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aggregate_for_mims Aggregate over epoch to get numerically integrated values.
Description

aggregate_for_mims returns a dataframe with integrated values by trapzoidal method over each
epoch for each column. The epoch start time will be used as timestamp in the first column.

Usage

aggregate_for_mims(df, epoch, method = "trapz", rectify = TRUE, st = NULL)

Arguments
df dataframe of accelerometer data in mhealth format. First column should be
timestamps in POSIXt format.
epoch string. Any format that is acceptable by argument breaks in method cut.POSIXt.For
example, "1 sec”, "1 min", "5 secs", "10 mins".
method string. Integration methods. Supported strings include: "trapz", "power", "sum",
"meanBySecond", "meanBySize". Default is "trapz".
rectify logical. If TRUE, input data will be rectified before integration. Default is
TRUE.
st character or POSIXct timestamp. An optional start time you can set to force
the epochs generated by referencing this start time. If it is NULL, the function
will use the first timestamp in the timestamp column as start time to generate
epochs. This is useful when you are processing a stream of data and want to use
a common start time for segmenting data. Default is NULL.
Details

This function accepts a dataframe (in mhealth accelerometer data format) and computes its aggre-
gated values over each fixed epoch using different integration methods (default is trapzoidal method,
other methods are not used by mims unit algorithm) for each value columns. The returned dataframe
will have the same number of columns as input dataframe, and have the same datetime format as
input dataframe in the timestamp column. The trapzoidal method used in the function is based on
trapz.

Value

dataframe. The returned dataframe will have the same format as input dataframe.



4 aggregate_for_orientation

How is it used in mims-unit algorithm?

This function is used in mims-unit algorithm after filtering (iir). The filtered signal will be rectified
and integrated to get mims unit values for each axis using this function.

Note

If epoch argument is not provided or is NULL, the function will treat the input dataframe as a single
epoch.

If the number of samples in one segment is less than 90 samples, the aggregation result will be -1
(marker of invalid value).

See Also

aggregate_for_orientation for aggregating to get accelerometer orientation estimation for each
epoch.

Other aggregate functions: aggregate_for_orientation()

Examples

# sample data
df = sample_raw_accel_data
head (df)

# epoch set to 5 seconds, and method set to "trapz”
aggregate_for_mims(df, epoch = '5 sec', method='trapz')

n ”

# epoch set to 1 second, method set to "sum
aggregate_for_mims(df, epoch = '1 sec', method='sum')

epoch set to 1 second, and st set to be 1 second before the start time of the data
so the first segment will only include data for 1 second, therefore the resulted
aggregated value for the first segment will be -1 (invalid) because the

samples are not enough. And the second segment starts from 11:00:01, instead

of 11:00:02 as shown in prior example,

aggregate_for_mims(df, epoch = '1 sec', method='sum', st=df[1,1] - 1)

A

aggregate_for_orientation
Aggregate over epoch to get estimated accelerometer orientation.

Description

aggregate_for_orientation returns a dataframe with accelerometer orientations estimated by
Mizell, 2003 over each epoch (see compute_orientation). The epoch start time will be used as
timestamp in the first column.


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1241424
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Usage
aggregate_for_orientation(
df,
epoch,
estimation_window = 2,
unit = "deg”,
st = NULL
)
Arguments
df dataframe. Input accelerometer data in mhealth format. First column should be
timestamps in POSIXt format.
epoch string. Any format that is acceptable by argument breaks in method cut . POSIXt.For

example, "1 sec"”, "1 min", "5 secs", "10 mins".

estimation_window
number. Duration in seconds to be used to estimate orientation within each
epoch. Default is 2 (seconds), as suggested by Mizell, 2003.

unit string. The unit of orientation angles. Can be "deg" (degree) or "rad" (radian).
Default is "deg".

st character or POSIXct timestamp. An optional start time you can set to force
the epochs generated by referencing this start time. If it is NULL, the function
will use the first timestamp in the timestamp column as start time to generate
epochs. This is useful when you are processing a stream of data and want to use
a common start time for segmenting data. Default is NULL.

Details

This function accepts a dataframe (in mhealth accelerometer data format) and computes the es-
timated acclerometer orientations (in X, y, and z angles) over each fixed epoch. The returned
dataframe will have the same format as input dataframe, including four columns, and have the same
datetime format as input dataframe in the timestamp column. The orientation estimation method
used in the function is based on Mizell, 2003.

Value

dataframe. The returned dataframe will have the same format as input dataframe.

How is it used in mims-unit algorithm?
This function is used in mims-unit algorithm after extrapolation (extrapolate). The extrapolated
signal will be estimated to get orientation angles using this function.

Note

If epoch argument is not provided or is NULL, the function will treat the input dataframe as a single
epoch.

If the number of samples in an epoch is less than 90 would be NaN (invalid) for this epoch.


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1241424
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1241424
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See Also

aggregate_for_mims for aggregating to get integrated values for each axis for each epoch.

Other aggregate functions: aggregate_for_mims()

Examples

# Use sample input data
df = sample_raw_accel_data
head(df)

# set epoch to 1 second and unit to degree
# last epoch does not have enough samples to estimate orientation angles.
aggregate_for_orientation(df, epoch='1 sec', unit='deg')

# set epoch to 2 seconds and unit to radian
# last epoch does not have enough samples to estimate orientation angles.
aggregate_for_orientation(df, epoch='2 sec', unit='rad')

# epoch set to 2 seconds, and st set to be 1 second before the start time of the data
# so the first segment will only include data for 1 second, therefore the resulted

# aggregated value for the first segment will be -1 (invalid) because the

# samples are not enough. And the second segment starts from 11:00:01, instead

# of 11:00:01 as shown in prior example,

aggregate_for_orientation(df, epoch = '1 sec', unit='rad', st=df[1,1] - 1)

bandlimited_interp Apply a bandlimited interpolation filter to the signal to change the
sampling rate

Description
bandlimited_interp function takes a multi-channel signal and applies a bandlimited interpolation
filter to the signal to change its sampling rate.

Usage

bandlimited_interp(df, orig_sr, new_sr)

Arguments
df dataframe. The input multi-channel signal. The first column is timestamps in
POSXIct format. The rest columns are signal values.
orig_sr number. Sampling rate in Hz of the input signal.

new_sr number. The desired sampling rate in Hz of the output signal.
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Details

This function filters the input multi-channel signal by applying a bandlimited interpolation filter.
See resample for the underlying implementation.

Value

dataframe. Filtered signal.

How is it used in MIMS-unit algorithm?

This function is not used in the released version of MIMS-unit algorithm, but has once been con-
sidered to be used after extrapolation to harmonize sampling rate before filtering. But in the end,
we decided to use linear interpolation before extrapolation to increase the sampling rate to 100Hz,
so this method is no longer needed.

See Also

Other filtering functions: iir ()

Examples

# Use sample data
df = sample_raw_accel_data

# View input
illustrate_signal (df, plot_maxed_out_line = FALSE)

# Apply filtering that uses the same setting as in MIMSunit algorithm
output = bandlimited_interp(df, orig_sr=80, new_sr=30)

# View output
illustrate_signal (output, plot_maxed_out_line = FALSE)

clip_data Clip dataframe to the given start and stop time

Description

clip_data clips the input sensor dataframe according to the given start and stop time

Usage

clip_data(df, start_time, stop_time)
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Arguments
df dataframe. Input dataframe of the multi-channel signal. The first column is
the timestamps in POSXIct format and the following columns are accelerometer
values.
start_time POSXIct format or character. Start time for clipping. If it is a character, it should
be recognizable by as.POSXIct function.
stop_time POSXIct format or character. Stop time for clipping. If it is a character, it should
be recognizable by as.POSXIct function.
Details

This function accepts a dataframe of multi-channel signal, clips it according to the start_time and
stop_time.

Value

dataframe. The same format as the input dataframe.

How is it used in MIMS-unit algorithm?

This function is a utility function that was used in various part in the algorithm whenever we need
to clip a dataframe.

See Also

Other utility functions: cut_off_signal(), interpolate_signal(), parse_epoch_string(),
sampling_rate(), segment_data(), simulate_new_data()

Examples

default_ops = options()
options(digits.secs=3)

# Use the provided sample data
df = sample_raw_accel_data

# Check the start time and stop time of the dataset
summary (df)

# Use timestamp string to clip 1 second data
start_time = "2016-01-15 11:01:00"

stop_time = "2016-01-15 11:01:01"

output = clip_data(df, start_time, stop_time)
summary (output)

# Use POSIXct timestamp to clip data
start_time = as.POSIXct("2016-01-15 11:01:00")
stop_time = as.POSIXct(”2016-01-15 11:01:01")
output = clip_data(df, start_time, stop_time)
summary (output)
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# If start and stop time is not in the range of the input data
# return empty data.frame

start_time = "2016-01-15 12:01:00"

stop_time = "2016-01-15 12:01:01"

output = clip_data(df, start_time, stop_time)

output

# Restore original options
options(default_ops)

compute_orientation Estimate the accelerometer orientation

Description

compute_orientation returns a dataframe with accelerometer orientations estimated by Mizell,
2003 for the input dataframe.

Usage
compute_orientation(df, estimation_window = 2, unit = "deg")
Arguments
df dataframe. Input multi-channel signal. First column should be timestamps in

POSIXt format.
estimation_window

number. window size in seconds to be used to estimate orientations. Default is
2 (seconds), as suggested by Mizell, 2003.

unit string. The unit of orientation angles. Can be "deg" (degree) or "rad" (radian).
Default is "deg".
Details

This function accepts a dataframe (in mhealth accelerometer data format) and computes the esti-
mated acclerometer orientations (in X, y, and z angles) for every estimation_window seconds of
the entire sequence, and outputs the mean of these angles. The returned dataframe will have the
same format as input dataframe, including four columns, and have the same datetime format as
input dataframe in the timestamp column. The orientation estimation method used in the function
is based on Mizell, 2003.

Value

dataframe. The returned dataframe will have the same format as input dataframe.

How is it used in mims-unit algorithm?

This function is used in function (aggregate_for_orientation).


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1241424
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1241424
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1241424
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1241424

10 conceptual_diagram_data

See Also

Other transformation functions: sum_up(), vector_magnitude()

Examples

# Use first 10 second sample data for testing
df = sample_raw_accel_data
df = clip_data(df, start_time = df[1,1], stop_time = df[1, 1] + 600)

# compute orientation angles in degrees
compute_orientation(df)

# compute orientation angles in radian angles
compute_orientation(df, unit='rad"')

conceptual_diagram_data

The input accelerometer data used to generate the conceptual diagram
(Figure 1) in the manuscript.

Description

The dataset includes accelerometer data from four devices. Device O is a real Actigraph GT9X
device configured at 80Hz and 8g. Device 1 to 3 are simulated data from the data of device 0
using function simulate_new_data. Data for device O is a random selected nondominant wrist
data from a participant doing Jumping jack. The data is manipulated to insert an artificial impulse
to demonstrate the effect of the MIMS-unit algorithm when dealing on it.

Usage

conceptual_diagram_data

Format
A data frame with 1704 rows and 5 variables:
HEADER_TIME_STAMP The timestamp of raw accelerometer data, in POSIXct
X The x axis value of raw accelerometer data, in number
GRANGE The dynamic range of the simulated device in g, in number
SR The sampling rate in Hz of the simulated device, in number

NAME An alternative name that is friendly for plotting for different devices, in character

Source

https://github.com/mHealthGroup/MIMSunit/
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custom_mims_unit Compute both MIMS-unit and sensor orientations with custom settings

Description

custom_mims_unit computes the Monitor Independent Motion Summary unit and estimates the

sensor orientations for the input multi-channel accelerometer signal with custom settings. The input

signal can be from devices of any sampling rate and dynamic range. Please refer to the manuscript

for detailed description of the algorithm. Please refer to functions for the intermediate steps:
extrapolate for extrapolation, iir for filtering, aggregate_for_mims and aggregate_for_orientation
for aggregation.

Usage
custom_mims_unit(
df,
epoch = "5 sec”,

dynamic_range,

noise_level = 0.03,

k = 0.05,

spar = 0.6,

filter_type = "butter”,

cutoffs = c(0.2, 5),

axes = c(2, 3, 4),

use_extrapolation = TRUE,
use_filtering = TRUE,

combination = "sum",

allow_truncation = TRUE,
output_mims_per_axis = FALSE,
output_orientation_estimation = FALSE,
epoch_for_orientation_estimation = NULL,
before_df = NULL,

after_df = NULL,

use_gui_progress = FALSE,

st = NULL,
use_snapshot_to_check = FALSE
)
Arguments
df dataframe. Input multi-channel accelerometer signal.
epoch string. Any format that is acceptable by argument breaks in method cut . POSIXt.For

example, "1 sec", "1 min", "5 sec", "10 min". Default is "5 sec".

dynamic_range numerical vector. The dynamic ranges of the input signal. Should be a 2-element
numerical vector. c(low, high), where low is the negative max value the device
can reach and high is the positive max value the device can reach.
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noise_level number. The tolerable noise level in g unit, should be between 0 and 1. Default
is 0.03, which applies to most devices.

k number. Duration of neighborhood to be used in local spline regression for each
side, in seconds. Default is 0.05, as optimized by MIMS-unit algorithm.

spar number. Between 0 and 1, to control how smooth we want to fit local spline
regression, 0 is linear and 1 matches all local points. Default is 0.6, as optimized
by MIMS-unit algorithm.

filter_type string. The type of filter to be applied. Could be ’butter’ for butterworth band-
pass filter, “ellip’ for elliptic bandpass filter or "bessel” for bessel lowpass filter
+ average removal highpass filter. Default is "butter".

cutoffs numerical vector. Cut off frequencies to be used in filtering. If filter_type is
"bessel", the cut off frequency for lowpass filter would be multiplied by 2 when
being used. Default is 0.2Hz and 5Hz.

axes numerical vector. Indices of columns that specifies the axis values of the input
signal. Default is c(2,3,4).

use_extrapolation
logical. If it is TRUE, the function will apply extrapolation algorithm to the
input signal, otherwise it will skip extrapolation but only linearly interpolate the
signal to 100Hz. Default is TRUE.

use_filtering logical. If it is TRUE, the function will apply bandpass filtering to the input
signal, otherwise it will skip the filtering. Default is TRUE.

combination string. Method to combine MIMS-unit values for each axis. Could be "sum" for
sum_up or "vm" for vector_magnitude.

allow_truncation
logical. If it is TRUE, the algorithm will truncate very small MIMS-unit values
to zero. Default is TRUE.

output_mims_per_axis
logical. If it is TRUE, the output MIMS-unit dataframe will have MIMS-unit
values for each axis from the third column. Default is FALSE.

output_orientation_estimation
logical. If it is TRUE, the function will also estimate sensor orientations over
each epoch. And the output will be a list, with the first element being the MIMS-
unit dataframe, and the second element being the sensor orientation dataframe.
Default is FALSE.

epoch_for_orientation_estimation
string. string. Any format that is acceptable by argument breaks in method
cut.POSIXt.For example, "1 sec", "1 min", "5 sec", "10 min". Default is "5
sec". It is independent from epoch for MIMS-unit.

before_df dataframe. The multi-channel accelerometer signal comes before the input sig-
nal to be prepended to the input signal during computation. This is used to elim-
inate the edge effect during extrapolation and filtering. If it is NULL, algorithm
will run directly on the input signal. Default is NULL.

after_df dataframe. The multi-channel accelerometer signal comes after the input signal
to be append to the input signal. This is used to eliminate the edge effect during
extrapolation and filtering. If it is NULL, algorithm will run directly on the input
signal. Default is NULL.
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use_gui_progress
logical. If it is TRUE, show GUI progress bar on windows platform. Default is
FALSE.

st character or POSIXct timestamp. An optional start time you can set to force
the epochs generated by referencing this start time. If it is NULL, the function
will use the first timestamp in the timestamp column as start time to generate
epochs. This is useful when you are processing a stream of data and want to use
a common start time for segmenting data. Default is NULL.

use_snapshot_to_check
logical. If TRUE, the function will use the first 100 rows or 10 the algorithm
will use all data to check timestamp duplications. Default is FALSE.

Value

dataframe or list. If output_orientation_estimation is TRUE, the output will be a list, other-
wise the output will be the MIMS-unit dataframe.

The first element will be the MIMS-unit dataframe, in which the first column is the start time
of each epoch in POSIXct format, and the second column is the MIMS-unit value for the input
signal, and the third column and on are the MIMS-unit values for each axis of the input signal if
output_mims_per_axis is TRUE.

The second element will be the orientation dataframe, in which the first column is the start time of
each epoch in POSIXct format, and the second to fourth column is the estimated orientations for
the input signal.

How is it used in MIMS-unit algorithm?
This is the low-level entry of MIMS-unit and orientation estimation algorithm. mims_unit calls
this function internally.

Note

This function allows you to run customized algorithm for MIMSunit and sensor orientations.

before_df and after_df are often set when the accelerometer data are divided into files of smaller
chunk.

See Also

Other Top level API functions: mims_unit(), sensor_orientations(), shiny_app()

Examples

# Use sample data for testing
df = sample_raw_accel_data

# compute mims unit values with custom parameter
output = custom_mims_unit(df, epoch = '1 sec', dynamic_range=c(-8, 8), spar=0.7)
head(output)
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cut_off_signal Cut off input multi-channel signal according to a new dynamic range

Description
cut_off_signal cuts off the input multi-channel accelerometer data according to a new dynamic
range, then adds gausian noise to the cut-off samples.

Usage

cut_off_signal(df, range = NULL, noise_std = 0.03)

Arguments
df dataframe. Input multi-channel accelerometer data.
range numerical vector. The new dynamic ranges to cut off the signal. Should be a 2-
element numerical vector. c(low, high), where low is the negative max value
the device can reach and high is the positive max value the device can reach.
Default is NULL, meaning the function will do nothing but return the input data.
noise_std number. The standard deviation of the added gaussian noise.
Details

This function simulates the behavior that a low dynamic range device is trying to record high inten-
sity movement, where recorded accelerometer signal will be cut off at the dynamic range, but the
true movement should have higher acceleration values than the dynamic range. This function also
adds gaussian noise to the cut off samples to better simulate the real world situation.

Value

dataframe. The multi-channel accelerometer data with the new dynamic range as specified in range.

How is it used in MIMS-unit algorithm?

This function is a utility function that is used to simulate the behaviors of low dynamic range devices
during algorithm validation.

See Also

Other utility functions: clip_data(), interpolate_signal(), parse_epoch_string(), sampling_rate(),
segment_data(), simulate_new_data()
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Examples

# Use sample data for testing
df = sample_raw_accel_data

# Show df
illustrate_signal(df, range=c(-8, 8))

# cut off the signal to c(-2, 2)
new_df = cut_off_signal(df, range=c(-2, 2), noise_std=0.03)

# Show new df
illustrate_signal(new_df, range=c(-2, 2))

cv_different_algorithms

Coefficient of variation values for different acceleration data summary
algorithms

Description

A dataset containing the coefficient of variation values at different frequencies for the dataset that
includes accelerometer measures of different devices on a standard elliptical shaker.

Usage

cv_different_algorithms

Format
A data frame with 30 rows and 3 variables:
TYPE Accelerometer summary algorithm name, in character

HZ The frequency of the elliptical shaker, in number
COEFF_OF_VARIATION The coefficient of variation values, in number

Source

https://github.com/mHealthGroup/MIMSunit-dataset-shaker/


https://github.com/mHealthGroup/MIMSunit-dataset-shaker/
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edge_case A short snippet of raw accelerometer signal from a device that has
ending data maxed out.

Description

The dataset includes accelerometer data sampled at 80Hz and 6g. This data is used to test the edge
case.

Usage

edge_case

Format
A data frame with 20001 rows and 4 variables:
HEADER_TIME_STAMP The timestamp of raw accelerometer data, in POSIXct
X The x axis value of raw accelerometer data, in number

Y The x axis value of raw accelerometer data, in number

Z The x axis value of raw accelerometer data, in number

Source

https://github.com/mHealthGroup/MIMSunit/

export_to_actilife Export accelerometer data in Actilife RAW CSV format

Description

export_to_actilife exports the input dataframe as a csv file that is compatible with Actilife.

Usage

export_to_actilife(
df,
filepath,
actilife_version = "6.13.3",
firmware_version "1.6.0"


https://github.com/mHealthGroup/MIMSunit/
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Arguments
df dataframe. Input accelerometer data. The first column is timestamp in POSXlct
format, and the rest columns are accelerometer values in g (9.81m/ 52).
filepath string. The output filepath.

actilife_version
string. The Actilife version number to be added to the header. Default is
"6.13.3", that was used by the algorithm during development.
firmware_version
string. The firmware version number to be added to the header. This is supposed
to be the firmware version of the Actigraph devices. We did not see any usage of
the number during the computation of Actigraph counts by Actilife, so it may be
set with an arbitrary version code seen in any Actigraph devices. We use default
version code "1.6.0".

Details

This function takes an input accelerometer dataframe and exports it in Actilife RAW CSV format
with a prepended a madeup header. The exported file csv file has compatible header, column names,
timestamp format with Actilife and can be imported directly into Actilife software.

Value

No return value.

How is it used in MIMS-unit algorithm?

This function is an utility function that was used to convert validation data into Actilife RAW CSV
format so that we can use Actilife to compute Actigraph counts values for these data.

See Also

Other File I/0O functions: import_actigraph_count_csv(), import_actigraph_csv_chunked(),
import_actigraph_csv(), import_actigraph_meta(), import_activpal3_csv(), import_enmo_csv(),
import_mhealth_csv_chunked(), import_mhealth_csv()

Examples

# Use the first 5 rows from sample data
df = sample_raw_accel_data[1:5,]
head (df)

# Save to current path with default mocked actilife and firmware versions
filepath = tempfile()
export_to_actilife(df, filepath)

# The saved file will have the same format as Actigraph csv files
readLines(filepath)

# Cleanup
file.remove(filepath)
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extrapolate Extrapolate input multi-channel accelerometer data

Description

extrapolate applies the extrapolation algorithm to a multi-channel accelerometer data, trying to
reconstruct the true movement from the maxed-out samples.

Usage
extrapolate(df, ...)

extrapolate_single_col(

t,
value,
range,
noise_level = 0.03,
k = 0.05,
spar = 0.6
)
Arguments
df dataframe. Input multi-channel accelerometer data. Used in extrapolate. The
first column should be the date/time
see following parameter list.
t POSIXct or numeric vector. Input index or timestamp sequence Used in extrapolate_single_col.
value numeric vector. Value vector used in extrapolate_single_col.
range numeric vector. The dynamic ranges of the input signal. Should be a 2-element
numeric vector. c(low, high), where low is the negative max value the device
can reach and high is the positive max value the device can reach.
noise_level number. The tolerable noise level in g unit, should be between 0 and 1. Default
is 0.03, which applies to most devices.
k number. Duration of neighborhood to be used in local spline regression for each
side, in seconds. Default is 0.05, as optimized by MIMS-unit algorithm.
spar number. Between 0 and 1, to control how smooth we want to fit local spline
regression, 0 is linear and 1 matches all local points. Default is 0.6, as optimized
by MIMS-unit algorithm.
Details

This function first linearly interpolates the input signal to 100Hz, and then applies the extrapolation
algorithm (see the manuscript) to recover the maxed-out samples. Maxed-out samples are samples
that are cut off because the intensity of the underlying movement exceeds the dynamic range of the
device.
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extrapolate processes a dataframe of a multi-channel accelerometer signal. extrapolate_single_col
processes a single-channel signal with its timestamps and values specified in the first and second
arguments.

Value

extraplate returns a dataframe with extrapolated multi-channel signal. extrapolate_single_col
returns a dataframe with extrapolated single-channel signal, the timestamp col is in numeric values
instead of POSIXct format.

How is it used in MIMS-unit algorithm?

This function is the first step during MIMS-unit algorithm, applied before filtering.

See Also

Other extrapolation related functions: extrapolate_rate()

Examples

# Use the maxed-out data for the conceptual diagram

df = conceptual_diagram_data[
conceptual_diagram_datal 'GRANGE'] == 4,
c("HEADER_TIME_STAMP", "X")]

# Plot input
illustrate_signal(df, range=c(-4, 4))

# Use the default parameter settings as in MIMunit algorithms
# The dynamic range of the input data is -4g to 4g.
output = extrapolate(df, range=c(-4, 4))

# Plot output
illustrate_signal (output, range=c(-4, 4))

extrapolate_rate Get extrapolation rate.

Description
extrapolate_rate computes the extrapolation rate given the test signal (maxed out), the true com-
plete signal (no maxed out) and the extrapolated signal.

Usage

extrapolate_rate(test_df, true_df, extrap_df)
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Arguments
test_df dataframe. See details for the input format.
true_df dataframe. See details for the input format.
extrap_df dataframe. See details for the input format.
Details

All three input dataframes will have the same format, with the first column being timestamps in
POSXIct format, and the following columns being acceleration values in g.

Value

number. The extrapolation rate value in double format. If extrapolation rate is 1, it means the
extrapolated signal recovers as the true signal. If extrapolation rate is between 0 and 1, it means the
extrapolation helps reducing the errors caused by signal maxing out. If extrapolation rate is smaller
than 0, it means the extrapolation increases the errors caused by signal maxing out (during over
extrapolation).

How is it used in MIMS-unit algorithm?

This function is used to compute extrapolation rate during extrapolation parameter optimization.
You may see results in Figure 2 of the manuscript.

See Also

Other extrapolation related functions: extrapolate()

Examples

# Prepare data for test, ground truth

test_df = conceptual_diagram_datal
conceptual_diagram_datal 'GRANGE'] == 4,
C("HEADER_TIME_STAMP", "X")]

true_df = conceptual_diagram_datal
conceptual_diagram_datal 'GRANGE'] == 8,
C("HEADER_TIME_STAMP", "X")]

# Do extrapolation
extrap_df = extrapolate(test_df, range=c(-4, 4))

# Compute extrapolation rate
extrapolate_rate(test_df, true_df, extrap_df)
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generate_interactive_plot
Plot MIMS unit values or raw signal using dygraphs interactive plot-
ting library.

Description
generate_interactive_plot plots MIMS unit values or raw signal using dygraphs interactive
plotting library.

Usage

generate_interactive_plot(df, y_label, value_cols = c(2, 3, 4))

Arguments
df data.frame.The dataframe storing MIMS unit values or raw accelerometer sig-
nal. The first column should be timestamps.
y_label str. The label name to be put on the y axis.
value_cols numerical vector. The indices of columns storing values, typically starting from
the second column. The default is ‘c(2,3,4)°.
Value

A dygraphs graph object. When showing, the graph will be plotted in a html widgets in an opened
browser.

See Also

Other visualization functions.: illustrate_extrapolation(), illustrate_signal()

Examples

# Use sample data for testing
df = sample_raw_accel_data

# Plot using default settings, due to pkgdown limitation, no interactive
# plots will be shown on the website page.
generate_interactive_plot(df,

y_label="Acceleration (g)")

# The function can be used to plot MIMS unit values as well
mims = mims_unit(df, dynamic_range=c(-8, 8))
generate_interactive_plot(mims,
y_label="MIMS-unit values”,
value_cols=c(2))



22 iir

iir Apply IIR filter to the signal

Description

iir function takes a multi-channel signal and applies an IIR filter to the signal.

Usage

iir(df, sr, cutoff_freq, order = 4, type = "high”, filter_type = "butter")

Arguments

df dataframe. The input multi-channel signal. The first column is timestamps in
POSXIct format. The rest columns are signal values.

sr number. Sampling rate in Hz of the input signal.

cutoff_freq number or numerical vector. The cutoff frequencies in Hz. If the IIR filter is a
bandpass or bandstop filter, it will be a 2-element numerical vector specifying
the low and high end cutoff frequencies c(low, high).

order number. The order of the filter. Default is 4.

type string. Filtering type, one of "low" for a low-pass filter, "high" for a high-pass

filter, "stop" for a stop-band (band-reject) filter, or "pass"” for a pass-band filter.
filter_type string. IR filter type, one of "butter" for butterworth filter, "chebyl" for Cheby-

shev Type I filter, or "ellip" for Elliptic filter.
Details

This function filters the input multi-channel signal by applying an IIR filter. See wiki for the ex-
planation of the filter. The implementations of IIR filters can be found in butter, cheby1, and
ellip.

For Chebyshev Type I, Type II and Elliptic filter, the passband ripple is fixed to be 0.05 dB. For
Elliptic filter, the stopband ripple is fixed to be -50dB.

Value

dataframe. Filtered signal.

How is it used in MIMS-unit algorithm?

This function has been used as the main filtering method in MIMS-unit algorithm. Specifically, it
uses a 0.5 - 5 Hz bandpass butterworth filter during filtering.

See Also

Other filtering functions: bandlimited_interp()
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# Use sample data
df = sample_raw_accel_data

# View input

illustrate_signal(df, plot_maxed_out_line = FALSE)

# Apply filtering that uses the same setting as in MIMSunit algorithm
output = iir(df, sr=80, cutoff_freq=c(0.2, 5), type='pass')

# View output

illustrate_signal (output, plot_maxed_out_line = FALSE)

illustrate_extrapolation

Plot illustrations about extrapolation in illustration style.

Description

illustrate_extrapolation plots elements of extrapolations (e.g., marked points, reference lines)
in the same style as illustrate_signal.

Usage

illustrate_extrapolation(

df,

dynamic_range,

title = NULL,

show_neighbors = TRUE,
show_extrapolated_points_and_lines = TRUE,

Arguments

df

dynamic_range

title

data.frame.The original data before extrapolation.

numerical vector. The dynamic ranges of the input signal. Should be a 2-element
numerical vector. c(low, high), where low is the negative max value the device
can reach and high is the positive max value the device can reach.

Char. The title of the plot.

show_neighbors bool. Show the points used for extrapolation if TRUE.
show_extrapolated_points_and_lines

bool. Show the extrapolated points and curves used for extrapolation.

Parameters that can be used to tune extrapolation, including spar, k, and noise_level.
See extrapolate for explanations.
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Value

ggplot2 graph object. The graph to be shown.

See Also

Other visualization functions.: generate_interactive_plot(), illustrate_signal()

Examples

# Use the maxed-out data for the conceptual diagram

df = conceptual_diagram_datal
conceptual_diagram_data[ 'GRANGE'] == 2,
c("HEADER_TIME_STAMP", "X")]

# Plot extrapolation illustration using default settings
illustrate_extrapolation(df, dynamic_range=c(-2,2))

# Do not show neighbor points
illustrate_extrapolation(df, dynamic_range=c(-2,2), show_neighbors=FALSE)

# Do not show extrapolated points and lines
illustrate_extrapolation(df,
dynamic_range=c(-2,2),
show_extrapolated_points_and_lines=FALSE)

illustrate_signal Plot given raw signal in illustration diagram style.

Description

illustrate_signal plots the given uniaxial signal in illustration diagram style. Illustration dia-
gram style hides axes markers, unnecessary guidelines.

Usage
illustrate_signal(
data,
point_size = 0.3,
plot_point = TRUE,

line_size = 0.3,

plot_line = TRUE,

range = c(-2, 2),
plot_maxed_out_line = TRUE,
plot_origin = TRUE,

title = NULL,

plot_title = TRUE
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Arguments
data data.frame. The input uniaxial signal. First column should be timestamp.
point_size number. The size of the plotted data point.
plot_point Bool. Plot signal as points if TRUE.
line_size number. The line width of the plotted signal curve.
plot_line Bool. Plot signal with curve if TRUE.
range vector. Dynamic range of the signal.

plot_maxed_out_line
Bool. Plot dynamic range lines if TRUE. Dynamic range is set by ‘range°.
plot_origin Bool. Plot the 0 horizontal line if TRUE.

title Char. The title of the plot.
plot_title Bool. Plot title if TRUE.
Value

ggplot2 graph object. The graph to be shown.

See Also

Other visualization functions.: generate_interactive_plot(), illustrate_extrapolation()

Examples

# Use sample data for testing
df = sample_raw_accel_data

# Plot it with default settings
illustrate_signal (df)

# Plot with a different style
illustrate_signal (df, point_size=1, line_size=1)

# Turn off annotation lines
illustrate_signal (df, plot_maxed_out_line = FALSE, plot_origin = FALSE)

# Use title
illustrate_signal (df, plot_title=TRUE, title = "This is a title")

import_actigraph_count_csv
Import Actigraph count data stored in Actigraph summary csv format

Description

import_actigraph_count_csv imports Actigraph count data stored in Actigraph summary csv
format, which was exported by Actilife.
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Usage

import_actigraph_count_csv(
filepath,
count_col = 2,
count_per_axis_cols = c(2, 3, 4)

)
Arguments
filepath string. The filepath of the input data.
count_col number. The index of column of Actigraph count (combined axes). If it is

NULL, the function will use count_per_axis_cols to get the combined Acti-
graph count values.

count_per_axis_cols
numerical vector. The indices of columns of Actigraph count values per axis. If
count_col is not NULL, the argument will be ignored. If it is NULL, the output
dataframe will only have two columns without Actigraph count values per axis.

Value

dataframe. The imported actigraph count data, with the first column being the timestamps in
POSIXct format, and the second column being the combined Actigraph count values, and the rest of
columns being the Actigraph cont values per axis if available. Column names: HEADER_TIME_STAMP,
ACTIGRAPH_COUNT, ACTIGRAPH_COUNT_X....

How is it used in MIMS-unit algorithm?
This function is a File IO function that is used to import Actigraph count data from Actigraph
devices during algorithm validation.

Note

If both count_col and count_per_axis_cols are NULL, the function will raise an error.

See Also

Other File I/O functions: export_to_actilife(), import_actigraph_csv_chunked(), import_actigraph_csv(),
import_actigraph_meta(), import_activpal3_csv(), import_enmo_csv(), import_mhealth_csv_chunked(),
import_mhealth_csv()

Examples

# Use the actigraph count csv file shipped with the package
filepath = system.file('extdata', 'actigraph_count.csv', package='MIMSunit')

# Check original data format
readLines(filepath)[1:5]

# Load file, default column for actigraph count values are 2, this file does not have
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# axial count values
output = import_actigraph_count_csv(filepath, count_col=2)

# Check output
head(output)

import_actigraph_csv  Import raw multi-channel accelerometer data stored in Actigraph raw
csv format

Description

import_actigraph_csv imports the raw multi-channel accelerometer data stored in Actigraph raw
csv format. It supports files from the following devices: GT3X, GT3X+, GT3X+BT, GT9X, and
GT9X-IMU.

Usage

import_actigraph_csv(
filepath,
in_voltage = FALSE,
has_ts = TRUE,
header = TRUE

)
Arguments
filepath string. The filepath of the input data. The first column of the input data should
always include timestamps.
in_voltage set as TRUE only when the input Actigraph csv file is in analog quantized format
and need to be converted into g value
has_ts boolean. If TRUE, the input csv file will have a timestamp column.
header boolean. If TRUE, the input csv file will have column names in the first row.
Details

For old device (GT3X) that stores accelerometer values as digital voltage. The function will convert
the values to g unit using the following equation.

TyoltageT

xg:

Where v is the max voltage corresponding to the max accelerometer value that can be found in the
meta section in the csv file; r is the resolution level which is the number of bits used to store the
voltage values. r can also be found in the meta section in the csv file.
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Value
dataframe. The imported multi-channel accelerometer signal, with the first column being the times-
tamps in POSXIct format, and the rest columns being accelerometer values in g unit.

How is it used in MIMS-unit algorithm?
This function is a File IO function that is used to import data from Actigraph devices during algo-
rithm validation.

See Also

Other File I/O functions: export_to_actilife(), import_actigraph_count_csv(), import_actigraph_csv_chunked(
import_actigraph_meta(), import_activpal3_csv(), import_enmo_csv(), import_mhealth_csv_chunked(),
import_mhealth_csv()

Examples

default_ops = options()
options(digits.secs=3)

# Use the sample actigraph csv file provided by the package
filepath = system.file('extdata', 'actigraph_timestamped.csv', package='MIMSunit')

# Check file format
readLines(filepath)[1:15]

# Load the file with timestamp column
df = import_actigraph_csv(filepath)

# Check loaded file
head(df)

# Check more
summary (df)

# Use the sample actigraph csv file without timestamp
filepath = system.file('extdata', 'actigraph_no_timestamp.csv', package='MIMSunit')

# Check file format
readLines(filepath)[1:15]

# Load the file without timestamp column
df = import_actigraph_csv(filepath, has_ts = FALSE)

# Check loaded file
head(df)

# Check more
summary (df)

# Restore default options
options(default_ops)
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import_actigraph_csv_chunked
Import large raw multi-channel accelerometer data stored in Acti-
graph raw csv format in chunks

Description

import_actigraph_csv_chunked imports the raw multi-channel accelerometer data stored in Acti-
graph raw csv format. It supports files from the following devices: GT3X, GT3X+, GT3X+BT,
GT9X, and GT9X-IMU.

Usage

import_actigraph_csv_chunked(
filepath,
in_voltage = FALSE,
header = TRUE,
has_ts = TRUE,
chunk_samples = 180000

)
Arguments

filepath string. The filepath of the input data.The first column of the input data should
always include timestamps.

in_voltage set as TRUE only when the input Actigraph csv file is in analog quantized format
and need to be converted into g value

header boolean. If TRUE, the input csv file will have column names in the first row.

has_ts boolean. If TRUE, the input csv file should have a timestamp column at first.

chunk_samples number. The number of samples in each chunk. Default is 180000.

Details

For old device (GT3X) that stores accelerometer values as digital voltage. The function will convert
the values to g unit using the following equation.

o TyoltageT
RENCIEE

Where v is the max voltage corresponding to the max accelerometer value that can be found in the
meta section in the csv file; r is the resolution level which is the number of bits used to store the
voltage values. r can also be found in the meta section in the csv file.

Value

list. The list contains two items. The first item is a generator function that each time it is called, it
will return a data.frame of the imported chunk. The second item is a close function which you can
call at any moment to close the file loading.
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How is it used in MIMS-unit algorithm?

This function is a File IO function that is used to import data from Actigraph devices during algo-
rithm validation.

See Also

Other File I/O functions: export_to_actilife(), import_actigraph_count_csv(), import_actigraph_csv(),
import_actigraph_meta(), import_activpal3_csv(), import_enmo_csv(), import_mhealth_csv_chunked(),
import_mhealth_csv()

Examples

default_ops = options()
options(digits.secs=3)

# Use the actigraph csv file shipped with the package
filepath = system.file('extdata', 'actigraph_timestamped.csv', package='MIMSunit')

# Check original file format
readLines(filepath)[1:15]

# Example 1: Load chunks every 2000 samples
results = import_actigraph_csv_chunked(filepath, chunk_samples=2000)
next_chunk = results[[1]]
close_connection = results[[2]]
# Check data as chunks, you can see chunks are shifted at each iteration.
n =1
repeat {
df = next_chunk()
if (nrow(df) > @) {
print(paste('chunk', n))
print(paste("df:", df[1, 11, '-', dflnrow(df),1]1))
n=n+t1
3
else {
break
3
}

# Close connection after reading all the data
close_connection()

# Example 2: Close loading early
results = import_actigraph_csv_chunked(filepath, chunk_samples=2000)
next_chunk = results[[1]]
close_connection = results[[2]]
# Check data as chunks, you can see chunk time is shifting forward at each iteration.
n =1
repeat {

df = next_chunk()

if (nrow(df) > @) {

print(paste('chunk', n))
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print(paste("df:"”, df[1, 11, '-', df[nrow(df),1]1))
n=n+t1
close_connection()

3

else {
break

3

}

# Restore default options
options(default_ops)

import_actigraph_meta Import The meta information stored in Actigraph RAW or summary
csv file.

Description

import_actigraph_meta imports meta information stored in the Actigraph summary csv file.

Usage

import_actigraph_meta(filepath, header = TRUE)

Arguments
filepath string. The filepath of the input data.
header logical. Whether the Actigraph RAW or summary csv file includes column
names. Default is TRUE.
Details

The returned meta information includes following fields.

* sr: Sampling rate in Hz.

» fw: Firmware version. For example "1.7.0".

* sw: Software version of Actilife. For example "6.13.0".
* sn: Serial number of the device.

¢ st: Start time of the data, in POSIXct format.

¢ dt: Download time of the data, in POSIXct format.

* at: Type of the device. Could be "MAT","CLE", "MOS" or "TAS", corresponding to different
Actigraph devices.

» imu: Whether the file is about Actigraph GT9X IMU data.
* gr: The dynamic range in g unit.
* vs: The voltage level of the device, may be used in AD conversion. See import_actigraph_csv.

* res: The resolution or the number of bits used to store quantized voltage values of the device,
may be used in AD conversion. See import_actigraph_csv.
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Value

list. A list of Actigraph device meta information.

How is it used in MIMS-unit algorithm?

This function is a File IO function that is used to get related meta information such as sampling
rate, firmware version from Actigraph devices.

See Also

Other File I/0O functions: export_to_actilife(), import_actigraph_count_csv(), import_actigraph_csv_chunked(
import_actigraph_csv(), import_activpal3_csv(), import_enmo_csv(), import_mhealth_csv_chunked(),
import_mhealth_csv()

Examples

default_ops = options()
options(digits.secs=3)

# Use the sample actigraph csv file provided by the package
filepath = system.file('extdata', 'actigraph_timestamped.csv', package='MIMSunit')

# Check file format
readLines(filepath)[1:15]

# Load the meta headers of input file
import_actigraph_meta(filepath, header=TRUE)

# Restore default options
options(default_ops)

import_activpal3_csv  Import raw multi-channel accelerometer data stored in ActivPal3 csv
format

Description
import_activpal3_csv imports the raw multi-channel accelerometer data stored in ActivPal3 csv
format by converting the accelerometer values (in digital voltage values) to g unit.

Usage

import_activpal3_csv(filepath, header = FALSE)

Arguments

filepath string. The filepath of the input data.

header boolean. If TRUE, the input csv file will have column names in the first row.
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Details

ActivPal 3 sensors have known dynamic range to be (—2g, +2¢). And the sensor stores values using
8-bit memory storage. So, the digital voltage values may be converted to g unit using following
equation.

_ Tyoltage — 127

Ty = 98 * 4

Value

dataframe. The imported multi-channel accelerometer signal, with the first column being the times-
tamps in POSXIct format, and the rest columns being accelerometer values in g unit.

How is it used in MIMS-unit algorithm?

This function is a File 10 function that is used to import data from ActivPal3 devices during algo-
rithm validation.

See Also

Other File I/0O functions: export_to_actilife(), import_actigraph_count_csv(), import_actigraph_csv_chunked(
import_actigraph_csv(), import_actigraph_meta(), import_enmo_csv(), import_mhealth_csv_chunked(),
import_mhealth_csv()

Examples

default_ops = options()

options(digits.secs=3)

# Use the sample activpal3 csv file provided by the package

filepath = system.file('extdata', 'activpal3.csv', package='MIMSunit')

# Check the csv format
readLines(filepath)[1:5]

# Load the file, in our case without header
df = import_activpal3_csv(filepath, header=FALSE)

# Check loaded file
head(df)

# Check more
summary (df)

# Restore default options
options(default_ops)
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import_enmo_csv Import ENMO data stored in csv csv

Description
import_enmo_csv imports ENMO data stored in a summary csv format, which was exported by
the biobank data analysis tools.

Usage

import_enmo_csv(filepath, enmo_col = 2)

Arguments

filepath string. The filepath of the input data.

enmo_col number. The index of column of ENMO values in the csv file.
Value

dataframe. The imported ENMO data, with the first column being the timestamps in POSIXct
format, and the second column being the ENMO values. Column names: HEADER_TIME_STAMP,
ENMO.

How is it used in MIMS-unit algorithm?
This function is a File IO function that is used to import ENMO data from activity monitor devices
during algorithm validation.

See Also

Other File I/0 functions: export_to_actilife(), import_actigraph_count_csv(), import_actigraph_csv_chunked(
import_actigraph_csv(), import_actigraph_meta(), import_activpal3_csv(), import_mhealth_csv_chunked(),
import_mhealth_csv()

Examples

# Use the enmo csv file shipped with the package
filepath = system.file('extdata', 'enmo.csv', package='MIMSunit')

# Check original data format
readLines(filepath)[1:5]

# Load file, default column for enmo values are 2
output = import_enmo_csv(filepath, enmo_col=2)

# Check output
head(output)


https://github.com/OxWearables/biobankAccelerometerAnalysis
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import_mhealth_csv Import raw multi-channel accelerometer data stored in mHealth Spec-
ification

Description

import_mhealth_csv imports the raw multi-channel accelerometer data stored in mHealth Specifi-
cation. Note that this function will fail when loading data that have size too big to fit in the memory.
For large data file, please use import_mhealth_csv_chunked to load.

Usage
import_mhealth_csv(filepath)

Arguments

filepath string. The filepath of the input data.

Value

dataframe. The imported multi-channel accelerometer signal, with the first column being the times-
tamps in POSXIct format, and the rest columns being accelerometer values in g unit.

How is it used in MIMS-unit algorithm?

This function is a File IO function that is used to import data stored in mHealth Specification during
algorithm validation.

See Also

Other File I/0O functions: export_to_actilife(), import_actigraph_count_csv(), import_actigraph_csv_chunked(
import_actigraph_csv(), import_actigraph_meta(), import_activpal3_csv(), import_enmo_csv(),
import_mhealth_csv_chunked()

Examples

default_ops = options()

options(digits.secs=3)

# Use the sample mhealth csv file provided by the package

filepath = system.file('extdata', 'mhealth.csv', package='MIMSunit')
filepath

# Load the file
df = import_mhealth_csv(filepath)

# Check loaded file
head (df)

# Check more
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summary (df)

# Restore default options
options(default_ops)

import_mhealth_csv_chunked

Import large raw multi-channel accelerometer data stored in mHealth
Specification in chunks.

Description

import_mhealth_csv_chunked imports the raw multi-channel accelerometer data stored in mHealth
Specification in chunks.

Usage

import_mhealth_csv_chunked(filepath, chunk_samples = 180000)

Arguments

filepath string. The filepath of the input data.

chunk_samples number. The number of samples in each chunk. Default is 180000, which is half
hour data for 100 Hz sampling rate.

Value

list. The list contains two items. The first item is a generator function that each time it is called, it
will return a dataframe with at most chunk_samples samples of imported data. The third item is a
close_connection function which you can call at any moment to close the file loading.

How is it used in MIMS-unit algorithm?
This function is a File IO function that is used to import data stored in mHealth Specification during
algorithm validation.
See Also
Other File I/O functions: export_to_actilife(), import_actigraph_count_csv(), import_actigraph_csv_chunked(

import_actigraph_csv(), import_actigraph_meta(), import_activpal3_csv(), import_enmo_csv(),
import_mhealth_csv()
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Examples

default_ops = options()
options(digits.secs=3)

# Use the mhealth csv file shipped with the package
filepath = system.file('extdata', 'mhealth.csv', package='MIMSunit')

# Example 1
# Load chunks every 1000 samples
results = import_mhealth_csv_chunked(filepath, chunk_samples=100)
next_chunk = results[[1]]
close_connection = results[[2]]
# Check data as chunks, you can see chunk time is shifting forward at each iteration.
n =1
repeat {
df = next_chunk()
if (nrow(df) > @) {
print(paste('chunk', n))
print(paste("df:", df[1, 11, '-', df[nrow(df),1]))
n=n+t1
} else {
break
}
}

# Close connection after reading all the data
close_connection()

# Example 2: close loading early
results = import_mhealth_csv_chunked(filepath, chunk_samples=1000)
next_chunk = results[[1]]
close_connection = results[[2]]
# Check data as chunks, you can see chunk time is shifting forward at each iteration.
n=1
repeat {
df = next_chunk()
if (nrow(df) > @) {
print(paste('chunk', n))
print(paste("df:", df[1, 11, '-', df[nrow(df),1]))
n=n+1
close_connection()
}
else {
break
}
}

# Restore default options
options(default_ops)
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interpolate_signal Interpolate missing points and unify sampling rate for multi-channel
signal

Description

interpolate_signal applies different interpolation algorithms to the input multi-channel signal
to fill in the missing samples and harmonizes the sampling rate.

Usage
interpolate_signal(
df,
method = "spline_natural”,
sr = 100,
st = NULL,
et = NULL
)
Arguments
df dataframe. Input multi-channel accelerometer signal.
method string. Interpolation algorithms. Could be "spline_natural”, "spline_improved"
or "spline_fmm": see splinefun; and "linear": see approxfun. Default is
"spline_natural".
sr number. Sampling rate in Hz of the output signal. Default is 100.
st POSIXct date. The start time for interpolation. If it is NULL, it will use the start
time of the input signal. Default is NULL.
et POSIXct date. The end time for interpolation. If it is NULL, it will use the end
time of the input signal. Default is NULL.
Value

dataframe. Interpolated signal.

How is it used in MIMS-unit algorithm?

This function is a utility function that has been used in functions: extrapolate, and simulate_new_data.

See Also

Other utility functions: clip_data(), cut_off_signal(), parse_epoch_string(), sampling_rate(),
segment_data(), simulate_new_data()



measurements_different_devices 39

Examples

# Use sample data
df = sample_raw_accel_data

# Plot input
illustrate_signal(df, plot_maxed_out_line=FALSE)

# Interpolate to 100 Hz
sr = 100

# Interpolate the entire sequence of data
output = interpolate_signal(df, sr=sr)

# Plot output
illustrate_signal (output, plot_maxed_out_line=FALSE)

# Interpolate part of the sequence
output = interpolate_signal(df, sr=sr, st=df[10,1], et=df[100,1])

# Plot output
illustrate_signal (output, plot_maxed_out_line=FALSE)

measurements_different_devices
The mean and standard deviation of accelerometer summary measure
for different acceleration data summary algorithms and for different
devices.

Description

A dataframe contains the mean and standard deviation of accelerometer summary measured at dif-
ferent frequencies for the raw accelerometer signals from different devices collected from on a
standard elliptical shaker.

Usage

measurements_different_devices

Format

A data frame with 235 rows and 8 variables:

DEVICE The name of different devices, in character
GRANGE The dynamic range of the device in g, in number
SR The sampling rate in Hz of the device, in number

TYPE Accelerometer summary algorithm name, in character

HZ The frequency of the elliptical shaker, in number
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NAME An alternative name that is friendly for plotting for devices, in character
mean The mean values of accelerometer summary measure, in number

sd The standard deviation values of accelerometer summary measure, in number

Source

https://github.com/mHealthGroup/MIMSunit-dataset-shaker/

mims_unit

mims_unit

Compute Monitor Independent Motion Summary unit (MIMS-unit)

Description

mims_unit computes the Monitor Independent Motion Summary unit for the input multi-channel
accelerometer signal. The input signal can be from devices of any sampling rate and dynamic range.
Please refer to the manuscript for detailed description of the algorithm. Please refer to functions for
the intermediate steps: extrapolate for extrapolation, iir for filtering, aggregate_for_mims for
aggregation.

Usage

mims_unit(

)

df,

before_df = NULL,

after_df = NULL,

epoch = "5 sec”,
dynamic_range,
output_mims_per_axis = FALSE,
use_gui_progress = FALSE,

st = NULL,
use_snapshot_to_check = FALSE

mims_unit_from_files(

files,

epoch = "5 sec”,
dynamic_range,
output_mims_per_axis = FALSE,
use_gui_progress = FALSE,
use_snapshot_to_check = FALSE,
file_type = "mhealth”,


https://github.com/mHealthGroup/MIMSunit-dataset-shaker/
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Arguments

df dataframe. Input multi-channel accelerometer signal. The first column should
be the time component. The accelerometer data values (typically starting from
the second column) should be in g (per 9.81m/52) unit.

before_df dataframe. The multi-channel accelerometer signal comes before the input sig-
nal to be prepended to the input signal during computation. This is used to elim-
inate the edge effect during extrapolation and filtering. If it is NULL, algorithm
will run directly on the input signal. Default is NULL.

after_df dataframe. The multi-channel accelerometer signal comes after the input signal
to be append to the input signal. This is used to eliminate the edge effect during
extrapolation and filtering. If it is NULL, algorithm will run directly on the input
signal. Default is NULL.

epoch string. Any format that is acceptable by argument breaks in method cut . POSIXt.For
example, "1 sec”, "1 min", "5 sec", "10 min". Default is "5 sec".

dynamic_range numerical vector. The dynamic ranges of the input signal. Should be a 2-element
numerical vector. c(low, high), where low is the negative max value the device
can reach and high is the positive max value the device can reach.
output_mims_per_axis
logical. If it is TRUE, the output MIMS-unit dataframe will have MIMS-unit
values for each axis from the third column. Default is FALSE.
use_gui_progress
logical. If it is TRUE, show GUI progress bar on windows platform. Default is
FALSE.

st character or POSIXct timestamp. An optional start time you can set to force
the epochs generated by referencing this start time. If it is NULL, the function
will use the first timestamp in the timestamp column as start time to generate
epochs. This is useful when you are processing a stream of data and want to use
a common start time for segmenting data. Default is NULL.

use_snapshot_to_check
logical. If TRUE, the function will use the first 100 rows or 10 the algorithm
will use all data to check timestamp duplications. Default is FALSE.

files character vector. A list of csv filepaths for raw accelerometer data organized in
order to be processed. The data should be consecutive in timestamps. A typical
case is a set of hourly or daily files for continuous accelerometer sampling. For
a single file, please wrap the filepath in a vector ‘c(filepath).

file_type character. "mhealth" or "actigraph". The type of the csv files that store the raw
accelerometer data.

additional parameters passed to the import function when reading in the data
from the files.

Value

dataframe. The MIMS-unit dataframe. The first column is the start time of each epoch in POSIXct
format. The second column is the MIMS-unit value for the input signal. If output_mims_per_axis
is TRUE, the third column and then are the MIMS-unit values for each axis of the input signal.
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How is it used in MIMS-unit algorithm?

This is the main entry of MIMS-unit algorithm.

Note

This function is a wrapper function for the low-level custom_mims_unit function. It has set internal
parameters as described in the manuscript. If you want to run customized algorithm for MIMSunit
or if you want to develop better algorithms based on MIMS-unit algorithm, please use function
custom_mims_unit where all parameters are tunable.

before_df and after_df are often set when the accelerometer data are divided into files of smaller
chunk.

Please make sure the input data do not contain duplicated timestamps. See more information about
this issue. Otherwise the computation will stop.

See Also

Other Top level API functions: custom_mims_unit(), sensor_orientations(), shiny_app()

Examples

# Use sample data for testing
df = sample_raw_accel_data

# compute mims unit values and output axial values
output = mims_unit(df, epoch = '1 sec', dynamic_range=c(-8, 8), output_mims_per_axis=TRUE)
head(output)
# Use sample mhealth file for testing
filepaths = c(
system.file('extdata', 'mhealth.csv', package='MIMSunit')

)
# Test with multiple files
output = mims_unit_from_files(filepaths, epoch = "1 sec”, dynamic_range = c(-8, 8))
head(output)
parse_epoch_string Parse epoch string to the corresponding number of samples it repre-
sents.
Description

parse_epoch_string parses the epoch string (e.g. "1 min"), and outputs the corresponding number
of samples it represents.

Usage

parse_epoch_string(epoch_str, sr)


https://github.com/mHealthGroup/MIMSunit/issues/32
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Arguments
epoch_str string. The input epoch str as accepted by breaks argument of cut.POSIXt.
sr number. The sampling rate in Hz used to parse the epoch string.

Details

This function parses the given epoch string (e.g. "5 secs") and outputs the corresponding number of
samples represented by the epoch string.
Value

number. The number of samples represented by the epoch string.

How is it used in MIMS-unit algorithm?

This function is used in aggregate_for_mims function and mims_unit function.

See Also
Other utility functions: clip_data(), cut_off_signal(), interpolate_signal(), sampling_rate(),
segment_data(), simulate_new_data()

Examples

# 1 min with 80 Hz = 4800 samples
parse_epoch_string('1 min', sr=80)

# 30 sec with 30 Hz = 900 samples
parse_epoch_string('30 sec', sr=30)

# 1 hour with 1 Hz = 3600 samples
parse_epoch_string('1 hour', sr=1)

# 1 day with 10 Hz = 864000 samples
parse_epoch_string('1 day', sr=10)

rest_on_table A short snippet of raw accelerometer signal from a device resting on a
table.

Description
The dataset includes accelerometer data sampled at 80Hz and 6g. This data is used to derive the
thresholding.

Usage

rest_on_table
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Format
A data frame with 5000 rows and 4 variables:
HEADER_TIME_STAMP The timestamp of raw accelerometer data, in POSIXct
X The x axis value of raw accelerometer data, in number

Y The x axis value of raw accelerometer data, in number

Z The x axis value of raw accelerometer data, in number

Source

https://github.com/mHealthGroup/MIMSunit/

sample_raw_accel_data Sample raw accelerometer data

Description

A raw accelerometer data file contains treadmill data collected from a human subject.

Usage

sample_raw_accel_data

Format
A data frame with 480 rows and 4 variables:
HEADER_TIME_STAMP Timestamp, in POSIXct
X X axis values, in number

Y Y axis values, in number

7. 7 axis values, in number

Source

https://github.com/mHealthGroup/MIMSunit/


https://github.com/mHealthGroup/MIMSunit/
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sampling_rate Estimate sampling rate for multi-channel signal

Description
sampling_rate estimates the sampling rate based on the average time intervals between adjacent
samples for the input multi-channel signal.

Usage
sampling_rate(df)

Arguments
df dataframe. Input dataframe of the multi-channel signal. The first column is
the timestamps in POSXIct format and the following columns are accelerometer
values.
Details

This function accepts a dataframe of multi-channel signal, computes the duration of the sequence,
and gets the sampling rate by dividing the number of samples by it.
Value

number. The estimated sampling rate in Hz.

How is it used in MIMS-unit algorithm?
This function is a utility function that was used in various part in the algorithm whenever we need
to know the sampling rate.
See Also
Other utility functions: clip_data(), cut_off_signal(), interpolate_signal(), parse_epoch_string(),
segment_data(), simulate_new_data()
Examples

# Get the test data
df = sample_raw_accel_data

# Default sampling rate is 80Hz
sampling_rate(df)

# Downsample to 30Hz
output = bandlimited_interp(df, 80, 30)
sampling_rate(output)
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# Upsampling to 100Hz
output = bandlimited_interp(df, 80, 100)
sampling_rate(output)

segment_data Segment input dataframe into windows as specified by breaks.
segment_data segments the input sensor dataframe into epoch win-
dows with length specified in breaks.

Description
This function accepts a dataframe of multi-channel signal, segments it into epoch windows with
length specified in breaks.

Usage

segment_data(df, breaks, st = NULL)

Arguments
df dataframe. Input dataframe of the multi-channel signal. The first column is
the timestamps in POSXIct format and the following columns are accelerometer
values.
breaks character. An epoch length character that can be accepted by cut.breaks func-
tion.
st character or POSIXct timestamp. An optional start time you can set to force
the breaks generated by referencing this start time. If it is NULL, the function
will use the first timestamp in the timestamp column as start time to generate
breaks. This is useful when you are processing a stream of data and want to use
a common start time for segmenting data. Default is NULL.
Value

dataframe. The same format as the input dataframe, but with an extra column "SEGMENT" in the
end specifies the epoch window a sample belongs to.
How is it used in MIMS-unit algorithm?

This function is a utility function that was used in various part in the algorithm whenever we need
to segment a dataframe, e.g., before aggregating values over epoch windows.

See Also

Other utility functions: clip_data(), cut_off_signal(), interpolate_signal(), parse_epoch_string(),
sampling_rate(), simulate_new_data()
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Examples

# Use sample data
df = sample_raw_accel_data

# segment data into 1 minute segments
output = segment_data(df, "1 min")

# check the 3rd segment, each segment would have 1 minute data
summary (output[output['SEGMENT'] == 3,1)

# segment data into 15 second segments
output = segment_data(df, "15 sec")

# check the 1st segment, each segment would have 15 second data
summary (output[output[ 'SEGMENT'] == 1,])

# segment data into 1 hour segments
output = segment_data(df, "1 hour")

# because the input data has only 15 minute data
# there will be only 1 segment in the output
unique(output['SEGMENT'])

summary (output)

# use manually set start time
output = segment_data(df, "15 sec”, st='2016-01-15 10:59:50.000")

# check the 1st segment, because the start time is 10 seconds before the

# start time of the actual data, the first segment will only include 5 second
# data.

summary (output[output['SEGMENT'] == 1,1])

sensor_orientations Estimates sensor orientation

Description

sensor_orientations estimates the orientation angles for the input multi-channel accelerometer
signal. The input signal can be from devices of any sampling rate and dynamic range. Please refer
to function compute_orientation for the implementation of the estimation algorithm.

Usage

sensor_orientations(
df,
before_df = NULL,
after_df = NULL,
epoch = "5 sec”,
dynamic_range,
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st = NULL
)
Arguments

df dataframe. Input multi-channel accelerometer signal.

before_df dataframe. The multi-channel accelerometer signal comes before the input sig-
nal to be prepended to the input signal during computation. This is used to elim-
inate the edge effect during extrapolation and filtering. If it is NULL, algorithm
will run directly on the input signal. Default is NULL.

after_df dataframe. The multi-channel accelerometer signal comes after the input signal
to be append to the input signal. This is used to eliminate the edge effect during
extrapolation and filtering. If it is NULL, algorithm will run directly on the input
signal. Default is NULL.

epoch string. Any format that is acceptable by argument breaks in method cut . POSIXt.For

example, "1 sec", "1 min", "5 sec", "10 min". Default is "5 sec".

dynamic_range numerical vector. The dynamic ranges of the input signal. Should be a 2-element
numerical vector. c(low, high), where low is the negative max value the device
can reach and high is the positive max value the device can reach.

st character or POSIXct timestamp. An optional start time you can set to force
the epochs generated by referencing this start time. If it is NULL, the function
will use the first timestamp in the timestamp column as start time to generate
epochs. This is useful when you are processing a stream of data and want to use
a common start time for segmenting data. Default is NULL.

Value
dataframe. The orientation dataframe. The first column is the start time of each epoch in POSIXct
format. The second to fourth columns are the orientation angles.

How is it used in MIMS-unit algorithm?
This is not included in the official MIMS-unit algorithm nor the manuscript, but we found it is
useful to know the sensor orientations in addition to the summary of movement.

Note

This function interpolates and extrapolates the signal before estimating the orientation angles.

before_df and after_df are often set when the accelerometer data are divided into files of smaller
chunk.

See Also

Other Top level API functions: custom_mims_unit(), mims_unit(), shiny_app()



shiny_app 49

Examples

# Use sample data for testing
df = sample_raw_accel_data

# compute sensor orientation angles
sensor_orientations(df, epoch = '2 sec', dynamic_range=c(-8, 8))

# compute sensor orientation angles with different epoch length

output = sensor_orientations(df, epoch = '1 sec', dynamic_range=c(-8, 8))
head(output)
shiny_app Run shiny app to compute MIMSunit values from files
Description

shiny_app runs a local shiny app that provides a user friendly interface to compute mims unit
values from files stored in mhealth or actigraph format.

Usage

shiny_app(options = list())

Arguments

options The options passed to shinyApp.

How is it used in MIMS-unit algorithm?
This provides a user friendly graphical interface to load local files, call mims_unit_from_files
and display the results as an interactive graph.

See Also

Other Top level API functions: custom_mims_unit(), mims_unit(), sensor_orientations()

Examples

## Not run:
shiny_app()

## End(Not run)
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simulate_new_data Simulate new data based on the given multi-channel accelerometer
data

Description
simulate_new_data simulate new data based on the given multi-channel accelerometer data, a new
dynamic range and a new sampling rate.

Usage

simulate_new_data(old_data, new_range, new_sr)

Arguments
old_data dataframe. Input multi-channel accelerometer data.
new_range numerical vector. The new dynamic ranges to cut off the signal. Should be a 2-
element numerical vector. c(low, high), where low is the negative max value
the device can reach and high is the positive max value the device can reach.
Default is NULL, meaning the function will do nothing but return the input data.
new_sr number. New sampling rate in Hz.
Details

This function simulates the data from a new device based on the signal from a baseline device. It
first changes the sampling rate using function interpolate_signal, and then changes the dynamic
range using function cut_off_signal.
How is it used in MIMS-unit algorithm?
This function is a utility function that is used to simulate new devices with different sampling rates
and dynamic ranges during algorithm validation.
See Also
Other utility functions: clip_data(), cut_off_signal(), interpolate_signal(), parse_epoch_string(),
sampling_rate(), segment_data()
Examples

# Use sample data for testing
df = sample_raw_accel_data

# Show df
illustrate_signal (df, range=c(-8, 8))

# simulate new data by changing range and sampling rate
new_df = simulate_new_data(df, new_range=c(-2, 2), new_sr = 30)
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# Show new df
illustrate_signal (new_df, range=c(-2, 2))

sum_up Sum of multi-channel signal.

Description

sum_up computes the sum up value for each sample (row) of a multi-channel signal.

Usage

sum_up(df, axes = NULL)

Arguments
df dataframe. multi-channel signal, with the first column being the timestamp in
POSXct format.
axes numerical vector. Specify the column indices for each axis. When this value
is NULL, the function assumes the axes are starting from column 2 to the end.
Default is NULL.
Details

This function takes a dataframe of a multi-channel signal as input, and then computes the sum of
each row and returns a transformed dataframe with two columns.

Value
dataframe. The transformed dataframe will have the same number of rows as input dataframe but
only two columns, with the first being timestamps and second being the sum up values.

How is it used in MIMS-unit algorithm?
This function is used to combine MIMS-unit values on each axis into a single value after aggregating
over each epoch using aggregate_for_mims.

See Also

vector_magnitude

Other transformation functions: compute_orientation(), vector_magnitude()
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Examples

# Use the first 10 rows of the sample data as an example
df = sample_raw_accel_datal[1:10,]
df

# By default, the function will assume columns starting from 2 to be axial
# values.
sum_up (df)

# Or, you may specify the column indices yourself
sum_up(df, axes=c(2,3,4))

# Or, if you only want to consider x and y axes
sum_up(df, axes=c(2,3))

# Or, just return the chosen column
sum_up(df, axes=c(2))

vector_magnitude Vector magnitude of multi-channel signal.

Description
vector_magnitude computes the vector magnitude value for each sample (row) of a multi-channel
signal.

Usage

vector_magnitude(df, axes = NULL)

Arguments
df dataframe. multi-channel signal, with the first column being the timestamp in
POSXct format.
axes numerical vector. Specify the column indices for each axis. When this value
is NULL, the function assumes the axes are starting from column 2 to the end.
Default is NULL.
Details

This function takes a dataframe of a multi-channel signal as input, and then computes the 2-norm
(vector magnitude) for each row and returns a transformed dataframe with two columns.
Value

dataframe. The transformed dataframe will have the same number of rows as input dataframe but
only two columns, with the first being timestamps and second being the vector magnitude values.
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How is it used in MIMS-unit algorithm?

This function is not used in the released version of MIMS-unit algorithm, but was used to compare
the alternative sum_up method when combining MIMS-unit values on each axis into a single value.

See Also

sum_up

Other transformation functions: compute_orientation(), sum_up()

Examples

# Use the first 10 rows of the sample data as an example
df = sample_raw_accel_data[1:10,]
df

# By default, the function will assume columns starting from 2 to be axial
# values.
vector_magnitude (df)

# Or, you may specify the column indices yourself
vector_magnitude(df, axes=c(2,3,4))

# Or, if you only want to consider x and y axes
vector_magnitude(df, axes=c(2,3))

# Or, just return the chosen column
vector_magnitude(df, axes=c(2))
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