Package 'MDMA'

March 19, 2025

Title Mathijs Deen's Miscellaneous Auxiliaries Date 2025-03-19 Version 2.0.0 Maintainer Mathijs Deen <dev@mathijsdeen.com> Description Provides a variety of functions useful for data analysis, selection, manipulation, and graphics. **Depends** R (>= 4.2) Imports car, graphics, grDevices, lme4, MASS, methods, performance, stats Suggests ClusterBootstrap, glmmTMB, VGAM License GPL-3 URL https://github.com/mathijsdeen/MDMA BugReports https://github.com/mathijsdeen/MDMA/issues **Encoding** UTF-8 LazyData true RoxygenNote 7.3.2 NeedsCompilation no Author Mathijs Deen [aut, cre] **Repository** CRAN

Date/Publication 2025-03-19 16:00:02 UTC

Contents

auc	2
CEA	3
CEAC	4
check	5
coefsLogReg	6
corList	7

currency2unicode	8
dPPC2	9
f2Local	10
frequencies	12
gnomes	13
keep	13
m	14
plot.CEA	15
plot.CEAC	16
plot.probeInteraction	17
plot.roc	18
plotDistribution	19
pMM	21
print.check.lm	22
print.probeInteraction	22
print.tTest	23
print.wtp	24
probeInteraction	25
QIDS	26
R2.vglm	26
rci	27
roc	28
summary.tTest	29
tTest	30
wtp	31
%inRange%	32
%ni%	33
%withinRange%	34
	35

Index

auc

Area under the curve

Description

Calculate the area under the curve.

[Stable]

Usage

auc(x, ...)

Arguments

х	object of class roc.
	other arguments (none are used at the moment).

CEA

Value

returns the area under the curve for a roc class object.

Author(s)

Mathijs Deen

Examples

```
a <- roc(QIDS$QIDS, QIDS$depression, c("Yes","No"), "Yes")
auc(a)</pre>
```

CEA

Cost-effectiveness analysis

Description

Perform a cost-effectiveness analysis. Or a cost-utility analysis.

[Stable]

Usage

```
CEA(data, group, cost, effect, B = 5000, currency = "euro")
```

Arguments

data	a data.frame with rows representing observations in for example a cost-effectiveness trial.
group	group variable in data. Should contain two levels.
cost	cost variable in data.
effect	effect variable in data.
В	number of bootstrap samples.
currency	currency unit. See ?currency2unicode for options that will return the a Unicode symbol that will be used in plot.CEA and plot.CEAC. If the parameter is not listed, the parameter itself will be used. This makes it possible to input a custom Unicode hex (e.g., "\u00Ae"). Defaults to "euro".

Value

CEA returns a list (class CEA) with the following elements:

stats	a data.frame containing the bootstrap statistics: estimates for the difference in
	costs (diffC), the difference in effects(diffE), and the ICER as a ratio of these
	two.

diff.C.true Observed difference in costs.

diff.E.true	Observed difference in effects.
ICER.true	Observed incremental cost-effectiveness ratio.
gr1	First level of group variable.
gr2	Second level of group variable.
currencyUC	The currency. Either in raw form (parameter currency) or as a Unicode hex.

Author(s)

Mathijs Deen

Examples

```
CEA(gnomes, insulationMethod, Costs, diffHATS, 5000, "acorns") |>
plot()
```

```
CEAC
```

Cost-effectiveness acceptability curve

Description

Create data for cost-effectiveness acceptability curve

[Stable]

Usage

CEAC(x)

Arguments

x object of class CEA

Value

CEAC returns data that can be plotted using plot.CEAC.

Author(s)

Mathijs Deen

Examples

```
CEA(gnomes, insulationMethod, Costs, diffHATS, 1000, "acorns") |>
CEAC() |>
plot(xlim = c(0,200))
```

check

Description

Perform checks for a linear model regarding influential cases and collinearity numerically and graphically.

[Stable]

Usage

check(object, ...)

Arguments

object	object of class 1m.
	other parameters (none are used at the moment).

Value

check returns a list containing two matrices with statistics regarding influential cases and a vector of variance inflation factors. Furthermore, it produces diagnostics plots. The return list contains three elements:

- influence, a data.frame, with observations in the model, and the following variables:

predicted.value

	The value predicted by the model.
residual	The raw residual.
std.residual	The standardized residual.
dfb.<>	DFBETAs for the variables in the model.
dffit	DFFIT value.
cov.r	Covariance ratio, a measure of change in the determinant of the coefficient co-variance matrix.
cook.d	Cook's distance.
hat	Hat values.
influential	Determines whether a case is influential on any of the measures dfb.<>, dffit, cov.r, cook.d or hat. See influential cases for more information.

- is.infl is a data.frame indicating which influence measure(s) is/are flagged per observation.

- vifs, a vector containing variance inflation factors for the variables in the model.

By default, the two data.frames regarding influence measures only give the influence measures for cases that are flagged as being influential. Influence measures for all cases can be queried using print.check.lm.

The generated plots are the plots produced by plot.lm, numbers 1 through 6.

influential cases

For the influence indicators, the following rules are applied to check whether a case is influential:

- any |dfbeta| > 1.
- $|\text{dffit}| > 3\sqrt{\frac{k}{n-k}}.$
- $|1 \operatorname{cov.r}| > \frac{3k}{n-k}$.
- F(n, n-k) = cooks.d having .p > .5
- hat $> \frac{3k}{n}$.

These indicators for being an influential case were derived from influence.measures in the stats package.

Author(s)

Mathijs Deen

Examples

lm.1 <- lm(mpg ~ disp + wt, data = mtcars)
check(lm.1)</pre>

coefsLogReg

```
Coefficients for logistic regression analysis
```

Description

Show odds ratios and their confidence intervals for logistic regression parameter estimates.

[Stable]

Usage

```
coefsLogReg(model, confint = TRUE, level = 0.95)
```

Arguments

model	object of class glm, with family parameter set to binomial.
confint	indicates whether a confidence interval for the odds ratio should be returned.
level	the confidence level required.

corList

Value

coefsLogReg returns the same table as summary(object)\$coefficients, with the addition of the coefficients' odds ratios and their confidence intervals.

Author(s)

Mathijs Deen

Examples

```
glm(formula = am ~ disp, family = binomial, data = mtcars) |>
coefsLogReg()
```

corList

List of correlation coefficients

Description

List all correlations in a correlation matrix without duplicates.

[Stable]

Usage

corList(x, ...)

Arguments

х	a numeric vector, matrix or data frame.
	arguments passed to the cor function.

Value

corList returns a list of correlations

Author(s)

Mathijs Deen

Examples

```
mtcars[,c("mpg","disp", "hp", "drat", "wt", "qsec")] |>
    corList(method="spearman")
```

currency2unicode

Description

Retrieve Unicode character for a currency

[Stable]

Usage

```
currency2unicode(currency, type = c("character", "code"))
```

Arguments

currency	character string or a vector of strings. Supported values are accounting sign, afghani, armenian dram, austral, baht, bitcoin, boliviano, cent, cedi, currency, dollar, dong, drachma, dutch guilder, euro, franc, georgian lari, german penny, hryvnia, indian rupee, iranian rial, kip, lari, lira, livre tournois, manat, mark, new
	shekel, pakistani rupee, peso, pound, quetzal, real, rial, ruble, shekel, spesmilo, syrian pound, tenge, tugrik, turkish lira, won, yen, yuan.
type	indicate whether the Unicode $character(s)$ or the Unicode $code(s)$ should be returned.

Details

The input is evaluated case insensitive. In case the input is not supported, the function will return the original input.

Value

currency2unicode the unicode character for a given currency.

Author(s)

Mathijs Deen

Examples

```
currency2unicode("dollar")
```

cat(sprintf("%s5 is all my mom allows me to spend.", currency2unicode("dollar")))

dPPC2

Description

dPPC2 calculates an effect size for studies with pretest and posttest scores for two groups, usually a treatment and a control group. It is based on Morris (2008), who based it on Becker (1988).

[Stable]

Usage

```
dPPC2(preT, posT, preC, posC, correct = TRUE, CIlevel = 0.95)
```

Arguments

preT	pre-scores for treatment group.
posT	post-scores for treatment group.
preC	pre-scores for control group.
posC	post-scores for control group.
correct	indicates whether a correction factor should be calculated (i.e., Hedges' g instead of Cohen's d).
CIlevel	the confidence level required.

Value

dPPC2 returns a vector of length 6, containing:

d	the effect size estimate.
SE	the standard error of the effect sie estimate.
lower.bound	lower bound of the confidence interval.
upper.bound	upper bound of the confidence interval.
NT	sample size of treatment group.
NC	sample size of control group.

Author(s)

Mathijs Deen

References

- Becker, B.J. (1988). Synthesizing standardized mean-change measures. *British Journal of Mathematical and Statistical Psychology*, 41, 257-278.
- Morris, S.B. (2008). Estimating effect sizes from pretest-posttest-control group designs. *Organizational Research Methods*, 11, 364-386.

Examples

```
library(MASS)
set.seed(1)
treatment <- mvrnorm(n=50, mu=c(50,40), Sigma = matrix(c(100,70,70,100), ncol=2), empirical = TRUE)
control <- mvrnorm(n=50, mu=c(50,45), Sigma = matrix(c(100,70,70,100), ncol=2), empirical = TRUE)
dPPC2(treatment[,1], treatment[,2], control[,1], control[,2])</pre>
```

f2Local

Local f^2

Description

Calculate local f^2 for (generalized) linear (mixed) models

[Experimental]

Usage

```
f2Local(object, method, ...)
## S3 method for class 'lm'
f2Local(object, method = "r.squared", ...)
## S3 method for class 'glm'
f2Local(object, method = "r2", ...)
## S3 method for class 'vglm'
f2Local(object, method = "mcfadden", ...)
## S3 method for class 'glmmTMB'
f2Local(object, method = "nakagawa", type = "marginal", ...)
```

Arguments

object	a model object (currently supported: lm, glm, vglm).
method	method for calculation of R^2 , which is needed for the calculation of f^2 . See Details.
	currently not used
type	indicate whether the marginal (fixed effects only) or the conditional (fixed + ran- dom effects) R^2 should be used. Default value is marginal, using conditional might be considered ambiguous.

f2Local

Details

The following methods can be specified:

- 1m objects: r.squared and adj.r.squared as extracted from the 1m object.
- glm objects: mcfadden, nagelkerke, coxsnell, tjur and efron, as implemented in the performance package.
- vglm objects: mcfadden, nagelkerke, coxsnell, tjur and efron, as implemented in the R2.vglm function.
- glmmTMB objects: nakagawa, as implemented in the performance package. It can also be specified whether the marginal or the conditional R^2 should be used, however only the marginal R^2 would make sense.

Note that for multinomial models, using method="efron" gives questionable with glm objects and is not possible for vglm objects. For glm objects, method=coxsnell cannot be used when the response is not binary.

Value

f2Local returns a list containing f^2 values for every parameter in a model. For the glmmTMB class, a list of all reduced models is returned as well. In a future version, this will be available for other classes as well.

Methods (by class)

- f2Local(lm): Method for lm object
- f2Local(glm): Method for glm object
- f2Local(vglm): Method for vglm object
- f2Local(glmmTMB): Method for glmmTMB object

Author(s)

Mathijs Deen

Examples

```
# linear model
model1 <- lm(mpg ~ cyl + wt*drat, data = mtcars)
f2Local(model1)
# generalized linear model (glm)
model2 <- glm(vs ~ cyl*wt + mpg, data = mtcars, family = "binomial")
f2Local(model2, method = "coxsnell")
# generalized linear model (vglm)
if(require(VGAM)){
    pneumo <- transform(pneumo, let = log(exposure.time))
    model3 <- vglm(cbind(normal, mild, severe) ~ let, multinomial, pneumo)
    f2Local(model3)
}</pre>
```

```
# generalized linear mixed model
if(require(ClusterBootstrap) & require(glmmTMB)){
  model4 <- glmmTMB(pos ~ treat*time + (1 + time | id), data = medication)
  f2Local(model4)
}
```

frequencies

Display frequency table

Description

Display frequency table with percentages and cumulative percentages.

[Stable]

Usage

frequencies(x)

Arguments

x vector of values.

Value

object of type data.frame containing frequencies, percentages and cumulative percentages.

Author(s)

Mathijs Deen

Examples

frequencies(datasets::mtcars\$carb)

gnomes

Description

The gnomes dataset consists of 300 observations of gnomes that had their housing unit (i.e., their mushroom) insulated against cold and humidity. The insulation was done by the most skilled insulation animals in the forest: squirrels (Sciurus vulgaris). They either used the common insulation technique consisting of leafs of the common beech tree (Fagus sylvatica) or an experimental form of insulation using leafs of the less common (and thus, more expensive) sessile oak tree (Quercus petraea). For the year before insulation and the year after insulation, the gnomes filled out the Gnomes' Humidity and Thermal Satisfaction scale (Gnomes' HATS), a well-validated questionnaire that rates mushroom insulation satisfaction w.r.t. humidity and temperature on a scale of 0 to 50. Differences between pre and post measurement were calculated on a higher-is-better basis.

The squirrels were paid in acorns.

[Stable]

Usage

gnomes

Format

the following variables are available:

- diffHATS: the difference in Gnomes' HATS scores between the year before and the year after insulation.
- Costs: insulation costs in acorns.
- insulationMethod: method of insulation, either commonBeech or sessileOak.

Author(s)

Mathijs Deen

keep

Save something to an object

Description

keep saves an object to a new object. This is useful if one wants to save an intermediate result when using pipes.

Usage

```
keep(object, name, pos = 1, envir = as.environment(pos), inherits = FALSE)
```

Arguments

object	the object that is to be saved into name.
name	the name of the new object, containing the value of object.
pos	where to do the assignment. See ?assign for more details.
envir	the environment to use. See ?assign for more details.
inherits	should the enclosing framss of the environment be inspected? See ?assign for more details.

Value

Upon saving object to name, the value of object is returned. This makes it suitable for pipes.

Author(s)

Mathijs Deen

Examples

```
mtcars |>
    lm(mpg ~ disp + hp, data = _) |>
    keep(lm.mpg_disp_hp) |>
    summary()
```

m

Mean center

Description

Mean center a vector or numeric matrix.

[Stable]

Usage

m(x)

Arguments

х

a numeric matrix or vector.

Details

This function resembles base::scale.default, with the scale argument set to FALSE. This, together with the short function name, is especially useful when you want to mean center variables in an analysis (e.g., using (g)lm), but you dont want the long form scale(x, scale=FALSE) to clutter up the rownames of the parameter estimates or the model anova.

plot.CEA

Value

m returns a mean centered version of x. If x is a matrix, the matrix dimensions are preserved.

Author(s)

Mathijs Deen

Examples

```
vals <- matrix(rnorm(24, 15, 10), ncol = 2)
m(vals)</pre>
```

plot.CEA Plot cost-effectiveness plane

Description

Plot cost-effectiveness plane

Usage

```
## S3 method for class 'CEA'
plot(
    x,
    xlim = c(-1, 1) * max(abs(x$stats$diffE)),
    ylim = c(-1, 1) * max(abs(x$stats$diffC)),
    xlab = "Incremental effects",
    ylab = sprintf("Incremental costs (%s)", x$currencyUC),
    las = 1,
    ...
)
```

Arguments

х	object of class CEA, created by CEA
xlim	limits of x axis (i.e., the axis of the incremental effects)
ylim	limits of y axis (i.e., the axis of the incremental costs)
xlab	label of x axis
ylab	label of y axis
las	style of the axis labels (see par)
	other arguments to be passed to the plot and abline (for the zero lines of the axes) functions.

Value

plot.CEA returns a plot

Author(s)

Mathijs Deen

Examples

```
CEA(gnomes, insulationMethod, Costs, diffHATS, 5000, "acorns") |>
plot()
```

plot.CEAC

Plot cost-effectiveness acceptability curve

Description

Plot cost-effectiveness acceptability curve

Usage

```
## S3 method for class 'CEAC'
plot(
    x,
    xlab = sprintf("Cost-effectiveness threshold (%s)", x$currencyUC),
    ylab = "Probability that intervention is cost-effective",
    las = 1,
    xlim = c(0, max(x$s$ICERs)),
    ...
)
```

Arguments

x	object of class CEAC
xlab	label for x axis
ylab	label for y axis
las	style of the axis labels (see par)
xlim	limits of the x axis
	other arguments to be passed to the plot function.

Value

returns a plot

Author(s)

Mathijs Deen

plot.probeInteraction

Examples

```
CEA(gnomes, insulationMethod, Costs, diffHATS, 1000, "acorns") |>
CEAC() |>
plot(xlim = c(0,200))
```

plot.probeInteraction plot probed interaction

Description

Plot the effects of the antecedent as a function of the moderator.

[Stable]

Usage

```
## S3 method for class 'probeInteraction'
plot(
    x,
    ...,
    col.JN = "red",
    lty.JN = "dotted",
    col.CI = rgb(red = 0.5, green = 0.5, blue = 0.5, alpha = 0.2),
    lty.CI = "longdash",
    lty.0 = "dotted"
)
```

Arguments

х	object of class probeInteraction.
	other arguments (none are used).
col.JN	color for Johnson-Neyman cut-off line(s).
lty.JN	linetype for Johnson-Neyman cut-off line(s).
col.CI	color of the shade for the confidence interval.
lty.CI	linetype for confidence interval boundaries.
lty.0	linetype for the horizontal line where the effect of the focal predictor on the outcome equals 0.

Value

plot.probeInteraction returns a combined plot with p value on the first y axis and effect of the antecedent variable.

Author(s)

Mathijs Deen

Examples

plot.roc

plot roc curve

Description

Plot an ROC curve. [Stable]

Usage

```
## S3 method for class 'roc'
plot(
 х,
 у,
 which = 1:3,
 orientation = c("horizontal", "vertical"),
 cutoffs.1 = NULL,
  cutoffs.2 = NULL,
  cutoffs.3 = NULL,
  xlab.3 = NULL,
 labels.3 = NULL,
  xlim.3 = NULL,
 ylim.3 = c(0, 10),
  pos.legend.2 = "right",
  pos.legend.3 = "topright",
  . . .
)
```

Arguments

х	object of class roc.
У	argument for generic plot function, not used here.
which	which plots to show (see Details).
orientation	indicate whether the plots should be arranged horizontally or vertically
cutoffs.1	cutoff value(s) to be shown in the first plot.

plotDistribution

cutoffs.2	cutoff value(s) to be shown in the second plot.
cutoffs.3	cutoff value(s) to be shown in the third plot.
xlab.3	lable for x axis in third plot.
labels.3	legend labels for third plot.
xlim.3	xlim for third plot.
ylim.3	ylim for third plot.
pos.legend.2	legend position for second plot.
pos.legend.3	legend position for third plot.
	other arguments for generic plot function, none are used here.

Value

plot.roc provides three plots:

- The first plot contains the ROC curve.
- The second plot contains curves for the sensitivity and the specificity for all threshold values.
- The third plot contains density plots for the two classification groups.

Author(s)

Mathijs Deen

Examples

plotDistribution Plot a probability distribution

Description

Plot the density function of certain probability distributions. **[Stable]**

Usage

```
plotDistribution(
  distribution = c("normal", "t", "chi2", "F"),
  xRange = c(0, 5),
  xColArea = NULL,
  xAreaCol = NULL,
  mean = 0,
  sd = 1,
```

df, df1, df2, ncp, ...

Arguments

)

distribution	the probability distribution for which a plot should be drawn. Currently, the options are "normal", "t", "chi2" and "F".
xRange	Range of x axis over which the distribution should be drawn.
xColArea	Optional, a matrix with two columns, where each row contains lower and upper bounds for intervals that should be colored under the pdf curve.
xAreaCol	Optional, should contain (a) $color(s)$ for the interval colors in xColArea. Defaults to "red". Should either be length 1 or length length(xColArea).
mean	mean for the normal distribution.
sd	sd for the normal distribution.
df	df for the t distribution.
df1	first df for the F distribution.
df2	second df for the F distribution.
ncp	non-centrality parameter
	other arguments to be forwarded to the plot function.

Value

plotDistribution returns a probability density plot.

Author(s)

Mathijs Deen

Examples

```
plotDistribution(distribution = "normal",
               xRange = c(-5, 5),
               xColArea = matrix(data = c(-5, -1.96,
                                           1.96, 5),
                                    ncol = 2,
                                    byrow = TRUE),
               xAreaCol
                          = c("green", "blue"),
               mean
                          = 0,
               sd
                           = 1,
                           = "n",
               yaxt
                           = "")
               ylab
```

рММ

Description

Calculate the posterior model probability for a set of models.

[Stable]

Usage

pMM(...)

Arguments

. . .

objects of class (g)lm, given as separate arguments.

Details

Posterior model probabilities are calculated for every model i as

$$pMO_i = \frac{\exp\left[-\frac{1}{2}\Delta_i BIC\right]}{\sum_{j=1}^{K} \exp\left[-\frac{1}{2}\Delta_j BIC\right]},$$

where the minimal BIC value is subtracted from all BICs. In other words: the model with the lowest BIC has $\Delta BIC = 0$.

Value

pMM returns to posterior model probabilities for the models provided.

Author(s)

Mathijs Deen

Examples

```
lm.1 <- lm(mpg ~ hp + wt, data = mtcars)
lm.2 <- lm(mpg ~ hp * wt, data = mtcars)
lm.3 <- lm(mpg ~ hp * wt + gear, data = mtcars)
pMM(lm.1, lm.2, lm.3)</pre>
```

print.check.lm Print lm check

Description

Print the check of lm object

[Stable]

Usage

```
## S3 method for class 'check.lm'
print(x, which.infl = c("influential", "all"), ...)
```

Arguments

х	an object used to select a method.
which.infl	Indicate whether only influential cases (influential, the default) or all cases (all) should be printed.
	further arguments passed to or from other methods (none are used).

Value

prints the check.lm object.

Author(s)

Mathijs Deen

Examples

```
lm.1 <- lm(mpg ~ disp + wt, data = mtcars)
chk.lm.1 <- check(lm.1)
print(chk.lm.1, which.infl="all")</pre>
```

print.probeInteraction

Print effects of probed interaction

Description

Print the effects from a probed interaction.
[Stable]

print.tTest

Usage

```
## S3 method for class 'probeInteraction'
print(x, ...)
```

Arguments

х	object of class probeInteraction.
	other parameters (none are used).

Value

print.probeInteraction prints the effects table of a probeInteraction object.

Author(s)

Mathijs Deen

Examples

print.tTest Print t test

Description

Print the output of a t test.

[Stable]

Usage

```
## S3 method for class 'tTest'
print(x, ...)
```

Arguments

Х	an object used to select a method.
	further arguments passed to or from other methods.

Value

prints the tTest object as a htest object.

Author(s)

Mathijs Deen

Examples

```
x1 <- QIDS$QIDS[QIDS$depression == "Yes"]
x2 <- QIDS$QIDS[QIDS$depression == "No"]
tt <- tTest(x1, x2)
print(tt)
```

print.wtp

Print willingness to pay probe

Description

Print the outcome of a willingness to pay threshold probe.

Usage

S3 method for class 'wtp'
print(x, ...)

Arguments

х	object of class wtp.
	other arguments (none are used).

Value

print.wtp prints the outcome of wtp

Author(s)

Mathijs Deen

Examples

```
CEA(gnomes, insulationMethod, Costs, diffHATS, 1000, "acorns") |>
  CEAC() |>
  wtp(probability = 0.80)
CEA(gnomes, insulationMethod, Costs, diffHATS, 1000, "acorns") |>
  CEAC() |>
  wtp(threshold = 8)
```

probeInteraction Probe interaction models

Description

Probe the effect of a moderator on an X/antecedent variable in a linear model.

[Stable]

Usage

```
probeInteraction(
   object,
   antecedent,
   moderator,
   alpha = 0.05,
   JN = TRUE,
   n.interval.moderator,
   quantile.moderator,
   values.moderator
)
```

Arguments

object	object of class 1m.	
antecedent	antecedent (or x) variable in object.	
moderator	moderator variable in object.	
alpha	desired alpha level for Johnson-Neyman procedure.	
JN	indicate whether Johnson-Neyman procedure should be carried out.	
n.interval.moderator		
	number of intervals in the moderator variable to probe.	
quantile.moderator		
	quantile values in the moderator variable to probe.	
values.moderator		
	raw values in the moderator variable to probe.	

Details

the arguments n.interval.moderator, quantile.moderator and values.moderator can be combined. All unique values from these methods combined, together with the values from the Johnson-Neyman procedure (if specified) will be part of the probing procedure.

Value

probeInteraction returns a data frame containing values of the moderator in a linear model, the effect of the antecedent at that value of the moderator, standard errors, t values, p values and a confidence interval.

Author(s)

Mathijs Deen

Examples

QIDS

QIDS depression data

Description

The QIDS dataset consists of 100 observations of people that were clinically diagnosed with a major depressive disorder and who filled out the QIDS-SR questionnaire. The data were simulated.

[Stable]

Usage

QIDS

Format

the following variables are available:

- QIDS: QIDS-SR total score.
- Depression: an indicator whether the individual was diagnosed with a depression or not.

Author(s)

Mathijs Deen

R2.vglm

Calculate (pseudo) R² for vglm objects

Description

Calculate (pseudo) R^2 for vglm objects

Usage

```
R2.vglm(
   model,
   method = c("mcfadden", "nagelkerke", "efron", "coxsnell", "tjur")
)
```

rci

Arguments

model	a vglm object.
method	method for calculation of R^2 .

Value

R2.vglm returns R^2 .

Author(s)

Mathijs Deen

Examples

rci

Reliable change index

Description

rci computes the reliable change index according to Jacobson and Truax (1992).

[Stable]

Usage

rci(x1, x2, rxx)

Arguments

x1	prescore.
x2	postscore, same length as x1.
rxx	internal consistency statistic.

Value

rci returns a vector of length(x1) with reliable change index scores.

Author(s)

Mathijs Deen

References

• Jacobson, N.S., & Truax, P. (1992). Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. *Journal of Consulting and Clinical Psychology*, *59*, 12-19.

Examples

```
library(MASS)
set.seed(1)
q <- mvrnorm(n=120, mu=c(40, 50), Sigma = matrix(c(56.25,45,45,56.25), ncol = 2), empirical = TRUE)
cbind(q, rci(q[,1], q[,2], .8), rci(q[,1], q[,2], .8) > 1.96)
```

roc

Receiver operator characteristic

Description

Calculate ROC curve statistics. [Stable]

Usage

roc(response, group, levels, state)

Arguments

response	response variable for which thresholds will be calculated.
group	group variable.
levels	relevant levels of group variable. Should have length 2.
state	state level of levels

Value

Returns a list with the following elements:

data	data.frame with two columns, containing the response and group variable for each level in levels without missings.
rdf	ROC dataframe. This is a data.frame containing sensitivity and specificity values for all threshold values.
auc	Area under the ROC curve.
response	Response variable from input data.
group	Group variable from the input data.
levels	Used levels.
state	State level.

summary.tTest

Author(s)

Mathijs Deen

Examples

```
roc(QIDS$QIDS, QIDS$depression, c("No","Yes"), "Yes") |>
plot(ylim.3=c(0,.2))
```

summary.tTest Summarize outcome of a t test

Description

Summarize the outcome of a t test [Stable]

Usage

S3 method for class 'tTest'
summary(object, rnd = 3L, ...)

Arguments

object	object of class htest (i.e., the result of mdma::tTest or stats::t.test).
rnd	number of decimal places. Should have length 1 or 3. One value specifies the rounding value for the degrees of freedom, t statistic and p value all at once, while specifying three values gives the rounding values for the three statistics respectively.
	other arguments of the summary generic (none are used).

Value

summary.htest returns a typical APA-like output (without italics) for a t-test.

Author(s)

Mathijs Deen

Examples

```
x1 <- QIDS$QIDS[QIDS$depression == "Yes"]
x2 <- QIDS$QIDS[QIDS$depression == "No"]
tt <- tTest(x1, x2)
summary(tt, rnd = c(1,2,3))
```

tTest

t Test

Description

perform t tests with the possibility of inputting group statistics.

[Stable]

Usage

```
tTest(
    x,
    y = NULL,
    sdx = NULL,
    sdy = NULL,
    nx = length(na.omit(x)),
    ny = length(na.omit(y)),
    alternative = c("two.sided", "greater", "less"),
    mu = 0,
    paired = FALSE,
    rxy = NULL,
    var.equal = FALSE,
    conf.level = 0.95
)
```

Arguments

x	a numeric vector. Can be of length 1 for a group mean.
У	a numeric vector. Should be NULL for a one-sample t-test.
sdx	standard deviation for x, when this reflects a group mean.
sdy	standard deviation for y, when this reflects a group mean.
nx	sample size for x, when this reflects a group mean.
ny	sample size for y, when this reflects a group mean.
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
mu	a number indicating the true value of the mean (or difference in means) if you are performing an independent samples t-test).
paired	a logical indicating whether you want a paired t-test.
rxy	correlation between two paired samples.
var.equal	a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.
conf.level	level of the confidence interval.

wtp

Value

tTest performs a t-test (independent samples, paired samples, one sample) just like base-R t.test, but with the extended possibility to enter group statistics instead of raw data.

Author(s)

Mathijs Deen

Examples

wtp

Probe willingness to pay

Description

Get the probability of being cost-effective given a certain cost-effectiveness threshold, and vice versa.

[Stable]

Usage

wtp(x, threshold = NULL, probability = NULL)

Arguments

х	object of class CEAC
threshold	cost-effectiveness threshold
probability	probability of being cost-effective

Details

One of the two parameters threshold and probability should be specified.

Value

wtp either the probability or the threshold. If there is no exact match to the given parameter in the bootstrap samples, the result is interpolated.

Author(s)

Mathijs Deen

Examples

```
CEA(gnomes, insulationMethod, Costs, diffHATS, 1000, "acorns") |>
  CEAC() |>
  wtp(probability = 0.80)
CEA(gnomes, insulationMethod, Costs, diffHATS, 1000, "acorns") |>
  CEAC() |>
  wtp(threshold = 8)
```

%inRange%

inRange

Description

Return which values are in a certain range %inRange% indicates which values are in a certain range, including the boundaries of the range.

[Experimental]

Usage

lhs %inRange% rhs

Arguments

lhs	numeric vector.
rhs	numeric vector of length 2 with the bounds of the range.

Value

%inRange% returns a logical vector of length(lhs), indicating which values of lhs are and are not in range rhs. Boundaries of rhs are included.

Author(s)

Mathijs Deen

See Also

%withinRange%

%ni%

Examples

%ni%

Inverse value matching

Description

Evaluates whether the left hand side argument is not in the right hand side argument.

[Stable]

Usage

lhs %ni% rhs

Arguments

lhs	left hand side.
rhs	right hand side.

Details

The %ni% function negates the %in% operator.

Value

The function returns a vector of the same length as 1hs.

Author(s)

Mathijs Deen

Examples

c(1,2,3) %ni% c(1,2)

%withinRange% withinRange

Description

Return which values are within a certain range

%withinRange% indicates which values are in a certain range, excluding the boundaries of the range.

[Experimental]

Usage

lhs %withinRange% rhs

Arguments

lhs	numeric vector.
rhs	numeric vector of length 2 with the bounds of the range.

Value

%withinRange% returns a logical vector of length(lhs), indicating which values of lhs are and are not in range rhs. Boundaries of rhs are excluded.

Author(s)

Mathijs Deen

See Also

%inRange%

Examples

Index

* datasets gnomes, 13 %inRange%, 32, 34 %ni%, 33 %withinRange%, 32, 34 auc, 2 CEA, 3, 15 CEAC, 4 check, 5 coefsLogReg, 6 corList,7 currency2unicode, 8 dPPC2, 9 f2Local, 10 frequencies, 12gnomes, 13 influence.measures, 6 keep, 13 m, 14 par, *15*, *16* plot.CEA, 15 plot.CEAC, 16 plot.lm, 6 plot.probeInteraction, 17 plot.roc, 18 plotDistribution, 19pMM, 21 print.check.lm, 6, 22 print.probeInteraction, 22 print.tTest, 23 print.wtp, 24 probeInteraction, 25

QIDS, 26 R2.vglm, 26 rci, 27 roc, 28 summary.tTest, 29 tTest, 30 wtp, 31