate rather than floor_date
Logical instruction to apply ceiling_date to the enddate rather than floor_date

Logical specifying that records associated with enddate should be included.

A subset of the incoming sts time series object. (A list with meta and data dataframes.)

38 sts_isEmpty

Note

The returned sts object will contain data running from the beginning of startdate until the be-
ginning of enddate — i.e. no values associated with enddate will be returned. To include enddate
you can specify includeEnd = TRUE.

See Also

sts_filter
sts_filterDate

Examples

library(MazamaTimeSeries)

example_sts %>%
sts_filterDatetime(
startdate = "2018-08-08 06:00:00",
enddate = "2018-08-14 18:00:00"
) %%
sts_extractData() %>%
head()

sts_isEmpty Test for empty sts object

Description

Convenience function for nrow(sts$data) == 0. This makes for more readable code in functions
that need to test for this.

Usage

sts_isEmpty(sts)

Arguments

sts sts object

Value

TRUE if no data exist in sts, FALSE otherwise.

Examples

library(MazamaTimeSeries)

sts_isEmpty(example_sts)

sts_isValid

39

sts_isValid Test sts object for correct structure

Description

The sts is checked for the presence of core meta and data columns.

Core meta columns include:

* deviceDeploymentID — unique identifier (see Mazmal.ocationUtils)
* deviceID — device identifier

¢ locationID - location identifier (see Mazmal.ocationUtils)

* locationName — English language name

* longitude — decimal degrees E

* latitude — decimal degrees N

* elevation — elevation of station in m

e countryCode —ISO 3166-1 alpha-2

* stateCode — ISO 3166-2 alpha-2

e timezone — Olson time zone
Core data columns include:
¢ datetime — measurement time (UTC)

Usage

sts_isValid(sts = NULL, verbose = FALSE)

Arguments

sts sts object

verbose Logical specifying whether to produce detailed warning messages.
Value

TRUE if sts has the correct structure, FALSE otherwise.

Examples

library(MazamaTimeSeries)

sts_isValid(example_sts)

https://mazamascience.github.io/MazamaLocationUtils/
https://mazamascience.github.io/MazamaLocationUtils/

40 sts_summarize

sts_summarize Create summary time series for an sts time series object

Description

Columns of numeric data in sts$data are grouped by unit and then summarized using FUN.

Columns with non-numeric data are summarized by just picking the first occurrence in each unit.
This preserves the utility of columns containing repeated metadata.

The most typical use case is creating daily averages where each day begins at midnight. Day bound-

aries are calculated using the specified timezone or, if NULL, the time zone found in sts$meta$timezone[1].
Leaving timezone = NULL, the default, results in "local time" date filtering which is the most com-

mon use case.

Usage

sts_summarize(
sts,
timezone = NULL,
unit = c("day”, "week”, "month", "year"),
FUN = NULL,

°

minCount = NULL

)
Arguments
sts sts object.
timezone Olson timezone used to interpret dates.
unit Unit used to summarize by (e.g. "day").
FUN Function used to summarize time series.
Additional arguments to be passed to FUN (_e.g._ na.rm = TRUE).
minCount Minimum number of valid data records required to calculate summaries. Time
periods with fewer valid records will be assigned NA.
Value

An sts time series object containing daily (or other) statistical summaries. (A list with meta and
data dataframes.)

sts_trimDate 41

sts_trimDate Trim sts time series object to full days

Description

Trims the date range of a sts object to local time date boundaries which are within the range of data.
This has the effect of removing partial-day data records at the start and end of the timeseries and is
useful when calculating full-day statistics.

Day boundaries are calculated using the specified timezone or, if NULL, from sts$meta$timezone.

Usage

sts_trimDate(sts = NULL, timezone = NULL)

Arguments

sts SingleTimeSeries sts object.

timezone Olson timezone used to interpret dates.
Value

A subset of the incoming sts time series object. (A list with meta and data dataframes.)

Examples

library(MazamaTimeSeries)

UTC_week <- sts_filterDate(
example_sts,
startdate = 20180808,
enddate = 20180815,
timezone = "UTC”

)

UTC day boundaries
head (UTC_week$data)

Trim to local time day boundaries
local_week <- sts_trimDate(UTC_week)
head(local_week$data)

42 timelnfo

timeInfo Get time related information

Description
Calculate the local time at the target location, as well as sunrise, sunset and solar noon times, and
create several temporal masks.

The returned dataframe will have as many rows as the length of the incoming UTC time vector and
will contain the following columns:

* localStdTime_UTC — UTC representation of local standard time

* daylightSavings — logical mask = TRUE if daylight savings is in effect
* localTime —local clock time

* sunrise — time of sunrise on each localTime day

* sunset — time of sunset on each localTime day

* solarnoon — time of solar noon on each localTime day

* day — logical mask = TRUE between sunrise and sunset

* morning — logical mask = TRUE between sunrise and solarnoon

* afternoon — logical mask = TRUE between solarnoon and sunset

* night — logical mask = opposite of day

Usage
timeInfo(time = NULL, longitude = NULL, latitude = NULL, timezone = NULL)

Arguments
time POSIXct vector with specified timezone,
longitude Longitude of the location of interest.
latitude Latitude of the location of interest.
timezone Olson timezone at the location of interest.
Details

NOAA used the reference below to develop their Sunrise/Sunset
https://gml.noaa.gov/grad/solcalc/sunrise.html and Solar Position

https://gml.noaa.gov/grad/solcalc/azel.html Calculators. The algorithms include correc-
tions for atmospheric refraction effects.

Input can consist of one location and at least one POSIXct times, or one POSIXct time and at least
one location. solarDep is recycled as needed.

Do not use the daylight savings time zone string for supplying dateTime, as many OS will not be
able to properly set it to standard time when needed.

The localStdTime_UTC column in the returned dataframe is primarily for internal use and provides
an important tool for creating LST daily averages and LST axis labeling.

https://gml.noaa.gov/grad/solcalc/sunrise.html
https://gml.noaa.gov/grad/solcalc/azel.html

timelnfo 43

Value

A dataframe with times and masks.

Attribution
Internal functions used for ephemerides calculations were copied verbatim from the now deprecated
maptools package source code in an effort to reduce the number of package dependencies.
Warning

Compared to NOAA’s original Javascript code, the sunrise and sunset estimates from this translation
may differ by +/- 1 minute, based on tests using selected locations spanning the globe. This trans-
lation does not include calculation of prior or next sunrises/sunsets for locations above the Arctic
Circle or below the Antarctic Circle.

Local Standard Time

US EPA regulations mandate that daily averages be calculated based on "Local Standard Time"
(LST) (i.e. never shifting to daylight savings). To ease work in a regulatory context, LST times are
included in the returned dataframe.

References

Meeus, J. (1991) Astronomical Algorithms. Willmann-Bell, Inc.

Note

NOAA notes that “for latitudes greater than 72 degrees N and S, calculations are accurate to within
10 minutes. For latitudes less than +/- 72 degrees accuracy is approximately one minute.”

Author(s)

Sebastian P. Luque <spluque@gmail.com>, translated from Greg Pelletier’s <gpel461@ecy.wa.gov>

VBA code (available from https://ecology.wa.gov/Research-Data/Data-resources/Models-spreadsheets/

Modeling-the-environment/Models-tools-for-TMDLs), who in turn translated it from original
Javascript code by NOAA (see Details). Roger Bivand <roger.bivand@nhh.no> adapted the code
to work with sp classes. Jonathan Callahan <jonathan.callahan@gmail.com> adapted the source
code from the maptools package to work with MazmaTimeSeries classes.

Examples

library(MazamaTimeSeries)

Carmel <-
Carmel_Valley %>%
mts_filterDate (20160801, 20160810)

Create timeInfo object for this monitor
ti <- timelInfo(
Carmel$data$datetime,

https://ecology.wa.gov/Research-Data/Data-resources/Models-spreadsheets/Modeling-the-environment/Models-tools-for-TMDLs
https://ecology.wa.gov/Research-Data/Data-resources/Models-spreadsheets/Modeling-the-environment/Models-tools-for-TMDLs
https://mazamascience.github.io/MazamaTimeSeries/

44

Carmel$meta$longitude,
Carmel$meta$latitude,
Carmel$meta$timezone

)
t(til6:9,1)

Subset the data based on day/night masks
data_day <- Carmel$dataltis$day,]
data_night <- Carmel$datalti$night,]

Build two monitor objects
Carmel_day <- list(meta = Carmel$meta, data = data_day)
Carmel_night <- list(meta = Carmel$meta, data = data_night)

Plot them
plot(Carmel_day$data, pch = 8, col = 'goldenrod')
points(Carmel_night$data, pch = 16, col = 'darkblue')

timelnfo

Index

+ datasets
Camp_Fire, 3
Carmel_Valley, 4
example_mts, 4
example_raws, 5
example_sts, 6
requiredMetaNames, 30

arrange, 7

Camp_Fire, 3
Carmel_Valley, 4
ceiling_date, 14, 16, 36, 37

dplyr::slice_head, 26
dplyr::slice_tail, 26

example_mts, 4
example_raws, 5
example_sts, 6

floor_date, 14, 16, 36, 37

MazamaTimeSeries, 6

MazamaTimeSeries-package
(MazamaTimeSeries), 6

mts_arrange, 7, 26

mts_check, 8, 20

mts_collapse, 9

mts_combine, 10

mts_distinct, 11

mts_extractData (mts_extractDataFrame),
12

mts_extractDataFrame, 12

mts_extractMeta (mts_extractDataFrame),
12

mts_filterData, 13, 16, 17

mts_filterDate, 14, 16

mts_filterDatetime, 15

mts_filterMeta, 13, 16, 17

mts_getDistance, 18

45

mts_isEmpty, 19
mts_isValid, 8, 19
mts_pull, 20
mts_sample, 21
mts_select, 23, 24
mts_selectWhere, 23, 24
mts_setTimeAxis, 15, 16, 25
mts_slice_head, 26
mts_slice_tail (mts_slice_head), 26
mts_summarize, 27
mts_trim, 29
mts_trimDate, 29

requiredMetaNames, 30

set.seed, 22

sts_check, 31

sts_combine, 32

sts_distinct, 33

sts_extractData (sts_extractDataFrame),
34

sts_extractDataFrame, 34

sts_extractMeta (sts_extractDataFrame),
34

sts_filter, 34, 36, 38

sts_filterDate, 35, 35, 38

sts_filterDatetime, 35, 36, 37

sts_isEmpty, 38

sts_isValid, 317, 39

sts_summarize, 40

sts_trimDate, 41

timeInfo, 42

	Camp_Fire
	Carmel_Valley
	example_mts
	example_raws
	example_sts
	MazamaTimeSeries
	mts_arrange
	mts_check
	mts_collapse
	mts_combine
	mts_distinct
	mts_extractDataFrame
	mts_filterData
	mts_filterDate
	mts_filterDatetime
	mts_filterMeta
	mts_getDistance
	mts_isEmpty
	mts_isValid
	mts_pull
	mts_sample
	mts_select
	mts_selectWhere
	mts_setTimeAxis
	mts_slice_head
	mts_summarize
	mts_trim
	mts_trimDate
	requiredMetaNames
	sts_check
	sts_combine
	sts_distinct
	sts_extractDataFrame
	sts_filter
	sts_filterDate
	sts_filterDatetime
	sts_isEmpty
	sts_isValid
	sts_summarize
	sts_trimDate
	timeInfo
	Index

