Package 'MARSANNhybrid'

January 20, 2025

Type Package		
Title MARS Based ANN Hybrid Model		
Version 0.1.0		
Author Pankaj Das [aut, cre], Achal Lama [aut], Girish Kumar Jha [aut]		
Maintainer Pankaj Das <pankaj.das2@icar.gov.in></pankaj.das2@icar.gov.in>		
Depends R (>= 3.3.0), neuralnet, earth, stats		
Description Multivariate Adaptive Regression Spline (MARS) based Artificial Neural Net- work (ANN) hybrid model is combined Machine learning hybrid approach which selects impor- tant variables using MARS and then fits ANN on the extracted important variables.		
Encoding UTF-8		
LazyData true		
License GPL-3		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2021-01-14 09:40:11 UTC		

Contents

	MARSANNhybrid	1
Index		3

MARSANNhybrid MARS based ANN Hybrid Model

Description

MARSANNhybrid model is combined machine learning hybrid approach of MARS and ANN.

Usage

MARSANNhybrid(Data,k,deg,h,r)

Arguments

Data	A Multivariate data in regression framework, with first column as Y (dependent variable) and remaining colums as X (independent variables).
k	Partition value for spliting the data set into training and testing.
deg	Degree of Multivariate Adaptive Regression Spline model to be used for model building.
h	Total number of hidden nodes.
r	Replications used for neural network training.

Details

MARSANNhybrid uses the combined hybrid approach proposed by Das (2019). MARS model identify the important variables from a multivariate dataset based on GCV and RSS values. The prediction model is built using ANN model based on these selected important variables. Further this predictive model is used for prediction the dependent variables.

Value

It returns the accuracy measures of the fitted Machine learning hybrid model and the plot of the best fitted neural network.

Author(s)

Pankaj Das, Achal Lama, Girish Kumar Jha

References

Das (2019)<http://krishikosh.egranth.ac.in/handle/1/5810147805>

See Also

earth,neuralnet

Examples

```
data(iris)
MARSANNhybrid(iris[,1:4],0.9,2,1,2)
```

Index

* ANN MARSANNhybrid, 1
* Hybrid MARSANNhybrid, 1
* MARS MARSANNhybrid, 1
* Machine learning MARSANNhybrid, 1

MARSANNhybrid, 1