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Abstract

Bayesian analysis often concerns an evaluation of models with different dimensionality as is necessary in, for example, model

selection or mixture models. To facilitate this evaluation, transdimensional Markov chain Monte Carlo (MCMC) relies on

sampling a discrete indexing variable to estimate the posterior model probabilities. However, little attention has been paid

to the precision of these estimates. If only few switches occur between the models in the transdimensional MCMC output,

precision may be low and assessment based on the assumption of independent samples misleading. Here, we propose a

new method to estimate the precision based on the observed transition matrix of the model-indexing variable. Assuming a

first-order Markov model, the method samples from the posterior of the stationary distribution. This allows assessment of the

uncertainty in the estimated posterior model probabilities, model ranks, and Bayes factors. Moreover, the method provides

an estimate for the effective sample size of the MCMC output. In two model selection examples, we show that the proposed

approach provides a good assessment of the uncertainty associated with the estimated posterior model probabilities.

Keywords Reversible jump MCMC · Product space MCMC · Bayesian model selection · Posterior model probabilities ·

Bayes factor

Daniel W. Heck, Statistical Modeling in Psychology, University of

Mannheim, Germany, heck@uni-mannheim.de. R code for all

simulations is available at the Open Science Framework at https://osf.

io/kjrkz, and the R package MCMCprecision is available at https://

CRAN.R-project.org/package=MCMCprecision.

B Daniel W. Heck

heck@uni-mannheim.de

Antony M. Overstall

A.M.Overstall@soton.ac.uk

Quentin F. Gronau

quentingronau@web.de

Eric-Jan Wagenmakers

ej.wagenmakers@gmail.com

1 Statistical Modeling in Psychology, University of Mannheim,

Mannheim, Germany

2 School of Mathematical Sciences and Southampton Statistical

Sciences Research Institute, University of Southampton,

Southampton, UK

3 Department of Psychology, University of Amsterdam,

Amsterdam, The Netherlands

1 Introduction

Transdimensional Markov chain Monte Carlo (MCMC)

methods provide an indispensable tool for the Bayesian anal-

ysis of models with varying dimensionality (Sisson 2005).

An important application is Bayesian model selection, where

the aim is to estimate posterior model probabilities p(Mi |

y) for a set of models Mi , i = 1, . . . , I given the data

y (Kass and Raftery 1995). In order to ensure that the

Markov chain converges to the correct stationary distribu-

tion, transdimensional MCMC methods such as reversible

jump MCMC (Green 1995) or the product space approach

(Carlin and Chib 1995) match the dimensionality of parame-

ter spaces across different models (e.g., by adding parameters

and link functions). Transdimensional MCMC methods have

proven to be very useful for the analysis of many statistical

models including capture–recapture models (Arnold et al.

2010), generalized linear models (Forster et al. 2012), fac-

tor models (Lopes and West 2004), and mixture models

(Frühwirth-Schnatter 2001), and are widely used in sub-

stantive applications such as selection of phylogenetic trees

(Opgen-Rhein et al. 2005), gravitational wave detection in
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(b) Markov chain
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Fig. 1 Illustration of T = 100 iterations of a discrete model-indexing

variable z(t) that were sampled from a independent categorical distribu-

tions and b a Markov model with positive autocorrelation (cf. Sect. 3).

Using the method proposed in Sect. 2.3, the estimated effective sample

sizes were T̂eff = 96 and T̂eff = 8, respectively

physics (Karnesis 2014), or cognitive models in psychology

(Lodewyckx et al. 2011; Heck et al. 2017).

Crucially, transdimensional MCMC methods always in-

clude a discrete parameter z with values in 1, . . . , I indexing

the competing models. At iteration t = 1, . . . , T , posterior

samples are obtained for the indexing variable z(t) and the

model parameters, which are usually continuous and differ in

dimensionality (for a review, see Sisson 2005). For instance,

a Gibbs sampling scheme can be adopted (Barker and Link

2013), in which the indexing variable z and the continu-

ous model parameters are updated in alternating order. Such

a sampler switches between models depending on the cur-

rent values of the continuous parameters, and then updates

these parameters in light of the current model Mi condi-

tionally on the value of z(t) = i (Barker and Link 2013).

Given convergence of the MCMC chain, the sequence z(t)

follows a discrete stationary distribution with probabilities

π = (π1, . . . , πI )
⊤. Due to the design of the sampler, these

probabilities are identical to the posterior model probabilities

of interest, πi = p(Mi | y) and, given uniform model priors

p(Mi ) = 1/I , also proportional to the marginal likelihoods

p( y | Mi ). Hence, transdimensional MCMC samplers can

be used to directly estimate these posterior probabilities as

the relative frequencies of samples z(t) falling into the I cat-

egories, π̂i = 1/T
∑

t I(z
(t) = i), where I is the indicator

function. Due to the ergodicity of the Markov chain, this esti-

mator is ensured to be asymptotically unbiased (Green 1995;

Carlin and Chib 1995).

Usually, dependencies due to MCMC sampling are taken

into account for continuous parameters (Jones et al. 2006;

Flegal and Gong 2015; Doss et al. 2014). In contrast, how-

ever, the estimate π̂ = (π̂1, . . . , π̂I )
⊤ based on the sequence

of discrete samples z(t) is usually reported without quantify-

ing estimation uncertainty due to MCMC sampling. Often,

the samples z(t) are correlated to a substantial, but unknown,

degree because of infrequent switching between models.

This is illustrated in Fig. 1, which shows a sequence of

independent and correlated samples z(t) in Panels A and

B, respectively. Inference about the stationary distribution

π is more reliable in the first case compared to the sec-

ond case, in which the autocorrelation reduces the amount

of information available about π (cf. Sect. 3). The standard

error SE(π̂i ) =
√

π̂i (1 − π̂i )/T that assumes independent

sampling will obviously underestimate the true variability of

the estimate π̂ if samples are correlated (Green 1995; Sis-

son 2005). To obtain a measure of precision, Green (1995)

proposed running several independent MCMC chains c =

1, . . . , C and computing the standard deviation of the esti-

mates π̂
(c)

across these independent replications. However,

for complex models, this method might require a substantial

amount of additional computing time for burn-in and adap-

tion and thus can be infeasible in practice.

Assessing the precision of the estimate π̂ , which depends

on the autocorrelation of the sequence of discrete MCMC

samples z(t), is of major importance. In case of model

selection, it must be ensured that the estimated posterior

probabilities p(Mi | y) are sufficiently precise for drawing

substantive conclusions. This issue is especially important

when estimating a ratio of marginal probabilities, that is,

the Bayes factor Bi j = p( y | Mi )/p( y | M j ) (Jef-

freys 1961). Moreover, it is often of interest to compute the

effective sample size defined as the number of independent

samples that would provide the same amount of informa-

tion as the given MCMC output for estimating π with π̂ .

Besides providing an intuitive measure of precision, a min-

imum effective sample size can serve as a principled and

theoretically justified stopping rule for MCMC sampling

(Gong and Flegal 2016). However, standard methods of esti-

mating the effective sample size (e.g., computing the spectral

density at zero; Plummer et al. 2006; Heidelberger and Welch

1981) are tailored to continuous parameters. When applied

to the model-indexing variable z(t) of a transdimensional
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MCMC method, these methods neglect the discreteness of

z(t). Depending on the specific numerical labels used for the

different models (e.g., (1, 2, 3, 4) vs. (1, 4, 2, 3)), spectral

decomposition can lead to widely varying and arbitrary esti-

mates for the effective sample size (see Sect. 4).

In summary, transdimensional MCMC is a very important

and popular method for Bayesian inference (Sisson 2005).

However, little attention has been paid to the analysis of the

resulting MCMC output, which requires that one takes into

account the autocorrelation as well as the discrete nature of

the model-indexing variable. As a solution, we propose to

fit a discrete, first-order Markov model to the MCMC out-

put z(t) to assess the precision of the estimated stationary

distribution π̂ . Whereas several diagnostics have previously

been proposed to assess the convergence of transdimensional

MCMC samplers (e.g., Brooks and Giudici 2000; Castelloe

and Zimmerman 2002; Brooks et al. 2003a; Sisson and Fan

2007), we are unaware of any methods that quantify the pre-

cision of the point estimate π̂ .

2 Method

2.1 A discrete Markovmodel for transdimensional
MCMC output

The proposed method approximates the output of a trans-

dimensional MCMC method (i.e., the sampled iterations

z(t)) by a discrete Markov model MMarkov with transition

matrix P . This model explicitly accounts for autocorrela-

tion, which in turn allows quantifying estimation uncertainty

for the discrete stationary distribution π . The entries of P

are defined as the transition probabilities pi j = P(z(t+1) =

j | z(t) = i) for all i, j = 1, . . . , I , with rows sum-

ming to one,
∑I

j=1 pi j = 1. According to the discrete

Markov model, the probability distribution of the indexing

variable z(t) at iteration t is given by multiplying the trans-

posed initial distribution π⊤
0 by the transition matrix t times,

P(z(t) = i) = [π⊤
0 P t ]i . The proposed method estimates the

transition matrix P as a free parameter based on the suffi-

cient statistic N , the matrix of frequencies ni j counting the

observed transitions from z(t) = i to z(t+1) = j (Anderson

and Goodman 1957).

Due to the construction of the transdimensional MCMC

sampler, the discrete indexing variable z(t) follows a station-

ary distribution with a constant probability vector π (i.e.,

the posterior model probabilities of interest). Hence, when

modeling the sequence z(t) with the discrete Markov model

MMarkov, this implies that the transition matrix P must sat-

isfy the condition for stationarity

π⊤ P = 1 · π⊤, (1)

meaning that the probability vector π is the left eigenvector of

the matrix P with eigenvalue one (with π normalized to sum

to one; Anderson and Goodman 1957). Based on the model

MMarkov, an estimator for π is thus obtained by computing

the eigenvector of P with eigenvalue one (Barker and Link

2013).

However, we are less interested in a new estimator π̂

of the stationary distribution but rather in the precision of

this estimate. To quantify estimation uncertainty, we thus

fit the model MMarkov with P as a free parameter in a

Bayesian framework by drawing posterior samples P (r)

(r = 1, . . . , R). Similar to a parametric bootstrap, this

Bayesian sampling approach has the advantage that we can

easily quantify estimation uncertainty (i.e., the dispersion

of the posterior distribution of P) by computing descriptive

statistics of the samples P (r) (e.g., the standard deviation

or credibility intervals). Moreover, we can directly quantify

the estimation uncertainty of derived quantities such as the

posterior model probabilities, model ranks, or Bayes factors

(see Sect. 2.2). In the following, it is important to distinguish

between the posterior distribution of P given the sufficient

statistic N , which quantifies the uncertainty of P due to esti-

mation error of the transdimensional MCMC method, and the

posterior distribution of the models given the empirical data,

which is represented by the constant vector of probabilities

π for a specific data set.

Next, we define a prior distribution for the parameter P

of the model MMarkov. Given that the transition matrix P

includes one probability vector pi for each row i , we assume

independent Dirichlet distributions with parameter ǫ ≥ 0 for

each row,

pi ≡ (pi1, . . . , pi I ) ∼ D(ǫ, . . . , ǫ). (2)

Conditional on the MCMC output N , the estimation uncer-

tainty of P is approximated by drawing R posterior samples

P (r). Since the Dirichlet prior is conjugate to the multino-

mial distribution, independent samples P (r) can efficiently

be drawn from the Dirichlet distribution with parameters

p
(r)
i ∼ D(ni1 + ǫ, . . . , ni I + ǫ). (3)

Based on these samples, the estimation uncertainty of the

stationary probabilities π is assessed by computing the (nor-

malized) eigenvector with eigenvalue one for each sample

P (r) (Eq. 1). Algorithm 1 provides an overview of the com-

putational steps of the proposed method as pseudo-code.

With regard to the prior parameter ǫ, small values should

be chosen to reduce its influence on the estimation of P .

In principle, the improper prior ǫ = 0 can be used, which

minimizes the impact of the prior on the estimated stationary

distribution. This improper prior also ensures that the results

do not hinge on the set of models that could possibly be

123



Statistics and Computing

Algorithm 1 Quantify uncertainty of π̂ due to transdimen-

sional MCMC sampling.

1: procedure Markov Model

2: Sampling z(t): T iterations of model-indexing variable

z via transdimensional MCMC

3: Compute N: Observed I × I transition matrix of z(t)

with elements ni j

4: Set prior parameter ǫ (default: ǫ = 1/I ∗ for the I ∗

models observed in z(t), ǫ = 0 otherwise)

5: for r = 1, . . . , R do

6: Initialize posterior sample P (r): I × I transition

matrix with rows p
(r)
i

7: for i = 1, . . . , I do

8: Sampling p
(r)
i ∼ Dirichlet(ni1 + ǫ, . . . , ni I + ǫ)

9: Initialize posterior sample π (r): Posterior model

probabilities

10: π (r) ← (normalized) eigenvector of P (r) with

eigenvalue one

11: if (quantify uncertainty) then

12: Compute summary statistic for all samples π (r)

13: Example: SDMarkov(π̂i ) ← SD(π
(r)
i )

14: if (compute effective sample size) then

15: Using all π (r): Fit Dirichlet parameters α̂1, . . . , α̂I

(Minka 2000)

16: Compute effect sample size T̂eff ←
∑I

i=1 α̂i −

(I ∗)2ǫ

sampled, but were never actually observed in the sequence

z(t). For such unsampled models, the corresponding rows and

columns of the observed transition matrix N are filled with

zeros. With ǫ = 0, the relevant eigenvector of the transition

matrix P | N is thus identical to that of a reduced matrix

P∗ | N∗ that includes only the transitions for the subset of

models sampled in z(t). However, in our simulations, this

improper Dirichlet prior proved to be numerically unstable

and resulted in more variable point estimates than the stan-

dard i.i.d. estimate or the proper prior discussed next.

Here, we use the weakly informative prior ǫ = 1/I as

a default, which has an impact equivalent to one obser-

vation for each row of the observed transition matrix N .

By putting a small weight on all values of the transition

matrix P , this prior serves as a regularization of the pos-

terior (Alvares et al. 2018). However, in scenarios where the

number of models exceeds the number of iterations of the

transdimensional MCMC method (i.e., I ≫ T ), such a reg-

ularization assigns substantial probability weight to models

that are never observed in z(t). To limit the effect of the prior,

we thus set ǫ = 1/I ∗ only for those I ∗ models that were

observed in z(t) and ǫ = 0 for the remaining models. Besides

reducing the impact of the prior, this choice has the compu-

tational advantage that one can draw posterior samples and

compute eigenvectors for the reduced matrix P∗ | N∗ that

includes only the sampled models. In the two examples in

Sects. 4 and 5, this prior has proved to be numerically robust

and resulted in point estimates close to the standard i.i.d.

estimates.

As a third alternative, the prior can be adapted to the struc-

ture of specific transdimensional MCMC implementations,

which only implement switches to a small subset of the com-

peting models. For instance, in variable selection, regression

parameters are often added or removed one at a time, result-

ing in a birth-death process (Stephens 2000). For these kinds

of samplers, the Dirichlet parameters ǫi j can be set to zero

selectively. However, such adjustments will be dependent on

the chosen MCMC sampling scheme. The default choice of

ǫ = 1/I ∗ for sampled models and ǫ = 0 for nonsampled

models provides a good compromise of being very general

and numerically robust, while having a small effect on the

posterior. However, in general, the choice of ǫ becomes less

influential as the number of MCMC samples increases (espe-

cially if the row sums of N are large).

2.2 Estimation uncertainty

Based on the posterior samples P (r) of the transition matrix

and the derived model probabilities π (r), it is straightfor-

ward to estimate the stationary distribution by the posterior

mean π̂ (alternatively, the median or mode may be used).

More importantly, however, estimation uncertainty due to the

transdimensional MCMC method can directly be assessed

by plotting the estimated posterior densities for each πi .

To quantify the precision of the estimate π̂ , one can report

posterior standard deviations or credibility intervals for the

components π̂i . These component-wise summary statistics

are most useful if the number of models I is relatively small.

An important advantage of drawing posterior samples

π (r) in a Bayesian framework (instead of using asymptotic

approximations for the standard error of π̂ ) is that one can

directly quantify estimation uncertainty for other quantities

of interest. For very large numbers of sampled models, the

assessment of estimation uncertainty can be focused on the

subset of k models with the highest posterior model probabil-

ities. Within the sampling approach, estimation uncertainty

for the k best-performing models can easily be assessed by

computing ranks for each of the posterior samples π (r). Then,

the variability of these model ranks across the R samples can

be summarized, for instance, by the percentage of identical

rank orders for the k best-performing models, or the percent-

ages of how often each model is included within the subset

of the k best-performing models (i.e., has a rank smaller or

equal to k).

In case of model selection, dispersion statistics such as

the posterior standard deviation are also of interest with

respect to the Bayes factor Bi j (Kass and Raftery 1995). To
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judge the estimation uncertainty for the Bayes factor, one can

evaluate the corresponding posterior distribution by comput-

ing the derived quantities B
(r)
i j = π

(r)
i /π

(r)
j (given uniform

prior model probabilities). Precision can also be assessed for

model-averaging contexts when comparing subsets of mod-

els against each other (e.g., regression models including a

specific effect vs. those not including it). Given such dis-

joint sets of model indices Ms ⊂ {1, . . . , I }, the posterior

probability for each subset of models is directly obtained by

summing the posterior samples π
(r)
i for all i ∈ Ms . Note that

it is invalid to aggregate across model subsets or to drop sam-

pled models before applying the proposed Markov approach

because functions of discrete Markov chains (e.g., collaps-

ing the I original states into a subset of S states) are not

Markovian in general (Burke and Rosenblatt 1958).

2.3 Effective sample size

Besides quantifying estimation uncertainty, the posterior

samples π (r) can be used to estimate the effective sample

size for the transdimensional MCMC output. For this pur-

pose, we consider the benchmark model Miid under the ideal

scenario of drawing independent samples z̃(t) from the cate-

gorical distribution with probabilities π̃ . For this model, we

assume an improper Dirichlet prior on the stationary distribu-

tion, π̃ ∼ D(0, . . . , 0) (whereas the Markov model assumes

a Dirichlet prior on the transition probabilities). Since this

prior is conjugate to the multinomial distribution, the poste-

rior for the stationary distribution π̃ is given by

π̃ | ñ ∼ D(ñ1, . . . , ñ I ), (4)

conditional on the observed frequencies ñi =
∑T

t=1 I(z̃(t) =

i). Note that the transition frequencies are rendered irrelevant

in this i.i.d. model, since there are no dependencies in the

sampled iterations z̃(t).

Given the dependent samples z(t) of a transdimensional

MCMC chain, we can now compare the empirical posterior

distribution of π estimated with the model MMarkov against

the theoretically expected posterior distribution of π̃ under

the hypothetical model Miid. Essentially, we match the lat-

ter distribution to the former to estimate the effective sample

size as the total number of independent samples Tiid =
∑

i ñi

that would result in a similar dispersion as that estimated

by the Markov model. To estimate the ñi , the i.i.d. poste-

rior distribution in Eq. 4 is fitted to the posterior distribution

of the Markov model by estimating the shape parameters

α1, . . . , αI of a Dirichlet distribution given the sampled π (r)

(which can be achieved by an efficient maximum-likelihood

algorithm by Minka 2000, see Appendix). Next, a com-

parison of the estimated Dirichlet parameters α̂i with the

conjugate posterior in Eq. 4 yields ̂̃n = α̂i , which implies

that the dispersion of the posterior model probabilities π (r)

is equivalent to having observed T̂iid =
∑

i α̂i independent

samples. However, the samples π (r) are not only informed

by the samples z(t) of the transdimensional MCMC sampler,

but also by the prior distribution of the Markov model, which

is irrelevant for estimating the effective sample size. Hence,

to estimate the effective sample size for the transdimensional

MCMC sampler, it is necessary to subtract the prior sample

size I 2ǫ of the Markov model (cf. Eq. 2), which reflects the

relative weight of the prior, since the Dirichlet shape parame-

ter ǫ occurs I times in each row of the I × I transition matrix

P (Alvares et al. 2018). Overall, it follows that the effective

sample size under the assumption of independent sampling

from a multinomial distribution is estimated as

T̂eff =

I∑

i=1

α̂i − I 2ǫ. (5)

Note that it is necessary to replace I by I ∗ in Eq. 5 if the

Markov model uses only those I ∗ models that were actu-

ally sampled in z(t). Importantly, the estimate T̂eff takes the

discreteness of the indexing variable z into account and does

not depend on specific (but arbitrary) numerical values of the

model indices.

2.4 Remarks

The proposed method quantifies estimation uncertainty by

fitting a discrete Markov model to transdimensional MCMC

output. For this purpose, a simplifying assumption is made

that is not guaranteed to hold. Whereas samples of the full

model space (z(t), θ (t)) necessarily follow a Markov pro-

cess by construction, this does not imply that the samples

z(t) follow a Markov chain marginally (Brooks et al. 2003b;

Lodewyckx et al. 2011). In practice, the iterations of the

model-indexing variable z(t) might have higher-order depen-

dencies since transition probabilities depend on the exact

state of the MCMC sampler in each of the models’ parameter

spaces. However, in Sects. 4 and 5 we show in two empir-

ical examples that the proposed simplification (i.e., fitting

a Markov chain of order one) is sufficient to account for

autocorrelations in the samples z(t) in practice. Moreover,

the approximation by a first-order Markov chain provides

a trade-off between ignoring dependencies completely (i.e.,

assuming i.i.d. samples) and accounting for any higher-order

dependencies (which will likely increase the computational

burden especially for large numbers of models). Note that

it is a common practice to rely on simplifying assumptions

for the analysis of simulation output; for instance, a standard

approach of estimating the effective sample size for contin-

uous parameters assumes that the output sequence can be

modeled as a covariance stationary process with a smooth

log spectrum (Heidelberger and Welch 1981).
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The proposed method of fitting a discrete Markov model is

very general and can be applied irrespective of specific trans-

dimensional MCMC implementations. Moreover, it requires

only the sampled sequence z(t) of the discrete parameter or

the matrix N with the observed frequency of transitions. If

output from multiple independent chains c = 1, . . . , C is

available, the transition frequency matrices N(1), . . . , N(C)

can simply be summed before applying the method. This

follows directly from Bayesian updating of the stationary

distribution π . Essentially, each chain provides independent

evidence for the posterior of the transition matrix P , which is

reflected by using the sums
∑

c n
(c)
i j for the conjugate Dirich-

let prior in Eq. 3. Note that this feature can be used to compare

the efficiency of many short versus few long MCMC chains.

In the R package MCMCprecision (Heck et al. 2018),

we provide an implementation that relies on the efficient

computation of eigenvectors in the C++ libraryArmadillo

(Sanderson and Curtin 2016), accessible in R via the pack-

age RcppArmadillo (Eddelbuettel and Sanderson 2014).

On a notebook with an Intel® i7-7700HQ processing unit,

drawing R = 5000 samples from the posterior distribu-

tion for 10 (100) sampled models requires approximately

150 ms (28 s). Similar to any MCMC or bootstrap approach,

the choice of the number of samples R depends on the sum-

mary statistic used to quantify uncertainty. Whereas more

samples are required to approximate the density distribution

(e.g., R ≥ 5000), less samples (e.g., R ≈ 1000) are sufficient

to approximate the SD of the estimated posterior model prob-

abilities. Since the samples π (r) are independently drawn and

SDs are usually sufficient to quantify uncertainty, the choice

R = 1000 is often sufficient in practice (however, for the

simulations below, we use R = 5000).

3 Illustration: effect of autocorrelation

Before applying the proposed method to actual output of

transdimensional MCMC samplers, we first illustrate its use

in an idealized setting, where the interest is in approximating

the posterior model probabilities π = (0.85, 0.13, 0.02)⊤

by drawing random samples z(t). To investigate the effect

of independent versus dependent sampling, we generated

sequences z(t) from the Markov model MMarkov with the sta-

tionary distribution π . To induce autocorrelation, we defined

a mixture process for each iteration t . With probability β,

the discrete indexing variable was identical to the current

model, zt+1 = zt . In contrast, with probability 1 − β, the

value zt+1 was sampled from the given stationary distribu-

tion π . Thereby, increasing values of β resulted in a larger

autocorrelation of the sequence z(t) as illustrated for β = 0

and β = 0.8 in Fig. 1a, b, respectively.

For varying levels of β = 0, 0.1, . . . , 0.8, we sampled

500 replications with T = 1000 iterations each, applied the

proposed method (with R = 5000) and computed the preci-

sion of the estimate π̂ . The main interest is in the posterior

SD and in the coverage probability, defined as the probability

that the data-generating values π are in the 90% credibility

interval defined by the 5% and 95% quantiles. As a bench-

mark, we also computed these summary statistics under the

(false) assumption that the samples z(t) were independently

drawn by fitting the model Miid with the Dirichlet posterior

distribution in Eq. 4. Note that the latter uncertainty estimate

is equivalent to the standard Monte Carlo error that assumes

independent sampling.

Figure 2 shows the results of this simulation. In Fig. 2a,

the three panels correspond to the estimation uncertainty

(i.e., the posterior SD) of the three posterior model prob-

abilities π = (π1, π2, π3)
⊤. The estimated posterior SD of

the Markov model indicated increasing uncertainty for larger

values of β, thus taking the increasing autocorrelation into

account. In contrast, the model Miid assumes independence

a priori, and thus, the posterior uncertainty was independent

of β. As a result of this, the corresponding 90% credibil-

ity interval was less likely to include the data-generating

value π for increasing values of β (see Fig. 2b), whereas

the Markov model provided an accurate description of the

estimation uncertainty for any degree of dependence.

4 Variable selection in logistic regression

In the following, we apply the proposed method to the prob-

lem of selecting variables in a logistic regression, an example

introduced by Dellaportas et al. (2000) to highlight the imple-

mentation of transdimensional MCMC in BUGS (see also

Dellaportas et al. 2002; Ntzoufras 2002). Table 1 shows the

frequencies of deaths and survivals conditional on sever-

ity and whether patients received treatment (i.e., antitoxin

medication; Healy 1988). To emphasize the importance of

considering estimation uncertainty for the posterior model

probabilities, we compare the efficiency of two transdimen-

sional MCMC approaches, which can both be implemented

in JAGS (Plummer 2003).

The full logistic regression model assumes a binomial dis-

tribution B of the survival frequencies y jl and a linear model

on the logit-transformed survival probabilities p jl ,

y jl ∼ B(p jl , n jl) (6)

log

(
p jl

1 − p jl

)
= β0 + β1a j + β2bl + β3(ab) jl , j, l = 1, 2

(7)

where n jl are the total number of patients in condition jl and

β the regression coefficient for the effect-coded variables

a j , bl , and (ab) jl . Variable selection is required to choose
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Fig. 2 Estimation uncertainty for the stationary distribution π . a The

Markov method (black dots) correctly indicated that estimation error of

the posterior model probabilities increased as autocorrelation increased.

When assuming i.i.d. sampling (gray triangles), the estimated precision

did not depend on the autocorrelation. b Proportion of 500 replications

for which the 90% CI intervals included the data-generating stationary

distribution π

Table 1 Logistic regression data set by Healy (1988)

Condition (A) Antitoxin (B) Death Survival

More severe Yes 15 6

No 22 4

Less severe Yes 5 15

No 7 5

between I = 5 models: the intercept-only model I, the three

main effect models A, B, and A + B, and the model AB that

includes the interaction. For comparability, we use the same

priors as Dellaportas et al. (2000) and assume a centered

Gaussian prior with variance σ 2 = 8 for each regression

parameter, βk ∼ N (0, 8). Moreover, the model probabilities

were set to be uniform, p(Mi ) = 1/5. Note that nonuniform

prior probabilities might be used to protect against multi-

ple testing issues (i.e., Bayes multiplicity; Scott and Berger

2010).

One of the two implemented transdimensional MCMC

approaches uses unconditional priors (Kuo and Mallick 1998,

KM98) and includes indicator variables γik ∈ {0, 1} for

each regression coefficient βk in model Mi . The parame-

ter γ i determines which regression coefficients are included

by removing some of the additive terms of the linear model

in Eq. 7. Details about the full and conditional posterior dis-

tributions are provided by Dellaportas et al. (2000, p. 7).

As a second transdimensional MCMC approach, we

implemented the method of Carlin and Chib (1995; CC95),

which stacks up all model parameters into a new parameter

θ = (z,β1, . . . ,β I ), where β i is the vector of regression

parameters of model Mi . Thereby, this approach samples

a total of 12 regression parameters along with the index-

ing variable z. Note that the method of Carlin and Chib

(1995) uses pseudo-priors p(β i | M j ), i �= j , that do

not influence the statistical inference about p( y | Mi ) and

p(β i | y,Mi ). However, these pseudo-priors determine the

conditional proposal probabilities p(z | y,β1, . . . ,β I ) of

switching between the models and thereby affect the effi-

ciency of the MCMC chain. In substantive applications,

these pseudo-priors should be chosen to match the posterior

p(β i | Mi ) in order to ensure high probabilities of switching

between the models (cf. Carlin and Chib 1995; Barker and

Link 2013). Here, however, we did not optimize the sampling

scheme and used β ik | M j ∼ N (0, 8) for the pseudo-priors

to illustrate that our method can correctly detect the lower

precision resulting from this suboptimal choice.

Figure 3 shows the estimated posterior distribution (R =

5000) of the posterior model probabilities using one Markov

chain with 11,000 iterations (including 1000 burn-in sam-

ples). The vertical black lines show the reference values

for π , approximated with very high accuracy by the KM98

approach using eight independent chains and one million

samples each. As expected, the (incorrect) assumption that
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Fig. 3 Five panels show the estimation uncertainty of the posterior

model probabilities π = (π1, . . . , π5)
⊤ for the five logistic regres-

sion models I (intercept only), A, B, and A + B (only main effects),

and AB (two main effects and interaction). For both transdimensional

MCMC samplers (CC95 = Carlin and Chib 1995; KM98 = Kuo and

Mallick 1998), the posterior distribution of the Markov model included

the correct reference values (vertical black lines) with high probabil-

ity. In contrast, the i.i.d. model underestimated estimation uncertainty

and posterior distributions did not include the target values with high

probability

z(t) are sampled independently resulted in overconfidence in

the point estimates of the CC95 approach. For all models,

the corresponding posterior distributions missed the correct

value and did not identify this estimation uncertainty. This

shows the importance of assessing the dependency in the

samples z(t) in order to judge the estimation uncertainty

for the estimated posterior model probabilities. As a rem-

edy, the proposed Markov approach resulted in a posterior

distribution that covered the target values with high probabil-

ity. Moreover, the novel estimation method revealed that the

KM98 implementation had a higher precision compared to

the CC95 approach, which was likely due to the (intention-

ally not optimized) choice of the pseudo-priors in the latter

method. Hence, the Markov model allows comparison of the

estimation uncertainty of different transdimensional MCMC

methods for the model probabilities π .

To test the validity of the proposed method more rigor-

ously, we replicated the previous analysis 500 times. Thereby,

the estimated precision can be compared against the actual

sampling variability of the estimated model probabilities.

For both transdimensional MCMC methods, Table 2 shows

the mean estimated model probabilities in percent. Across

replications, the point estimates (posterior means) from the

Markov and the i.i.d. approach were very similar with a

median absolute difference of 0.03% and 0.31% for the

KM98 and CC95 implementations, respectively. To judge

whether the estimated precision (i.e., the mean posterior stan-

dard deviations SDiid and SDMarkov) is valid, Table 2 shows

the empirical SD of the estimates π̂ across replications. The

results show that the assumption of independent samples z(t)

leads to an overconfident assessment of the precision for the

estimated model probabilities, SDiid ≪ SD(π̂), which is

especially severe for the less efficient CC95 implementation.

In contrast, the Markov approach provided good estimates of

the actual estimation uncertainty, SDMarkov ≈ SD(π̂). More-

over, for the MCMC method by Carlin and Chib (1995),

the larger SDs indicate a smaller efficiency compared to the

unconditional prior approach by Kuo and Mallick (1998).

This theoretically expected result is due to the suboptimal

choice of pseudo-priors. However, note that this difference

in efficiency may be overlooked when merely computing rel-

ative proportions based on the sampled indexing variable z(t)

(i.e., when implicitly assuming independent samples).

The higher efficiency of the KM98 approach becomes

even clearer when assessing the median of the estimated

effective sample size, which was 2043 for the KM98

approach compared to only 65 for the CC95 method. As dis-

cussed above, commonly used estimators of effective sample

size for continuous parameters (e.g., Plummer et al. 2006)

should not be applied to the discrete model-indexing vari-
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Table 2 Estimated posterior

model probabilities in percent Model Kuo and Mallick (1998) Carlin and Chib (1995)

Mean(π̂) SD(π̂) SDiid SDMarkov Mean(π̂) SD(π̂) SDiid SDMarkov

1 0.51 0.24 0.07 0.16 0.57 0.35 0.06 0.39

A 49.28 1.38 0.50 1.22 48.55 7.14 0.49 6.92

B 1.14 0.44 0.10 0.26 1.26 0.63 0.10 0.73

A + B 43.85 1.25 0.50 1.10 43.61 7.41 0.49 7.19

AB 5.22 0.37 0.22 0.34 6.00 3.38 0.21 3.82

Posterior model probability estimates π̂ are shown in percent. Mean(π̂) and SD(π̂) were

computed across 500 replications. As a measure for the estimated precision, means of the

posterior SD are shown (SDiid assumes independent sampling; SDMarkov assumes a Markov

chain model)

Fig. 4 Effective sample size as

estimated by the spectral density

at zero (Plummer et al. 2006) for

all permutations of the model

indices for a given MCMC

output z(t) (based on 10,000

samples of the method by Kuo

and Mallick 1998)

Markov approach
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able z because they depend on the arbitrary numerical labels

used for the models. If such methods are applied nevertheless,

the resulting estimate for the effective sample size cannot be

interpreted because it is not invariant under permutations of

the arbitrary model indices used for the discrete parameter z.

To illustrate this, Fig. 4 shows the distribution of the estimated

effective sample size when applying the spectral decomposi-

tion available in the R package coda (Plummer et al. 2006)

to all 120 permutations of the model indices (1, . . . , 5) for

a fixed sequence z(t). Since this method incorrectly assumes

that the discrete variable z is continuous, the estimated effec-

tive sample size was not invariant, but varied considerably

depending on the specific labeling of the models (gray his-

togram). In contrast, the proposed Markov approach resulted

in a well-defined, invariant estimate T̂eff = 1921 (vertical

black line) by explicitly accounting for the discreteness of z.

Finally, we show that the posterior samples π (t) of the

model MMarkov can directly be used to assess the uncer-

tainty of Bayes factor estimates. For instance, substantive

applications could be interested in testing whether to include

the interaction term of condition (A) and treatment (B) in

a logistic regression model. Given the output of a single

MCMC run with 10,000 samples, Fig. 5 shows the resulting

posterior distribution of the Bayes factor BA+B,AB in favor

for the absence of an interaction. Similar to the posterior

model probabilities, the i.i.d. approach resulted in overcon-

fidence regarding the estimate and most of the probability

mass excluded the correct value 8.51 (approximated with a

precision of SD = 0.020). In contrast, the Markov approach

corrected for dependencies in the samples z(t) and included

the correct value. The same pattern emerged across the 500

replications, that is, the mean estimated SD of the Bayes

factor approximated the corresponding empirical SD of the

Bayes factor estimates (KM98: 0.56 vs. 0.60; CC95: 74.7 vs.

114.3). When using transdimensional MCMC, Bayes fac-

tors cannot be expected to be reliably estimated if models

are never or very infrequently sampled (e.g., Model 1 in

Table 2). For instance, the Bayes factor BA,B ≈ 43.8 was esti-

mated very imprecisely even in the KM98 approach (mean

SD = 13.0; empirical SD = 24.3). To obtain more precise

Bayes factor estimates in the presence of infrequently sam-

pled models, it is recommended to rerun the transdimensional

MCMC chain including only the two relevant models of inter-

est (Lodewyckx et al. 2011).
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Fig. 5 Posterior distribution for the Bayes factor in favor of Model

A + B (only main effects) versus AB (two main effects and interaction).

The vertical black line shows the target value estimated using two differ-

ent transdimensional MCMC samplers (CC95 = Carlin and Chib 1995;

KM98 = Kuo and Mallick 1998). In contrast to the Markov model, the

i.i.d. model incorrectly assumes independence and thus overestimated

estimation uncertainty

5 Log-linear models for a 26 contingency
table

The application of the proposed method is also feasible in

realistic scenarios with hundreds of sampled models. To illus-

trate this, we reanalyzed the 26 complete contingency table

by Edwards and Havránek (1985), which includes six risk

factors for coronary heart disease (i.e., smoking, strenuous

mental work, strenuous physical work, systolic blood pres-

sure, ratio of α and β lipoproteins, and family anamnesis

of coronary heart disease). We are interested in finding the

most parsimonious log-linear model, which accounts for the

cell frequencies y j of cell j ( j = 1, . . . , 26) by assuming a

Poisson distribution with mean μ j and

log μ j = φ + x⊤
j β, (8)

where φ is the intercept, β the vector of regression param-

eters, and x⊤
j the (transposed) design vector, which selects

the elements of β included for modeling cell j . Here, we

consider the class of hierarchical log-linear models that only

allow the inclusion of an interaction if the corresponding

marginal effects and lower interaction terms are included in

the model as well (e.g., Overstall and King 2014b).

To select between all 7.8 million possible hierarchical log-

linear models (Dellaportas and Forster 1999), we used the

reversible jump algorithm proposed by Forster et al. (2012),

which is implemented in the R package conting (Over-

stall and King 2014a). Assuming a unit information prior

(Ntzoufras et al. 2003), we sampled 100,000 iterations, dis-

carded 10,000 as burn-in, and applied the proposed Markov

chain method by drawing R = 5000 samples for the pos-

terior model probabilities of the I ∗ sampled models. To

assess whether the estimated uncertainty accurately quan-

tifies sampling variability, we ran 200 replications initialized

with randomly chosen models.

Across replications, 5805 models were sampled (on aver-

age, 562.7 per replication). Table 3 shows the results for the

10 models with the highest posterior probabilities. All of

these 10 models included the six main effects (A: smok-

ing, B: strenuous mental work, C: strenuous physical work,

D: systolic blood pressure, E: ratio of α and β lipoproteins,

F: family anamnesis of coronary heart disease) and the first-

order interactions AC, AD, AE, BC, and DE, but differed with

respect to including the remaining interactions. Despite the

large number of iterations, the estimation uncertainty (i.e.,

the posterior SD) of the posterior model probabilities was

relatively large, indicating that the samples z(t) were auto-

correlated to a substantial degree. This is also reflected by the

effective sample size, which was estimated to be T̂eff = 4259

on average (SD = 181), approximately 5% of the number of

iterations after burn-in.

Table 3 also shows means and standard deviations of the

sampled model rank τ for the models with the highest poste-

rior probability, indicating that estimation uncertainty (i.e.,

the posterior SD) increased for models with smaller poste-

rior probabilities. Moreover, the proportion of replications

is shown for which the sampled rank τ was identical to the

model index (τ = #) and smaller than or equal to 10 (τ ≤ 10).

According to these proportions, exact ranks were estimated

precisely only for the two best models, whereas the set of the

10 models with highest posterior probabilities was relatively

stable across posterior samples (with the exception of model

10). Importantly, the Markov approach provided mean esti-

mated probabilities P(τ = #) and P(τ ≤ 10) that matched

the corresponding empirical proportions across replications.

Note that these results regarding estimation uncertainty

are in line with our expectations—if models have small pos-

terior probabilities, they are also sampled infrequently, which

in turn results in estimation uncertainty. To quantify this vari-

ability, the proposed Markov chain approach provides an

estimate for the achieved precision to assess the quality of the

results and to find an appropriate stopping rule for MCMC

sampling.

6 Conclusion

We proposed a novel approach for estimating the pre-

cision of transdimensional MCMC output. Essentially, a

first-order Markov model is fitted to the observed model-

indexing variable z(t) to quantify estimation uncertainty of

the corresponding stationary distribution. We showed that the

method accounts for autocorrelation in a given sequence z(t)
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Table 3 Models with the highest posterior probability for the 26 contingency table

# Model Posterior model probabilities π Rank τ

Mean(π̂) SD(π̂) SDiid SDMarkov Mean(τ ) SD(τ ) SD(τ ) τ = # P(τ = #) τ ≤ 10 P(τ ≤ 10)

1 CE 18.78 1.34 0.13 1.02 1.00 0.00 0.03 1.00 1.00 1.00 1.00

2 BE 11.92 0.94 0.11 0.84 2.00 0.00 0.04 1.00 1.00 1.00 1.00

3 BE + CE 7.12 1.11 0.09 0.43 3.34 0.61 0.37 0.72 0.78 1.00 1.00

4 BF + CE 6.57 1.20 0.08 0.52 3.94 0.84 0.42 0.71 0.75 1.00 1.00

5 BE + BF 4.20 0.85 0.07 0.41 5.42 1.59 0.21 0.92 0.93 0.96 0.99

6 CE + EF 2.77 0.50 0.06 0.33 6.80 1.71 0.58 0.62 0.65 0.94 1.00

7 BE + BF + CE 2.53 0.60 0.05 0.24 8.24 5.64 0.54 0.58 0.66 0.92 1.00

8 CE + ADE 1.88 0.30 0.05 0.25 8.72 1.35 0.80 0.47 0.56 0.95 0.95

9 BE + EF 1.76 0.38 0.04 0.26 9.43 3.21 0.88 0.45 0.54 0.92 0.93

10 BE + ADE 1.19 0.22 0.04 0.19 12.05 3.11 1.40 0.32 0.39 0.39 0.56

All of the 10 models include the six main effects, A: smoking, B: strenuous mental work, C: strenuous physical work, D:

systolic blood pressure, E: ratio of α and β lipoproteins, F: family anamnesis of coronary heart disease, and the first-order

interactions AC, AD, AE, BC, and DE. Posterior model probabilities π are shown in percent. Mean(π̂), SD(π̂), Mean(τ ),

and SD(τ ) were computed across 200 replications. The columns τ = # and τ ≤ 10 refer to the proportion of replications for

which the model rank τ was (a) equal to the model index # or (b) smaller than or equal to 10

and provides a good assessment of estimation uncertainty.

Importantly, the method does not require output of multiple

independent MCMC chains and thus reduces the computa-

tional costs for adaption and burn-in. Besides being useful

for transdimensional MCMC output, the method provides an

estimate of the precision and effective sample size of dis-

crete parameters in MCMC samplers in general. Thereby,

researchers can easily decide whether the obtained precision

is sufficiently high for substantive applications of interest.
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Appendix: Estimating the shape parameters
of a Dirichlet distribution

In the following, we outline the fixed-point algorithm pro-

posed by Minka (2000) to estimate the vector of shape

parameters α = (α1, . . . , αI )
⊤ of a Dirichlet distribution.

Given a set of R probability vectors π (r) (in the proposed

method, these are the derived samples of the posterior model

probabilities), the likelihood function of the shape parame-

ters α is

L (α) =

R∏

r=1

[
Ŵ

(∑
i αi

)
∏

i Ŵ(αi )

∏

i

(
π

(r)
i

)αi −1
]

. (9)

To maximize this likelihood function, Minka (2000) devel-

oped an efficient fixed-point algorithm and proved its con-

vergence to the unique maximum likelihood estimate α̂. The

computational steps are outlined in Algorithm 2. At its core,

the current estimates αi are updated in line 8 by using the

digamma function � and its inverse �−1. As remarked by

Minka (2000), the algorithm converges very fast even for a

large number of shape parameters I (e.g., 80 ms on an Intel®

i7-7700HQ for I = 1000).

Algorithm 2 Estimating the shape parametersα of a Dirichlet

distribution.

1: procedure Dirichlet Estimation (Minka 2000)

2: Compute µ: μi ← 1
R

∑R
r=1 log π

(r)
i

3: Set starting values α with αi > 0 for all i = 1, . . . , I

4: Set absolute tolerance ǫ > 0 and δ ← ∞

5: while δ > ǫ do

6: α′ ← α

7: for i = 1, . . . , I do

8: αi ← �−1
(
�(

∑
j α′

j ) + μi

)

9: δ ← ||α′ − α||

10: return α
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