Package ‘LocaTT’

January 20, 2025

Title Geographically-Conscious Taxonomic Assignment for Metabarcoding
Version 1.1.2

Description A bioinformatics pipeline for performing taxonomic
assignment of DNA metabarcoding sequence data while considering
geographic location. A detailed tutorial is available at
<https://urodelan.github.io/Local_Taxa_Tool_Tutorial/>.
A manuscript describing these methods is in preparation.

License GPL (>=3)
URL https://github.com/Urodelan/LocaTT

BugReports https://github.com/Urodelan/LocaTT/issues
Encoding UTF-8

RoxygenNote 7.2.3

Imports utils, stats

Suggests taxize

NeedsCompilation no

Author Kenen Goodwin [aut, cre] (<https://orcid.org/0000-0002-9219-7693>),
Taal Levi [aut]

Maintainer Kenen Goodwin <urodelan@gmail.com>
Repository CRAN
Date/Publication 2024-09-05 05:00:05 UTC

Contents

binomial_test L s
blast_command_found
blast_version e e e
contains_wildcards L e
decode_quality_scores e
format_reference_database
get_CONSENSUS_taXonomy o v v v i e e e e e e e e

https://urodelan.github.io/Local_Taxa_Tool_Tutorial/
https://github.com/Urodelan/LocaTT
https://github.com/Urodelan/LocaTT/issues
https://orcid.org/0000-0002-9219-7693

binomial_test

get_taxonomic_level 8
get_taxonomies.JUCN L 9
get_taxonomies.species_binomials 0oL 10
isolate_amplicon L. 11
local_taxa_tool e e e e e 12
METZE_PAITS . .« v v v v v e 16
read.fasta L L L e 17
readfastq 17
reverse_complement Lol e 18
substitute_wildcards L 19
HM_SEQUENCES . . . v v v v e v e e e e e e e e e e e e e e e e 19
truncate_sequences.dength L 21
truncate_sequences.probability oL oo 22
truncate_sequences.quality_scoreo 23
write.fasta L e e e 24
write.fastq e e 25

Index 26

binomial_test Binomial Test
Description

Performs binomial tests.

Usage

binomial_test(k, n, p, alternative = "greater")

Arguments
k A numeric vector of the number of successes.
n A numeric vector of the number of trials.
p A numeric vector of the hypothesized probabilities of success.
alternative A string specifying the alternative hypothesis. Must be "less"” or "greater”
(the default).
Details

Calls on the pbinom function in the stats package to perform vectorized binomial tests. Arguments
are recycled as in pbinom. Only one-sided tests are supported, and only p-values are returned.

Value

A numeric vector of p-values from the binomial tests.

blast_ command_found 3

Examples

binomial_test(k=c(5,1,7,4),
n=c(10,3,15,5),
p=c(0.2,0.1,0.5,0.6),
alternative="greater")

blast_command_found Check BLAST Installation

Description

Checks whether a BLAST program can be found.

Usage

blast_command_found(blast_command)

Arguments

blast_command String specifying the path to a BLAST program.

Value

Logical. Returns TRUE if the BLAST program could be found.

Examples

blast_command_found(blast_command="blastn")

blast_version Get BLAST Version

Description

Gets the version of a BLAST program.

Usage

blast_version(blast_command = "blastn”)

Arguments

blast_command String specifying the path to a BLAST program. The default ('blastn') should
return the version of the blastn program for standard BLAST installations. The
user can provide a path to a BLAST program for non-standard BLAST installa-
tions.

4 decode_quality_scores

Value

Returns a string of the version of the BLAST program.

Examples

blast_version()

contains_wildcards Check Whether DNA Sequences Contain Wildcard Characters

Description

Checks whether DNA sequences contain wildcard characters.

Usage

contains_wildcards(sequences)

Arguments

sequences A character vector of DNA sequences.

Value

A logical vector indicating whether each DNA sequence contains wildcard characters.

Examples

contains_wildcards(sequences=c("TKCTAGGTGW","CATAATTAGG" , "ATYGGCTATG"))

decode_quality_scores Decode DNA Sequence Quality Scores

Description

Decodes Phred quality scores in Sanger format from symbols to numeric values.

Usage

decode_quality_scores(symbols)

Arguments

symbols A string containing quality scores encoded as symbols in Sanger format.

format_reference_database 5

Value

A numeric vector of Phred quality scores.

Examples

decode_quality_scores(symbols="989!.C;Fe\"")

format_reference_database
Format Reference Databases

Description

Formats reference databases from MIDORI or UNITE for use with the local_taxa_tool function.

Usage

format_reference_database(
path_to_input_reference_database,
path_to_output_BLAST_database,
input_reference_database_source = "MIDORI",
path_to_taxonomy_edits = NA,
path_to_sequence_edits = NA,
path_to_list_of_local_taxa_to_subset = NA,
makeblastdb_command = "makeblastdb”

Arguments

path_to_input_reference_database
String specifying path to input reference database in FASTA format.

path_to_output_BLAST_database
String specifying path to output BLAST database in FASTA format. File path
cannot contain spaces.

input_reference_database_source
String specifying input reference database source ('MIDORI' or 'UNITE'). The
default is 'MIDORI'.

path_to_taxonomy_edits
String specifying path to taxonomy edits file in CSV format. The file must
contain the following fields: *Old_Taxonomy’, ’'New_Taxonomy’, ’Notes’. Old
taxonomies are replaced with new taxonomies in the order the records appear
in the file. The taxonomic levels in the *Old_Taxonomy’ and ’New_Taxonomy’
fields should be delimited by a semi-colon. If no taxonomy edits are desired,
then set this variable to NA (the default).

6 format_reference_database

path_to_sequence_edits
String specifying path to sequence edits file in CSV format. The file must
contain the following fields: ’Action’, ’Common_Name’, ’Domain’, ’Phylum’,
"Class’, *Order’, "Family’, ’Genus’, ’Species’, ’Sequence’, ’Notes’. The val-
ues in the ’Action’ field must be either ’Add’ or ’Remove’, which will add
or remove the respective sequence from the reference database. Values in the
’Common_Name’ field are optional. Values should be supplied to all taxonomy
fields. If using a reference database from MIDORI, then use NCBI superk-
ingdom names (e.g., ’Eukaryota’) in the 'Domain’ field. If using a reference
database from UNITE, then use kingdom names (e.g., ’Fungi’) in the "Domain’
field. The ’Species’ field should contain species binomials. Sequence edits are
performed after taxonomy edits, if applied. If no sequence edits are desired,
then set this variable to NA (the default).

path_to_list_of_local_taxa_to_subset
String specifying path to list of species (in CSV format) to subset the reference
database to. This option is helpful if the user wants the reference database to
include only the sequences of local species. The file should contain the follow-
ing fields: ’Common_Name’, ’Domain’, ’Phylum’, *Class’, ’Order’, ’Family’,
’Genus’, ’Species’. There should be no ’NA’s or blanks in the taxonomy fields.
The species field should contain the binomial name without subspecies or other
information below the species level. There should be no duplicate species (i.e.,
multiple records with the same species binomial and taxonomy) in the species
list. Subsetting the reference database to the sequences of certain species is per-
formed after taxonomy and sequence edits are applied to the reference database,
and species must match at all taxonomic levels in order to be retained in the ref-
erence database. If subsetting the reference database to the sequences of certain
species is not desired, set this variable to NA (the default).

makeblastdb_command
String specifying path to the makeblastdb program, which is a part of BLAST.
The default ('makeblastdb') should work for standard BLAST installations.
The user can provide a path to the makeblastdb program for non-standard BLAST
installations.

Value

No return value. Writes formatted BLAST database files.

Examples

Get path to example reference sequences FASTA file.
path_to_input_file<-system.file("extdata",
"example_reference_sequences.fasta”,
package="LocaTT",
mustWork=TRUE)

Create a temporary file path for the output reference database FASTA file.
path_to_output_file<-tempfile(fileext=".fasta")

Format reference database.
format_reference_database(path_to_input_reference_database=path_to_input_file,

get_consensus_taxonomy 7

path_to_output_BLAST_database=path_to_output_file)

get_consensus_taxonomy

Get Consensus Taxonomy from Taxonomic Strings

Description

Gets the consensus taxonomy from a vector of taxonomic strings.

Usage
get_consensus_taxonomy(taxonomies, full_names = TRUE, delimiter = ";")
Arguments
taxonomies A character vector of taxonomic strings.
full_names Logical. If TRUE (the default), then the full consensus taxonomy is returned.
If FALSE, then only the lowest taxonomic level of the consensus taxonomy is
returned.
delimiter A character string of the delimiter between taxonomic levels in the input tax-
onomies. The defaultis ";".
Value

A character string containing the taxonomy agreed upon by all input taxonomies. If the input
taxonomies are not the same at any taxonomic level, then NA is returned.

Examples

get_consensus_taxonomy(taxonomies=
c("Eukaryota;Chordata;Amphibia;Caudata;Ambystomatidae;Ambystoma;Ambystoma_mavortium”,
"Eukaryota;Chordata;Amphibia;Anura;Bufonidae;Anaxyrus;Anaxyrus_boreas”,
"Eukaryota;Chordata;Amphibia;Anura;Ranidae;Rana;Rana_luteiventris"”),
full_names=TRUE,
delimiter=";")

8 get_taxonomic_level

get_taxonomic_level Get Specified Taxonomic Level from Taxonomic Strings

Description

Gets the specified taxonomic level from a vector of taxonomic strings.

Usage
get_taxonomic_level(taxonomies, level, full_names = TRUE, delimiter = ";")
Arguments
taxonomies A character vector of taxonomic strings.
level A numeric value representing the taxonomic level to be extracted. A value of 1
retrieves the highest taxonomic level (e.g., domain) from the input taxonomies,
with each sequentially higher value retrieving sequentially lower taxonomic lev-
els. @ is a special value which retrieves the lowest taxonomic level available in
the input taxonomies.
full_names Logical. If TRUE (the default), then full taxonomies are returned down to the
requested taxonomic level. If FALSE, then only the requested taxonomic level is
returned.
delimiter A character string of the delimiter between taxonomic levels in the input tax-
onomies. The defaultis ";".
Value

A character vector containing the requested taxonomic level for each element of the input tax-
onomies.

Examples

get_taxonomic_level (taxonomies=
c("Eukaryota;Chordata;Amphibia;Caudata; Ambystomatidae; Ambystoma;Ambystoma_mavortium”,
"Eukaryota;Chordata;Amphibia;Anura;Bufonidae;Anaxyrus;Anaxyrus_boreas”,
"Eukaryota;Chordata;Amphibia;Anura;Ranidae;Rana;Rana_luteiventris”),
level=5,
full_names=TRUE,

n,.n

delimiter=";")

get_taxonomies. JUCN 9

get_taxonomies.IUCN Get Taxonomies from IUCN Red List Files

Description

Formats taxonomies from IUCN Red List taxonomy.csv and common_names.csv files for use with
the local_taxa_tool function.

Usage

get_taxonomies.IUCN(
path_to_IUCN_taxonomies,
path_to_IUCN_common_names,
path_to_output_local_taxa_list,

domain_name = "Eukaryota",
path_to_taxonomy_edits = NA
)
Arguments

path_to_IUCN_taxonomies

String specifying path to input [IUCN Red List taxonomy.csv file.
path_to_IUCN_common_names

String specifying path to input [IUCN Red List common_names.csv file.
path_to_output_local_taxa_list

String specifying path to output species list (in CSV format) with formatted
taxonomies.

domain_name String specifying the domain name to use for all species. The IUCN Red List
files do not include domain information, so a domain name must be provided.
If using a reference database from UNITE, provide a kingdom name here (e.g.,
'"Fungi'). The default is 'Eukaryota’.

path_to_taxonomy_edits
String specifying path to taxonomy edits file in CSV format. The file must
contain the following fields: *Old_Taxonomy’, ’New_Taxonomy’, 'Notes’. Old
taxonomies are replaced with new taxonomies in the order the records appear
in the file. The taxonomic levels in the *Old_Taxonomy’ and ’New_Taxonomy’
fields should be delimited by a semi-colon. If no taxonomy edits are desired,
then set this variable to NA (the default).

Value

No return value. Writes an output CSV file with formatted taxonomies.

See Also

get_taxonomies.species_binomials for remotely fetching NCBI taxonomies from species bi-
nomials.

10 get_taxonomies.species_binomials

Examples

Get path to example taxonomy CSV file.

path_to_taxonomy_file<-system.file("extdata”,
"example_taxonomy.csv",
package="LocaTT",
mustWork=TRUE)

Get path to example common names CSV file.

path_to_common_names_file<-system.file("extdata",
"example_common_names.csv”,
package="LocaTT",
mustWork=TRUE)

Create a temporary file path for the output CSV file.
path_to_output_file<-tempfile(fileext=".csv")

Format common names and taxonomies.

get_taxonomies.IUCN(path_to_IUCN_taxonomies=path_to_taxonomy_file,
path_to_IUCN_common_names=path_to_common_names_file,
path_to_output_local_taxa_list=path_to_output_file)

get_taxonomies.species_binomials
Get NCBI Taxonomies from Species Binomials

Description

Remotely fetches taxonomies from the NCBI taxonomy database for a list of species binomials.

Usage

get_taxonomies.species_binomials(
path_to_input_species_binomials,
path_to_output_local_taxa_list,
path_to_taxonomy_edits = NA,
print_taxize_queries = TRUE

Arguments

path_to_input_species_binomials
String specifying path to input species list with common and scientific names.
The file should be in CSV format and contain the following fields: ’Com-
mon_Name’, *Scientific. Name’. Values in the ’"Common_Name’ field are op-
tional. Values in the ’Scientific_Name’ field are required.
path_to_output_local_taxa_list
String specifying path to output species list with added NCBI taxonomies. The
output file will be in CSV format.

isolate_amplicon 11

path_to_taxonomy_edits
String specifying path to taxonomy edits file in CSV format. The file must
contain the following fields: Old_Taxonomy’, 'New_Taxonomy’, ’Notes’. Old
taxonomies are replaced with new taxonomies in the order the records appear
in the file. The taxonomic levels in the *Old_Taxonomy’ and ’New_Taxonomy’
fields should be delimited by a semi-colon. If no taxonomy edits are desired,
then set this variable to NA (the default).

print_taxize_queries
Logical. Whether taxa queries should be printed. The default is TRUE.

Value

No return value. Writes an output CSV file with added taxonomies.

See Also

get_taxonomies. IUCN for formatting taxonomies from the [UCN Red List.

Examples

Get path to example input species binomials CSV file.

path_to_input_file<-system.file("extdata",
"example_species_binomials.csv"”,
package="LocaTT",
mustWork=TRUE)

Create a temporary file path for the output CSV file.
path_to_output_file<-tempfile(fileext=".csv"

Fetch taxonomies from species binomials.

get_taxonomies.species_binomials(path_to_input_species_binomials=path_to_input_file,
path_to_output_local_taxa_list=path_to_output_file,
print_taxize_queries=FALSE)

isolate_amplicon Trim DNA Sequences to an Amplicon Region Using Forward and Re-
verse Primer Sequences

Description
Trims DNA sequences to an amplicon region using forward and reverse primer sequences. Am-
biguous nucleotides in forward and reverse primers are supported.

Usage

isolate_amplicon(sequences, forward_primer, reverse_primer)

12 local taxa tool

Arguments

sequences A character vector of DNA sequences to trim to the amplicon region.

forward_primer A string specifying the forward primer sequence. Can contain ambiguous nu-
cleotides.

reverse_primer A string specifying the reverse primer sequence. Can contain ambiguous nucle-
todies.

Details

For each DNA sequence, nucleotides matching and preceding the forward primer are removed,
and nucleotides matching and following the reverse complement of the reverse primer are removed.
The reverse complement of the reverse primer is internally derived from the reverse primer using the
reverse_complement function. Ambiguous nucleotides in primers (i.e., the forward and reverse
primer arguments) are supported through the internal use of the substitute_wildcards function
on the forward primer and the reverse complement of the reverse primer, and primer regions in
DNA sequences are located using regular expressions. Trimming will fail for DNA sequences
which contain ambiguous nucleotides in their primer regions (e.g., Ns), resulting in NAs for those
sequences.

Value

A character vector of DNA sequences trimmed to the amplicon region. NAs are returned for DNA
sequences which could not be trimmed, which occurs when either primer region is missing from
the DNA sequence or when the forward primer region occurs after a region matching the reverse
complement of the reverse primer.

Examples

isolate_amplicon(sequences=c("ACACAATCGTGTTTATATTAACTTCAAGAGTGGGCATAGG" ,
"CGTGACAATCATGTTTGTGATTCGTACAAAAGTGCGTCCT"),
forward_primer="AATCRTGTTT",
reverse_primer="CSCACTHTTG")

local_taxa_tool Perform Geographically-Conscious Taxonomic Assignment

Description

Performs taxonomic assignment of DNA metabarcoding sequences while considering geographic
location.

local taxa tool

Usage

13

local_taxa_tool(
path_to_sequences_to_classify,
path_to_BLAST_database,
path_to_output_file,
path_to_list_of_local_taxa = NA,
include_missing = FALSE,

blast_e_value

= 1e-05,

blast_max_target_seqs = 2000,
blast_task = "megablast”,

full_names = FALSE,
underscores = FALSE,
separator = ", ",
blastn_command = "blastn”
)
Arguments

path_to_sequences_to_classify

String specifying path to FASTA file containing sequences to classify. File path
cannot contain spaces.

path_to_BLAST_database

String specifying path to BLAST reference database in FASTA format. File path
cannot contain spaces.

path_to_output_file

String specifying path to output file of classified sequences in CSV format.

path_to_list_of_local_taxa

include_missing

blast_e_value

String specifying path to list of local species in CSV format. The file should
contain the following fields: *’Common_Name’, "Domain’, ’Phylum’, *Class’,
’Order’, "Family’, Genus’, ’Species’. There should be no "NA’s or blanks in
the taxonomy fields. The species field should contain the binomial name with-
out subspecies or other information below the species level. There should be
no duplicate species (i.e., multiple records with the same species binomial and
taxonomy) in the local species list. If local taxa suggestions are not desired, set
this variable to NA (the default).

Logical. If TRUE, then additional fields are included in the output CSV file in
which local sister taxonomic groups without reference sequences are added to
the local taxa suggestions. If FALSE (the default), then this is not performed.

Numeric. Maximum E-value of returned BLAST hits (lower E-values are asso-
ciated with more ’significant’ matches). The default is 1e-05.

blast_max_target_seqs

Numeric. Maximum number of BLAST target sequences returned per query
sequence. Enough target sequences should be returned to ensure that all mini-
mum E-value matches are returned for each query sequence. A warning will be
produced if this value is not sufficient. The default is 2000.

14

local taxa tool

blast_task String specifying BLAST task specification. Use 'megablast' (the default) to

find very similar sequences (e.g., intraspecies or closely related species). Use
'blastn-short' for sequences shorter than 50 bases. See the blastn program
help documentation for additional options and details.

full_names Logical. If TRUE, then full taxonomies are returned in the output CSV file. If

FALSE (the default), then only the lowest taxonomic levels (e.g., species bino-
mials instead of the full species taxonomies) are returned in the output CSV
file.

underscores Logical. If TRUE, then taxa names in the output CSV file use underscores instead

of spaces. If FALSE (the default), then taxa names in the output CSV file use
spaces.

separator String specifying the separator to use between taxa names in the output CSV

file. The defaultis ', '.

blastn_command String specifying path to the blastn program. The default ('blastn') should

Details

work for standard BLAST installations. The user can provide a path to the
blastn program for non-standard BLAST installations.

Sequences are BLASTed against a global reference database, and the tool suggests locally occurring
species which are most closely related (by taxonomy) to any of the best-matching BLAST hits (by
bit score). Optionally, local sister taxonomic groups without reference sequences can be added to
the local taxa suggestions by setting the include_missing argument to TRUE. If a local taxa list
is not provided, then local taxa suggestions will be disabled, but all best-matching BLAST hits
will still be returned. Alternatively, a reference database containing just the sequences of local
species can be used, and local taxa suggestions can be disabled to return all best BLAST matches of
local species. The reference database should be formatted with the format_reference_database
function, and the local taxa lists can be prepared using the get_taxonomies.species_binomials
and get_taxonomies. IUCN functions. Output field definitions are:

Sequence_name: The query sequence name.
Sequence: The query sequence.

Best_match_references: Species binomials of all best-matching BLAST hits (by bit score)
from the reference database.

Best_match_E_value: The E-value associated with the best-matching BLAST hits.
Best_match_bit_score: The bit score associated with the best-matching BLAST hits.
Best_match_query_cover.mean: The mean query cover of all best-matching BLAST hits.

Best_match_query_cover.SD: The standard deviation of query cover of all best-matching
BLAST hits.

Best_match_PID.mean: The mean percent identity of all best-matching BLAST hits.

Best_match_PID.SD: The standard deviation of percent identity of all best-matching BLAST
hits.

Local_taxa (Field only present if a path to a local taxa list is provided): The finest taxonomic
unit(s) which include both any species of the best-matching BLAST hits and any local species.
If the species of any of the best-matching BLAST hits are local, then the finest taxonomic
unit(s) are at the species level.

local taxa tool 15

* Local_species (Field only present if a path to a local taxa list is provided): Species binomials
of all local species which belong to the taxonomic unit(s) in the Local_taxa field.

* Local_taxa.include_missing (Field only present if both a path to a local taxa list is provided
and the include_missing argument is set to TRUE): Local sister taxonomic groups without
reference sequences are added to the local taxa suggestions from the Local_taxa field.

* Local_species.include_missing (Field only present if both a path to a local taxa list is provided
and include_missing argument is set to TRUE): Species binomials of all local species which
belong to the taxonomic unit(s) in the Local_taxa.include_missing field.

Value

No return value. Writes an output CSV file with fields defined in the details section.

References

A manuscript describing this taxonomic assignment method is in preparation.

Examples

Get path to example query sequences FASTA file.
path_to_query_sequences<-system.file("extdata",
"example_query_sequences. fasta"”,
package="LocaTT",
mustWork=TRUE)

Get path to example reference database FASTA file.

path_to_reference_database<-system.file("extdata"”,
"example_blast_database.fasta”,
package="LocaTT",
mustWork=TRUE)

Get path to example local taxa list CSV file.

path_to_local_taxa_list<-system.file("extdata",
"example_local_taxa_list.csv",
package="LocaTT",
mustWork=TRUE)

Create a temporary file path for the output CSV file.
path_to_output_CSV_file<-tempfile(fileext=".csv")

Run the local taxa tool.

local_taxa_tool (path_to_sequences_to_classify=path_to_query_sequences,
path_to_BLAST_database=path_to_reference_database,
path_to_output_file=path_to_output_CSV_file,
path_to_list_of_local_taxa=path_to_local_taxa_list,
include_missing=TRUE,
full_names=TRUE,
underscores=TRUE)

16 merge_pairs

merge_pairs Merge Forward and Reverse DNA Sequence Reads

Description

Merges forward and reverse DNA sequence reads.

Usage

merge_pairs(forward_reads, reverse_reads, minimum_overlap = 10)

Arguments

forward_reads A character vector of forward DNA sequence reads.

reverse_reads A character vector of reverse DNA sequence reads.

minimum_overlap
Numeric. The minimum length of an overlap that must be found between the
end of the forward read and the start of the reverse complement of the reverse
read in order for a read pair to be merged. The default is 10.

Details

For each pair of forward and reverse DNA sequence reads, the reverse complement of the reverse
read is internally derived using the reverse_complement function, and the read pair is merged
into a single sequence if an overlap of at least the minimum length is found between the end of
the forward read and the start of the reverse complement of the reverse read. If an overlap of the
minimum length is not found, then an NA is returned for the merged read pair.

Value

A character vector of merged DNA sequence read pairs. NAs are returned for read pairs which could
not be merged, which occurs when an overlap of at least the minimum length is not found between
the end of the forward read and the start of the reverse complement of the reverse read.

Examples

merge_pairs(forward_reads=c("CCTTACGAATCCTGT" , "TTCTCCACCCGCGGATA” , "CGCCCGGAGTCCCTGTAGTA"),
reverse_reads=c("GACAAACAGGATTCG" , "CAATATCCGCGGGTG" , "TACTACAGGGACTCC"))

read.fasta 17

read.fasta Read FASTA Files

Description

Reads FASTA files. Supports the reading of FASTA files with sequences wrapping multiple lines.

Usage

read.fasta(file)

Arguments

file A string specifying the path to a FASTA file to read.

Value

A data frame with fields for sequence names and sequences.

See Also

write.fasta for writing FASTA files.
read. fastq for reading FASTQ files.
write. fastq for writing FASTQ files.

Examples

Get path to example FASTA file.
path_to_fasta_file<-system.file("extdata",
"example_query_sequences.fasta”,
package="LocaTT",
mustWork=TRUE)

Read the example FASTA file.
read.fasta(file=path_to_fasta_file)

read.fastq Read FASTQ Files

Description
Reads FASTQ files. Does not support the reading of FASTQ files with sequences or quality scores
wrapping multiple lines.

Usage
read.fastq(file)

18 reverse_complement

Arguments

file A string specifying the path to a FASTQ file to read.

Value

A data frame with fields for sequence names, sequences, comments, and quality scores.

See Also

write.fastq for writing FASTQ files.
read.fasta for reading FASTA files.
write.fasta for writing FASTA files.

Examples

Get path to example FASTQ file.
path_to_fastq_file<-system.file("extdata"”,
"example_query_sequences.fastq”,
package="LocaTT",
mustWork=TRUE)

Read the example FASTQ file.
read.fastq(file=path_to_fastq_file)

reverse_complement Get the Reverse Complement of a DNA Sequence

Description

Gets the reverse complement of a DNA sequence. Ambiguous nucleotides are supported.

Usage

reverse_complement (sequence)

Arguments

sequence A string specifying the DNA sequence. Can contain ambiguous nucleotides.

Value

A string of the reverse complement of the DNA sequence.

Examples

reverse_complement (sequence="TTCTCCASCCGCGGATHTTG")

substitute_wildcards 19

substitute_wildcards Substitute Wildcard Characters in a DNA Sequence

Description

Substitutes wildcard characters in a DNA sequence with their associated nucleotides surrounded by
square brackets. The output is useful for matching in regular expressions.

Usage

substitute_wildcards(sequence)

Arguments

sequence A string specifying the DNA sequence containing wildcard characters.

Value

A string of the DNA sequence in which wildcard characters are replaced with their associated
nucleotides surrounded by square brackets.

Examples

substitute_wildcards(sequence="CAADATCCGCGGSTGGAGAA")

trim_sequences Trim Target Nucleotide Sequence from DNA Sequences

Description

Trims a target nucleotide sequence from the front or back of DNA sequences. Ambiguous nu-
cleotides in the target nucleotide sequence are supported.

Usage

trim_sequences(
sequences,
target,
anchor = "start",
fixed = TRUE,
required = TRUE,
quality_scores

20 trim_sequences

Arguments
sequences A character vector of DNA sequences to trim.
target A string specifying the target nucleotide sequence.
anchor A string specifying whether the target nucleotide sequence should be trimmed

from the start or end of the DNA sequences. Allowable values are "start” (the
default) and "end".

fixed A logical value specifying whether the position of the target nucleotide sequence
should be fixed at the ends of the DNA sequences. If TRUE (the default), then the
position of the target nucleotide sequence is fixed at either the start or end of the
DNA sequences, depending on the value of the anchor argument. If FALSE, then
the target nucleotide sequence is searched for anywhere in the DNA sequences.

required A logical value specifying whether trimming is required. If TRUE (the default),
then sequences which could not be trimmed are returned as NAs. If FALSE, then
untrimmed sequences are returned along with DNA sequences for which trim-
ming was successful.

quality_scores An optional character vector of DNA sequence quality scores. If supplied, these
will be trimmed to their corresponding trimmed DNA sequences.

Details

For each DNA sequence, the target nucleotide sequence is searched for at either the front or back
of the DNA sequence, depending on the value of the anchor argument. If the target nucleotide
sequence is found, then it is removed from the DNA sequence. If the required argument is set to
TRUE, then DNA sequences in which the target nucleotide sequence was not found will be returned
as NAs. If the required argument is set to FALSE, then untrimmed DNA sequences will be returned
along with DNA sequences for which trimming was successful. Ambiguous nucleotides in the
target nucleotide sequence are supported through the internal use of the substitute_wildcards
function on the target nucleotide sequence, and a regular expression with a leading or ending anchor
is used to search for the target nucleotide sequence in the DNA sequences. If the fixed argument
is set to FALSE, then any number of characters are allowed between the start or end of the DNA
sequences and the target nucleotide sequence. Trimming will fail for DNA sequences which contain
ambiguous nucleotides (e.g., Ns) in their target nucleotide sequence region, resulting in NAs for those
sequences if the required argument is set to TRUE.

Value

If quality scores are not provided, then a character vector of trimmed DNA sequences is returned.
If quality scores are provided, then a list containing two elements is returned. The first element is a
character vector of trimmed DNA sequences, and the second element is a character vector of quality
scores which have been trimmed to their corresponding trimmed DNA sequences.

Examples

trim_sequences(sequences=c("ATATAGCGCG", "TGCATATACG", "ATCTATCACCGC"),
target="ATMTA",
anchor="start",
fixed=TRUE,

truncate_sequences.length 21

required=TRUE,
quality_scores=c("989!.C;F@\"" "A((#-#;,2F","HD8I/+67=1>?"))

truncate_sequences.length
Truncate DNA Sequences to Specified Length

Description

Truncates DNA sequences to a specified length.

Usage

truncate_sequences. length(sequences, length, quality_scores)

Arguments
sequences A character vector of DNA sequences to truncate.
length Numeric. The length to truncate DNA sequences to.

quality_scores An optional character vector of DNA sequence quality scores. If supplied, these
will be truncated to their corresponding truncated DNA sequences.

Value

If quality scores are not provided, then a character vector of truncated DNA sequences is returned.
If quality scores are provided, then a list containing two elements is returned. The first element
is a character vector of truncated DNA sequences, and the second element is a character vector of
quality scores which have been truncated to their corresponding truncated DNA sequences.

See Also

truncate_sequences.quality_score for truncating DNA sequences by Phred quality score.
truncate_sequences.probability for truncating DNA sequences by cumulative probability that
all bases were called correctly.

Examples

truncate_sequences. length(sequences=c("ATATAGCGCG","TGCCGATATA", "ATCTATCACCGC"),
length=5,
quality_scores=c("”989!.C;Fe@\"" "A((#-#;,2F","HD8I/+67=1>2"))

22 truncate_sequences.probability

truncate_sequences.probability

Truncate DNA Sequences at Specified Probability that All Bases were
Called Correctly

Description

Calculates the cumulative probability that all bases were called correctly along each DNA sequence
and truncates the DNA sequence immediately prior to the first occurrence of a probability being
equal to or less than a specified value.

Usage

truncate_sequences.probability(sequences, quality_scores, threshold = 0.5)

Arguments

sequences A character vector of DNA sequences to truncate.
quality_scores A character vector of DNA sequence quality scores encoded in Sanger format.

threshold Numeric. The probability threshold used for truncation. The defaultis 0.5 (i.e.,
each trimmed sequence has a greater than 50% probability that all bases were
called correctly).

Value

A list containing two elements. The first element is a character vector of truncated DNA sequences,
and the second element is a character vector of quality scores which have been truncated to their
corresponding truncated DNA sequences.

See Also

truncate_sequences. length for truncating DNA sequences to a specified length.
truncate_sequences.quality_score for truncating DNA sequences by Phred quality score.

Examples

truncate_sequences.probability(sequences=c("ATATAGCGCG", "TGCCGATATA", "ATCTATCACCGC"),
quality_scores=c("”989!.C;Fe\"" "A((#-#;,2F","HD8L/+67=1>?"),
threshold=0.5)

truncate_sequences.quality_score 23

truncate_sequences.quality_score
Truncate DNA Sequences at Specified Quality Score

Description

Truncates DNA sequences immediately prior to the first occurrence of a Phred quality score being
equal to or less than a specified value.

Usage

truncate_sequences.quality_score(sequences, quality_scores, threshold = 3)

Arguments

sequences A character vector of DNA sequences to truncate.
quality_scores A character vector of DNA sequence quality scores encoded in Sanger format.

threshold Numeric. The Phred quality score threshold used for truncation. The default is
3 (i.e., each base in a trimmed sequence has a greater than 50% probability of
having been called correctly).

Value

A list containing two elements. The first element is a character vector of truncated DNA sequences,
and the second element is a character vector of quality scores which have been truncated to their
corresponding truncated DNA sequences.

See Also

truncate_sequences. length for truncating DNA sequences to a specified length.
truncate_sequences.probability for truncating DNA sequences by cumulative probability that
all bases were called correctly.

Examples

truncate_sequences.quality_score(sequences=c("ATATAGCGCG","TGCCGATATA","ATCTATCACCGC"),
quality_scores=c("989!.C;F@\"", "A((#-#;,2F", "HD8I/+67=1>2"),
threshold=3)

24 write.fasta

write.fasta Write FASTA Files

Description

Writes FASTA files.

Usage

write.fasta(names, sequences, file)

Arguments

names A character vector of sequence names.

sequences A character vector of sequences.

file A string specifying the path to a FASTA file to write.
Value

No return value. Writes a FASTA file.

See Also

read.fasta for reading FASTA files.
write.fastq for writing FASTQ files.
read. fastq for reading FASTQ files.

Examples

Get path to example sequences CSV file.

path_to_CSV_file<-system.file("extdata"”,
"example_query_sequences.csv”,
package="LocaTT",
mustWork=TRUE)

Read the example sequences CSV file.
df<-read.csv(file=path_to_CSV_file,stringsAsFactors=FALSE)

Create a temporary file path for the FASTA file to write.
path_to_FASTA_file<-tempfile(fileext=".fasta")

Write the example sequences as a FASTA file.

write.fasta(names=df$Name,
sequences=df$Sequence,
file=path_to_FASTA_file)

write.fastq 25

write.fastq Write FASTQ Files

Description

Writes FASTQ files.

Usage

write.fastq(names, sequences, quality_scores, file, comments)

Arguments
names A character vector of sequence names.
sequences A character vector of sequences.
quality_scores A character vector of quality scores.
file A string specifying the path to a FASTQ file to write.
comments An optional character vector of sequence comments.
Value

No return value. Writes a FASTQ file.

See Also

read. fastq for reading FASTQ files.
write.fasta for writing FASTA files.
read.fasta for reading FASTA files.

Examples

Get path to example sequences CSV file.

path_to_CSV_file<-system.file("extdata”,
"example_query_sequences.csv”,
package="LocaTT",
mustWork=TRUE)

Read the example sequences CSV file.
df<-read.csv(file=path_to_CSV_file,stringsAsFactors=FALSE)

Create a temporary file path for the FASTQ file to write.
path_to_FASTQ_file<-tempfile(fileext=".fastq")

Write the example sequences as a FASTQ file.

write.fastq(names=df$Name,
sequences=df$Sequence,
quality_scores=df$Quality_score,
file=path_to_FASTQ_file,
comments=df$Comment)

Index

binomial_test, 2
blast_command_found, 3
blast_version, 3

contains_wildcards, 4
decode_quality_scores, 4
format_reference_database, 5, 14

get_consensus_taxonomy, 7

get_taxonomic_level, 8

get_taxonomies.IUCN, 9, 11, 14

get_taxonomies.species_binomials, 9, 10,
14

isolate_amplicon, 11
local_taxa_tool, 5, 9, 12
merge_pairs, 16
pbinom, 2

read.fasta, 17, 18, 24, 25
read.fastq, 17,17, 24, 25
reverse_complement, 12, 16, 18

stats, 2
substitute_wildcards, /2, 19, 20

trim_sequences, 19

truncate_sequences.length, 21, 22, 23

truncate_sequences.probability, 21, 22,
23

truncate_sequences.quality_score, 21,
22,23

write.fasta, 17, 18,24, 25
write.fastq, 17, 18, 24,25

26

	binomial_test
	blast_command_found
	blast_version
	contains_wildcards
	decode_quality_scores
	format_reference_database
	get_consensus_taxonomy
	get_taxonomic_level
	get_taxonomies.IUCN
	get_taxonomies.species_binomials
	isolate_amplicon
	local_taxa_tool
	merge_pairs
	read.fasta
	read.fastq
	reverse_complement
	substitute_wildcards
	trim_sequences
	truncate_sequences.length
	truncate_sequences.probability
	truncate_sequences.quality_score
	write.fasta
	write.fastq
	Index

