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create_folds Create folds for cross-validation.
Description
Create the test folds for k-fold cross validation. These cross-validation types differ from typical
stratified cross-validation as this function also considers the range of event times in the data.
Usage
create_folds(time, delta, nfolds, foldtype = c("fullstrat”,
"censorstrat”, "random"))
Arguments
time a vector of event times.
delta a vector of indicators for uncensored/censored data. The type of censoring here
is not considered so it is suggested this function not be used for data with mixed
censoring types. The specific indicator value does not matter as long as censored
and uncensored observations have different values for their indicator.
nfolds The number of folds to create.
foldtype type of cross validation folds. Full stratification, "fullstrat", sorts observations
by their event time and their event indicators and numbers them off into folds.
This effectively give each fold approximately the same number of uncensored
observations as well as keeps the range of time points as equivalent as possible
across folds. This type of cross-validation is completely deterministic. Censored
stratification, "censorstrat", will put approximately the same number of uncen-
sored observations in each fold but not pay any attention to event time. This is
partially stochastic. The totally random cross-validation, "random", randomly
assigns observations to folds without considering event time nor event status.
Value

a list of size nfolds where each list component contains the indices of the test data for each fold.
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See Also

mtlr_cv

mtlr

Train a Multi-Task Logistic Regression (MTLR) Model

Description

Trains a MTLR model for survival prediction. Right, left, and interval censored data are all sup-

ported.

Usage

mtlr(formula, data, time_points = NULL, nintervals = NULL,
normalize = T, C1 = 1, train_biases = T, train_uncensored = T,

seed_weights
lower = -15,

Arguments

formula

data

time_points

nintervals

normalize

C1

train_biases

= NULL, threshold = 1e-05, maxit = 5000,
upper = 15)

n_on

a formula object with the response to the left of the
must be a survival object returned by the Surv function.

operator. The response

a data.frame containing the features for survival prediction. These must be vari-
ables corresponding to the formula object.

the time points for MTLR to create weights. If left as NULL, the time_points
chosen will be based on equally spaced quantiles of the survival times. In the
case of interval censored data note that only the start time is considered and not
the end time for selecting time points. It is strongly recommended to specify
time points if your data is heavily interval censored. If time_points is not NULL
then nintervals is ignored.

Number of time intervals to use for MTLR. Note the number of time points will
be nintervals + 1. If left as NULL a default of sqrt(N) is used where N is the
number of observations in the supplied dataset. This parameter is ignored if
time_points is specified.

if TRUE, variables will be normalized (mean 0, standard deviation of 1). This is
STRONGLY suggested. If normalization does not occur it is much more likely
that MTLR will fail to converge. Additionally, if FALSE consider adjusting
"lower" and "upper" used for L-BFGS-B optimization.

The L2 regularization parameter for MTLR. C1 can also be selected viamt1lr_cv.
See "Learning Patient-Specific Cancer Survival Distributions as a Sequence of
Dependent Regressors" by Yu et al. (2011) for details.

if TRUE, biases will be trained before feature weights (and again trained while
training feature weights). This has shown to speed up total training time.
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train_uncensored
if TRUE, one round of training will occur assuming all event times are uncen-
sored. This is done due to the non-convexity issue that arises in the presence
of censored data. However if ALL data is censored we recommend setting this
option to FALSE as it has shown to give poor results in this case.

seed_weights the initialization weights for the biases and the features. If left as NULL all
weights are initialized to zero. If seed_weights are specified then either ninter-
vals or time_points must also be specified. The length of seed_weights should
correspond to (number of features + 1)*(length of time_points) = (number of
features + 1)*(nintervals + 1).

threshold The threshold for the convergence tolerance (in the objective function) when
training the feature weights. This threshold will be passed to optim.

maxit The maximum iterations to run for MTLR. This parameter will be passed to
optim.

lower The lower bound for L-BFGS-B optimization. This parameter will be passed to
optim.

upper The upper bound for L-BFGS-B optimization. This parameter will be passed to
optim.

Details

This function allows one to train an MTLR model given a dataset containing survival data. mtlr uses
the Limited-Memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS-B) approximation method to
train feature weights. This training is outsourced to the internal optim function in R. Currently only
a few parameters (namely threshold, maxit,Jower, upper) of optim are supported, more will likely
become available in the future.

Weights are initialized to O prior to training. Under default settings, the bias weights will be trained
before considering feature weights. As Yu et al. (2011) specified, the introduction of censored
observations creates a non-convex loss function. To address this, weights are first trained assuming
all event times are uncensored. Once these starting weights have been trained another round of
training is performed using the true values of the event indicator (censored/uncensored). However,
in the event of all censored data this has shown to negatively effect the results. If all data is censored
(either left, right, or interval2) we suggest setting train_uncensored = FALSE.

Yu et al. (2011) actually suggested two regularization parameters, C1 to control the size of the
feature weights and C2 to control the smoothness. In Ping Jin’s masters thesis (Using Survival
Prediction Techniques to Learn Consumer-Specific Reservation Price Distributions) he showed that
C2 is not required for smoothness and C1 will suffice (Appendix A.2) so we do not support the C2
parameter in this implementation.

If an error occurs from optim it is likely the weights are getting too large. Including fewer time
points (or specifying better time points) in addition to changing the lower/upper bounds of L-BFGS-
B may resolve these issues. The most common failure has been that the objective value sees infinite
values due to extremely large feature weights.

Censored data: Right, left, and interval censored data are all supported both separately and mixed.
The convention to input these types of data follows the Surv object format. Per the Surv documen-
tation, "The [interval2] approach is to think of each observation as a time interval with (-infinity, t)
for left censored, (t, infinity) for right censored, (t,t) for exact and (t1, t2) for an interval. This is the
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approach used for type = interval2. Infinite values can be represented either by actual infinity (Inf)
or NA." See the examples below for an example of inputting this type of data.

Value

An mtlr object returns the following:

See Also

weight_matrix: The matrix of feature weights determined by MTLR.

x: The dataframe of features (response removed). Note observations with missing values will
have been removed (this is the dataset on which MTLR was trained).

y: The matrix of response values MTLR uses for training. Each column corresponds to an
observation and rows as time points. A value of 1 indicates a observation was either censored
or had their event occur by that time.

response: The response as a Surv object (specified by formula).

time_points: The timepoints selected and used to train MTLR.

C1: The regularization parameter used.

Call: The original call to mtlr.

Terms: The x-value terms used in mtlr. These are later used in predict.mtlr

scale: The means and standard deviations of features when normalize = TRUE. These are used
in predict.mtlr. Will be NULL if normalize = FALSE.

xlevels: The levels of the features used. This is used again by predict.mtlr.

predict.mtlr mtlr_cv plot.mtlr plotcurves

Examples
#Access the Surv function and the leukemia/lung dataset.
library(survival)
simple_mod <- mtlr(Surv(time,status)~., data = leukemia)
simple_mod

bigger_mod <- mtlr(Surv(time,status)~., data = lung)
bigger_mod

#Note that observations with missing data were removed:
nrow(lung)
nrow(bigger_mod$x)

# Mixed censoring types

timel

= c(NA, 4, 7, 12, 10, 6, NA, 3) #NA for right censored

time2 = c(14, 4, 10, 12, NA, 9, 5, NA) #NA for left censored

#timel == time2 indicates an exact death time. time2> timel indicates interval censored.
set.seed(42)

dat = cbind.data.frame(timel, time2, importantfeature = rnorm(8))

formula = Surv(timel,time2,type = "interval2")~.

mixedmod = mtlr(formula, dat)
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mtlr_cv

MTLR Internal Cross-Validation for Selecting C1.

Description

MTLR Internal Cross-Validation for Selecting C1.

Usage

mtlr_cv(form
normalize
train_bias
previous_w
foldtype =
threshold

Arguments

formula
data

time_points

nintervals

normalize

Cl1_vec

train_biases

train_uncens

ula, data, time_points = NULL, nintervals = NULL,
=T, Cl_vec = c(0.001, 0.01, 0.1, 1, 10, 100, 1000),
es = T, train_uncensored = T, seed_weights = NULL,
eights = T, loss = c("11", "concordance"”), nfolds
c("fullstrat”, "censorstrat”, "random"), verbose
= 1e-05, maxit = 5000, lower = -15, upper = 15)

5,
FALSE,

non

a formula object with the response to the left of the
must be a survival object returned by the Surv function.

operator. The response

a data.frame containing the features for survival prediction. These must be vari-
ables corresponding to the formula object.

the time points for MTLR to create weights. If left as NULL, the time_points
chosen will be based on equally spaced quantiles of the survival times. In the
case of interval censored data note that only the start time is considered and not
the end time for selecting time points. It is strongly recommended to specify
time points if your data is heavily interval censored. If time_points is not NULL
then nintervals is ignored.

Number of time intervals to use for MTLR. Note the number of time points will
be nintervals + 1. If left as NULL a default of sqrt(N) is used where N is the
number of observations in the supplied dataset. This parameter is ignored if
time_points is specified.

if TRUE, variables will be normalized (mean 0, standard deviation of 1). This is
STRONGLY suggested. If normalization does not occur it is much more likely
that MTLR will fail to converge. Additionally, if FALSE consider adjusting
"lower" and "upper" used for L-BFGS-B optimization.

a vector of regularization parameters to test. All values must be non-negative.
For large datasets you may want to reduce the number of value tried to increase
efficiency. Similarly for nfolds.

if TRUE, biases will be trained before feature weights (and again trained while
training feature weights). This has shown to speed up total training time.

ored
if TRUE, one round of training will occur assuming all event times are uncen-
sored. This is done due to the non-convexity issue that arises in the presence
of censored data. However if ALL data is censored we recommend setting this
option to FALSE as it has shown to give poor results in this case.
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seed_weights

the initialization weights for the biases and the features. If left as NULL all
weights are initialized to zero. If seed_weights are specified then either ninter-
vals or time_points must also be specified. The length of seed_weights should
correspond to (number of features + 1)*(length of time_points) = (number of
features + 1)*(nintervals + 1).

previous_weights

loss

nfolds
foldtype

verbose
threshold

maxit

lower

upper

Details

a boolean specifying if sequential folds should use the previous fold’s parame-
ters as seed_weights. Doing this will likely speed up the computation time for
cross-validation as we are providing weights which are (likely) close to the op-
timal weights. Note that this is done separately for each value of C1 so there
is no parameter sharing between different values of C1, and instead only across
the same value of C1.

a string indicating the loss to optimize for which to choose the regularization pa-
rameter. Currently one can optimize for the log-likelihood ("11") or concordance
("concordance"). See details regarding these losses.

the number of internal cross validation folds, default is 5.

type of cross validation folds. Full stratification, "fullstrat", sorts observations
by their event time and their event indicators and numbers them off into folds.
This effectively give each fold approximately the same number of uncensored
observations as well as keeps the range of time points as equivalent as possible
across folds. This type of cross-validation is completely deterministic. Censored
stratification, "censorstrat", will put approximately the same number of uncen-
sored observations in each fold but not pay any attention to event time. This is
partially stochastic. The totally random cross-validation, "random", randomly
assigns observations to folds without considering event time nor event status.

if TRUE the progress will be printed for every completed value of C1.

The threshold for the convergence tolerance (in the objective function) when
training the feature weights. This threshold will be passed to optim.

The maximum iterations to run for MTLR. This parameter will be passed to
optim.
The lower bound for L-BFGS-B optimization. This parameter will be passed to
optim.

The upper bound for L-BFGS-B optimization. This parameter will be passed to
optim.

The log-likelihood loss and concordance are supported for optimizing C1. Here the log-likelihood
loss considers censored and uncensored observations differently. For uncensored observations, we
assign a loss of the negative log probability assigned to the interval in which the observation had
their event, e.g. if an observation had a 20 is -log(0.2). We want these probabilities to be large so we
would normally want to maximize this value (since logs of probabilities are negative) but we take the
negative and instead minimize the value, thus we want the lowest loss. For censored observations
we take the log of the probability of survival at the time of censoring, e.g. if an observation is
censored at time = 42 we take the negative log of the survival probability assigned to time 42 as the

loss.
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For the concordance loss, C1 is chosen to maximize the overall concordance when using the nega-
tive median as the "risk" score. This is completed using survConcordance in the survival package.

Value

Performing mtlr_cv will return the following:

¢ best_C1: The value of C1 which achieved the best (lowest) loss.

* avg_loss: The averaged value of loss across the five folds for each value of Cl1 tested.

See Also

mtlr

Examples

library(survival)

cv_mod <- mtlr_cv(Surv(time,status)~., data = lung)

#Note the best C1 also corresponds to the lost average loss:
cv_mod

plot.mtlr Graphical Representation of Feature Weights

Description

Plot the weights of an mtlr object. If packages ggplot2 and reshape?2 are not installed, a bargraph
of feature influence is given where influence is defined as the sum of absolute values of the feature
weights across time. If ggplot2 and reshape?2 are installed then a plot of feature weight across time
is given.

Usage

## S3 method for class 'mtlr'
plot(x, numfeatures = 5, featurenames = c(), digits,

2
Arguments
X an object of class mtlr (result from calling mt1r).
numfeatures the number of weight to plot. Default is 5. The most influential features are

chosen first.

featurenames  the names of the specific weight to plot. These should correspond to the names
in x$weight_matrix. If featurenames are supplied, then numfeatures is ignored.

digits the number of digits to round to for the value of the time points.

for future methods
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Examples

#These examples are geared towards users who have installed ggplot2 and reshape2.
library(survival)

mod <- mtlr(Surv(time,status)~., data = lung)

#Basic plot with 5 most influential features

plot(mod)

#Plot all 8 features

plot(mod, numfeatures = 8)

#Suppose we want to see specifically the "meal.cal” and "ph.karno” features:

plot(mod, featurenames = c("meal.cal”, "ph.karno"))
plotcurves Graphically Visualize MTLR Survival Curves
Description

Plot the survival curves returned from predict.mtlr. Users must have packages ggplot2 and reshape2
installed in order to use this function. Survival curves for MTLR are smoothed using a monotonic
cubic spline using a Hyman filtering between time points. For details regarding this smoothing
function see splinefun.

Usage

plotcurves(curves, index = 1, color = c(), xlim = c(),
remove_legend = TRUE)

Arguments

curves survival curves formatted the same as those from predict.mtlr. Time points must
be in the first column of the matrix followed by columns representing survival
probabilities for each observation.

index the index of the observation to plot. Here an index of 1 will refer to the second
column of the curves object. If over 15 indices are given the legend will be re-
moved as to not take up plotting space. To avoid this behavior set remove_legend
= FALSE.

color the color of the plotted survival curve. The length of color must match the length
of index.

x1im the limits of the x-axis (must be a 2 length vector).

remove_legend if TRUE the legend will be removed if over 15 indices are supplied. If FALSE
the legend will remain, however be aware that the legend may take up lots of
space.

See Also

mtlr predict.mtlr
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Examples

#Set up the example:

library(survival)
mod <- mtlr(Surv(time,status)~., data = lung)
curves <- predict(mod, type = "survivalcurve")

plotcurves(curves, 1:10)
plotcurves(curves, 1:3, color
plotcurves(curves, 1:10, xlim

c("red”,"blue”, "purple”))
c(0,42))

#Note the legend is now gone:
plotcurves(curves, 1:20)

#and it is back again:
plotcurves(curves, 1:20, remove_legend = FALSE)

predict.mtlr Predictions for MTLR

Description

Compute survival curves and other fitted values for a model generated by mt1r.

Usage

## S3 method for class 'mtlr'
predict(object, newdata, type = c(”survivalcurve”,

"prob_times”, "prob_event”, "mean_time", "median_time"), add_zero =T,
times = c(), ...)
Arguments
object an object of class mitlr, generated by the mtlr.
newdata an optional new dataframe for which to perform predictions using MTLR. If

left empty, predictions will be performed using the dataset used to generate the
original mtlr object — note that any error calculation on these predictions will be
optimistic since this will only be the resubstitution error and not be representa-
tive of error on a new test set.

type the type of prediction desired. Options are the survival curve for the time
points selected by mtlr ("survivalcurve"), the survival curve for given times
("prob_times"), the probability of survival at the observations event time ("prob_event"),
the mean survival time ("mean_time"), and the median survival time ("me-
dian_time").
For "survivalcurve" and "prob_times", the first column of the matrix returned
will correspond to the time points and all other columns will be the observa-
tions survival probability at those associated time points. The index of a (row)
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observation in newdata will correspond to the ith + I column of the returned
matrix.

If "prob_event" is chosen the response (event time) is required. For both "prob_event"
and "prob_times", if the event time is larger than all of the time points used to
build the mtlr model then the last (lowest) probability is used. For example, if
the event time is 100 but the largest time point estimated by the mtlr model was
80 then the survival probability at 100 is equal to the survival probability at 80,
i.e. S(100) = §(80).

For "mean_time", if survival curves do not extend to zero survival probability a
linear extension is added (a linear line from (time = 0,probability = 1) to (time
= 7, probability =0)). This is the same for "median_time" except the line need
only extend to survival probability = 0.5. A mean/median survival time of Inf is
returned for survival curves with all survival probabilities of 1.

add_zero if TRUE, a time point of "0" and a survival probability of "1" will be added to
all survival curves. Additionally, if add_zero is TRUE, type = "mean_time" will
represent the average survival time overall but if FALSE, then "mean_time" will
be reduced by roughly the value of the first time point. However, "median_time"
and "prob_event" will be unchanged.

times For prediction method "prob_times" you may specify the times at which to pre-
dict the survival probability for each row in newdata. This values defaults to
all unique event times (both censored and uncensored) in the data on which the
model was trained.

for future methods.

Value

The desired prediction type (a matrix or vector of predictions).

Note

The predictions generated by type = "survivalcurve" can be plotted using plotcurves — packages
ggplot2 and reshape2 must be installed to use this function.

See Also

mtlr plotcurves

Examples

library(survival)
mod <- mtlr(Surv(time,status)~., data = lung)

#Here our predictions are on the data from which we trained so our results will be optimistic
# since they are produced from resubstitution as opposed to some new test set.
predict(mod, type = "survivalcurve")

predict(mod, type = "prob_event")

predict(mod, type = "median_time")

predict(mod, type = "mean_time")



12 print.mtlr

#Notice the difference of about 59:
predict(mod, type = "mean_time", add_zero = FALSE)

print.mtlr Printing an MTLR object.

Description

Print an object created by mt1r.

Usage
## S3 method for class 'mtlr'
print(x, digits = max(options()$digits - 4, 3), ...)
Arguments
X an object of class mtlr (result from calling mt1r).
digits The number of digits to print mtlr weights.

for future methods.

Value

Call, the original call to the mtlr function. Time points, the time points selected by the mtlr model.
Weights, the weights of each feature across time — rows represent each time point and each column
corresponds to a feature.

See Also

mtlr
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