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LaplacesDemon-package Complete Environment for Bayesian Inference

Description

Provides a complete environment for Bayesian inference using a variety of different samplers (see
?LaplacesDemon for an overview).

Details

The DESCRIPTION file:

Package: LaplacesDemon
Version: 16.1.6
Title: Complete Environment for Bayesian Inference
Authors@R: c(person("Byron", "Hall", role = "aut"), person("Martina", "Hall", role = "aut"), person(family="Statisticat, LLC", role = "aut"), person(given="Eric", family="Brown", role = "ctb"), person(given="Richard", family="Hermanson", role = "ctb"), person(given="Emmanuel", family="Charpentier", role = "ctb"), person(given="Daniel", family="Heck", role = "ctb"), person(given="Stephane", family="Laurent", role = "ctb"), person(given="Quentin F.", family="Gronau", role = "ctb"), person(given="Henrik", family="Singmann", email="singmann+LaplacesDemon@gmail.com", role="cre"))
Depends: R (>= 3.0.0)
Imports: parallel, grDevices, graphics, stats, utils
Suggests: KernSmooth
ByteCompile: TRUE
Description: Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).
License: MIT + file LICENSE
URL: https://github.com/LaplacesDemonR/LaplacesDemon
BugReports: https://github.com/LaplacesDemonR/LaplacesDemon/issues
Author: Byron Hall [aut], Martina Hall [aut], Statisticat, LLC [aut], Eric Brown [ctb], Richard Hermanson [ctb], Emmanuel Charpentier [ctb], Daniel Heck [ctb], Stephane Laurent [ctb], Quentin F. Gronau [ctb], Henrik Singmann [cre]
Maintainer: Henrik Singmann <singmann+LaplacesDemon@gmail.com>

Index of help topics:

ABB Approximate Bayesian Bootstrap
AcceptanceRate Acceptance Rate
BMK.Diagnostic BMK Convergence Diagnostic
BayesFactor Bayes Factor
BayesTheorem Bayes' Theorem
BayesianBootstrap The Bayesian Bootstrap
BigData Big Data
Blocks Blocks
CSF Cumulative Sample Function
CenterScale Centering and Scaling
Combine Combine Demonoid Objects
Consort Consort with Laplace's Demon
Cov2Prec Precision
ESS Effective Sample Size due to Autocorrelation
GIV Generate Initial Values
GaussHermiteQuadRule Math Utility Functions
Gelfand.Diagnostic Gelfand's Convergence Diagnostic
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Gelman.Diagnostic Gelman and Rubin's MCMC Convergence Diagnostic
Geweke.Diagnostic Geweke's Convergence Diagnostic
Hangartner.Diagnostic Hangartner's Convergence Diagnostic
Heidelberger.Diagnostic

Heidelberger and Welch's MCMC Convergence
Diagnostic

IAT Integrated Autocorrelation Time
Importance Variable Importance
IterativeQuadrature Iterative Quadrature
Juxtapose Juxtapose MCMC Algorithm Inefficiency
KLD Kullback-Leibler Divergence (KLD)
KS.Diagnostic Kolmogorov-Smirnov Convergence Diagnostic
LML Logarithm of the Marginal Likelihood
LPL.interval Lowest Posterior Loss Interval
LaplaceApproximation Laplace Approximation
LaplacesDemon Laplace's Demon
LaplacesDemon-package Complete Environment for Bayesian Inference
LaplacesDemon.RAM LaplacesDemon RAM Estimate
Levene.Test Levene's Test
LossMatrix Loss Matrix
MCSE Monte Carlo Standard Error
MISS Multiple Imputation Sequential Sampling
MinnesotaPrior Minnesota Prior
Mode The Mode(s) of a Vector
Model.Spec.Time Model Specification Time
PMC Population Monte Carlo
PMC.RAM PMC RAM Estimate
PosteriorChecks Posterior Checks
Raftery.Diagnostic Raftery and Lewis's diagnostic
RejectionSampling Rejection Sampling
SIR Sampling Importance Resampling
SensitivityAnalysis Sensitivity Analysis
Stick Truncated Stick-Breaking
Thin Thin
Validate Holdout Validation
VariationalBayes Variational Bayes
WAIC Widely Applicable Information Criterion
as.covar Proposal Covariance
as.indicator.matrix Matrix Utility Functions
as.initial.values Initial Values
as.parm.names Parameter Names
as.ppc As Posterior Predictive Check
burnin Burn-in
caterpillar.plot Caterpillar Plot
cloglog The log-log and complementary log-log functions
cond.plot Conditional Plots
dStick Truncated Stick-Breaking Prior Distribution
dalaplace Asymmetric Laplace Distribution: Univariate
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dallaplace Asymmetric Log-Laplace Distribution
daml Asymmetric Multivariate Laplace Distribution
dbern Bernoulli Distribution
dcat Categorical Distribution
dcrmrf Continuous Relaxation of a Markov Random Field

Distribution
ddirichlet Dirichlet Distribution
de.Finetti.Game de Finetti's Game
deburn De-Burn
delicit Prior Elicitation
demonchoice Demon Choice Data Set
demonfx Demon FX Data Set
demonsessions Demon Sessions Data Set
demonsnacks Demon Snacks Data Set
demontexas Demon Space-Time Data Set
dgpd Generalized Pareto Distribution
dgpois Generalized Poisson Distribution
dhalfcauchy Half-Cauchy Distribution
dhalfnorm Half-Normal Distribution
dhalft Half-t Distribution
dhs Horseshoe Distribution
dhuangwand Huang-Wand Distribution
dhyperg Hyperprior-g Prior and Zellner's g-Prior
dinvbeta Inverse Beta Distribution
dinvchisq (Scaled) Inverse Chi-Squared Distribution
dinvgamma Inverse Gamma Distribution
dinvgaussian Inverse Gaussian Distribution
dinvmatrixgamma Inverse Matrix Gamma Distribution
dinvwishart Inverse Wishart Distribution
dinvwishartc Inverse Wishart Distribution: Cholesky

Parameterization
dlaplace Laplace Distribution: Univariate Symmetric
dlaplacem Mixture of Laplace Distributions
dlaplacep Laplace Distribution: Precision

Parameterization
dlasso LASSO Distribution
dllaplace Log-Laplace Distribution: Univariate Symmetric
dlnormp Log-Normal Distribution: Precision

Parameterization
dmatrixgamma Matrix Gamma Distribution
dmatrixnorm Matrix Normal Distribution
dmvc Multivariate Cauchy Distribution
dmvcc Multivariate Cauchy Distribution: Cholesky

Parameterization
dmvcp Multivariate Cauchy Distribution: Precision

Parameterization
dmvcpc Multivariate Cauchy Distribution:

Precision-Cholesky Parameterization
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dmvl Multivariate Laplace Distribution
dmvlc Multivariate Laplace Distribution: Cholesky

Parameterization
dmvn Multivariate Normal Distribution
dmvnc Multivariate Normal Distribution: Cholesky

Parameterization
dmvnp Multivariate Normal Distribution: Precision

Parameterization
dmvnpc Multivariate Normal Distribution:

Precision-Cholesky Parameterization
dmvpe Multivariate Power Exponential Distribution
dmvpec Multivariate Power Exponential Distribution:

Cholesky Parameterization
dmvpolya Multivariate Polya Distribution
dmvt Multivariate t Distribution
dmvtc Multivariate t Distribution: Cholesky

Parameterization
dmvtp Multivariate t Distribution: Precision

Parameterization
dmvtpc Multivariate t Distribution: Precision-Cholesky

Parameterization
dnorminvwishart Normal-Inverse-Wishart Distribution
dnormlaplace Normal-Laplace Distribution: Univariate

Asymmetric
dnormm Mixture of Normal Distributions
dnormp Normal Distribution: Precision Parameterization
dnormv Normal Distribution: Variance Parameterization
dnormwishart Normal-Wishart Distribution
dpareto Pareto Distribution
dpe Power Exponential Distribution: Univariate

Symmetric
dsdlaplace Skew Discrete Laplace Distribution: Univariate
dsiw Scaled Inverse Wishart Distribution
dslaplace Skew-Laplace Distribution: Univariate
dst Student t Distribution: Univariate
dstp Student t Distribution: Precision

Parameterization
dtrunc Truncated Distributions
dwishart Wishart Distribution
dwishartc Wishart Distribution: Cholesky Parameterization
dyangberger Yang-Berger Distribution
interval Constrain to Interval
is.appeased Appeased
is.bayesfactor Logical Check of Classes
is.bayesian Logical Check of a Bayesian Model
is.constant Logical Check of a Constant
is.constrained Logical Check of Constraints
is.data Logical Check of Data
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is.model Logical Check of a Model
is.proper Logical Check of Propriety
is.stationary Logical Check of Stationarity
joint.density.plot Joint Density Plot
joint.pr.plot Joint Probability Region Plot
logit The logit and inverse-logit functions
p.interval Probability Interval
plot.bmk Plot Hellinger Distances
plot.demonoid Plot samples from the output of Laplace's Demon
plot.demonoid.ppc Plots of Posterior Predictive Checks
plot.importance Plot Variable Importance
plot.iterquad Plot the output of 'IterativeQuadrature'
plot.iterquad.ppc Plots of Posterior Predictive Checks
plot.juxtapose Plot MCMC Juxtaposition
plot.laplace Plot the output of 'LaplaceApproximation'
plot.laplace.ppc Plots of Posterior Predictive Checks
plot.miss Plot samples from the output of MISS
plot.pmc Plot samples from the output of PMC
plot.pmc.ppc Plots of Posterior Predictive Checks
plot.vb Plot the output of 'VariationalBayes'
plot.vb.ppc Plots of Posterior Predictive Checks
plotMatrix Plot a Numerical Matrix
plotSamples Plot Samples
predict.demonoid Posterior Predictive Checks
predict.iterquad Posterior Predictive Checks
predict.laplace Posterior Predictive Checks
predict.pmc Posterior Predictive Checks
predict.vb Posterior Predictive Checks
print.demonoid Print an object of class 'demonoid' to the

screen.
print.heidelberger Print an object of class 'heidelberger' to the

screen.
print.iterquad Print an object of class 'iterquad' to the

screen.
print.laplace Print an object of class 'laplace' to the

screen.
print.miss Print an object of class 'miss' to the screen.
print.pmc Print an object of class 'pmc' to the screen.
print.raftery Print an object of class 'raftery' to the

screen.
print.vb Print an object of class 'vb' to the screen.
server_Listening Server Listening
summary.demonoid.ppc Posterior Predictive Check Summary
summary.iterquad.ppc Posterior Predictive Check Summary
summary.laplace.ppc Posterior Predictive Check Summary
summary.miss MISS Summary
summary.pmc.ppc Posterior Predictive Check Summary
summary.vb.ppc Posterior Predictive Check Summary
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The goal of LaplacesDemon, often referred to as LD, is to provide a complete and self-contained
Bayesian environment within R. For example, this package includes dozens of MCMC algorithms,
Laplace Approximation, iterative quadrature, variational Bayes, parallelization, big data, PMC,
over 100 examples in the “Examples” vignette, dozens of additional probability distributions, nu-
merous MCMC diagnostics, Bayes factors, posterior predictive checks, a variety of plots, elicita-
tion, parameter and variable importance, Bayesian forms of test statistics (such as Durbin-Watson,
Jarque-Bera, etc.), validation, and numerous additional utility functions, such as functions for mul-
timodality, matrices, or timing your model specification. Other vignettes include an introduction to
Bayesian inference, as well as a tutorial.

No further development of this package is currently being done as the original maintainer has
stopped working on the package. Contributions to this package are welcome at https://github.
com/LaplacesDemonR/LaplacesDemon.

The main function in this package is the LaplacesDemon function, and the best place to start is
probably with the LaplacesDemon Tutorial vignette.

Author(s)

NA

Maintainer: NA

ABB Approximate Bayesian Bootstrap

Description

This function performs multiple imputation (MI) with the Approximate Bayesian Bootstrap (ABB)
of Rubin and Schenker (1986).

Usage

ABB(X, K=1)

Arguments

X This is a vector or matrix of data that must include both observed and missing
values. When X is a matrix, missing values must occur somewhere in the set, but
are not required to occur in each variable.

K This is the number of imputations.

Details

The Approximate Bayesian Bootstrap (ABB) is a modified form of the BayesianBootstrap (Ru-
bin, 1981) that is used for multiple imputation (MI). Imputation is a family of statistical methods
for replacing missing values with estimates. Introduced by Rubin and Schenker (1986) and Ru-
bin (1987), MI is a family of imputation methods that includes multiple estimates, and therefore
includes variability of the estimates.

https://github.com/LaplacesDemonR/LaplacesDemon
https://github.com/LaplacesDemonR/LaplacesDemon
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The data, X, are assumed to be independent and identically distributed (IID), contain both observed
and missing values, and its missing values are assumed to be ignorable (meaning enough informa-
tion is available in the data that the missingness mechanism can be ignored, if the information is
used properly) and Missing Completely At Random (MCAR). When ABB is used in conjunction
with a propensity score (described below), missing values may be Missing At Random (MAR).

ABB does not add auxiliary information, but performs imputation with two sampling (with replace-
ment) steps. First, X⋆

obs is sampled from Xobs. Then, X⋆
mis is sampled from X⋆

obs. The result is
a sample of the posterior predictive distribution of (Xmis|Xobs). The first sampling step is also
known as hotdeck imputation, and the second sampling step changes the variance. Since auxiliary
information is not included, ABB is appropriate for missing values that are ignorable and MCAR.

Auxiliary information may be included in the process of imputation by introducing a propensity
score (Rosenbaum and Rubin, 1983; Rosenbaum and Rubin, 1984), which is an estimate of the
probability of missingness. The propensity score is often the result of a binary logit model, where
missingness is predicted as a function of other variables. The propensity scores are discretized into
quantile-based groups, usually quintiles. Each quintile must have both observed and missing values.
ABB is applied to each quintile. This is called within-class imputation. It is assumed that the missing
mechanism depends only on the variables used to estimate the propensity score.

With K = 1, ABB may be used in MCMC, such as in LaplacesDemon, more commonly along with
a propensity score for missingness. MI is performed, despite K = 1, because imputation occurs at
each MCMC iteration. The practical advantage of this form of imputation is the ease with which it
may be implemented. For example, full-likelihood imputation should perform better, but requires a
chain to be updated for each missing value.

An example of a limitation of ABB with propensity scores is to consider imputing missing values
of income from age in a context where age and income have a positive relationship, and where the
highest incomes are missing systematically. ABB with propensity scores should impute these highest
missing incomes given the highest observed ages, but is unable to infer beyond the observed data.

ABB has been extended (Parzen et al., 2005) to reduce bias, by introducing a correction factor that
is applied to the MI variance estimate. This correction may be applied to output from ABB.

Value

This function returns a list with K components, one for each set of imputations. Each component
contains a vector of imputations equal in length to the number of missing values in the data.

ABB does not currently return the mean of the imputations, or the between-imputation variance or
within-imputation variance.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

References

Parzen, M., Lipsitz, S.R., and Fitzmaurice, G.M. (2005). "A Note on Reducing the Bias of the
Approximate Bayesian Bootstrap Imputation Variance Estimator". Biometrika, 92, 4, p. 971–974.

Rosenbaum, P.R. and Rubin, D.B. (1983). "The Central Role of the Propensity Score in Observa-
tional Studies for Causal Effects". Biometrika, 70, p. 41–55.
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Rosenbaum, P.R. and Rubin, D.B. (1984). "Reducing Bias in Observational Studies Using Subclas-
sification in the Propensity Score". Journal of the American Statistical Association, 79, p. 516–524.

Rubin, D.B. (1981). "The Bayesian Bootstrap". Annals of Statistics, 9, p. 130–134.

Rubin, D.B. (1987). "Multiple Imputation for Nonresponse in Surveys". John Wiley and Sons:
New York, NY.

Rubin, D.B. and Schenker, N. (1986). "Multiple Imputation for Interval Estimation from Simple
Random Samples with Ignorable Nonresponse". Journal of the American Statistical Association,
81, p. 366–374.

See Also

BayesianBootstrap, LaplacesDemon, and MISS.

Examples

library(LaplacesDemon)

### Create Data
J <- 10 #Number of variables
m <- 20 #Number of missings
N <- 50 #Number of records
mu <- runif(J, 0, 100)
sigma <- runif(J, 0, 100)
X <- matrix(0, N, J)
for (j in 1:J) X[,j] <- rnorm(N, mu[j], sigma[j])

### Create Missing Values
M1 <- rep(0, N*J)
M2 <- sample(N*J, m)
M1[M2] <- 1
M <- matrix(M1, N, J)
X <- ifelse(M == 1, NA, X)

### Approximate Bayesian Bootstrap
imp <- ABB(X, K=1)

### Replace Missing Values in X (when K=1)
X.imp <- X
X.imp[which(is.na(X.imp))] <- unlist(imp)
X.imp

AcceptanceRate Acceptance Rate

Description

The Acceptance.Rate function calculates the acceptance rate per chain from a matrix of posterior
MCMC samples.



14 AcceptanceRate

Usage

AcceptanceRate(x)

Arguments

x This required argument accepts a S × J numeric matrix of S posterior samples
for J variables, such as Posterior1 or Posterior2 from an object of class
demonoid.

Details

The acceptance rate of an MCMC algorithm is the percentage of iterations in which the proposals
were accepted.

Optimal Acceptance Rates
The optimal acceptance rate varies with the number of parameters and by algorithm. Algorithms
with componentwise Gaussian proposals have an optimal acceptance rate of 0.44, regardless of
the number of parameters. Algorithms that update with multivariate Gaussian proposals tend to
have an optimal acceptance rate that ranges from 0.44 for one parameter (one IID Gaussian target
distribution) to 0.234 for an infinite number of parameters (IID Gaussian target distributions), and
0.234 is approached quickly as the number of parameters increases. The AHMC, HMC, and THMC
algorithms have an optimal acceptance rate of 0.67, except with the algorithm specification L=1,
where the optimal acceptance rate is 0.574. The target acceptance rate is specified in HMCDA
and NUTS, and the recommended rate is 0.65 and 0.60 respectively. Some algorithms have an
acceptance rate of 1, such as AGG, ESS, GG, GS (MISS only), SGLD, or Slice.

Global and Local Acceptance Rates
LaplacesDemon reports the global acceptance rate for the un-thinned chains. However, componen-
twise algorithms make a proposal per parameter, and therefore have a local acceptance rate for each
parameter. Since only the global acceptance rate is reported, the AcceptanceRate function may be
used to calculate the local acceptance rates from a matrix of un-thinned posterior samples.

Thinning
Thinned samples tend to have higher local acceptance rates than un-thinned samples. With enough
samples and enough thinning, local acceptance rates approach 1. Local acceptance rates do not
need to approach the optimal acceptance rates above. Conversely, local acceptance rates do not
need to approach 1, because too much information may possibly be discarded by thinning. For
more information on thinning, see the Thin function.

Diagnostics
The AcceptanceRate function may be used to calculate local acceptance rates on a matrix of
thinned or un-thinned samples. Any chain with a local acceptance rate that is an outlier may be
studied for reasons that may cause the outlier. A local acceptance rate outlier does not violate the-
ory and is often acceptable, but may indicate a potential problem. Only some of the many potential
problems include: identifiability, model misspecification, multicollinearity, multimodality, choice
of prior distributions, or becoming trapped in a low-probability space. The solution to local accep-
tance rate outliers tends to be either changing the MCMC algorithm or re-specifying the model or
priors. For example, an MCMC algorithm that makes multivariate Gaussian proposals for a large
number of parameters may have low global and local acceptance rates when far from the target
distributions.
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Value

The AcceptanceRate function returns a vector of acceptance rates, one for each chain.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

LaplacesDemon, MISS, PosteriorChecks, and Thin.

Examples

library(LaplacesDemon)
AcceptanceRate(matrix(rnorm(5000),1000,5))

as.covar Proposal Covariance

Description

This function returns the most recent covariance matrix or a list of blocking covariance matrices
from an object of class demonoid, the most recent covariance matrix from iterquad, laplace, or
vb, the most recent covariance matrix from the chain with the lowest deviance in an object of class
demonoid.hpc, and a number of covariance matrices of an object of class pmc equal to the number
of mixture components. The returned covariance matrix or matrices are intended to be the initial
proposal covariance matrix or matrices for future updates. A variance vector from an object of class
demonoid or demonoid.hpc is converted to a covariance matrix.

Usage

as.covar(x)

Arguments

x This is an object of class demonoid, demonoid.hpc, iterquad, laplace, pmc,
or vb.

Details

Unless it is known beforehand how many iterations are required for iterative quadrature, Laplace
Approximation, or Variational Bayes to converge, MCMC to appear converged, or the normalized
perplexity to stabilize in PMC, multiple updates are necessary. An additional update, however,
should not begin with the same proposal covariance matrix or matrices as the original update, be-
cause it will have to repeat the work already accomplished. For this reason, the as.covar function
may be used at the end of an update to change the previous initial values to the latest values.

The as.covar function is most helpful with objects of class pmc that have multiple mixture com-
ponents. For more information, see PMC.
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Value

The returned value is a matrix (or array in the case of PMC with multiple mixture components) of
the latest observed or proposal covariance, which may now be used as an initial proposal covariance
matrix or matrices for a future update.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

See Also

IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LaplacesDemon.hpc, PMC, and
VariationalBayes.

as.initial.values Initial Values

Description

This function returns the most recent posterior samples from an object of class demonoid or demonoid.hpc,
the posterior means of an object of class iterquad, the posterior modes of an object of class
laplace or vb, the posterior means of an object of class pmc with one mixture component, or
the latest means of the importance sampling distribution of an object of class pmc with multiple
mixture components. The returned values are intended to be the initial values for future updates.

Usage

as.initial.values(x)

Arguments

x This is an object of class demonoid, demonoid.hpc, iterquad, laplace, pmc,
or vb.

Details

Unless it is known beforehand how many iterations are required for IterativeQuadrature, LaplaceApproximation,
or VariationalBayes to converge, MCMC in LaplacesDemon to appear converged, or the normal-
ized perplexity to stabilize in PMC, multiple updates are necessary. An additional update, however,
should not begin with the same initial values as the original update, because it will have to repeat
the work already accomplished. For this reason, the as.initial.values function may be used at
the end of an update to change the previous initial values to the latest values.

When using LaplacesDemon.hpc, as.initial.values should be used when the output is of
class demonoid.hpc, before the Combine function is used to combine the multiple chains for
use with Consort and other functions, because the Combine function returns an object of class
demonoid, and the number of chains will become unknown. The Consort function may suggest
using as.initial.values, but when applied to an object of class demonoid, it will return the latest
values as if there were only one chain.
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Value

The returned value is a vector (or matrix in the case of an object of class demonoid.hpc, or pmc
with multiple mixture components) of the latest values, which may now be used as initial values for
a future update.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

Combine, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LaplacesDemon.hpc,
PMC, and VariationalBayes.

as.parm.names Parameter Names

Description

This function creates a vector of parameter names from a list of parameters, and the list may contain
any combination of scalars, vectors, matrices, upper-triangular matrices, and arrays.

Usage

as.parm.names(x, uppertri=NULL)

Arguments

x This required argument is a list of named parameters. The list may contain
scalars, vectors, matrices, and arrays. The value of the named parameters does
not matter here, though they are usually set to zero. However, if a missing value
occurs, then the associated element is omitted in the output.

uppertri This optional argument must be a vector with a length equal to the number of
named parameters. Each element in uppertri must be either a 0 or 1, where a 1
indicates that an upper triangular matrix will be used for the associated element
in the vector of named parameters. Each element of uppertri is associated with
a named parameter. The uppertri argument does not function with arrays.

Details

Each model function for IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC,
or VariationalBayes requires a vector of parameters (specified at first as Initial.Values) and
a list of data. One component in the list of data must be named parm.names. Each element of
parm.names is a name associated with the corresponding parameter in Initial.Values.

The parm.names vector is easy to program explicitly for a simple model, but can require consid-
erably more programming effort for more complicated models. The as.parm.names function is a
utility function designed to minimize programming by the user.
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For example, a simple model may only require parm.names <- c("alpha", "beta[1]", "beta[2]",
"sigma"). A more complicated model may contain hundreds of parameters that are a combina-
tion of scalars, vectors, matrices, upper-triangular matrices, and arrays, and is the reason for the
as.parm.names function. The code for the above is as.parm.names(list(alpha=0, beta=rep(0,2),
sigma=0)).

In the case of an upper-triangular matrix, simply pass the full matrix to as.parm.names and indicate
that only the upper-triangular will be used via the uppertri argument. For example, as.parm.names(list(beta=rep(0,J),U=diag(K)),
uppertri=c(0,1)) creates parameter names for a vector of β parameters of length J and an upper-
triangular matrix U of dimension K.

Numerous examples may be found in the accompanying “Examples” vignette.

Value

This function returns a vector of parameter names.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

IterativeQuadrature LaplaceApproximation, LaplacesDemon, PMC, and VariationalBayes.

Examples

library(LaplacesDemon)
N <- 100
J <- 5
y <- rnorm(N,0,1)
X <- matrix(runif(N*J,-2,2),N,J)
S <- diag(J)
T <- diag(2)
mon.names <- c("LP","sigma")
parm.names <- as.parm.names(list(log.sigma=0, beta=rep(0,J), S=diag(J),

T=diag(2)), uppertri=c(0,0,0,1))
MyData <- list(J=J, N=N, S=S, T=T, X=X, mon.names=mon.names,

parm.names=parm.names, y=y)
MyData

as.ppc As Posterior Predictive Check

Description

This function converts an object of class demonoid.val to an object of class demonoid.ppc.

Usage

as.ppc(x, set=3)
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Arguments

x This is an object of class demonoid.val.

set This is an integer that indicates which list component is to be used. When set=1,
the modeled data set is used. When set=2, the validation data set is used. When
set=3, both data sets are used.

Details

After using the Validate function for holdout validation, it is often suggested to perform posterior
predictive checks. The as.ppc function converts the output object of Validate, which is an object
of class demonoid.val, to an object of class demonoid.ppc. The returned object is the same as if
it were created with the predict.demonoid function, rather than the Validate function.

After this conversion, the user may use posterior predictive checks, as usual, with the summary.demonoid.ppc
function.

Value

The returned object is an object of class demonoid.ppc.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

predict.demonoid, summary.demonoid.ppc, and Validate.

BayesFactor Bayes Factor

Description

This function calculates Bayes factors for two or more fitted objects of class demonoid, iterquad,
laplace, pmc, or vb that were estimated respectively with the LaplacesDemon, IterativeQuadrature,
LaplaceApproximation, PMC, or VariationalBayes functions, and indicates the strength of evi-
dence in favor of the hypothesis (that each model, Mi, is better than another model, Mj).

Usage

BayesFactor(x)

Arguments

x This is a list of two or more fitted objects of class demonoid, iterquad, laplace,
pmc, or vb. The components are named in order beginning with model 1, M1, and
k models are usually represented as M1, . . . ,Mk.
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Details

Introduced by Harold Jeffreys, a ’Bayes factor’ is a Bayesian alternative to frequentist hypothesis
testing that is most often used for the comparison of multiple models by hypothesis testing, usually
to determine which model better fits the data (Jeffreys, 1961). Bayes factors are notoriously difficult
to compute, and the Bayes factor is only defined when the marginal density of y under each model
is proper (see is.proper). However, the Bayes factor is easy to approximate with the Laplace-
Metropolis estimator (Lewis and Raftery, 1997) and other methods of approximating the logarithm
of the marginal likelihood (for more information, see LML).

Hypothesis testing with Bayes factors is more robust than frequentist hypothesis testing, since the
Bayesian form avoids model selection bias, evaluates evidence in favor of the null hypothesis, in-
cludes model uncertainty, and allows non-nested models to be compared (though of course the
model must have the same dependent variable). Also, frequentist significance tests become biased
in favor of rejecting the null hypothesis with sufficiently large sample size.

The Bayes factor for comparing two models may be approximated as the ratio of the marginal
likelihood of the data in model 1 and model 2. Formally, the Bayes factor in this case is

B =
p(y|M1)

p(y|M2)
=

∫
p(y|Θ1,M1)p(Θ1|M1)dΘ1∫
p(y|Θ2,M2)p(Θ2|M2)dΘ2

where p(y|M1) is the marginal likelihood of the data in model 1.

The IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, and VariationalBayes
functions each return the LML, the approximate logarithm of the marginal likelihood of the data, in
each fitted object of class iterquad, laplace, demonoid, pmc, or vb. The BayesFactor function
calculates matrix B, a matrix of Bayes factors, where each element of matrix B is a comparison of
two models. Each Bayes factor is calculated as the exponentiated difference of LML of model 1
(M1) and LML of model 2 (M2), and the hypothesis for each element of matrix B is that the model
associated with the row is greater than the model associated with the column. For example, element
B[3,2] is the Bayes factor that model 3 is greater than model 2. The ’Strength of Evidence’ aids in
the interpretation (Jeffreys, 1961).

A table for the interpretation of the strength of evidence for Bayes factors is available at https://
web.archive.org/web/20150214194051/http://www.bayesian-inference.com/bayesfactors.

Each Bayes factor, B, is the posterior odds in favor of the hypothesis divided by the prior odds in
favor of the hypothesis, where the hypothesis is usually M1 > M2. For example, when B[3,2]=2,
the data favor M3 over M2 with 2:1 odds.

It is also popular to consider the natural logarithm of the Bayes factor. The scale of the logged
Bayes factor is the same above and below one, which is more appropriate for visual comparisons.
For example, when comparing two Bayes factors at 0.5 and 2, the logarithm of these Bayes factors
is -0.69 and 0.69.

Gelman finds Bayes factors generally to be irrelevant, because they compute the relative probabili-
ties of the models conditional on one of them being true. Gelman prefers approaches that measure
the distance of the data to each of the approximate models (Gelman et al., 2004, p. 180), such as
with posterior predictive checks (see the predict.iterquad function regarding iterative quadra-
ture, predict.laplace function in the context of Laplace Approximation, predict.demonoid
function in the context of MCMC, predict.pmc function in the context of PMC, or predict.vb
function in the context of Variational Bayes). Kass et al. (1995) asserts this can be done without
assuming one model is the true model.

https://web.archive.org/web/20150214194051/http://www.bayesian-inference.com/bayesfactors
https://web.archive.org/web/20150214194051/http://www.bayesian-inference.com/bayesfactors
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Value

BayesFactor returns an object of class bayesfactor that is a list with the following components:

B This is a matrix of Bayes factors.

Hypothesis This is the hypothesis, and is stated as ’row > column’, indicating that the model
associated with the row of an element in matrix B is greater than the model
associated with the column of that element.

Strength.of.Evidence

This is the strength of evidence in favor of the hypothesis.
Posterior.Probability

This is a vector of the posterior probability of each model, given flat priors.

Author(s)

Statisticat, LLC.

References

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004). "Bayesian Data Analysis, Texts in Statistical
Science, 2nd ed.". Chapman and Hall, London.

Jeffreys, H. (1961). "Theory of Probability, Third Edition". Oxford University Press: Oxford,
England.

Kass, R.E. and Raftery, A.E. (1995). "Bayes Factors". Journal of the American Statistical Associa-
tion, 90(430), p. 773–795.

Lewis, S.M. and Raftery, A.E. (1997). "Estimating Bayes Factors via Posterior Simulation with the
Laplace-Metropolis Estimator". Journal of the American Statistical Association, 92, p. 648–655.

See Also

is.bayesfactor, is.proper, IterativeQuadrature, LaplaceApproximation, LaplacesDemon,
LML, PMC, predict.demonoid, predict.iterquad, predict.laplace, predict.pmc, predict.vb,
and VariationalBayes.

Examples

# The following example fits a model as Fit1, then adds a predictor, and
# fits another model, Fit2. The two models are compared with Bayes
# factors.

library(LaplacesDemon)

############################## Demon Data ###############################
data(demonsnacks)
J <- 2
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(log(demonsnacks[,10]+1)))
X[,2] <- CenterScale(X[,2])

######################### Data List Preparation #########################
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mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) {

beta <- rnorm(Data$J)
sigma <- runif(1)
return(c(beta, sigma))
}

MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

########################## Model Specification ##########################
Model <- function(parm, Data)

{
### Parameters
beta <- parm[Data$pos.beta]
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
parm[Data$pos.sigma] <- sigma
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,

yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}

############################ Initial Values #############################
Initial.Values <- GIV(Model, MyData, PGF=TRUE)

######################## Laplace Approximation ##########################
Fit1 <- LaplaceApproximation(Model, Initial.Values, Data=MyData,

Iterations=10000)
Fit1

############################## Demon Data ###############################
data(demonsnacks)
J <- 3
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(demonsnacks[,c(7,8)]))
X[,2] <- CenterScale(X[,2])
X[,3] <- CenterScale(X[,3])

######################### Data List Preparation #########################
mon.names <- c("sigma","mu[1]")
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
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PGF <- function(Data) return(c(rnormv(Data$J,0,10), rhalfcauchy(1,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,

parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

############################ Initial Values #############################
Initial.Values <- GIV(Model, MyData, PGF=TRUE)

######################## Laplace Approximation ##########################
Fit2 <- LaplaceApproximation(Model, Initial.Values, Data=MyData,

Iterations=10000)
Fit2

############################# Bayes Factor ##############################
Model.list <- list(M1=Fit1, M2=Fit2)
BayesFactor(Model.list)

BayesianBootstrap The Bayesian Bootstrap

Description

This function performs the Bayesian bootstrap of Rubin (1981), returning either bootstrapped weights
or statistics.

Usage

BayesianBootstrap(X, n=1000, Method="weights", Status=NULL)

Arguments

X This is a vector or matrix of data. When a matrix is supplied, sampling is based
on the first column.

n This is the number of bootstrapped replications.

Method When Method="weights" (which is the default), a matrix of row weights is
returned. Otherwise, a function is accepted. The function specifies the statistic
to be bootstrapped. The first argument of the function should be a matrix of
data, and the second argument should be a vector of weights.

Status This determines the periodicity of status messages. When Status=100, for ex-
ample, a status message is displayed every 100 replications. Otherwise, Status
defaults to NULL, and status messages are not displayed.

Details

The term, ‘bootstrap’, comes from the German novel Adventures of Baron Munchausen by Rudolph
Raspe, in which the hero saves himself from drowning by pulling on his own bootstraps. The idea
of the statistical bootstrap is to evaluate properties of an estimator through the empirical, rather than
theoretical, CDF.
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Rubin (1981) introduced the Bayesian bootstrap. In contrast to the frequentist bootstrap which
simulates the sampling distribution of a statistic estimating a parameter, the Bayesian bootstrap
simulates the posterior distribution.

The data, X, are assumed to be independent and identically distributed (IID), and to be a representa-
tive sample of the larger (bootstrapped) population. Given that the data has N rows in one bootstrap
replication, the row weights are sampled from a Dirichlet distribution with all N concentration pa-
rameters equal to 1 (a uniform distribution over an open standard N −1 simplex). The distributions
of a parameter inferred from considering many samples of weights are interpretable as posterior
distributions on that parameter.

The Bayesian bootstrap is useful for estimating marginal posterior covariance and standard devi-
ations for the posterior modes of LaplaceApproximation, especially when the model dimension
(the number of parameters) is large enough that estimating the Hessian matrix of second partial
derivatives is too computationally demanding.

Just as with the frequentist bootstrap, inappropriate use of the Bayesian bootstrap can lead to inap-
propriate inferences. The Bayesian bootstrap violates the likelihood principle, because the evalua-
tion of a statistic of interest depends on data sets other than the observed data set. For more infor-
mation on the likelihood principle, see https://web.archive.org/web/20150213002158/http:
//www.bayesian-inference.com/likelihood#likelihoodprinciple.

The BayesianBootstrap function has many uses, including creating test statistics on the popula-
tion data given the observed data (supported here), imputation (with this variation: ABB), validation,
and more.

Value

When Method="weights", this function returns a N × n matrix of weights, where the number of
rows N is equal to the number of rows in X.

For statistics, a matrix or array is returned, depending on the number of dimensions. The replicates
are indexed by row in a matrix or in the first dimension of the array.

Author(s)

Bogumil Kaminski, <bkamins@sgh.waw.pl> and Statisticat, LLC.

References

Rubin, D.B. (1981). "The Bayesian Bootstrap". The Annals of Statistics, 9(1), p. 130–134.

See Also

ABB, Hessian, LaplaceApproximation, and LaplacesDemon.

Examples

library(LaplacesDemon)

#Example 1: Samples
x <- 1:2
BB <- BayesianBootstrap(X=x, n=100, Method="weights"); BB

https://web.archive.org/web/20150213002158/http://www.bayesian-inference.com/likelihood#likelihoodprinciple
https://web.archive.org/web/20150213002158/http://www.bayesian-inference.com/likelihood#likelihoodprinciple
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#Example 2: Mean, Univariate
x <- 1:2
BB <- BayesianBootstrap(X=x, n=100, Method=weighted.mean); BB

#Example 3: Mean, Multivariate
data(demonsnacks)
BB <- BayesianBootstrap(X=demonsnacks, n=100,

Method=function(x,w) apply(x, 2, weighted.mean, w=w)); BB

#Example 4: Correlation
dye <- c(1.15, 1.70, 1.42, 1.38, 2.80, 4.70, 4.80, 1.41, 3.90)
efp <- c(1.38, 1.72, 1.59, 1.47, 1.66, 3.45, 3.87, 1.31, 3.75)
X <- matrix(c(dye,efp), length(dye), 2)
colnames(X) <- c("dye","efp")
BB <- BayesianBootstrap(X=X, n=100,

Method=function(x,w) cov.wt(x, w, cor=TRUE)$cor); BB

#Example 5: Marginal Posterior Covariance
#The following example is commented out due to package build time.
#To run the following example, use the code from the examples in
#the LaplaceApproximation function for the data, model specification
#function, and initial values. Then perform the Laplace
#Approximation as below (with CovEst="Identity" and sir=FALSE) until
#convergence, set the latest initial values, then use the Bayesian
#bootstrap on the data, run the Laplace Approximation again to
#convergence, save the posterior modes, and repeat until S samples
#of the posterior modes are collected. Finally, calculate the
#parameter covariance or standard deviation.

#Fit <- LaplaceApproximation(Model, Initial.Values, Data=MyData,
# Iterations=1000, Method="SPG", CovEst="Identity", sir=FALSE)
#Initial.Values <- as.initial.values(Fit)
#S <- 100 #Number of bootstrapped sets of posterior modes (parameters)
#Z <- rbind(Fit$Summary1[,1]) #Bootstrapped parameters collected here
#N <- nrow(MyData$X) #Number of records
#MyData.B <- MyData
#for (s in 1:S) {
# cat("\nIter:", s, "\n")
# BB <- BayesianBootstrap(MyData$y, n=N)
# z <- apply(BB, 2, function(x) sample.int(N, size=1, prob=x))
# MyData.B$y <- MyData$y[z]
# MyData.B$X <- MyData$X[z,]
# Fit <- LaplaceApproximation(Model, Initial.Values, Data=MyData.B,
# Iterations=1000, Method="SPG", CovEst="Identity", sir=FALSE)
# Z <- rbind(Z, Fit$Summary1[,1])}
#cov(Z) #Bootstrapped marginal posterior covariance
#sqrt(diag(cov(Z))) #Bootstrapped marginal posterior standard deviations

BayesTheorem Bayes’ Theorem
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Description

Bayes’ theorem shows the relation between two conditional probabilities that are the reverse of each
other. This theorem is named after Reverend Thomas Bayes (1702-1761), and is also referred to
as Bayes’ law or Bayes’ rule (Bayes and Price, 1763). Bayes’ theorem expresses the conditional
probability, or ‘posterior probability’, of an event A after B is observed in terms of the ‘prior
probability’ of A, prior probability of B, and the conditional probability of B given A. Bayes’
theorem is valid in all common interpretations of probability. This function provides one of several
forms of calculations that are possible with Bayes’ theorem.

Usage

BayesTheorem(PrA, PrBA)

Arguments

PrA This required argument is the prior probability of A, or Pr(A).

PrBA This required argument is the conditional probability of B given A or Pr(B|A),
and is known as the data, evidence, or likelihood.

Details

Bayes’ theorem provides an expression for the conditional probability of A given B, which is equal
to

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)

For example, suppose one asks the question: what is the probability of going to Hell, conditional
on consorting (or given that a person consorts) with Laplace’s Demon. By replacing A with Hell
and B with Consort, the question becomes

Pr(Hell|Consort) = Pr(Consort|Hell) Pr(Hell)

Pr(Consort)

Note that a common fallacy is to assume that Pr(A|B) = Pr(B|A), which is called the conditional
probability fallacy.

Another way to state Bayes’ theorem (and this is the form in the provided function) is

Pr(Ai|B) =
Pr(B|Ai) Pr(Ai)

Pr(B|Ai) Pr(Ai) + · · ·+ Pr(B|An) Pr(An)

Let’s examine our burning question, by replacing Ai with Hell or Heaven, and replacing B with
Consort

• Pr(A1) = Pr(Hell)

• Pr(A2) = Pr(Heaven)

• Pr(B) = Pr(Consort)

• Pr(A1|B) = Pr(Hell|Consort)
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• Pr(A2|B) = Pr(Heaven|Consort)
• Pr(B|A1) = Pr(Consort|Hell)

• Pr(B|A2) = Pr(Consort|Heaven)

Laplace’s Demon was conjured and asked for some data. He was glad to oblige.

• 6 people consorted out of 9 who went to Hell.

• 5 people consorted out of 7 who went to Heaven.

• 75% of the population goes to Hell.

• 25% of the population goes to Heaven.

Now, Bayes’ theorem is applied to the data. Four pieces are worked out as follows

• Pr(Consort|Hell) = 6/9 = 0.666

• Pr(Consort|Heaven) = 5/7 = 0.714

• Pr(Hell) = 0.75

• Pr(Heaven) = 0.25

Finally, the desired conditional probability Pr(Hell|Consort) is calculated using Bayes’ theorem

• Pr(Hell|Consort) = 0.666(0.75)
0.666(0.75)+0.714(0.25)

• Pr(Hell|Consort) = 0.737

The probability of someone consorting with Laplace’s Demon and going to Hell is 73.7%, which
is less than the prevalence of 75% in the population. According to these findings, consorting with
Laplace’s Demon does not increase the probability of going to Hell.

For an introduction to model-based Bayesian inference, see the accompanying vignette entitled
“Bayesian Inference” or https://web.archive.org/web/20150206004608/http://www.bayesian-inference.
com/bayesian.

Value

The BayesTheorem function returns the conditional probability of A given B, known in Bayesian
inference as the posterior. The returned object is of class bayestheorem.

Author(s)

Statisticat, LLC.

References

Bayes, T. and Price, R. (1763). "An Essay Towards Solving a Problem in the Doctrine of Chances".
By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, M.A. and
F.R.S. Philosophical Transactions of the Royal Statistical Society of London, 53, p. 370–418.

See Also

IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, and VariationalBayes.

https://web.archive.org/web/20150206004608/http://www.bayesian-inference.com/bayesian
https://web.archive.org/web/20150206004608/http://www.bayesian-inference.com/bayesian
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Examples

# Pr(Hell|Consort) =
PrA <- c(0.75,0.25)
PrBA <- c(6/9, 5/7)
BayesTheorem(PrA, PrBA)

BigData Big Data

Description

This function enables Bayesian inference with data that is too large for computer memory (RAM)
with the simplest method: reading in batches of data (where each batch is a section of rows),
applying a function to the batch, and combining the results.

Usage

BigData(file, nrow, ncol, size=1, Method="add", CPUs=1, Type="PSOCK",
FUN, ...)

Arguments

file This required argument accepts a path and filename that must refer to a .csv file,
and that must contain only a numeric matrix without a header, row names, or
column names.

nrow This required argument accepts a scalar integer that indicates the number of rows
in the big data matrix.

ncol This required argument accepts a scalar integer that indicates the number of
columns in the big data matrix.

size This argument accepts a scalar integer that specifies the number of rows of each
batch. The last batch is not required to have the same number of rows as the
other batches. The largest possible size, and therefore the fewest number of
batches, should be preferred.

Method This argument accepts a scalar string, defaults to "add", and alternatively accepts
"rbind". When Method="rbind", the user-specified function FUN is applied to
each batch, and results are combined together by rows. For example, if calculat-
ing µ = Xβ in, say, 10 batches, then the output column vector µ is equal to the
number of rows of the big data set.

CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

FUN This required argument accepts a user-specified function that will be performed
on each batch. The first argument in the function must be the data.

... Additional arguments are used within the user-specified function. Additional
arguments often refer to parameters.
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Details

Big data is defined loosely here as data that is too large for computer memory (RAM). The BigData
function uses the split-apply-combine strategy with a big data set. The unmanageable big data set is
split into smaller, manageable pieces (batches), a function is applied to each batch, and results are
combined.

Each iteration, the BigData function opens a connection to a big data set and keeps the connection
open while the scan function reads in each batch of data (elsewhere, batches are often referred
to chunks). A user-specified function is applied to each batch of data, the results are combined
together, the connection is closed, and the results are returned.

As an introductory example, suppose a statistician updates a linear regression model, but the design
matrix X is too large for computer memory. Suppose the design matrix has 100 million rows, and the
statistician specifies size=1e6. The statistician combines dependent variable y with design matrix
X. Each iteration in IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, or
VariationalBayes, the BigData function sequentially reads in one million rows of the combined
data X, calculates expectation vector µ, and finally returns the sum of the log-likelihood. The sum
of the log-likelihood is added together for all batches, and returned.

There are many limitations with this function.

This function is not fast, in the sense that the entire big data set is processed in batches, each
iteration. With iterative methods, this may perform well, albeit slowly.

There are many functions that cannot be performed on batches, though most models in the Examples
vignette may easily be updated with big data.

Large matrices of samples are unaddressed, only the data.

Although many (but not all) models may be estimated, many additional functions in this package
will not work when applied after the model has updated. Instead, a batch or random sample of data
(see the read.matrix function for sampling from big data) should be used in the usual way, in the
Data argument, and the Model function coded in the usual way without the BigData function.

Parallel processing may be performed when the user specifies CPUs to be greater than one, implying
that the specified number of CPUs exists and is available. Parallelization may be performed on a
multicore computer or a computer cluster. Either a Simple Network of Workstations (SNOW) or
Message Passing Interface (MPI) is used. Each call to BigData establishes and closes the paral-
lelization, which is costly, and unfortunately results in copious output to the console. With small
data sets, parallel processing may be slower, due to computer network communication. With larger
data sets, the user should experience a faster run-time.

There have been several alternative approaches suggested for big data.

Huang and Gelman (2005) propose that the user creates batches by sampling from big data, updating
a separate Bayesian model on each batch, and combining the results into a consensus posterior. This
many-mini-model approach may be faster when feasible, because multiple models may be updated
in parallel, say one per CPU. Such results will work with all functions in this package. With the
many-mini-model approach, several methods are proposed for combining posterior samples from
batch-level models, such as by using a normal approximation, updating from prior to posterior
sequentially (the posterior from the last batch becomes the prior of the next batch), sample from the
full posterior via importance sampling from the batched posteriors, and more.

Scott et al. (2013) propose a method that they call Consensus Monte Carlo, which consists of break-
ing the data down into chunks, calling each chunk a shard, and use a many-mini-model approach as
well, but propose their own method of weighting the posteriors back together.
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Balakrishnan and Madigan (2006) introduced a Sequential Monte Carlo (SMC) sampler, a refine-
ment of an earlier proposal, that was designed for big data. It makes one pass through the massive
data set, after an initial MCMC estimation on a small sample. Each particle is updated for each
record, resulting in numerous evaluations per record.

Welling and Teh (2011) proposed a new class of MCMC sampler in which only a random sample
of big data is used each iteration. The stochastic gradient Langevin dynamics (SGLD) algorithm is
available in the LaplacesDemon function.

An important alternative to consider is using the ff package, where "ff" stands for fast access file.
The ff package has been tested successfully with updating a model in LaplacesDemon. Once the
big data set, say X, is an object of class ff_matrix, simply include it in the list of data as usual, and
modify the Model specification function appropriately. For example, change mu <- tcrossprod(X,
t(beta)) to mu <- tcrossprod(X[], t(beta)). The ff package is not included as a dependency
in the LaplacesDemon package, so it must be installed and activated.

Value

The BigData function returns output that is the result of performing a user-specified function on
batches of big data. Output is a matrix, and may have one or more column vectors.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

References

Balakrishnan, S. and Madigan, D. (2006). "A One-Pass Sequential Monte Carlo Method for Bayesian
Analysis of Massive Datasets". Bayesian Analysis, 1(2), p. 345–362.

Huang, Z. and Gelman, A. (2005) "Sampling for Bayesian Computation with Large Datasets".
SSRN eLibrary.

Scott, S.L., Blocker, A.W. and Bonassi, F.V. (2013). "Bayes and Big Data: The Consensus Monte
Carlo Algorithm". In Bayes 250.

Welling, M. and Teh, Y.W. (2011). "Bayesian Learning via Stochastic Gradient Langevin Dynam-
ics". Proceedings of the 28th International Conference on Machine Learning (ICML), p. 681–688.

See Also

IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LaplacesDemon.RAM, PMC, PMC.RAM,
read.matrix, and VariationalBayes.

Examples

### Below is an example of a linear regression model specification
### function in which BigData reads in a batch of 1,000 records of
### Data$N records from a data set that is too large to fully open
### in memory. The example simulates on 10,000 records, which is
### not big data; it's just a toy example. The data set is file X.csv,
### and the first column of matrix X is the dependent variable y. The
### user supplies a function to BigData along with parameters beta and
### sigma. When each batch of 1,000 records is read in,
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### mu = XB is calculated, and then the LL is calculated as
### y ~ N(mu, sigma^2). These results are added together from all
### batches, and returned as LL.

library(LaplacesDemon)
N <- 10000
J <- 10 #Number of predictors, including the intercept
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta.orig <- runif(J,-3,3)
e <- rnorm(N,0,0.1)
y <- as.vector(tcrossprod(beta.orig, X) + e)
mon.names <- c("LP","sigma")
parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0))
PGF <- function(Data) return(c(rnormv(Data$J,0,0.01),

log(rhalfcauchy(1,1))))
MyData <- list(J=J, PGF=PGF, N=N, mon.names=mon.names,

parm.names=parm.names) #Notice that X and y are not included here
filename <- tempfile("X.csv")
write.table(cbind(y,X), filename, sep=",", row.names=FALSE,

col.names=FALSE)

Model <- function(parm, Data)
{
### Parameters
beta <- parm[1:Data$J]
sigma <- exp(parm[Data$J+1])
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
LL <- BigData(file=filename, nrow=Data$N, ncol=Data$J+1, size=1000,

Method="add", CPUs=1, Type="PSOCK",
FUN=function(x, beta, sigma) sum(dnorm(x[,1], tcrossprod(x[,-1],

t(beta)), sigma, log=TRUE)), beta, sigma)
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma),

yhat=0,#rnorm(length(mu), mu, sigma),
parm=parm)

return(Modelout)
}

### From here, the user may update the model as usual.

Blocks Blocks

Description

The Blocks function returns a list of N blocks of parameters, for use with some MCMC algorithms
in the LaplacesDemon function. Blocks may be created either sequentially, or from a hierarchical
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clustering of the posterior correlation matrix.

Usage

Blocks(Initial.Values, N, PostCor=NULL)

Arguments

Initial.Values This required argument is a vector of initial values.

N This optional argument indicates the desired number of blocks. If omitted, then
the truncated square root of the number of initial values is used. If a posterior
correlation matrix is supplied to PostCor, then N may be a scalar, or have length
two. If N has length two, then the first element indicates the minimum number
of blocks, and the second element indicates the maximum number of blocks,
and the number of blocks is the maximum of the mean silhouette width for each
hierarchical cluster solution.

PostCor This optional argument defaults to NULL, in which case sequential blocking is
performed. If a posterior correlation matrix is supplied, then blocks are created
based on hierarchical clustering.

Details

Usually, there is more than one target distribution in MCMC, in which case it must be determined
whether it is best to sample from target distributions individually, in groups, or all at once. Block-
wise sampling (also called block updating) refers to splitting a multivariate vector into groups called
blocks, and each block is sampled separately. A block may contain one or more parameters.

Parameters are usually grouped into blocks such that parameters within a block are as correlated
as possible, and parameters between blocks are as independent as possible. This strategy retains as
much of the parameter correlation as possible for blockwise sampling, as opposed to component-
wise sampling where parameter correlation is ignored. The PosteriorChecks function can be used
on the output of previous runs to find highly correlated parameters. See examples below.

Advantages of blockwise sampling are that a different MCMC algorithm may be used for each block
(or parameter, for that matter), creating a more specialized approach (though different algorithms by
block are not supported here), the acceptance of a newly proposed state is likely to be higher than
sampling from all target distributions at once in high dimensions, and large proposal covariance
matrices can be reduced in size, which is most helpful again in high dimensions.

Disadvantages of blockwise sampling are that correlations probably exist between parameters be-
tween blocks, and each block is updated while holding the other blocks constant, ignoring these
correlations of parameters between blocks. Without simultaneously taking everything into account,
the algorithm may converge slowly or never arrive at the proper solution. However, there are in-
stances when it may be best when everything is not taken into account at once, such as in state-space
models. Also, as the number of blocks increases, more computation is required, which slows the
algorithm. In general, blockwise sampling allows a more specialized approach at the expense of
accuracy, generalization, and speed. Blockwise sampling is offered in the following algorithms:
Adaptive-Mixture Metropolis (AMM), Adaptive Metropolis-within-Gibbs (AMWG), Automated
Factor Slice Sampler (AFSS), Elliptical Slice Sampler (ESS), Hit-And-Run Metropolis (HARM),
Metropolis-within-Gibbs (MWG), Random-Walk Metropolis (RWM), Robust Adaptive Metropolis
(RAM), Slice Sampler (Slice), and the Univariate Eigenvector Slice Sampler (UESS).



Blocks 33

Large-dimensional models often require blockwise sampling. For example, with thousands of
parameters, a componentwise algorithm must evaluate the model specification function once per
parameter per iteration, resulting in an algorithm that may take longer than is acceptable to pro-
duce samples. Algorithms that require derivatives, such as the family of Hamiltonian Monte Carlo
(HMC), require even more evaluations of the model specification function per iteration, and quickly
become too costly in large dimensions. Finally, algorithms with multivariate proposals often have
difficulty producing an accepted proposal in large-dimensional models. The most practical solu-
tion is to group parameters into N blocks, and each iteration the algorithm evaluates the model
specification function N times, each with a reduced set of parameters.

The Blocks function performs either a sequential assignment of parameters to blocks when poste-
rior correlation is not supplied, or uses hierarchical clustering to create blocks based on posterior
correlation. If posterior correlation is supplied, then the user may specify a range of the number of
blocks to consider, and the optimal number of blocks is considered to be the maximum of the mean
silhouette width of each hierarchical clustering. Silhouette width is calculated as per the cluster
package. Hierarchical clustering is performed on the distance matrix calculated from the dissimi-
larity matrix (1 - abs(PostCor)) of the posterior correlation matrix. With sequential assignment, the
number of parameters per block is approximately equal. With hierarchical clustering, the number
of parameters per block may vary widely. Creating blocks from hierarchical clustering performs
well in practice, though there are many alternative methods the user may consider outside of this
function, such as using factor analysis, model-based clustering, or other methods.

Aside from sequentially-assigned blocks, or blocks based on posterior correlation, it is also common
to group parameters with similar uses, such as putting regression effects parameters into one block,
and autocorrelation parameters into another block. Another popular way to group parameters into
blocks is by time-period for some time-series models. These alternative blocking strategies are
unsupported in the Blocks function, and best left to user discretion.

Some MCMC algorithms that accept blocked parameters also require blocked variance-covariance
matrices. The Blocks function does not return these matrices, because it may not be necessary, or
when it is, the user may prefer identity matrices, scaled identity matrices, or matrices with explicitly-
defined elements.

If the user is looking for a place to begin with blockwise sampling, then the recommended, default
approach (when blocked parameters by time-period are not desired in a time-series) is to begin with
a trial run of the adaptive, unblocked HARM algorithm (since covariance matrices are not required)
for the purposes of obtaining a posterior correlation matrix. Next, create blocks with the Blocks
function based on the posterior correlation matrix obtained from the trial run. Finally, run the
desired, blocked algorithm with the newly created blocks (and possibly user-specified covariance
matrices), beginning where the trial run ended.

If hierarchical clustering is used, then it is important to note that hierarchical clustering has no idea
that the user intends to perform blockwise sampling in MCMC. If hierarchical clustering returns nu-
merous small blocks, then the user may consider combining some or all of those blocks. For exam-
ple, if several 1-parameter blocks are returned, then blockwise sampling will equal componentwise
sampling for those blocks, which will iterate slower. Conversely, if hierarchical clustering returns
one or more big blocks, each with enough parameters that multivariate sampling will have difficulty
getting an accepted proposal, or an accepted proposal that moves more than a small amount, then
the user may consider subdividing these big blocks into smaller, more manageable blocks, though
with the understanding that more posterior correlation is unaccounted for.
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Value

The Blocks function returns an object of class blocks, which is a list. Each component of the list
is a block of parameters, and parameters are indicated by their position in the initial values vector.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

LaplacesDemon and PosteriorChecks.

Examples

library(LaplacesDemon)

### Create the default number of sequentially assigned blocks:
Initial.Values <- rep(0,1000)
MyBlocks <- Blocks(Initial.Values)
MyBlocks

### Or, a pre-specified number of sequentially assigned blocks:
#Initial.Values <- rep(0,1000)
#MyBlocks <- Blocks(Initial.Values, N=20)

### If scaled diagonal covariance matrices are desired:
#VarCov <- list()
#for (i in 1:length(MyBlocks))
# VarCov[[i]] <- diag(length(MyBlocks[[i]]))*2.38^2/length(MyBlocks[[i]])

### Or, determine the number of blocks in the range of 2 to 50 from
### hierarchical clustering on the posterior correlation matrix of an
### object, say called Fit, output from LaplacesDemon:
#MyBlocks <- Blocks(Initial.Values, N=c(2,50),
# PostCor=cor(Fit$Posterior1))
#lapply(MyBlocks, length) #See the number of parameters per block

### Or, create a pre-specified number of blocks from hierarchical
### clustering on the posterior correlation matrix of an object,
### say called Fit, output from LaplacesDemon:
#MyBlocks <- Blocks(Initial.Values, N=20, PostCor=cor(Fit$Posterior1))

### Posterior correlation from a previous trial run could be obtained
### with either method below (though cor() will be fastest because
### additional checks are not calculated for the parameters):
#rho <- cor(Fit$Posterior1)
#rho <- PosteriorChecks(Fit)$Posterior.Correlation
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BMK.Diagnostic BMK Convergence Diagnostic

Description

Given a matrix of posterior samples from MCMC, the BMK.Diagnostic function calculates Hellinger
distances between consecutive batches for each chain. This is useful for monitoring convergence of
MCMC chains.

Usage

BMK.Diagnostic(X, batches=10)

Arguments

X This required argument accepts a matrix of posterior samples or an object of
class demonoid, in which case it uses the posterior samples in X$Posterior1.

batches This is the number of batches on which the convergence diagnostic will be cal-
culated. The batches argument defaults to 10.

Details

Hellinger distance is used to quantify dissimilarity between two probability distributions. It is based
on the Hellinger integral, introduced by Hellinger (1909). Traditionally, Hellinger distance is bound
to the interval [0,1], though another popular form occurs in the interval [0,

√
2]. A higher value of

Hellinger distance is associated with more dissimilarity between the distributions.

Convergence is assumed when Hellinger distances are below a threshold, indicating that posterior
samples are similar between consecutive batches. If all Hellinger distances beyond a given batch
of samples is below the threshold, then burnin is suggested to occur immediately before the first
batch of satisfactory Hellinger distances.

As an aid to interpretation, consider a matrix of 1,000 posterior samples from three chains: beta[1],
beta[2], and beta[3]. With 10 batches, the column names are: 100, 200, . . . , 900. A Hellinger
distance for the chain beta[1] at 100 is the Hellinger distance between two batches: samples 1-100,
and samples 101:200.

A benefit to using BMK.Diagnostic is that the resulting Hellinger distances may easily be plotted
with the plotMatrix function, allowing the user to see quickly which consecutive batches of which
chains were dissimilar. This makes it easier to find problematic chains.

The BMK.Diagnostic is calculated automatically in the LaplacesDemon function, and is one of
the criteria in the Consort function regarding the recommendation of when to stop updating the
Markov chain Monte Carlo (MCMC) sampler in LaplacesDemon.

For more information on the related topics of burn-in and stationarity, see the burnin and is.stationary
functions, and the accompanying vignettes.
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Value

The BMK.Diagnostic function returns an object of class bmk that is a J×B matrix of Hellinger dis-
tances between consecutive batches for J parameters of posterior samples. The number of columns,
B is equal to the number of batches minus one.

The BMK.Diagnostic function is similar to the bmkconverge function in package BMK.

References

Boone, E.L., Merrick, J.R. and Krachey, M.J. (2013). "A Hellinger Distance Approach to MCMC
Diagnostics". Journal of Statistical Computation and Simulation, in press.

Hellinger, E. (1909). "Neue Begrundung der Theorie quadratischer Formen von unendlichvielen
Veranderlichen" (in German). Journal fur die reine und angewandte Mathematik, 136, p. 210–271.

See Also

burnin, Consort, is.stationary, and LaplacesDemon.

Examples

library(LaplacesDemon)
N <- 1000 #Number of posterior samples
J <- 10 #Number of parameters
Theta <- matrix(runif(N*J),N,J)
colnames(Theta) <- paste("beta[", 1:J, "]", sep="")
for (i in 2:N) {Theta[i,1] <- Theta[i-1,1] + rnorm(1)}
HD <- BMK.Diagnostic(Theta, batches=10)
plot(HD, title="Hellinger distance between batches")

burnin Burn-in

Description

The burnin function estimates the duration of burn-in in iterations for one or more Markov chains.
“Burn-in” refers to the initial portion of a Markov chain that is not stationary and is still affected by
its initial value.

Usage

burnin(x, method="BMK")

Arguments

x This is a vector or matrix of posterior samples for which a the number of burn-in
iterations will be estimated.

method This argument defaults to "BMK", in which case stationarity is estimated with
the BMK.Diagnostic function. Alternatively, the Geweke.Diagnostic function
may be used when method="Geweke" or the KS.Diagnostic function may be
used when method="KS".
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Details

Burn-in is a colloquial term for the initial iterations in a Markov chain prior to its convergence to the
target distribution. During burn-in, the chain is not considered to have “forgotten” its initial value.

Burn-in is not a theoretical part of MCMC, but its use is the norm because of the need to limit the
number of posterior samples due to computer memory. If burn-in were retained rather than dis-
carded, then more posterior samples would have to be retained. If a Markov chain starts anywhere
close to the center of its target distribution, then burn-in iterations do not need to be discarded.

In the LaplacesDemon function, stationarity is estimated with the BMK.Diagnostic function on
all thinned posterior samples of each chain, beginning at cumulative 10% intervals relative to the
total number of samples, and the lowest number in which all chains are stationary is considered the
burn-in.

The term, “burn-in”, originated in electronics regarding the initial testing of component failure at
the factory to eliminate initial failures (Geyer, 2011). Although “burn-in’ has been the standard
term for decades, some are referring to these as “warm-up” iterations.

Value

The burnin function returns a vector equal in length to the number of MCMC chains in x, and each
element indicates the maximum iteration in burn-in.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Geyer, C.J. (2011). "Introduction to Markov Chain Monte Carlo". In S Brooks, A Gelman, G Jones,
and M Xiao-Li (eds.), "Handbook of Markov Chain Monte Carlo", p. 3–48. Chapman and Hall,
Boca Raton, FL.

See Also

BMK.Diagnostic, deburn, Geweke.Diagnostic, KS.Diagnostic, and LaplacesDemon.

Examples

library(LaplacesDemon)
x <- rnorm(1000)
burnin(x)
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caterpillar.plot Caterpillar Plot

Description

A caterpillar plot is a horizontal plot of 3 quantiles of selected distributions. This may be used to
produce a caterpillar plot of posterior samples (parameters and monitored variables) from an object
either of class demonoid, demonoid.hpc, iterquad, laplace, pmc, vb, or a matrix.

Usage

caterpillar.plot(x, Parms=NULL, Title=NULL)

Arguments

x This required argument is an object of class demonoid, codedemonoid.hpc, iterquad,
laplace, pmc, vb, or a S × J matrix of S samples and J variables. For an
object of class demonoid, the distributions of the stationary posterior summary
(Summary2) will be attempted first, and if missing, then the parameters of all pos-
terior samples (Summary1) will be plotted. For an object of class demonoid.hpc,
stationarity may differ by chain, so all posterior samples (Summary1) are used.
For an object of class laplace or vb, the distributions in the posterior summary,
Summary, are plotted according to the posterior draws, sampled with sampling
importance resampling in the SIR function. When a generic matrix is supplied,
unimodal 95% HPD intervals are estimated with the p.interval function.

Parms This argument accepts a vector of quoted strings to be matched for selecting
parameters and monitored variables for plotting (though all parameters are se-
lected when a generic matrix is supplied). This argument defaults to NULL and
selects every parameter for plotting. Each quoted string is matched to one or
more parameter names with the grep function. For example, if the user speci-
fies Parms=c("eta", "tau"), and if the parameter names are beta[1], beta[2],
eta[1], eta[2], and tau, then all parameters will be selected, because the string
eta is within beta. Since grep is used, string matching uses regular expres-
sions, so beware of meta-characters, though these are acceptable: ".", "[", and
"]".

Title This argument accepts a title for the plot.

Details

Caterpillar plots are popular plots in Bayesian inference for summarizing the quantiles of posterior
samples. A caterpillar plot is similar to a horizontal boxplot, though without quartiles, making it
easier for the user to study more distributions in a single plot. The following quantiles are plotted as
a line for each parameter: 0.025 and 0.975, with the exception of a generic matrix, where unimodal
95% HPD intervals are estimated (for more information, see p.interval). A vertical, gray line
is included at zero. For all but class demonoid.hpc, the median appears as a black dot, and the
quantile line is black. For class demonoid.hpc, the color of the median and quantile line differs by
chain; the first chain is black and additional chains appear beneath.
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Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LaplacesDemon.hpc, PMC, p.interval,
SIR, and VariationalBayes.

Examples

#An example is provided in the LaplacesDemon function.

CenterScale Centering and Scaling

Description

This function either centers and scales a continuous variable and provides options for binary vari-
ables, or returns an untransformed variable from a centered and scaled variable.

Usage

CenterScale(x, Binary="none", Inverse=FALSE, mu, sigma, Range, Min)

Arguments

x This is a vector to be centered and scaled, or to be untransformed if Inverse=TRUE.

Binary This argument indicates how binary variables will be treated, and defaults to
"none", which keeps the original scale, or transforms the variable to the 0-1
range, if not already there. With "center", it will center the binary variable by
subtracting the mean. With "center0", it centers the binary variable at zero,
recoding a 0 to -0.5, and a 1 to 0.5. Finally, "centerscale" will center and
scale the binary variable, subtracting the mean and dividing by two standard
deviations.

Inverse Logical. If TRUE, then a centered and scaled variable x will be transformed to its
original, un-centered and un-scaled state. This defaults to FALSE.

mu, sigma, Range, Min
These arguments are required only when Inverse=TRUE, where mu is the mean,
sigma is the standard deviation, Range is the range, and Min is the minimum of
the original x. Range and Min are used only when Binary="none" or Binary="center0".
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Details

Gelman (2008) recommends centering and scaling continuous predictors to facilitate MCMC con-
vergence and enable comparisons between coefficients of centered and scaled continuous predictors
with coefficients of untransformed binary predictors. A continuous predictor is centered and scaled
as follows: x.cs <- (x - mean(x)) / (2*sd(x)). This is an improvement over the usual practice
of standardizing predictors, which is x.z <- (x - mean(x)) / sd(x), where coefficients cannot be
validly compared between binary and continuous predictors.

In MCMC, such as in LaplacesDemon, a centered and scaled predictor often results in a higher
effective sample size (ESS), and therefore the chain mixes better. Centering and scaling is a method
of re-parameterization to improve mixing.

Griffin and Brown (2013) also assert that the user may not want to scale predictors that are measured
on the same scale, since scaling in this case may increase noisy, low signals. In this case, centering
(without scaling) is recommended. To center a predictor, subtract its mean.

Value

The CenterScale function returns a centered and scaled vector, or the untransformed vector.

References

Gelman, A. (2008). "Scaling Regression Inputs by Dividing by Two Standard Devations". Statistics
in Medicine, 27, p. 2865–2873.

Griffin, J.E. and Brown, P.J. (2013) "Some Priors for Sparse Regression Modelling". Bayesian
Analysis, 8(3), p. 691–702.

See Also

ESS, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, and PMC.

Examples

### See the LaplacesDemon function for an example in use.
library(LaplacesDemon)
x <- rnorm(100,10,1)
x.cs <- CenterScale(x)
x.orig <- CenterScale(x.cs, Inverse=TRUE, mu=mean(x), sigma=sd(x))

Combine Combine Demonoid Objects

Description

This function combines objects of class demonoid.

Usage

Combine(x, Data, Thinning=1)
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Arguments

x This is a list of objects of class demonoid, and this list may be an object of class
demonoid.hpc.

Data This is the data, and must be identical to the data used to create the demonoid
objects with LaplacesDemon.

Thinning This is the amount of thinning to apply to the posterior samples after appending
them together. Thinning defaults to 1, in which case all samples are retained.
For example, in the case of, say, Thinning=10, then only every 10th sample
would be retained. When combining parallel chains, Thinning is often left to
its default. When combining consecutive updates, Thinning is usually applied,
with the value equal to the number of objects of class demonoid. For more
information on thinning, see the Thin function.

Details

The purpose of the Combine function is to enable a user to combine objects of class demonoid
for one of three reasons. First, parallel chains from LaplacesDemon.hpc may be combined after
convergence is assessed with Gelman.Diagnostic. Second, consecutive updates of single chains
from LaplacesDemon or parallel chains from LaplacesDemon.hpc may be combined when the
computer has insufficient random-access memory (RAM) for the user to update once with enough
iterations. Third, consecutive single-chain or parallel-chain updates may be combined when it
seems that the logarithm of the joint posterior distribution, LP, seems to be oscillating up and down,
which is described in more detail below.

The most common use regards the combination of parallel chains output from LaplacesDemon.hpc.
Typically, a user with parallel chains examines them graphically with the caterpillar.plot and
plot (actually, plot.demonoid) functions, and assesses convergence with the Gelman.Diagnostic
function. Thereafter, the parallel chain output in the object of class demonoid.hpc should be com-
bined into a single object of class demonoid, before doing posterior predictive checks and making
inferences. In this case, the Thinning argument usually is recommended to remain at its default.

It is also common with a high-dimensional model (a model with a large number of parameters) to
need more posterior samples than allowed by the random-access memory (RAM) of the computer.
In this case, it is best to use the LaplacesDemon.RAM function to estimate the amount of RAM that a
given model will require with a given number of iterations, and then update LaplacesDemon almost
as much as RAM allows, and save the output object of class demonoid. Then, the user is advised
to continue onward with a consecutive update (after using as.initial.values and anything else
appropriate to prepare for the consecutive update). Suppose a user desires to update a gigantic
model with thousands of parameters, and with the aid of LaplacesDemon.RAM, estimates that they
can safely update only 100,000 iterations, and that 150,000 iterations would exceed RAM and crash
the computer. The patient user can update several consecutive models, each with retaining only
1,000 thinned posterior samples, and combine them later with the Combine function, by placing
multiple objects into a list, as described below. In this way, it is possible for a user to update models
that otherwise far exceed computer RAM.

Less commonly, multiple updates of single-chain objects should be combined into a single object of
class demonoid. This is most useful in complicated models that are run for large numbers of itera-
tions, where it may be suspected that stationarity has been achieved, but that thinning is insufficient,
and the samples may be combined and thinned. If followed, then these suggestions may continue
seemingly to infinity, and the unnormalized logarithm of the joint posterior density, LP, may seem
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to oscillate, sometimes improving and getting higher, and getting lower during other updates. For
this purpose, the prior covariance matrix of the last model is retained (rather than combining them).
This may be an unpleasant surprise for combining parallel updates, so be aware of it.

In these cases, which usually involve complicated models with high autocorrelation in the chains,
the user may opt to use parallel processing with the LaplacesDemon.hpc function, or may use the
LaplacesDemon function as follows. The user should save (meaning, not overwrite) each object of
class demonoid, place multiple objects into a list, and use the Combine function to combine these
objects.

For example, suppose a user names the object Fit, as in the LaplacesDemon example. Now, rather
than overwriting object Fit, object Fit is renamed, after updating a million iterations, to Fit1. As
suggested by Consort, another million iterations are used, but now to create object Fit2. Further
suppose this user specified Thinning=1000 in LaplacesDemon, meaning that the million iterations
are thinned by 1,000, so only 1,000 iterations are retained in each object, Fit1 and Fit2. In this
case, Combine combines the information in Fit1 and Fit2, and returns an object the user names Fit3.
Fit3 has only 1,000 iterations, which is the result of appending the iterations in Fit1 and Fit2, and
thinning by 2. If 2,000,000 iterations were updated from the beginning, and were thinned by 2,000,
then the same information exists now in Fit3. The Consort function can now be applied to Fit3,
to see if stationarity is found. If not, then more objects of class demonoid can be collected and
combined.

Value

This function returns an object of class demonoid. For more information on an object of class
demonoid, see the LaplacesDemon function.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

caterpillar.plot, Gelman.Diagnostic, LaplacesDemon, LaplacesDemon.hpc, and Thin.

cond.plot Conditional Plots

Description

This function provides several styles of conditional plots with base graphics.

Usage

cond.plot(x, y, z, Style="smoothscatter")
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Arguments

x This required argument accepts a numeric vector.

y This argument accepts a numeric vector, and is only used with some styles.

z This required argument accepts a discrete vector.

Style This argument specifies the style of plot, and accepts "boxplot", "densover"
(density overlay), "hist", "scatter", or "smoothscatter".

Details

The cond.plot function provides simple conditional plots with base graphics. All plot styles are
conditional upon z. Up to nine conditional plots are produced in a panel.

Plots include:

boxplot: y ~ x | z densover: f(x | z) hist: x | z scatter: x, y | z smoothscatter: x, y | z

The cond.plot function is not intended to try to compete with some of the better graphics packages,
but merely to provide simple functionality.

Value

Conditional plots are returned.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

joint.density.plot and joint.pr.plot.

Examples

library(LaplacesDemon)
x <- rnorm(1000)
y <- runif(1000)
z <- rcat(1000, rep(1/4,4))
cond.plot(x, y, z, Style="smoothscatter")

Consort Consort with Laplace’s Demon

Description

This may be used to consort with Laplace’s Demon regarding an object of class demonoid. Laplace’s
Demon will offer suggestions.

Usage

Consort(object)
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Arguments

object This required argument is an object of class demonoid. For more information,
see the LaplacesDemon function.

Details

First, Consort calls print.demonoid, which prints most of the components to the screen from the
supplied object of class demonoid.

Second, Laplace’s Demon considers a combination of five conditions when making the largest
part of its suggestion. These conditions are: the algorithm, acceptance rate, MCSE, ESS, and
stationarity. Other things are considered as well, such as the recommended thinning value is used
to suggest a new number of iterations, how fast the algorithm is expected to be, and if the condition
of diminishing adaptation (also called the vanishing adaptation condition) was met (for an adaptive
algorithm). Diminishing adaptation occurs only when the absolute value of the proposed variances
trends downward (toward zero) over the course of all adaptations. When an algorithm is adaptive
and it does not have diminishing adaptations, the Consort function will suggest a different adaptive
algorithm. The Periodicity argument is suggested to be set equal to the value of Rec.Thinning.

Appeasement applies only when all parameters are continuous.The Hangartner.Diagnostic should
be considered for discrete parameters.

Appeasement Conditions

• Algorithm: The final algorithm must be non-adaptive, so that the Markov property holds. This
is conservative. A user may have an adaptive (non-final) algorithm in which adaptations in the
latest update are stationary, or no longer diminishing. Laplace’s Demon is unaware of previous
updates, and conservatively interprets this as failing to meet the condition of diminishing
adaptation, when the output may be satisfactory. On the other hand, if the adaptive algorithm
has essentially stopped adapting, and if there is a non-adaptive version, then the user should
consider switching to the non-adaptive algorithm. User discretion is advised.

• Acceptance Rate: The acceptance rate is considered satisfactory if it is within the interval
[15%,50%] for most algorithms. Some algorithms have different recommended intervals.

• MCSE: The Monte Carlo Standard Error (MCSE) is considered satisfactory for each target
distribution if it is less than 6.27% of the standard deviation of the target distribution. This
allows the true mean to be within 5% of the area under a Gaussian distribution around the
estimated mean. The MCSE function is used. Toft et al. (2007) propose a stricter criterion
of 5%. The criterion of 6.27% for this stopping rule is arbitrary, and may be too lenient or
strict, depending on the needs of the user. Nonetheless, it has performed well, and this type
of stopping rule has been observed to perform better than MCMC convergence diagnostics
(Flegal et al., 2008).

• ESS: The effective sample size (ESS) is considered satisfactory for each target distribution if it
is at least 100, which is usually enough to describe 95% probability intervals (see p.interval
and LPL.interval for more information). The ESS function is used. When this criterion is
unmet, the name of the worst mixing chain in Summary1 appears.

• Stationarity: Each target distribution is considered satisfactory if it is estimated to be stationary
with the BMK.Diagnostic function.

Bear in mind that the MCSE, ESS, and stationarity criteria are all univariate measures applied
to each marginal posterior distribution. Multivariate forms are not included. By chance alone
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due to multiple independent tests, 5% of these diagnostics should indicate non-convergence when
’convergence’ exists. In contrast, even one non-convergent nuisance parameter is associated with
non-convergence in all other parameters. Assessing convergence is difficult.

If all five conditions are satisfactory, then Laplace’s Demon is appeased. Otherwise, Laplace’s
Demon will suggest and supply R code that is ready to be copy/pasted and executed.

To visualize the MCSE-based stopping rule, run the following code:

x <- seq(from=-3, to=3, by=0.1); plot(x, dnorm(x,0,1), type="l"); abline(v=-0.0627);
abline(v=0.0627); abline(v=2*-0.0627, col="red"); abline(v=2*0.0627, col="red")

The black vertical lines show the standard error, and the red vertical lines show the 95% interval.

If the user has an object of class demonoid.hpc, then the Consort function may be still be ap-
plied, but a particular chain in the object must be specified as a component in a list. For example,
with an object called Fit and a goal of consorting over the second chain, the code would be:
Consort(Fit[[2]]).

The Demonic Suggestion is usually very helpful, but should not be followed blindly. Do not let it
replace critical thinking. For example, Consort may find that diminishing adaptation is unmet, and
recommend a different algorithm. However, the user may be convinced that the current algorithm
is best, and believe instead that MCMC found a local solution, and is leaving it to find the global
solution, in which case adaptations may increase again. Diminishing adaptation may have occurred
in a previous run, and is not found in the current run because adaptation is essentially finished. If
either of these is true, then it may be best to ignore the newly suggested algorithm, and continue
with the current algorithm. The suggested code may be helpful, but it is merely a suggestion.

If achieving the appeasement of Laplace’s Demon is difficult, consider ignoring the MCSE criterion
and terminate when all other criteria have been met, placing special emphasis on ESS.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Flegal, J.M., Haran, M., and Jones, G.L. (2008). "Markov chain Monte Carlo: Can We Trust the
Third Significant Figure?". Statistical Science, 23, p. 250–260.

Toft, N., Innocent, G., Gettinby, G., and Reid, S. (2007). "Assessing the Convergence of Markov
Chain Monte Carlo Methods: An Example from Evaluation of Diagnostic Tests in Absence of a
Gold Standard". Preventive Veterinary Medicine, 79, p. 244–256.

See Also

BMK.Diagnostic, ESS, Hangartner.Diagnostic, LaplacesDemon, LaplacesDemon.hpc, LPL.interval,
MCSE, and p.interval.
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CSF Cumulative Sample Function

Description

The Cumulative Sample Function (CSF) is a visual MCMC diagnostic in which the user may se-
lect a measure (such as a variable, summary statistic, or other diagnostic), and observe a plot of
how the measure changes over cumulative posterior samples from MCMC, such as the output of
LaplacesDemon. This may be considered to be a generalized extension of the cumuplot in the coda
package, which is a more restrictive form of the cusum diagnostic introduced by Yu and Myckland
(1998).

Yu and Myckland (1998) suggest that CSF plots should be examined after traditional trace plots
seem convergent, and assert that faster mixing chains (which are more desirable) result in CSF plots
that are more ‘hairy’ (as opposed to smooth), though this is subjective and has been debated. The
LaplacesDemon package neither supports nor contradicts the suggestion of mixing and ‘hairiness’,
but suggests that CSF plots may be used to provide additional information about a chain. For
example, a user may decide on a practical burnin given when a conditional mean obtains a certain
standard error.

Usage

CSF(x, name, method="Quantiles", quantiles=c(0.025,0.500,0.975), output=FALSE)

Arguments

x This is a vector of posterior samples from MCMC.

name This is an optional name for vector x, and is input as a quoted string, such as
name="theta".

method This is a measure that will be observed over the course of cumulative samples
of x. It defaults to method="Quantiles", and optional methods include: "ESS",
"Geweke.Diagnostic", "HPD", "is.stationary", "Kurtosis", "MCSE", "MCSE.bm",
"MCSE.sv", "Mean", "Mode", "N.Modes", "Precision", "Quantiles", and
"Skewness".

quantiles This optional argument applies only when method="Quantiles", in which case
this vector indicates the probabilities that will be observed. It defaults to the
median and 95% probability interval bounds (see p.interval for more infor-
mation).

output Logical. If output=TRUE, then the results of the measure over the course of
the cumulative samples will be output as an object, either a vector or matrix,
depending on the method argument. The output argument defaults to FALSE.

Details

When method="ESS", the effective sample size (ESS) is observed as a function of the cumulative
samples of x. For more information, see the ESS function.
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When method="Geweke.Diagnostic", the Z-score output of the Geweke diagnostic is observed
as a function of the cumulative samples of x. For more information, see the Geweke.Diagnostic
function.

When method="HPD", the Highest Posterior Density (HPD) interval is observed as a function of the
cumulative samples of x. For more information, see the p.interval function.

When method="is.stationary", stationarity is logically tested and the result is observed as a
function of the cumulative samples of x. For more information, see the is.stationary function.

When method="Kurtosis", kurtosis is observed as a function of the cumulative samples of x.

When method="MCSE", the Monte Carlo Standard Error (MCSE) estimated with the IMPS method is
observed as a function of the cumulative samples of x. For more information, see the MCSE function.

When method="MCSE.bm", the Monte Carlo Standard Error (MCSE) estimated with the batch.means
method is observed as a function of the cumulative samples of x. For more information, see the MCSE
function.

When method="MCSE.sv", the Monte Carlo Standard Error (MCSE) estimated with the sample.variance
method is observed as a function of the cumulative samples of x. For more information, see the MCSE
function.

When method="Mean", the mean is observed as a function of the cumulative samples of x.

When method="Mode", the estimated mode is observed as a function of the cumulative samples of
x. For more information, see the Mode function.

When method="N.Modes", the estimated number of modes is observed as a function of the cumu-
lative samples of x. For more information, see the Modes function.

When method="Precision", the precision (inverse variance) is observed as a function of the cu-
mulative samples of x.

When method="Quantiles", the quantiles selected with the quantiles argument are observed as
a function of the cumulative samples of x.

When method="Skewness", skewness is observed as a function of the cumulative samples of x.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Yu, B. and Myckland, P. (1997). "Looking at Markov Samplers through Cusum Path Plots: A
Simple Diagnostic Idea". Statistics and Computing, 8(3), p. 275–286.

See Also

burnin, ESS, Geweke.Diagnostic, is.stationary, LaplacesDemon, MCSE, Mode, Modes, and
p.interval.
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Examples

#Commented-out because of run-time for package builds
#library(LaplacesDemon)
#x <- rnorm(1000)
#CSF(x, method="ESS")
#CSF(x, method="Geweke.Diagnostic")
#CSF(x, method="HPD")
#CSF(x, method="is.stationary")
#CSF(x, method="Kurtosis")
#CSF(x, method="MCSE")
#CSF(x, method="MCSE.bm")
#CSF(x, method="MCSE.sv")
#CSF(x, method="Mean")
#CSF(x, method="Mode")
#CSF(x, method="N.Modes")
#CSF(x, method="Precision")
#CSF(x, method="Quantiles")
#CSF(x, method="Skewness")

data.demonchoice Demon Choice Data Set

Description

This data set is for discrete choice models and consists of the choice of commuting route to school:
arterial, two-lane, or freeway. There were 151 Pennsylvania commuters who started from a residen-
tial complex in State College, PA, and commute to downtown State College.

Usage

data(demonchoice)

Format

This data frame contains 151 rows of individual choices and 9 columns. The following data dictio-
nary describes each variable or column.

Choice This is the route choice: four-lane arterial (35 MPH speed limit), two-lane highway (35
MPH speed limit, with one lane in each direction), or a limited-access four-lane freeway (55
MPH speed liimit.)

HH.Income This is an ordinal variable of annual household income of the commuter in USD. There
are four categories: 1 is less than 20,000 USD, 2 is 20,000-29,999 USD, 3 is 30,000-39,999
USD, and 4 is 40,000 USD or greater.

Vehicle.Age This is the age in years of the vehicle of the commuter.

Stop.Signs.Arterial This is the number of stop signs along the arterial route.

Stop.Signs.Two.Lane This is the number of stop signs along the two-lane route.

Stop.Signs.Freeway This is the number of stop signs along the freeway route.
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Distance.Arterial This is distance in miles of the arterial route.

Distance.Two.Lane This is the distance in miles of the two-lane route.

Distance.Freeway This is the distance in miles of the freeway route.

Source

Washington, S., Congdon, P., Karlaftis, M., and Mannering, F. (2009). "Bayesian Multinomial
Logit: Theory and Route Choice Example". Transportation Research Record, 2136, p. 28–36.

data.demonfx Demon FX Data Set

Description

This data set consists of daily currency pair prices from 2010 through 2014. Each currency pair has
a close, high, and low price.

Usage

data(demonfx)

Format

This data frame contains 1,301 rows as time-periods (with row names) and 39 columns of currency
pair prices. The following data dictionary describes each time-series or column.

EURUSD.Close This is the currency pair closing price.

EURUSD.High This is the currency pair high price.

EURUSD.Low This is the currency pair low price.

USDJPY.Close This is the currency pair closing price.

USDJPY.High This is the currency pair high price.

USDJPY.Low This is the currency pair low price.

USDCHF.Close This is the currency pair closing price.

USDCHF.High This is the currency pair high price.

USDCHF.Low This is the currency pair low price.

GBPUSD.Close This is the currency pair closing price.

GBPUSD.High This is the currency pair high price.

GBPUSD.Low This is the currency pair low price.

USDCAD.Close This is the currency pair closing price.

USDCAD.High This is the currency pair high price.

USDCAD.Low This is the currency pair low price.

EURGBP.Close This is the currency pair closing price.
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EURGBP.High This is the currency pair high price.

EURGBP.Low This is the currency pair low price.

EURJPY.Close This is the currency pair closing price.

EURJPY.High This is the currency pair high price.

EURJPY.Low This is the currency pair low price.

EURCHF.Close This is the currency pair closing price.

EURCHF.High This is the currency pair high price.

EURCHF.Low This is the currency pair low price.

AUDUSD.Close This is the currency pair closing price.

AUDUSD.High This is the currency pair high price.

AUDUSD.Low This is the currency pair low price.

GBPJPY.Close This is the currency pair closing price.

GBPJPY.High This is the currency pair high price.

GBPJPY.Low This is the currency pair low price.

CHFJPY.Close This is the currency pair closing price.

CHFJPY.High This is the currency pair high price.

CHFJPY.Low This is the currency pair low price.

GBPCHF.Close This is the currency pair closing price.

GBPCHF.High This is the currency pair high price.

GBPCHF.Low This is the currency pair low price.

NZDUSD.Close This is the currency pair closing price.

NZDUSD.High This is the currency pair high price.

NZDUSD.Low This is the currency pair low price.

Source

https://www.global-view.com/forex-trading-tools/forex-history/index.html

data.demonsessions Demon Sessions Data Set

Description

These are the monthly number of user sessions at https://web.archive.org/web/20141224051720/
http://www.bayesian-inference.com/index by continent. Additional data may be added in the
future.

Usage

data(demonsessions)

https://www.global-view.com/forex-trading-tools/forex-history/index.html
https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index
https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index
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Format

This data frame contains 26 rows (with row names) and 6 columns. The following data dictionary
describes each variable or column.

Africa This is the African continent.
Americas This is North and South America.
Asia This is the Asian continent.
Europe This is Europe as a continent.
Oceania This is Oceania, such as Australia.
Not.Set This includes sessions in which the continent was not set, or is unknown.

Source

https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index

data.demonsnacks Demon Snacks Data Set

Description

Late one night, after witnessing Laplace’s Demon in action, I followed him back to what seemed to
be his lair. Minutes later, he left again. I snuck inside and saw something labeled ’Demon Snacks’.
Hurriedly, I recorded the 39 items, each with a name and 10 nutritional attributes.

Usage

data(demonsnacks)

Format

This data frame contains 39 rows (with row names) and 10 columns. The following data dictionary
describes each variable or column.

Serving.Size This is serving size in grams.
Calories This is the number of calories.
Total.Fat This is total fat in grams.
Saturated.Fat This is saturated fat in grams.
Cholesterol This is cholesterol in milligrams.
Sodium This is sodium in milligrams.
Total.Carbohydrate This is the total carbohydrates in grams.
Dietary.Fiber This is dietary fiber in grams.
Sugars This is sugar in grams.
Protein This is protein in grams.

Source

This data was obtained from the lair of Laplace’s Demon!

https://web.archive.org/web/20141224051720/http://www.bayesian-inference.com/index
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data.demontexas Demon Space-Time Data Set

Description

This data set is for space-time models that require latitude and longitude, or coordinates. This data
set consists of the minimum, mean, and maximum temperatures in Texas for 13 months.

Usage

data(demontexas)

Format

This data frame contains 369 rows of sites in Texas and 43 columns. The following data dictionary
describes each variable or column.

Elevation This is the elevation of the site.

Latitude This is the latitude of the site.

Longitude This is the longitude of the site.

Gulf This is a gulf indicator of the site.

Max1 This is the maximum temperature in month 1.

Max2 This is the maximum temperature in month 2.

Max3 This is the maximum temperature in month 3.

Max4 This is the maximum temperature in month 4.

Max5 This is the maximum temperature in month 5.

Max6 This is the maximum temperature in month 6.

Max7 This is the maximum temperature in month 7.

Max8 This is the maximum temperature in month 8.

Max9 This is the maximum temperature in month 9.

Max10 This is the maximum temperature in month 10.

Max11 This is the maximum temperature in month 11.

Max12 This is the maximum temperature in month 12.

Max13 This is the maximum temperature in month 13.

Mean1 This is the mean temperature in month 1.

Mean2 This is the mean temperature in month 2.

Mean3 This is the mean temperature in month 3.

Mean4 This is the mean temperature in month 4.

Mean5 This is the mean temperature in month 5.

Mean6 This is the mean temperature in month 6.



de.Finetti.Game 53

Mean7 This is the mean temperature in month 7.

Mean8 This is the mean temperature in month 8.

Mean9 This is the mean temperature in month 9.

Mean10 This is the mean temperature in month 10.

Mean11 This is the mean temperature in month 11.

Mean12 This is the mean temperature in month 12.

Mean13 This is the mean temperature in month 13.

Min1 This is the minimum temperature in month 1.

Min2 This is the minimum temperature in month 2.

Min3 This is the minimum temperature in month 3.

Min4 This is the minimum temperature in month 4.

Min5 This is the minimum temperature in month 5.

Min6 This is the minimum temperature in month 6.

Min7 This is the minimum temperature in month 7.

Min8 This is the minimum temperature in month 8.

Min9 This is the minimum temperature in month 9.

Min10 This is the minimum temperature in month 10.

Min11 This is the minimum temperature in month 11.

Min12 This is the minimum temperature in month 12.

Min13 This is the minimum temperature in month 13.

Source

http://www.stat.ufl.edu/~winner/datasets.html

de.Finetti.Game de Finetti’s Game

Description

The de.Finetti.Game function estimates the interval of a subjective probability regarding a possi-
ble event in the near future.

Usage

de.Finetti.Game(width)

Arguments

width This is the maximum acceptable width of the interval for the returned subjective
probability. The user must specify a width between 0 and 1.

http://www.stat.ufl.edu/~winner/datasets.html
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Details

This function is a variation on the game introduced by de Finetti, who is one of the main developers
of subjective probability, along with Ramsey and Savage. In the original context, de Finetti proposed
a gamble regarding life on Mars one billion years ago.

The frequentist interpretation of probability defines the probability of an event as the limit of its
relative frequency in a large number of trials. Frequentist inference is undefined, for example,
when there are no trials from which to calculate a probability. By defining probability relative to
frequencies of physical events, frequentists attempt to objectify probability. However, de Finetti
asserts that the frequentist (or objective) interpretation always reduces to a subjective interpretation
of probability, because probability is a human construct and does not exist independently of humans
in nature. Therefore, probability is a degree of belief, and is called subjective or personal probability.

Value

The de.Finetti.Game function returns a vector of length two. The respective elements are the
lower and upper bounds of the subjective probability of the participant regarding the possible event
in the near future.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

elicit

deburn De-Burn

Description

The deburn function discards or removes a user-specified number of burn-in iterations from an
object of class demonoid.

Usage

deburn(x, BurnIn=0)

Arguments

x This is an object of class demonoid.

BurnIn This argument defaults to BurnIn=0, and accepts an integer that indicates the
number of iterations to discard as burn-in.
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Details

Documentation for the burnin function provides an introduction to the concept of burn-in as it
relates to Markov chains.

The deburn function discards a number of the first posterior samples, as specified by the BurnIn
argument. Stationarity is not checked, because it is assumed the user has a reason for using the
deburn function, rather than using the results from the object of class demonoid. Therefore, the
posterior samples in Posterior1 and Posterior2 are identical, as are Summary1 and Summary2.

Value

The deburn function returns an object of class demonoid.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

burnin and LaplacesDemon.

Examples

### Assuming the user has Fit which is an object of class demonoid:
#library(LaplacesDemon)
#Fit2 <- deburn(Fit, BurnIn=100)

dist.Asymmetric.Laplace

Asymmetric Laplace Distribution: Univariate

Description

These functions provide the density, distribution function, quantile function, and random genera-
tion for the univariate, asymmetric Laplace distribution with location parameter location, scale
parameter scale, and asymmetry or skewness parameter kappa.

Usage

dalaplace(x, location=0, scale=1, kappa=1, log=FALSE)
palaplace(q, location=0, scale=1, kappa=1)
qalaplace(p, location=0, scale=1, kappa=1)
ralaplace(n, location=0, scale=1, kappa=1)
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Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

location This is the location parameter µ.

scale This is the scale parameter λ, which must be positive.

kappa This is the asymmetry or skewness parameter κ, which must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = κ
√
2

λ(1+κ2) exp(−|θ − µ|
√
2

λ κ|θ−µ||θ − µ|)
• Inventor: Kotz, Kozubowski, and Podgorski (2001)

• Notation 1: θ ∼ AL(µ, λ, κ)
• Notation 2: p(θ) = AL(θ|µ, λ, κ)
• Parameter 1: location parameter µ

• Parameter 2: scale parameter λ > 0

• Parameter 3: skewness parameter κ > 0

• Mean: E(θ) = µ+ λ 1/κ−κ√
2

• Variance: var(θ) = λ2 1+κ4

2κ2

• Mode: mode(θ) = µ

The asymmetric Laplace of Kotz, Kozubowski, and Podgorski (2001), also referred to as AL, is
an extension of the univariate, symmetric Laplace distribution to allow for skewness. It is parame-
terized according to three parameters: location parameter µ, scale parameter λ, and asymmetry or
skewness parameter κ. The special case of κ = 1 is the symmetric Laplace distribution. Values of
κ in the intervals (0, 1) and (1,∞), correspond to positive (right) and negative (left) skewness, re-
spectively. The AL distribution is leptokurtic, and its kurtosis ranges from 3 to 6 as κ ranges from 1
to infinity. The skewness of the AL has been useful in engineering and finance. As an example, the
AL distribution has been used as a replacement for Gaussian-distributed GARCH residuals. There
is also an extension to the asymmetric multivariate Laplace distribution.

The asymmetric Laplace distribution is demonstrated in Kozubowski and Podgorski (2001) to be
well-suited for financial modeling, specifically with currency exchange rates.

These functions are similar to those in the VGAM package.

Value

dalaplace gives the density, palaplace gives the distribution function, qalaplace gives the quan-
tile function, and ralaplace generates random deviates.
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References

Kotz, S., Kozubowski, T.J., and Podgorski, K. (2001). "The Laplace Distribution and General-
izations: a Revisit with Applications to Communications, Economics, Engineering, and Finance".
Boston: Birkhauser.

Kozubowski, T.J. and Podgorski, K. (2001). "Asymmetric Laplace Laws and Modeling Financial
Data". Mathematical and Computer Modelling, 34, p. 1003-1021.

See Also

dlaplace and dallaplace

Examples

library(LaplacesDemon)
x <- dalaplace(1,0,1,1)
x <- palaplace(1,0,1,1)
x <- qalaplace(0.5,0,1,1)
x <- ralaplace(100,0,1,1)

#Plot Probability Functions
x <- seq(from=-5, to=5, by=0.1)
plot(x, dalaplace(x,0,1,0.5), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dalaplace(x,0,1,1), type="l", col="green")
lines(x, dalaplace(x,0,1,5), type="l", col="blue")
legend(1, 0.9, expression(paste(mu==0, ", ", lambda==1, ", ", kappa==0.5),

paste(mu==0, ", ", lambda==1, ", ", kappa==1),
paste(mu==0, ", ", lambda==1, ", ", kappa==5)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Asymmetric.Log.Laplace

Asymmetric Log-Laplace Distribution

Description

These functions provide the density, distribution function, quantile function, and random generation
for the univariate, asymmetric, log-Laplace distribution with location parameter µ, scale parameter
λ, and asymmetry or skewness parameter κ.

Usage

dallaplace(x, location=0, scale=1, kappa=1, log=FALSE)
pallaplace(q, location=0, scale=1, kappa=1)
qallaplace(p, location=0, scale=1, kappa=1)
rallaplace(n, location=0, scale=1, kappa=1)
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Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

location This is the location parameter µ.

scale This is the scale parameter λ, which must be positive.

kappa This is the asymmetry or skewness parameter κ, which must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density 1: p(θ) = exp(−µ)
(
√

(2)κ/λ)(
√

(2)/λκ)

(
√

(2)κ/λ)+(
√

(2)/(λκ))
exp(−(

√
(2)κ

λ ) + 1), θ ≥ exp(µ)

• Density 2: p(θ) = exp(−µ)
(
√

(2)κ/λ)(
√

(2)/(λκ))

(
√

(2)κ/λ)+(
√

(2)/(λκ))
exp(

√
(2)(log(θ)−µ)

λκ −(log(θ)−µ)), θ <

exp(µ)

• Inventor: Pierre-Simon Laplace

• Notation 1: θ ∼ ALL(µ, λ, κ)
• Notation 2: p(θ) = ALL(θ|µ, λ, κ)
• Parameter 1: location parameter µ

• Parameter 2: scale parameter λ > 0

• Mean: E(θ) =

• Variance: var(θ) =

• Mode: mode(θ) =

The univariate, asymmetric log-Laplace distribution is derived from the Laplace distribution. Mul-
tivariate and symmetric versions also exist.

These functions are similar to those in the VGAM package.

Value

dallaplace gives the density, pallaplace gives the distribution function, qallaplace gives the
quantile function, and rallaplace generates random deviates.

References

Kozubowski, T. J. and Podgorski, K. (2003). "Log-Laplace Distributions". International Mathe-
matical Journal, 3, p. 467–495.

See Also

dalaplace, dexp, dlaplace, dlaplacep, dllaplace, dmvl, dnorm, dnormp, dnormv.
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Examples

library(LaplacesDemon)
x <- dallaplace(1,0,1,1)
x <- pallaplace(1,0,1,1)
x <- qallaplace(0.5,0,1,1)
x <- rallaplace(100,0,1,1)

#Plot Probability Functions
x <- seq(from=0.1, to=10, by=0.1)
plot(x, dallaplace(x,0,1,0.5), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dallaplace(x,0,1,1), type="l", col="green")
lines(x, dallaplace(x,0,1,5), type="l", col="blue")
legend(5, 0.9, expression(paste(mu==0, ", ", lambda==1, ", ", kappa==0.5),

paste(mu==0, ", ", lambda==1, ", ", kappa==1),
paste(mu==0, ", ", lambda==1, ", ", kappa==5)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Asymmetric.Multivariate.Laplace

Asymmetric Multivariate Laplace Distribution

Description

These functions provide the density and random generation for the asymmetric multivariate Laplace
distribution with location and skew parameter µ and covariance Σ.

Usage

daml(x, mu, Sigma, log=FALSE)
raml(n, mu, Sigma)

Arguments

x This is a N ×K matrix of data, or a vector of length K.

n This is the number of observations, which must be a positive integer that has
length 1.

mu This is the location and skew parameter µ. This may be a N ×K matrix, or a
vector of length K.

Sigma This is the K ×K positive-definite covariance matrix Σ.

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate

• Density: p(θ) = 2 exp(θΩθ)
(2π)k/2|Σ|0.5

θΩθ
2+µΩµ

(2−k)/4
K(2−k)/2(

√
(2 + µΩµ)(θΩθ))

• Inventor: Kotz, Kozubowski, and Podgorski (2003)

• Notation 1: θ ∼ ALK(µ,Σ)

• Notation 2: p(θ) = ALK(θ|µ,Σ)
• Parameter 1: location-skew parameter µ

• Parameter 2: positive-definite covariance matrix Σ

• Mean: Unknown

• Variance: Unknown

• Mode: mode(θ) = µ

The asymmetric multivariate Laplace distribution of Kotz, Kozubowski, and Podgorski (2003) is a
multivariate extension of the univariate, asymmetric Laplace distribution. It is parameterized ac-
cording to two parameters: location-skew parameter µ and positive-definite covariance matrix Σ.
Location and skew occur in the same parameter. When µ = 0, the density is the (symmetric) multi-
variate Laplace of Anderson (1992). As each location deviates from zero, the marginal distribution
becomes more skewed. Since location and skew are combined, it is appropriate for zero-centered
variables, such as a matrix of centered and scaled dependent variables in cluster analysis, factor
analysis, multivariate regression, or multivariate time-series.

The asymmetric multivariate Laplace distribution is also discussed earlier in Kozubowski and Pod-
gorski (2001), and is well-suited for financial modeling via multivariate regression, specifically with
currency exchange rates. Cajigas and Urga (2005) fit residuals in a multivariate GARCH model
with the asymmetric multivariate Laplace distribution, regarding stocks and bonds. They find that
it "overwhelmingly outperforms" normality.

Value

daml gives the density, and raml generates random deviates.

References

Anderson, D.N. (1992). "A Multivariate Linnik Distribution". Statistical Probability Letters, 14, p.
333–336.

Cajigas, J.P. and Urga, G. (2005) "Dynamic Conditional Correlation Models with Asymmetric
Laplace Innovations". Centre for Economic Analysis: Cass Business School.

Kotz, S., Kozubowski, T.J., and Podgorski, K. (2003). "An Asymmetric Multivariate Laplace Dis-
tribution". Working Paper.

Kozubowski, T.J. and Podgorski, K. (2001). "Asymmetric Laplace Laws and Modeling Financial
Data". Mathematical and Computer Modelling, 34, p. 1003–1021.

See Also

dalaplace and dmvl
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Examples

library(LaplacesDemon)
x <- daml(c(1,2,3), c(0,1,2), diag(3))
X <- raml(1000, c(0,1,2), diag(3))
joint.density.plot(X[,1], X[,2], color=FALSE)

dist.Bernoulli Bernoulli Distribution

Description

These functions provide the density, distribution function, quantile function, and random generation
for the Bernoulli distribution.

Usage

dbern(x, prob, log=FALSE)
pbern(q, prob, lower.tail=TRUE, log.p=FALSE)
qbern(p, prob, lower.tail=TRUE, log.p=FALSE)
rbern(n, prob)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations. If length(n) > 1, then the length is taken
to be the number required.

prob This is the probability of success on each trial.

log, log.p Logical. if TRUE, probabilities p are given as log(p).

lower.tail Logical. if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

Details

• Application: Continuous Univariate

• Density: p(θ) = pθ(1− p)
1−θ, θ = 0, 1

• Inventor: Jacob Bernoulli

• Notation 1: θ ∼ BERN (p)

• Notation 2: p(θ) = BERN (θ|p)
• Parameter 1: probability parameter 0 ≤ p ≤ 1

• Mean: E(θ) = p

• Variance: var(θ) = p
1−p
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• Mode: mode(θ) =

The Bernoulli distribution is a binomial distribution with n = 1, and one instance of a Bernoulli
distribution is called a Bernoulli trial. One coin flip is a Bernoulli trial, for example. The categorical
distribution is the generalization of the Bernoulli distribution for variables with more than two
discrete values. The beta distribution is the conjugate prior distribution of the Bernoulli distribution.
The geometric distribution is the number of Bernoulli trials needed to get one success.

Value

dbern gives the density, pbern gives the distribution function, qbern gives the quantile function,
and rbern generates random deviates.

See Also

dbinom

Examples

library(LaplacesDemon)
dbern(1, 0.7)
rbern(10, 0.5)

dist.Categorical Categorical Distribution

Description

This is the density and random deviates function for the categorical distribution with probabilities
parameter p.

Usage

dcat(x, p, log=FALSE)
qcat(pr, p, lower.tail=TRUE, log.pr=FALSE)
rcat(n, p)

Arguments

x This is a vector of discrete data with k discrete categories, and is of length n.
This function also accepts x after it has been converted to an n × k indicator
matrix, such as with the as.indicator.matrix function.

n This is the number of observations, which must be a positive integer that has
length 1. When p is supplied to rcat as a matrix, n must equal the number of
rows in p.

p This is a vector of length k or n× k matrix of probabilities. The qcat function
requires a vector.

pr This is a vector of probabilities, or log-probabilities.
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log Logical. If log=TRUE, then the logarithm of the density is returned.

log.pr Logical. if TRUE, probabilities pr are given as log(pr).

lower.tail Logical. if TRUE (default), probabilities are Pr[X ≤ x], otherwise, Pr[X > x].

Details

• Application: Discrete Univariate

• Density: p(θ) =
∑

θp

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ CAT (p)

• Notation 2: p(θ) = CAT (θ|p)

• Parameter 1: probabilities p

• Mean: E(θ) = Unknown

• Variance: var(θ) = Unknown

• Mode: mode(θ) = Unknown

Also called the discrete distribution, the categorical distribution describes the result of a random
event that can take on one of k possible outcomes, with the probability p of each outcome separately
specified. The vector p of probabilities for each event must sum to 1. The categorical distribution
is often used, for example, in the multinomial logit model. The conjugate prior is the Dirichlet
distribution.

Value

dcat gives the density and rcat generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

as.indicator.matrix, ddirichlet, and dmultinom.

Examples

library(LaplacesDemon)
dcat(x=1, p=c(0.3,0.3,0.4))
rcat(n=10, p=c(0.1,0.3,0.6))
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dist.ContinuousRelaxation

Continuous Relaxation of a Markov Random Field Distribution

Description

This is the density function and random generation from the continuous relaxation of a Markov
random field (MRF) distribution.

Usage

dcrmrf(x, alpha, Omega, log=FALSE)
rcrmrf(n, alpha, Omega)

Arguments

x This is a vector of length k.

n This is the number of random deviates to generate.

alpha This is a vector of length k of shape parameters.

Omega This is the k × k precision matrix Ω.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) ∝ exp(−1

2
θTΩ−1θ)

∏
i

(1 + exp(θi + alphai))

• Inventor: Zhang et al. (2012)

• Notation 1: θ ∼ CRMRF(α,Ω)

• Notation 2: p(θ) = CRMRF(θ|α,Ω)
• Parameter 1: shape vector α

• Parameter 2: positive-definite k × k matrix Ω

• Mean: E(θ)

• Variance: var(θ)

• Mode: mode(θ)

It is often easier to solve or optimize a problem with continuous variables rather than a problem
that involves discrete variables. A continuous variable may also have a gradient, contour, and
curvature that may be useful for optimization or sampling. Continuous MCMC samplers are far
more common.

Zhang et al. (2012) introduced a generalized form of the Gaussian integral trick from statistical
physics to transform a discrete variable so that it may be estimated with continuous variables. An
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auxiliary Gaussian variable is added to a discrete Markov random field (MRF) so that discrete de-
pendencies cancel out, allowing the discrete variable to be summed away, and leaving a continuous
problem. The resulting continuous representation of the problem allows the model to be updated
with a continuous MCMC sampler, and may benefit from a MCMC sampler that uses derivatives.
Another advantage of continuous MCMC is that stationarity of discrete Markov chains is problem-
atic to assess.

A disadvantage of solving a discrete problem with continuous parameters is that the continuous
solution requires more parameters.

Value

dcrmrf gives the density and rcrmrf generates random deviates.

References

Zhang, Y., Ghahramani, Z., Storkey, A.J., and Sutton, C.A. (2012). "Continuous Relaxations for
Discrete Hamiltonian Monte Carlo". Advances in Neural Information Processing Systems, 25, p.
3203–3211.

See Also

dmvn

Examples

library(LaplacesDemon)
x <- dcrmrf(rnorm(5), rnorm(5), diag(5))
x <- rcrmrf(10, rnorm(5), diag(5))

dist.Dirichlet Dirichlet Distribution

Description

This is the density function and random generation from the Dirichlet distribution.

Usage

ddirichlet(x, alpha, log=FALSE)
rdirichlet(n, alpha)

Arguments

x This is a vector containing a single deviate or matrix containing one random
deviate per row. Each vector, or matrix row, must sum to 1.

n This is the number of random deviates to generate.

alpha This is a vector or matrix of shape parameters.

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate

• Density:

p(θ) =
γ(α1 + · · ·+ αk)

γα1 . . . γαk
θ
(α[1]−1)
1 . . . θ

(α[k]−1)
k , θ1, . . . , θk > 0,

k∑
j=1

θj = 1

• Inventor: Johann Peter Gustav Lejeune Dirichlet (1805-1859)

• Notation 1: θ ∼ Dirichlet(α1, . . . , αk)

• Notation 2: p(θ) = Dirichlet(θ|α1, . . . , αk)

• Notation 3: θ ∼ DIR(α1, . . . , αk)

• Notation 4: p(θ) = DIR(θ|α1, . . . , αk)

• Parameter: ’prior sample sizes’ αj > 0, α0 =
∑k

j=1 αj

• Mean: E(θj) =
αj

α0

• Variance: var(θj) =
αj(α0−αj)

α2
0(α0+1)

• Covariance: cov(θi, θj) = − αiαj

α2
0(α0+1)

• Mode: mode(θj) =
αj−1
α0−k

The Dirichlet distribution is the multivariate generalization of the univariate beta distribution. Its
probability density function returns the belief that the probabilities of k rival events are θj given
that each event has been observed αj − 1 times.

The Dirichlet distribution is commonly used as a prior distribution in Bayesian inference. The
Dirichlet distribution is the conjugate prior distribution for the parameters of the categorical and
multinomial distributions.

A very common special case is the symmetric Dirichlet distribution, where all of the elements
in parameter vector α have the same value. Symmetric Dirichlet distributions are often used as
vague or weakly informative Dirichlet prior distributions, so that one component is not favored over
another. The single value that is entered into all elements of α is called the concentration parameter.

Value

ddirichlet gives the density and rdirichlet generates random deviates.

See Also

dbeta, dcat, dmvpolya, dmultinom, and TransitionMatrix.

Examples

library(LaplacesDemon)
x <- ddirichlet(c(.1,.3,.6), c(1,1,1))
x <- rdirichlet(10, c(1,1,1))
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dist.Generalized.Pareto

Generalized Pareto Distribution

Description

These are the density and random generation functions for the generalized Pareto distribution.

Usage

dgpd(x, mu, sigma, xi, log=FALSE)
rgpd(n, mu, sigma, xi)

Arguments

x This is a vector of data.
n This is a positive scalar integer, and is the number of observations to generate

randomly.
mu This is a scalar or vector location parameter µ. When ξ is non-negative, µ must

not be greater than x. When ξ is negative, µ must be less than x + σ/ξ.
sigma This is a positive-only scalar or vector of scale parameters σ.
xi This is a scalar or vector of shape parameters ξ.
log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate
• Density: p(θ) = 1

σ (1 + ξz)( − 1/ξ + 1) where z = θ−µ
σ

• Inventor: Pickands (1975)
• Notation 1: θ ∼ GPD(µ, σ, ξ)

• Notation 2: p(θ) ∼ GPD(θ|µ, σ, ξ)
• Parameter 1: location µ, where µ ≤ θ when ξ ≥ 0, and µ ≥ θ + σ/ξ when ξ < 0

• Parameter 2: scale σ > 0

• Parameter 3: shape ξ

• Mean: µ+ σ
1−ξ when ξ < 1

• Variance: σ2

(1−ξ)2(1−2ξ) when ξ < 0.5

• Mode:

The generalized Pareto distribution (GPD) is a more flexible extension of the Pareto (dpareto)
distribution. It is equivalent to the exponential distribution when both µ = 0 and ξ = 0, and it is
equivalent to the Pareto distribution when µ = σ/ξ and ξ > 0.

The GPD is often used to model the tails of another distribution, and the shape parameter ξ relates
to tail-behavior. Distributions with tails that decrease exponentially are modeled with shape ξ = 0.
Distributions with tails that decrease as a polynomial are modeled with a positive shape parameter.
Distributions with finite tails are modeled with a negative shape parameter.
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Value

dgpd gives the density, and rgpd generates random deviates.

References

Pickands J. (1975). "Statistical Inference Using Extreme Order Statistics". The Annals of Statistics,
3, p. 119–131.

See Also

dpareto

Examples

library(LaplacesDemon)
x <- dgpd(0,0,1,0,log=TRUE)
x <- rgpd(10,0,1,0)

dist.Generalized.Poisson

Generalized Poisson Distribution

Description

The density function is provided for the univariate, discrete, generalized Poisson distribution with
location parameter λ and scale parameter ω.

Usage

dgpois(x, lambda=0, omega=0, log=FALSE)

Arguments

x This is a vector of quantiles.

lambda This is the parameter λ.

omega This is the parameter ω, which should be in the interval [0,1) for positive counts.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Discrete Univariate

• Density: p(θ) = (1− ω)λ [(1−ω)λ+ωθ]θ−1

θ! exp−[(1− ω)λ+ ωθ]

• Inventor: Consul (1989) and Ntzoufras et al. (2005)

• Notation 1: θ ∼ GP(λ, ω)

• Notation 2: p(θ) = GP(θ|λ, ω)
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• Parameter 1: location parameter λ

• Parameter 2: scale parameter ω ∈ [0, 1)

• Mean: E(θ) = λ

• Variance: var(θ) = λ(1− ω)−2

The generalized Poisson distribution (Consul, 1989) is also called the Lagrangian Poisson distri-
bution. The simple Poisson distribution is a special case of the generalized Poisson distribution.
The generalized Poisson distribution is used in generalized Poisson regression as an extension of
Poisson regression that accounts for overdispersion.

The dgpois function is parameterized according to Ntzoufras et al. (2005), which is easier to
interpret and estimates better with MCMC.

Valid values for omega are in the interval [0,1) for positive counts. For ω = 0, the generalized
Poisson reduces to a simple Poisson with mean λ. Note that it is possible for ω < 0, but this
implies underdispersion in count data, which is uncommon. The dgpois function returns warnings
or errors, so ω should be non-negative here.

The dispersion index (DI) is a variance-to-mean ratio, and is DI = (1 − ω)−2. A simple Poisson
has DI=1. When DI is far from one, the assumption that the variance equals the mean of a simple
Poisson is violated.

Value

dgpois gives the density.

References

Consul, P. (1989). ‘"Generalized Poisson Distribution: Properties and Applications". Marcel
Decker: New York, NY.

Ntzoufras, I., Katsis, A., and Karlis, D. (2005). "Bayesian Assessment of the Distribution of In-
surance Claim Counts using Reversible Jump MCMC", North American Actuarial Journal, 9, p.
90–108.

See Also

dnbinom and dpois.

Examples

library(LaplacesDemon)
y <- rpois(100, 5)
lambda <- rpois(100, 5)
x <- dgpois(y, lambda, 0.5)

#Plot Probability Functions
x <- seq(from=0, to=20, by=1)
plot(x, dgpois(x,1,0.5), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dlaplace(x,1,0.6), type="l", col="green")
lines(x, dlaplace(x,1,0.7), type="l", col="blue")
legend(2, 0.9, expression(paste(lambda==1, ", ", omega==0.5),
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paste(lambda==1, ", ", omega==0.6), paste(lambda==1, ", ", omega==0.7)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.HalfCauchy Half-Cauchy Distribution

Description

These functions provide the density, distribution function, quantile function, and random generation
for the half-Cauchy distribution.

Usage

dhalfcauchy(x, scale=25, log=FALSE)
phalfcauchy(q, scale=25)
qhalfcauchy(p, scale=25)
rhalfcauchy(n, scale=25)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

scale This is the scale parameter α, which must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = 2α
π(θ2+α2) , θ > 0

• Inventor: Derived from Cauchy

• Notation 1: θ ∼ HC(α)
• Notation 2: p(θ) = HC(θ|α)
• Parameter 1: scale parameter α > 0

• Mean: E(θ) = does not exist

• Variance: var(θ) = does not exist

• Mode: mode(θ) = 0

The half-Cauchy distribution with scale α = 25 is a recommended, default, weakly informative
prior distribution for a scale parameter. Otherwise, the scale, α, is recommended to be set to be just
a little larger than the expected standard deviation, as a weakly informative prior distribution on a
standard deviation parameter.

The Cauchy distribution is known as a pathological distribution because its mean and variance are
undefined, and it does not satisfy the central limit theorem.



dist.HalfNormal 71

Value

dhalfcauchy gives the density, phalfcauchy gives the distribution function, qhalfcauchy gives
the quantile function, and rhalfcauchy generates random deviates.

See Also

dcauchy

Examples

library(LaplacesDemon)
x <- dhalfcauchy(1,25)
x <- phalfcauchy(1,25)
x <- qhalfcauchy(0.5,25)
x <- rhalfcauchy(1,25)

#Plot Probability Functions
x <- seq(from=0, to=20, by=0.1)
plot(x, dhalfcauchy(x,1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dhalfcauchy(x,5), type="l", col="green")
lines(x, dhalfcauchy(x,10), type="l", col="blue")
legend(2, 0.9, expression(alpha==1, alpha==5, alpha==10),

lty=c(1,1,1), col=c("red","green","blue"))

dist.HalfNormal Half-Normal Distribution

Description

These functions provide the density, distribution function, quantile function, and random generation
for the half-normal distribution.

Usage

dhalfnorm(x, scale=sqrt(pi/2), log=FALSE)
phalfnorm(q, scale=sqrt(pi/2), lower.tail=TRUE, log.p=FALSE)
qhalfnorm(p, scale=sqrt(pi/2), lower.tail=TRUE, log.p=FALSE)
rhalfnorm(n, scale=sqrt(pi/2))

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

scale This is the scale parameter σ, which must be positive.
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log, log.p Logical. If log=TRUE, then the logarithm of the density or result is returned.

lower.tail Logical. If lower.tail=TRUE (default), probabilities are Pr[X ≤ x], other-
wise, Pr[X > x].

Details

• Application: Continuous Univariate

• Density: p(θ) = 2σ
π exp(− θ2σ2

π ), θ ≥ 0

• Inventor: Derived from the normal or Gaussian

• Notation 1: θ ∼ HN (σ)

• Notation 2: p(θ) = HN (θ|σ)

• Parameter 1: scale parameter σ > 0

• Mean: E(θ) = 1
σ

• Variance: var(θ) = π−2
2σ2

• Mode: mode(θ) = 0

The half-normal distribution is recommended as a weakly informative prior distribution for a scale
parameter that may be useful as an alternative to the half-Cauchy, half-t, or vague gamma.

Value

dhalfnorm gives the density, phalfnorm gives the distribution function, qhalfnorm gives the quan-
tile function, and rhalfnorm generates random deviates.

See Also

dnorm, dnormp, and dnormv.

Examples

library(LaplacesDemon)
x <- dhalfnorm(1)
x <- phalfnorm(1)
x <- qhalfnorm(0.5)
x <- rhalfnorm(10)

#Plot Probability Functions
x <- seq(from=0.1, to=20, by=0.1)
plot(x, dhalfnorm(x,0.1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dhalfnorm(x,0.5), type="l", col="green")
lines(x, dhalfnorm(x,1), type="l", col="blue")
legend(2, 0.9, expression(sigma==0.1, sigma==0.5, sigma==1),

lty=c(1,1,1), col=c("red","green","blue"))
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dist.Halft Half-t Distribution

Description

These functions provide the density, distribution function, quantile function, and random generation
for the half-t distribution.

Usage

dhalft(x, scale=25, nu=1, log=FALSE)
phalft(q, scale=25, nu=1)
qhalft(p, scale=25, nu=1)
rhalft(n, scale=25, nu=1)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

scale This is the scale parameter α, which must be positive.

nu This is the scalar degrees of freedom parameter, which is usually represented as
ν.

log Logical. If log=TRUE then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = (1 + 1
ν (θ/α)

2)−(ν+1)/2, θ ≥ 0

• Inventor: Derived from the Student t

• Notation 1: θ ∼ HT (α, ν)

• Notation 2: p(θ) = HT (θ|α, ν)
• Parameter 1: scale parameter α > 0

• Parameter 2: degrees of freedom parameter ν

• Mean: E(θ) = unknown

• Variance: var(θ) = unknown

• Mode: mode(θ) = 0

The half-t distribution is derived from the Student t distribution, and is useful as a weakly infor-
mative prior distribution for a scale parameter. It is more adaptable than the default recommended
half-Cauchy, though it may also be more difficult to estimate due to its additional degrees of free-
dom parameter, ν. When ν = 1, the density is proportional to a proper half-Cauchy distribution.
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When ν = −1, the density becomes an improper, uniform prior distribution. For more information
on propriety, see is.proper.

Wand et al. (2011) demonstrated that the half-t distribution may be represented as a scale mixture
of inverse-gamma distributions. This representation is useful for conjugacy.

Value

dhalft gives the density, phalft gives the distribution function, qhalft gives the quantile function,
and rhalft generates random deviates.

References

Wand, M.P., Ormerod, J.T., Padoan, S.A., and Fruhwirth, R. (2011). "Mean Field Variational Bayes
for Elaborate Distributions". Bayesian Analysis, 6: p. 847–900.

See Also

dhalfcauchy, dst, dt, dunif, and is.proper.

Examples

library(LaplacesDemon)
x <- dhalft(1,25,1)
x <- phalft(1,25,1)
x <- qhalft(0.5,25,1)
x <- rhalft(10,25,1)

#Plot Probability Functions
x <- seq(from=0.1, to=20, by=0.1)
plot(x, dhalft(x,1,-1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dhalft(x,1,0.5), type="l", col="green")
lines(x, dhalft(x,1,500), type="l", col="blue")
legend(2, 0.9, expression(paste(alpha==1, ", ", nu==-1),

paste(alpha==1, ", ", nu==0.5), paste(alpha==1, ", ", nu==500)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Horseshoe Horseshoe Distribution

Description

This is the density function and random generation from the horseshoe distribution.

Usage

dhs(x, lambda, tau, log=FALSE)
rhs(n, lambda, tau)
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Arguments

n This is the number of draws from the distribution.

x This is a location vector at which to evaluate density.

lambda This vector is a positive-only local parameter λ.

tau This scalar is a positive-only global parameter τ .

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Multivariate Scale Mixture

• Density: (see below)

• Inventor: Carvalho et al. (2008)

• Notation 1: θ ∼ HS(λ, τ)

• Notation 2: p(θ) = HS(θ|λ, τ)

• Parameter 1: local scale λ > 0

• Parameter 2: global scale τ > 0

• Mean: E(θ)

• Variance: var(θ)

• Mode: mode(θ)

The horseshoe distribution (Carvalho et al., 2008) is a heavy-tailed mixture distribution that can be
considered a variance mixture, and it is in the family of multivariate scale mixtures of normals.

The horseshoe distribution was proposed as a prior distribution, and recommended as a default
choice for shrinkage priors in the presence of sparsity. Horseshoe priors are most appropriate in
large-p models where dimension reduction is necessary to avoid overly complex models that predict
poorly, and also perform well in estimating a sparse covariance matrix via Cholesky decomposition
(Carvalho et al., 2009).

When the number of parameters in variable selection is assumed to be sparse, meaning that most el-
ements are zero or nearly zero, a horseshoe prior is a desirable alternative to the Laplace-distributed
parameters in the LASSO, or the parameterization in ridge regression. When the true value is far
from zero, the horseshoe prior leaves the parameter unshrunk. Yet, the horseshoe prior is accurate
in shrinking parameters that are truly zero or near-zero. Parameters near zero are shrunk more than
parameters far from zero. Therefore, parameters far from zero experience less shrinkage and are
closer to their true values. The horseshoe prior is valuable in discriminating signal from noise.

By replacing the Laplace-distributed parameters in LASSO with horseshoe-distributed parameters
and including a global scale, the result is called horseshoe regression.

Value

dhs gives the density and rhs generates random deviates.
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References

Carvalho, C.M., Polson, N.G., and Scott, J.G. (2008). "The Horseshoe Estimator for Sparse Sig-
nals". Discussion Paper 2008-31. Duke University Department of Statistical Science.

Carvalho, C.M., Polson, N.G., and Scott, J.G. (2009). "Handling Sparsity via the Horseshoe".
Journal of Machine Learning Research, 5, p. 73–80.

See Also

dlaplace

Examples

library(LaplacesDemon)
x <- rnorm(100)
lambda <- rhalfcauchy(100, 5)
tau <- 5
x <- dhs(x, lambda, tau, log=TRUE)
x <- rhs(100, lambda=lambda, tau=tau)
plot(density(x))

dist.HuangWand Huang-Wand Distribution

Description

These are the density and random generation functions for the Huang-Wand prior distribution for a
covariance matrix.

Usage

dhuangwand(x, nu=2, a, A, log=FALSE)
dhuangwandc(x, nu=2, a, A, log=FALSE)
rhuangwand(nu=2, a, A)
rhuangwandc(nu=2, a, A)

Arguments

x This is a k × k positive-definite covariance matrix Σ for dhuangwand, or the
Cholesky factor U of the covariance matrix for dhuangwandc.

nu This is a scalar degrees of freedom parameter ν. The default is nu=2, which is
an uninformative prior, resulting in marginal uniform distributions on the corre-
lation matrix.

a This is a positive-only vector of scale parameters a of length k.

A This is a positive-only vector of of scale hyperparameters A of length k. Larger
values result in a more uninformative prior. A default, uninformative prior is
A=rep(1e6,k).

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate

• Density: p(θ) = W−1
ν+k−1(2νdiag(1/a))G−1(1/2, 1/A2)

• Inventor: Huang and Wand (2013)

• Notation 1: θ ∼ HWν(a,A)

• Notation 2: p(θ) ∼ HWν(θ|a,A)

• Parameter 1: degrees of freedom ν

• Parameter 2: scale a > 0

• Parameter 3: scale A > 0

• Mean:

• Variance:

• Mode:

Huang and Wand (2013) proposed a prior distribution for a covariance matrix that uses a hierarchical
inverse Wishart. This is a more flexible alternative to the inverse Wishart distribution, and the
Huang-Wand prior retains conjugacy. The Cholesky parameterization is also provided here.

The Huang-Wand prior distribution alleviates two main limitations of an inverse Wishart distribu-
tion. First, the uncertainty in the diagonal variances of a covariance matrix that is inverse Wishart
distributed is represented with only one degrees of freedom parameter, which may be too restrictive.
The Huang-Wand prior overcomes this limitation. Second, the inverse Wishart distribution imposes
a dependency between variance and correlation. The Huang-Wand prior lessens, but does not fully
remove, this dependency.

The standard deviations of a Huang-Wand distributed covariance matrix are half-t distributed, as
HT (ν,A). This is in accord with modern assumptions about distributions of scale parameters, and
is also useful for sparse covariance matrices.

The rhuangwand function allows either a or A to be missing. When a is missing, the covariance ma-
trix is generated from the hyperparameters. When A is missing, the covariance matrix is generated
from the parameters.

Value

dhuangwand and dhuangwandc give the density, and rhuangwand and rhuangwandc generate ran-
dom deviates.

References

Huang, A., Wand, M., et al. (2013), "Simple Marginally Noninformative Prior Distributions for
Covariance Matrices". Bayesian Analysis, 8, p. 439–452.

See Also

dhalft and dinvwishart
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Examples

library(LaplacesDemon)
dhuangwand(diag(3), nu=2, a=runif(3), A=rep(1e6,3), log=TRUE)
rhuangwand(nu=2, A=rep(1e6, 3)) #Missing a
rhuangwand(nu=2, a=runif(3)) #Missing A

dist.Inverse.Beta Inverse Beta Distribution

Description

This is the density function and random generation from the inverse beta distribution.

Usage

dinvbeta(x, a, b, log=FALSE)
rinvbeta(n, a, b)

Arguments

n This is the number of draws from the distribution.

x This is a location vector at which to evaluate density.

a This is the scalar shape parameter α.

b This is the scalar shape parameter β

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = θα−1(1+θ)−α−β

β(α,β)

• Inventor: Dubey (1970)

• Notation 1: θ ∼ B−1(α, β)

• Notation 2: p(θ) = B−1(θ|α, β)
• Parameter 1: shape α > 0

• Parameter 2: shape β > 0

• Mean: E(θ) = α
β−1 , for β > 1

• Variance: var(θ) = α(α+β−1)
(β−1)2(β−2)

• Mode: mode(θ) = α−1
β+1

The inverse-beta, also called the beta prime distribution, applies to variables that are continuous
and positive. The inverse beta is the conjugate prior distribution of a parameter of a Bernoulli
distribution expressed in odds.

The inverse-beta distribution has also been extended to the generalized beta prime distribution,
though it is not (yet) included here.
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Value

dinvbeta gives the density and rinvbeta generates random deviates.

References

Dubey, S.D. (1970). "Compound Gamma, Beta and F Distributions". Metrika, 16, p. 27–31.

See Also

dbeta

Examples

library(LaplacesDemon)
x <- dinvbeta(5:10, 2, 3)
x <- rinvbeta(10, 2, 3)

#Plot Probability Functions
x <- seq(from=0.1, to=20, by=0.1)
plot(x, dinvbeta(x,2,2), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dinvbeta(x,2,3), type="l", col="green")
lines(x, dinvbeta(x,3,2), type="l", col="blue")
legend(2, 0.9, expression(paste(alpha==2, ", ", beta==2),

paste(alpha==2, ", ", beta==3), paste(alpha==3, ", ", beta==2)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Inverse.ChiSquare

(Scaled) Inverse Chi-Squared Distribution

Description

This is the density function and random generation for the (scaled) inverse chi-squared distribution.

Usage

dinvchisq(x, df, scale, log=FALSE)
rinvchisq(n, df, scale=1/df)

Arguments

x This is a vector of quantiles.

n This is the number of observations. If length(n) > 1, then the length is taken
to be the number required.

df This is the degrees of freedom parameter, usually represented as ν.

scale This is the scale parameter, usually represented as λ.

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Univariate

• Density:

p(θ) =
ν/2

ν/2

Γ(ν/2)
λν 1

θ

ν/2+1

exp(−νλ2

2θ
), θ ≥ 0

• Inventor: Derived from the chi-squared distribution

• Notation 1: θ ∼ χ−2(ν, λ)

• Notation 2: p(θ) = χ−2(θ|ν, λ)
• Parameter 1: degrees of freedom parameter ν > 0

• Parameter 2: scale parameter λ

• Mean: E(θ) = unknown

• Variance: var(θ) = unknown

• Mode: mode(θ) =

The inverse chi-squared distribution, also called the inverted chi-square distribution, is the multipli-
cate inverse of the chi-squared distribution. If x has the chi-squared distribution with ν degrees of
freedom, then 1/x has the inverse chi-squared distribution with ν degrees of freedom, and ν/x has
the inverse chi-squared distribution with ν degrees of freedom.

These functions are similar to those in the GeoR package.

Value

dinvchisq gives the density and rinvchisq generates random deviates.

See Also

dchisq

Examples

library(LaplacesDemon)
x <- dinvchisq(1,1,1)
x <- rinvchisq(10,1)

#Plot Probability Functions
x <- seq(from=0.1, to=5, by=0.01)
plot(x, dinvchisq(x,0.5,1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dinvchisq(x,1,1), type="l", col="green")
lines(x, dinvchisq(x,5,1), type="l", col="blue")
legend(3, 0.9, expression(paste(nu==0.5, ", ", lambda==1),

paste(nu==1, ", ", lambda==1), paste(nu==5, ", ", lambda==1)),
lty=c(1,1,1), col=c("red","green","blue"))
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dist.Inverse.Gamma Inverse Gamma Distribution

Description

This is the density function and random generation from the inverse gamma distribution.

Usage

dinvgamma(x, shape=1, scale=1, log=FALSE)
rinvgamma(n, shape=1, scale=1)

Arguments

n This is the number of draws from the distribution.

x This is the scalar location to evaluate density.

shape This is the scalar shape parameter α, which defaults to one.

scale This is the scalar scale parameter β, which defaults to one.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = βα

Γ(α)θ
−(α+1) exp(−β

θ ), θ > 0

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ G−1(α, β)

• Notation 2: p(θ) = G−1(θ|α, β)
• Parameter 1: shape α > 0

• Parameter 2: scale β > 0

• Mean: E(θ) = β
α−1 , for α > 1

• Variance: var(θ) = β2

(α−1)2(α−2) , α > 2

• Mode: mode(θ) = β
α+1

The inverse-gamma is the conjugate prior distribution for the normal or Gaussian variance, and has
been traditionally specified as a vague prior in that application. The density is always finite; its
integral is finite if α > 0. Prior information decreases as α, β → 0.

These functions are similar to those in the MCMCpack package.

Value

dinvgamma gives the density and rinvgamma generates random deviates. The parameterization is
consistent with the Gamma Distribution in the stats package.
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See Also

dgamma, dnorm, dnormp, and dnormv.

Examples

library(LaplacesDemon)
x <- dinvgamma(4.3, 1.1)
x <- rinvgamma(10, 3.3)

#Plot Probability Functions
x <- seq(from=0.1, to=20, by=0.1)
plot(x, dinvgamma(x,1,1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dinvgamma(x,1,0.6), type="l", col="green")
lines(x, dinvgamma(x,0.6,1), type="l", col="blue")
legend(2, 0.9, expression(paste(alpha==1, ", ", beta==1),

paste(alpha==1, ", ", beta==0.6), paste(alpha==0.6, ", ", beta==1)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Inverse.Gaussian Inverse Gaussian Distribution

Description

This is the density function and random generation from the inverse gaussian distribution.

Usage

dinvgaussian(x, mu, lambda, log=FALSE)
rinvgaussian(n, mu, lambda)

Arguments

n This is the number of draws from the distribution.

x This is the scalar location to evaluate density.

mu This is the mean parameter, µ.

lambda This is the inverse-variance parameter, λ.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = λ
(2πθ3)1/2

exp(−λ(θ−µ)2

2µ2θ ), θ > 0

• Inventor: Schrodinger (1915)

• Notation 1: θ ∼ N−1(µ, λ)
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• Notation 2: p(θ) = N−1(θ|µ, λ)

• Parameter 1: shape µ > 0

• Parameter 2: scale λ > 0

• Mean: E(θ) = µ

• Variance: var(θ) = µ3

λ

• Mode: mode(θ) = µ((1 + 9µ2

4λ2 )
1/2 − 3µ

2λ )

The inverse-Gaussian distribution, also called the Wald distribution, is used when modeling depen-
dent variables that are positive and continuous. When λ → ∞ (or variance to zero), the inverse-
Gaussian distribution becomes similar to a normal (Gaussian) distribution. The name, inverse-
Gaussian, is misleading, because it is not the inverse of a Gaussian distribution, which is obvious
from the fact that θ must be positive.

Value

dinvgaussian gives the density and rinvgaussian generates random deviates.

References

Schrodinger E. (1915). "Zur Theorie der Fall-und Steigversuche an Teilchenn mit Brownscher
Bewegung". Physikalische Zeitschrift, 16, p. 289–295.

See Also

dnorm, dnormp, and dnormv.

Examples

library(LaplacesDemon)
x <- dinvgaussian(2, 1, 1)
x <- rinvgaussian(10, 1, 1)

#Plot Probability Functions
x <- seq(from=1, to=20, by=0.1)
plot(x, dinvgaussian(x,1,0.5), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dinvgaussian(x,1,1), type="l", col="green")
lines(x, dinvgaussian(x,1,5), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==1, ", ", sigma==0.5),

paste(mu==1, ", ", sigma==1), paste(mu==1, ", ", sigma==5)),
lty=c(1,1,1), col=c("red","green","blue"))
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dist.Inverse.Matrix.Gamma

Inverse Matrix Gamma Distribution

Description

This function provides the density for the inverse matrix gamma distribution.

Usage

dinvmatrixgamma(X, alpha, beta, Psi, log=FALSE)

Arguments

X This is a k × k positive-definite covariance matrix.

alpha This is a scalar shape parameter (the degrees of freedom), α.

beta This is a scalar, positive-only scale parameter, β.

Psi This is a k × k positive-definite scale matrix.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate Matrix

• Density: p(θ) = |Ψ|α
βkαΓk(α)

|θ|−α−(k+1)/2 exp(tr(− 1
βΨθ−1))

• Inventors: Unknown

• Notation 1: θ ∼ IMGk(α, β,Ψ)

• Notation 2: p(θ) = IMGk(θ|α, β,Ψ)

• Parameter 1: shape α > 2

• Parameter 2: scale β > 0

• Parameter 3: positive-definite k × k scale matrix Ψ

• Mean:

• Variance:

• Mode:

The inverse matrix gamma (IMG), also called the inverse matrix-variate gamma, distribution is a
generalization of the inverse gamma distribution to positive-definite matrices. It is a more general
and flexible version of the inverse Wishart distribution (dinvwishart), and is a conjugate prior of
the covariance matrix of a multivariate normal distribution (dmvn) and matrix normal distribution
(dmatrixnorm).

The compound distribution resulting from compounding a matrix normal with an inverse matrix
gamma prior over the covariance matrix is a generalized matrix t-distribution.

The inverse matrix gamma distribution is identical to the inverse Wishart distribution when α = ν/2
and β = 2.
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Value

dinvmatrixgamma gives the density.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dinvgamma dmatrixnorm, dmvn, and dinvwishart

Examples

library(LaplacesDemon)
k <- 10
dinvmatrixgamma(X=diag(k), alpha=(k+1)/2, beta=2, Psi=diag(k), log=TRUE)
dinvwishart(Sigma=diag(k), nu=k+1, S=diag(k), log=TRUE)

dist.Inverse.Wishart Inverse Wishart Distribution

Description

These functions provide the density and random number generation for the inverse Wishart distri-
bution.

Usage

dinvwishart(Sigma, nu, S, log=FALSE)
rinvwishart(nu, S)

Arguments

Sigma This is the symmetric, positive-definite k × k matrix Σ.

nu This is the scalar degrees of freedom, ν.

S This is the symmetric, positive-semidefinite k × k scale matrix S.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density: p(θ) = (2νk/2πk(k−1)/4
∏k

i=1 Γ(
ν+1−i

2 ))−1|S|nu/2|Ω|−(nu−k−1)/2 exp(− 1
2 tr(SΩ

−1))

• Inventor: John Wishart (1928)

• Notation 1: Σ ∼ W−1
ν (S−1)

• Notation 2: p(Σ) = W−1
ν (Σ|S−1)
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• Parameter 1: degrees of freedom ν

• Parameter 2: symmetric, positive-semidefinite k × k scale matrix S

• Mean: E(Σ) = S
ν−k−1

• Variance:

• Mode: mode(Σ) = S
ν+k+1

The inverse Wishart distribution is a probability distribution defined on real-valued, symmetric,
positive-definite matrices, and is used as the conjugate prior for the covariance matrix, Σ, of a
multivariate normal distribution. The inverse-Wishart density is always finite, and the integral is
always finite. A degenerate form occurs when ν < k.

When applicable, the alternative Cholesky parameterization should be preferred. For more infor-
mation, see dinvwishartc.

The inverse Wishart prior lacks flexibility, having only one parameter, ν, to control the variability
for all k(k + 1)/2 elements. Popular choices for the scale matrix S include an identity matrix
or sample covariance matrix. When the model sample size is small, the specification of the scale
matrix can be influential.

The inverse Wishart distribution has a dependency between variance and correlation, although its
relative for a precision matrix (inverse covariance matrix), the Wishart distribution, does not have
this dependency. This relationship becomes weaker with more degrees of freedom.

Due to these limitations (lack of flexibility, and dependence between variance and correlation), al-
ternative distributions have been developed. Alternative distributions that are available here include
Huang-Wand (dhuangwand), inverse matrix gamma (dinvmatrixgamma), Scaled Inverse Wishart
(dsiw), and Yang-Berger (dyangberger).

These functions are parameterized as per Gelman et al. (2004).

Value

dinvwishart gives the density and rinvwishart generates random deviates.

References

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004). "Bayesian Data Analysis, Texts in Statistical
Science, 2nd ed.". Chapman and Hall, London.

Wishart, J. (1928). "The Generalised Product Moment Distribution in Samples from a Normal
Multivariate Population". Biometrika, 20A(1-2), p. 32–52.

See Also

dhuangwand, dinvmatrixgamma, dinvwishartc, dmvn, dsiw, dwishart, and dyangberger.

Examples

library(LaplacesDemon)
x <- dinvwishart(matrix(c(2,-.3,-.3,4),2,2), 3, matrix(c(1,.1,.1,1),2,2))
x <- rinvwishart(3, matrix(c(1,.1,.1,1),2,2))
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dist.Inverse.Wishart.Cholesky

Inverse Wishart Distribution: Cholesky Parameterization

Description

These functions provide the density and random number generation for the inverse Wishart distri-
bution with the Cholesky parameterization.

Usage

dinvwishartc(U, nu, S, log=FALSE)
rinvwishartc(nu, S)

Arguments

U This is the upper-triangular k×k matrix for the Cholesky factor U of covariance
matrix Σ.

nu This is the scalar degrees of freedom, ν.

S This is the symmetric, positive-semidefinite k × k scale matrix S.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density: p(θ) = (2νk/2πk(k−1)/4
∏k

i=1 Γ(
ν+1−i

2 ))−1|S|nu/2|Ω|−(nu−k−1)/2 exp(− 1
2 tr(SΩ

−1))

• Inventor: John Wishart (1928)

• Notation 1: Σ ∼ W−1
ν (S−1)

• Notation 2: p(Σ) = W−1
ν (Σ|S−1)

• Parameter 1: degrees of freedom ν

• Parameter 2: symmetric, positive-semidefinite k × k scale matrix S
• Mean: E(Σ) = S

ν−k−1

• Variance:

• Mode: mode(Σ) = S
ν+k+1

The inverse Wishart distribution is a probability distribution defined on real-valued, symmetric,
positive-definite matrices, and is used as the conjugate prior for the covariance matrix, Σ, of a
multivariate normal distribution. In this parameterization, Σ has been decomposed to the upper-
triangular Cholesky factor U, as per chol. The inverse-Wishart density is always finite, and the
integral is always finite. A degenerate form occurs when ν < k.

In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The diago-
nal is exponentiated after a proposal and before other calculations. Overall, the Cholesky parameter-
ization is faster than the traditional parameterization. Compared with dinvwishart, dinvwishartc
must additionally matrix-multiply the Cholesky back to the covariance matrix, but it does not have
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to check for or correct the covariance matrix to positive-semidefiniteness, which overall is slower.
Compared with rinvwishart, rinvwishartc must additionally calculate a Cholesky decomposi-
tion, and is therefore slower.

The inverse Wishart prior lacks flexibility, having only one parameter, ν, to control the variability
for all k(k + 1)/2 elements. Popular choices for the scale matrix S include an identity matrix
or sample covariance matrix. When the model sample size is small, the specification of the scale
matrix can be influential.

The inverse Wishart distribution has a dependency between variance and correlation, although its
relative for a precision matrix (inverse covariance matrix), the Wishart distribution, does not have
this dependency. This relationship becomes weaker with more degrees of freedom.

Due to these limitations (lack of flexibility, and dependence between variance and correlation), al-
ternative distributions have been developed. Alternative distributions that are available here include
the inverse matrix gamma (dinvmatrixgamma), Scaled Inverse Wishart (dsiw) and Huang-Wand
(dhuangwand). Huang-Wand is recommended.

Value

dinvwishartc gives the density and rinvwishartc generates random deviates.

References

Wishart, J. (1928). "The Generalised Product Moment Distribution in Samples from a Normal
Multivariate Population". Biometrika, 20A(1-2), p. 32–52.

See Also

chol, Cov2Prec, dhuangwand, dinvmatrixgamma, dmvn, dmvnc, dmvtc, dsiw, dwishart, dwishartc,
and dyangbergerc.

Examples

library(LaplacesDemon)
Sigma <- matrix(c(2,-.3,-.3,4),2,2)
U <- chol(Sigma)
x <- dinvwishartc(U, 3, matrix(c(1,.1,.1,1),2,2))
x <- rinvwishartc(3, matrix(c(1,.1,.1,1),2,2))

dist.Laplace Laplace Distribution: Univariate Symmetric

Description

These functions provide the density, distribution function, quantile function, and random generation
for the univariate, symmetric, Laplace distribution with location parameter µ and scale parameter
λ.
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Usage

dlaplace(x, location=0, scale=1, log=FALSE)
plaplace(q, location=0, scale=1)
qlaplace(p, location=0, scale=1)
rlaplace(n, location=0, scale=1)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

location This is the location parameter µ.

scale This is the scale parameter λ, which must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = 1
2λ exp(− |θ−µ|

λ )

• Inventor: Pierre-Simon Laplace (1774)

• Notation 1: θ ∼ Laplace(µ, λ)

• Notation 2: θ ∼ L(µ, λ)
• Notation 3: p(θ) = Laplace(θ|µ, λ)
• Notation 4: p(θ) = L(θ|µ, λ)
• Parameter 1: location parameter µ

• Parameter 2: scale parameter λ > 0

• Mean: E(θ) = µ

• Variance: var(θ) = 2λ2

• Mode: mode(θ) = µ

The Laplace distribution (Laplace, 1774) is also called the double exponential distribution, because
it looks like two exponential distributions back to back with respect to location µ. It is also called the
“First Law of Laplace”, just as the normal distribution is referred to as the “Second Law of Laplace”.
The Laplace distribution is symmetric with respect to µ, though there are asymmetric versions of the
Laplace distribution. The PDF of the Laplace distribution is reminiscent of the normal distribution;
however, whereas the normal distribution is expressed in terms of the squared difference from the
mean µ, the Laplace density is expressed in terms of the absolute difference from the mean, µ.
Consequently, the Laplace distribution has fatter tails than the normal distribution. It has been
argued that the Laplace distribution fits most things in nature better than the normal distribution.

There are many extensions to the Laplace distribution, such as the asymmetric Laplace, asymmetric
log-Laplace, Laplace (re-parameterized for precision), log-Laplace, multivariate Laplace, and skew-
Laplace, among many more.

These functions are similar to those in the VGAM package.
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Value

dlaplace gives the density, plaplace gives the distribution function, qlaplace gives the quantile
function, and rlaplace generates random deviates.

References

Laplace, P. (1774). "Memoire sur la Probabilite des Causes par les Evenements." l’Academie
Royale des Sciences, 6, 621–656. English translation by S.M. Stigler in 1986 as "Memoir on the
Probability of the Causes of Events" in Statistical Science, 1(3), p. 359–378.

See Also

dalaplace, dallaplace, dexp, dlaplacep, dllaplace, dmvl, dnorm, dnormp, dnormv, dsdlaplace,
and dslaplace.

Examples

library(LaplacesDemon)
x <- dlaplace(1,0,1)
x <- plaplace(1,0,1)
x <- qlaplace(0.5,0,1)
x <- rlaplace(100,0,1)

#Plot Probability Functions
x <- seq(from=-5, to=5, by=0.1)
plot(x, dlaplace(x,0,0.5), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dlaplace(x,0,1), type="l", col="green")
lines(x, dlaplace(x,0,2), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==0, ", ", lambda==0.5),

paste(mu==0, ", ", lambda==1), paste(mu==0, ", ", lambda==2)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Laplace.Mixture Mixture of Laplace Distributions

Description

These functions provide the density, cumulative, and random generation for the mixture of univari-
ate Laplace distributions with probability p, location µ and scale σ.

Usage

dlaplacem(x, p, location, scale, log=FALSE)
plaplacem(q, p, location, scale)
rlaplacem(n, p, location, scale)
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Arguments

x, q This is vector of values at which the density will be evaluated.

p This is a vector of length M of probabilities for M components. The sum of the
vector must be one.

n This is the number of observations, which must be a positive integer that has
length 1.

location This is a vector of length M that is the location parameter µ.

scale This is a vector of length M that is the scale parameter σ, which must be positive.

log Logical. If TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) =
∑

piL(µi, σi)

• Inventor: Unknown

• Notation 1: θ ∼ L(µ, σ)
• Notation 2: p(θ) = L(θ|µ, σ)
• Parameter 1: location parameters µ

• Parameter 2: scale parameters σ > 0

• Mean: E(θ) =
∑

piµi

• Variance:

• Mode:

A mixture distribution is a probability distribution that is a combination of other probability distribu-
tions, and each distribution is called a mixture component, or component. A probability (or weight)
exists for each component, and these probabilities sum to one. A mixture distribution (though not
these functions here in particular) may contain mixture components in which each component is
a different probability distribution. Mixture distributions are very flexible, and are often used to
represent a complex distribution with an unknown form. When the number of mixture components
is unknown, Bayesian inference is the only sensible approach to estimation.

A Laplace mixture distribution is a combination of Laplace probability distributions.

One of many applications of Laplace mixture distributions is the Laplace Mixture Model (LMM).

Value

dlaplacem gives the density, plaplacem returns the CDF, and rlaplacem generates random devi-
ates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

ddirichlet and dlaplace.
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Examples

library(LaplacesDemon)
p <- c(0.3,0.3,0.4)
mu <- c(-5, 1, 5)
sigma <- c(1,2,1)
x <- seq(from=-10, to=10, by=0.1)
plot(x, dlaplacem(x, p, mu, sigma, log=FALSE), type="l") #Density
plot(x, plaplacem(x, p, mu, sigma), type="l") #CDF
plot(density(rlaplacem(10000, p, mu, sigma))) #Random Deviates

dist.Laplace.Precision

Laplace Distribution: Precision Parameterization

Description

These functions provide the density, distribution function, quantile function, and random gener-
ation for the univariate, symmetric, Laplace distribution with location parameter µ and precision
parameter τ , which is the inverse of the usual scale parameter, λ.

Usage

dlaplacep(x, mu=0, tau=1, log=FALSE)
plaplacep(q, mu=0, tau=1)
qlaplacep(p, mu=0, tau=1)
rlaplacep(n, mu=0, tau=1)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

mu This is the location parameter µ.

tau This is the precision parameter τ , which must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = τ
2 exp(−τ |θ − µ|)

• Inventor: Pierre-Simon Laplace (1774)

• Notation 1: θ ∼ Laplace(µ, τ−1)

• Notation 2: θ ∼ L(µ, τ−1)
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• Notation 3: p(θ) = Laplace(µ, τ−1)

• Notation 4: p(θ) = L(θ|µ, τ−1)

• Parameter 1: location parameter µ

• Parameter 2: precision parameter τ > 0

• Mean: E(θ) = µ

• Variance: var(θ) = 2τ−2

• Mode: mode(θ) = µ

The Laplace distribution is also called the double exponential distribution, because it looks like two
exponential distributions back to back with respect to location µ. It is also called the “First Law of
Laplace”, just as the normal distribution is referred to as the “Second Law of Laplace”. The Laplace
distribution is symmetric with respect to µ, though there are asymmetric versions of the Laplace
distribution. The PDF of the Laplace distribution is reminiscent of the normal distribution; however,
whereas the normal distribution is expressed in terms of the squared difference from the mean µ, the
Laplace density is expressed in terms of the absolute difference from the mean, µ. Consequently,
the Laplace distribution has fatter tails than the normal distribution. It has been argued that the
Laplace distribution fits most things in nature better than the normal distribution. Elsewhere, there
are a large number of extensions to the Laplace distribution, including asymmetric versions and
multivariate versions, among many more. These functions provide the precision parameterization
for convenience and familiarity in Bayesian inference.

Value

dlaplacep gives the density, plaplacep gives the distribution function, qlaplacep gives the quan-
tile function, and rlaplacep generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dalaplace, dexp, dlaplace, dmvl, dnorm, dnormp, and dnormv.

Examples

library(LaplacesDemon)
x <- dlaplacep(1,0,1)
x <- plaplacep(1,0,1)
x <- qlaplacep(0.5,0,1)
x <- rlaplacep(100,0,1)

#Plot Probability Functions
x <- seq(from=-5, to=5, by=0.1)
plot(x, dlaplacep(x,0,0.5), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dlaplacep(x,0,1), type="l", col="green")
lines(x, dlaplacep(x,0,2), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==0, ", ", tau==0.5),
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paste(mu==0, ", ", tau==1), paste(mu==0, ", ", tau==2)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.LASSO LASSO Distribution

Description

These functions provide the density and random generation for the Bayesian LASSO prior distribu-
tion.

Usage

dlasso(x, sigma, tau, lambda, a=1, b=1, log=FALSE)
rlasso(n, sigma, tau, lambda, a=1, b=1)

Arguments

x This is a location vector of length J at which to evaluate density.

n This is the number of observations, which must be a positive integer that has
length 1.

sigma This is a positive-only scalar hyperparameter σ, which is also the residual stan-
dard deviation.

tau This is a positive-only vector of hyperparameters, τ , of length J regarding local
sparsity.

lambda This is a positive-only scalar hyperhyperparameter, λ, of global sparsity.

a, b These are positive-only scalar hyperhyperhyperparameters for gamma distributed
λ.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Multivariate Scale Mixture

• Density: p(θ) ∼ Nk(0, σ
2diag(τ2))( 1

sigma2 )EXP(λ
2

2 )G(a, b)
• Inventor: Parks and Casella (2008)

• Notation 1: θ ∼ LASSO(σ, τ, λ, a, b)

• Notation 2: p(θ) = LASSO(θ|σ, τ, λ, a, b)
• Parameter 1: hyperparameter global scale σ > 0

• Parameter 2: hyperparameter local scale τ > 0

• Parameter 3: hyperhyperparameter global scale λ > 0

• Parameter 4: hyperhyperhyperparameter scale a > 0

• Parameter 5: hyperhyperhyperparameter scale b > 0

• Mean: E(θ)
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• Variance:

• Mode:

The Bayesian LASSO distribution (Parks and Casella, 2008) is a heavy-tailed mixture distribution
that can be considered a variance mixture, and it is in the family of multivariate scale mixtures of
normals.

The LASSO distribution was proposed as a prior distribution, as a Bayesian version of the frequen-
tist LASSO, introduced by Tibshirani (1996). It is applied as a shrinkage prior in the presence of
sparsity for J regression effects. LASSO priors are most appropriate in large-dimensional models
where dimension reduction is necessary to avoid overly complex models that predict poorly.

The Bayesian LASSO results in regression effects that are a compromise between regression effects
in the frequentist LASSO and ridge regression. The Bayesian LASSO applies more shrinkage to
weak regression effects than ridge regression.

The Bayesian LASSO is an alternative to horseshoe regression and ridge regression.

Value

dlasso gives the density and rlasso generates random deviates.

References

Park, T. and Casella, G. (2008). "The Bayesian Lasso". Journal of the American Statistical Associ-
ation, 103, p. 672–680.

Tibshirani, R. (1996). "Regression Shrinkage and Selection via the Lasso". Journal of the Royal
Statistical Society, Series B, 58, p. 267–288.

See Also

dhs

Examples

library(LaplacesDemon)
x <- rnorm(100)
sigma <- rhalfcauchy(1, 5)
tau <- rhalfcauchy(100, 5)
lambda <- rhalfcauchy(1, 5)
x <- dlasso(x, sigma, tau, lambda, log=TRUE)
x <- rlasso(length(tau), sigma, tau, lambda)

dist.Log.Laplace Log-Laplace Distribution: Univariate Symmetric

Description

These functions provide the density, distribution function, quantile function, and random generation
for the univariate, symmetric, log-Laplace distribution with location parameter location and scale
parameter scale.
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Usage

dllaplace(x, location=0, scale=1, log=FALSE)
pllaplace(q, location=0, scale=1)
qllaplace(p, location=0, scale=1)
rllaplace(n, location=0, scale=1)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

location This is the location parameter µ.

scale This is the scale parameter λ, which must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density 1: p(θ) = (
√
2/λ)2

2(
√
2/λ)

exp(−(
√
2/λ)(θ − µ)), θ ≥ exp(µ)

• Density 2: p(θ) = (
√
2/λ)2

2(
√
2/λ)

exp((
√
2/λ)(θ − µ)), θ < exp(µ)

• Inventor: Pierre-Simon Laplace

• Notation 1: θ ∼ LL(µ, λ)
• Notation 2: p(θ) = LL(θ|µ, λ)
• Parameter 1: location parameter µ

• Parameter 2: scale parameter λ > 0

• Mean: E(θ) =

• Variance: var(θ) =

• Mode: mode(θ) =

The univariate, symmetric log-Laplace distribution is derived from the Laplace distribution. Multi-
variate and asymmetric versions also exist.

These functions are similar to those in the VGAM package.

Value

dllaplace gives the density, pllaplace gives the distribution function, qllaplace gives the quan-
tile function, and rllaplace generates random deviates.

References

Kozubowski, T. J. and Podgorski, K. (2003). "Log-Laplace Distributions". International Mathe-
matical Journal, 3, p. 467–495.
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See Also

dalaplace, dallaplace, dexp, dlaplace, dlaplacep, dmvl, dnorm, dnormp, and dnormv.

Examples

library(LaplacesDemon)
x <- dllaplace(1,0,1)
x <- pllaplace(1,0,1)
x <- qllaplace(0.5,0,1)
x <- rllaplace(100,0,1)

#Plot Probability Functions
x <- seq(from=0.1, to=20, by=0.1)
plot(x, dllaplace(x,0,0.1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dllaplace(x,0,0.5), type="l", col="green")
lines(x, dllaplace(x,0,1.5), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==0, ", ", lambda==0.1),

paste(mu==0, ", ", lambda==0.5), paste(mu==0, ", ", lambda==1.5)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Log.Normal.Precision

Log-Normal Distribution: Precision Parameterization

Description

These functions provide the density, distribution function, quantile function, and random generation
for the univariate log-normal distribution with mean µ and precision τ .

Usage

dlnormp(x, mu, tau=NULL, var=NULL, log=FALSE)
plnormp(q, mu, tau, lower.tail=TRUE, log.p=FALSE)
qlnormp(p, mu, tau, lower.tail=TRUE, log.p=FALSE)
rlnormp(n, mu, tau=NULL, var=NULL)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

mu This is the mean parameter µ.

tau This is the precision parameter τ , which must be positive. Tau and var cannot
be used together
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var This is the variance parameter, which must be positive. Tau and var cannot be
used together

log, log.p Logical. If TRUE, then probabilities p are given as log(p).

lower.tail Logical. If TRUE (default), then probabilities are Pr[X ≤ x], otherwise, Pr[X >
x].

Details

• Application: Continuous Univariate

• Density: p(θ) =
√

τ
2π

1
θ exp(−

τ
2 (log(θ − µ))2)

• Inventor: Carl Friedrich Gauss or Abraham De Moivre

• Notation 1: θ ∼ Log−N (µ, τ−1)

• Notation 2: p(θ) = Log−N (θ|µ, τ−1)

• Parameter 1: mean parameter µ

• Parameter 2: precision parameter τ > 0

• Mean: E(θ) = exp(µ+ τ−1/2)

• Variance: var(θ) = (exp(τ−1)− 1) exp(2µ+ τ−1)

• Mode: mode(θ) = exp(µ− τ−1)

The log-normal distribution, also called the Galton distribution, is applied to a variable whose log-
arithm is normally-distributed. The distribution is usually parameterized with mean and variance,
or in Bayesian inference, with mean and precision, where precision is the inverse of the variance.
In contrast, Base R parameterizes the log-normal distribution with the mean and standard deviation.
These functions provide the precision parameterization for convenience and familiarity.

A flat distribution is obtained in the limit as τ → 0.

These functions are similar to those in base R.

Value

dlnormp gives the density, plnormp gives the distribution function, qlnormp gives the quantile
function, and rlnormp generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dnorm, dnormp, dnormv, and prec2var.

Examples

library(LaplacesDemon)
x <- dlnormp(1,0,1)
x <- plnormp(1,0,1)
x <- qlnormp(0.5,0,1)
x <- rlnormp(100,0,1)
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#Plot Probability Functions
x <- seq(from=0.1, to=3, by=0.01)
plot(x, dlnormp(x,0,0.1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dlnormp(x,0,1), type="l", col="green")
lines(x, dlnormp(x,0,5), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==0, ", ", tau==0.1),

paste(mu==0, ", ", tau==1), paste(mu==0, ", ", tau==5)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Matrix.Gamma Matrix Gamma Distribution

Description

This function provides the density for the matrix gamma distribution.

Usage

dmatrixgamma(X, alpha, beta, Sigma, log=FALSE)

Arguments

X This is a k × k positive-definite precision matrix.

alpha This is a scalar shape parameter (the degrees of freedom), α.

beta This is a scalar, positive-only scale parameter, β.

Sigma This is a k × k positive-definite scale matrix.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate Matrix

• Density: p(θ) = |Σ|−α

βkαΓk(α)
|θ|α−(k+1)/2 exp(tr(− 1

βΣ
−1θ))

• Inventors: Unknown

• Notation 1: θ ∼ MGk(α, β,Σ)

• Notation 2: p(θ) = MGk(θ|α, β,Σ)
• Parameter 1: shape α > 2

• Parameter 2: scale β > 0

• Parameter 3: positive-definite k × k scale matrix Σ

• Mean:

• Variance:
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• Mode:

The matrix gamma (MG), also called the matrix-variate gamma, distribution is a generalization of
the gamma distribution to positive-definite matrices. It is a more general and flexible version of the
Wishart distribution (dwishart), and is a conjugate prior of the precision matrix of a multivariate
normal distribution (dmvnp) and matrix normal distribution (dmatrixnorm).

The compound distribution resulting from compounding a matrix normal with a matrix gamma prior
over the precision matrix is a generalized matrix t-distribution.

The matrix gamma distribution is identical to the Wishart distribution when α = ν/2 and β = 2.

Value

dmatrixgamma gives the density.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dgamma dmatrixnorm, dmvnp, and dwishart

Examples

library(LaplacesDemon)
k <- 10
dmatrixgamma(X=diag(k), alpha=(k+1)/2, beta=2, Sigma=diag(k), log=TRUE)
dwishart(Omega=diag(k), nu=k+1, S=diag(k), log=TRUE)

dist.Matrix.Normal Matrix Normal Distribution

Description

These functions provide the density and random number generation for the matrix normal distribu-
tion.

Usage

dmatrixnorm(X, M, U, V, log=FALSE)
rmatrixnorm(M, U, V)

Arguments

X This is data or parameters in the form of a matrix with n rows and k columns.
M This is mean matrix with n rows and k columns.
U This is a n× n positive-definite scale matrix.
V This is a k × k positive-definite scale matrix.
log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate Matrix

• Density: p(θ) = exp(−0.5tr[V −1(X−M)′U−1(X−M)])
(2π)nk/2|V |n/2|U |k/2

• Inventors: Unknown

• Notation 1: θ ∼ MNn×k(M,U, V )

• Notation 2: p(θ) = MNn×k(θ|M,U, V )

• Parameter 1: location n× k matrix M

• Parameter 2: positive-definite n× n scale matrix U

• Parameter 3: positive-definite k × k scale matrix V

• Mean: E(θ) = M

• Variance: Unknown

• Mode: Unknown

The matrix normal distribution is also called the matrix Gaussian, matrix-variate normal, or matrix-
variate Gaussian distribution. It is a generalization of the multivariate normal distribution to matrix-
valued random variables.

An example of the use of a matrix normal distribution is multivariate regression, in which there is
a j × k matrix of regression effects of j predictors for k dependent variables. For univariate re-
gression, having only one dependent variable, the j regression effects may be multivariate normally
distributed. For multivariate regression, this multivariate normal distribution may be extended to a
matrix normal distribution to account for relationships of the regression effects across k dependent
variables. In this example, the matrix normal distribution is the conjugate prior distribution for these
regression effects.

The matrix normal distribution has two covariance matrices, one for the rows and one for the
columns. When U is diagonal, the rows are independent. When V is diagonal, the columns are
independent.

Value

dmatrixnorm gives the density and rmatrixnorm generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dinvmatrixgamma, dmatrixgamma, and dmvn.

Examples

library(LaplacesDemon)
N <- 10
K <- 4
U <- as.positive.definite(matrix(rnorm(N*N),N,N))
V <- as.positive.definite(matrix(rnorm(K*K),K,K))
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x <- dmatrixnorm(matrix(0,N,K), matrix(0,N,K), U, V)
X <- rmatrixnorm(matrix(0,N,K), U, V)
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Cauchy

Multivariate Cauchy Distribution

Description

These functions provide the density and random number generation for the multivariate Cauchy
distribution.

Usage

dmvc(x, mu, S, log=FALSE)
rmvc(n=1, mu, S)

Arguments

x This is either a vector of length k or a matrix with a number of columns, k, equal
to the number of columns in scale matrix S.

n This is the number of random draws.

mu This is a numeric vector representing the location parameter, µ (the mean vec-
tor), of the multivariate distribution It must be of length k, as defined above.

S This is a k × k positive-definite scale matrix S.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) =
Γ[(1 + k)/2]

Γ(1/2)1k/2πk/2|Σ|1/2[1 + (θ − µ)TΣ−1(θ − µ)](1+k)/2

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ MCk(µ,Σ)

• Notation 2: p(θ) = MCk(θ|µ,Σ)
• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k scale matrix Σ

• Mean: E(θ) = µ

• Variance: var(θ) = undefined
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• Mode: mode(θ) = µ

The multivariate Cauchy distribution is a multidimensional extension of the one-dimensional or
univariate Cauchy distribution. The multivariate Cauchy distribution is equivalent to a multivariate
t distribution with 1 degree of freedom. A random vector is considered to be multivariate Cauchy-
distributed if every linear combination of its components has a univariate Cauchy distribution.

The Cauchy distribution is known as a pathological distribution because its mean and variance are
undefined, and it does not satisfy the central limit theorem.

Value

dmvc gives the density and rmvc generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dcauchy, dinvwishart, dmvcp, dmvt, and dmvtp.

Examples

library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
f <- dmvc(cbind(x,y,z), mu, Sigma)

X <- rmvc(1000, rep(0,2), diag(2))
X <- X[rowSums((X >= quantile(X, probs=0.025)) &

(X <= quantile(X, probs=0.975)))==2,]
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Cauchy.Cholesky

Multivariate Cauchy Distribution: Cholesky Parameterization

Description

These functions provide the density and random number generation for the multivariate Cauchy
distribution, given the Cholesky parameterization.

Usage

dmvcc(x, mu, U, log=FALSE)
rmvcc(n=1, mu, U)
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Arguments

x This is either a vector of length k or a matrix with a number of columns, k, equal
to the number of columns in scale matrix S.

n This is the number of random draws.

mu This is a numeric vector representing the location parameter, µ (the mean vec-
tor), of the multivariate distribution It must be of length k, as defined above.

U This is the k×k upper-triangular matrix that is Cholesky factor U of the positive-
definite scale matrix S.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) =
Γ[(1 + k)/2]

Γ(1/2)1k/2πk/2|Σ|1/2[1 + (θ − µ)TΣ−1(θ − µ)](1+k)/2

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ MCk(µ,Σ)

• Notation 2: p(θ) = MCk(θ|µ,Σ)
• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k scale matrix Σ

• Mean: E(θ) = µ

• Variance: var(θ) =

• Mode: mode(θ) = µ

The multivariate Cauchy distribution is a multidimensional extension of the one-dimensional or
univariate Cauchy distribution. The multivariate Cauchy distribution is equivalent to a multivariate
t distribution with 1 degree of freedom. A random vector is considered to be multivariate Cauchy-
distributed if every linear combination of its components has a univariate Cauchy distribution.

The Cauchy distribution is known as a pathological distribution because its mean and variance are
undefined, and it does not satisfy the central limit theorem.

In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The di-
agonal is exponentiated after a proposal and before other calculations. Overall, the Cholesky pa-
rameterization is faster than the traditional parameterization. Compared with dmvc, dmvcc must
additionally matrix-multiply the Cholesky back to the scake matrix, but it does not have to check
for or correct the scale matrix to positive-definiteness, which overall is slower. Compared with
rmvc, rmvcc is faster because the Cholesky decomposition has already been performed.

Value

dmvcc gives the density and rmvcc generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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See Also

chol, dcauchy, dinvwishartc, dmvcpc, dmvtc, and dmvtpc.

Examples

library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
U <- chol(Sigma)
f <- dmvcc(cbind(x,y,z), mu, U)

X <- rmvcc(1000, rep(0,2), diag(2))
X <- X[rowSums((X >= quantile(X, probs=0.025)) &

(X <= quantile(X, probs=0.975)))==2,]
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Cauchy.Precision

Multivariate Cauchy Distribution: Precision Parameterization

Description

These functions provide the density and random number generation for the multivariate Cauchy
distribution. These functions use the precision parameterization.

Usage

dmvcp(x, mu, Omega, log=FALSE)
rmvcp(n=1, mu, Omega)

Arguments

x This is either a vector of length k or a matrix with a number of columns, k, equal
to the number of columns in precision matrix Ω.

n This is the number of random draws.

mu This is a numeric vector representing the location parameter, µ (the mean vec-
tor), of the multivariate distribution. It must be of length k, as defined above.

Omega This is a k × k positive-definite precision matrix Ω.

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate

• Density:

p(θ) =
Γ((1 + k)/2)

Γ(1/2)1k/2πk/2
|Ω|1/2(1 + (θ − µ)TΩ(θ − µ))−(1+k)/2

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ MCk(µ,Ω
−1)

• Notation 2: p(θ) = MCk(θ|µ,Ω−1)

• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k precision matrix Ω

• Mean: E(θ) = µ

• Variance: var(θ) = undefined

• Mode: mode(θ) = µ

The multivariate Cauchy distribution is a multidimensional extension of the one-dimensional or
univariate Cauchy distribution. A random vector is considered to be multivariate Cauchy-distributed
if every linear combination of its components has a univariate Cauchy distribution. The multivariate
Cauchy distribution is equivalent to a multivariate t distribution with 1 degree of freedom.

The Cauchy distribution is known as a pathological distribution because its mean and variance are
undefined, and it does not satisfy the central limit theorem.

It is usually parameterized with mean and a covariance matrix, or in Bayesian inference, with mean
and a precision matrix, where the precision matrix is the matrix inverse of the covariance matrix.
These functions provide the precision parameterization for convenience and familiarity. It is easier
to calculate a multivariate Cauchy density with the precision parameterization, because a matrix
inversion can be avoided.

This distribution has a mean parameter vector µ of length k, and a k× k precision matrix Ω, which
must be positive-definite.

Value

dmvcp gives the density and rmvcp generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dcauchy, dmvc, dmvt, dmvtp, and dwishart.



dist.Multivariate.Cauchy.Precision.Cholesky 107

Examples

library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
Omega <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
f <- dmvcp(cbind(x,y,z), mu, Omega)

X <- rmvcp(1000, rep(0,2), diag(2))
X <- X[rowSums((X >= quantile(X, probs=0.025)) &

(X <= quantile(X, probs=0.975)))==2,]
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Cauchy.Precision.Cholesky

Multivariate Cauchy Distribution: Precision-Cholesky Parameteriza-
tion

Description

These functions provide the density and random number generation for the multivariate Cauchy
distribution. These functions use the precision and Cholesky parameterization.

Usage

dmvcpc(x, mu, U, log=FALSE)
rmvcpc(n=1, mu, U)

Arguments

x This is either a vector of length k or a matrix with a number of columns, k, equal
to the number of columns in precision matrix Ω.

n This is the number of random draws.

mu This is a numeric vector representing the location parameter, µ (the mean vec-
tor), of the multivariate distribution. It must be of length k, as defined above.

U This is the k×k upper-triangular matrix that is Cholesky factor U of the positive-
definite precision matrix Ω.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) =
Γ((1 + k)/2)

Γ(1/2)1k/2πk/2
|Ω|1/2(1 + (θ − µ)TΩ(θ − µ))−(1+k)/2
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• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ MCk(µ,Ω
−1)

• Notation 2: p(θ) = MCk(θ|µ,Ω−1)

• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k precision matrix Ω

• Mean: E(θ) = µ

• Variance: var(θ) =

• Mode: mode(θ) = µ

The multivariate Cauchy distribution is a multidimensional extension of the one-dimensional or
univariate Cauchy distribution. A random vector is considered to be multivariate Cauchy-distributed
if every linear combination of its components has a univariate Cauchy distribution. The multivariate
Cauchy distribution is equivalent to a multivariate t distribution with 1 degree of freedom.

The Cauchy distribution is known as a pathological distribution because its mean and variance are
undefined, and it does not satisfy the central limit theorem.

It is usually parameterized with mean and a covariance matrix, or in Bayesian inference, with mean
and a precision matrix, where the precision matrix is the matrix inverse of the covariance matrix.
These functions provide the precision parameterization for convenience and familiarity. It is easier
to calculate a multivariate Cauchy density with the precision parameterization, because a matrix
inversion can be avoided.

This distribution has a mean parameter vector µ of length k, and a k× k precision matrix Ω, which
must be positive-definite. The precision matrix is replaced with the upper-triangular Cholesky fac-
tor, as in chol.

In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The diago-
nal is exponentiated after a proposal and before other calculations. Overall, Cholesky parameteriza-
tion is faster than the traditional parameterization. Compared with dmvcp, dmvcpc must additionally
matrix-multiply the Cholesky back to the covariance matrix, but it does not have to check for or cor-
rect the precision matrix to positive-definiteness, which overall is slower. Compared with rmvcp,
rmvcpc is faster because the Cholesky decomposition has already been performed.

Value

dmvcpc gives the density and rmvcpc generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

chol, dcauchy, dmvcc, dmvtc, dmvtpc, and dwishartc.
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Examples

library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
Omega <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
U <- chol(Omega)
f <- dmvcpc(cbind(x,y,z), mu, U)

X <- rmvcpc(1000, rep(0,2), diag(2))
X <- X[rowSums((X >= quantile(X, probs=0.025)) &

(X <= quantile(X, probs=0.975)))==2,]
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Laplace

Multivariate Laplace Distribution

Description

These functions provide the density and random number generation for the multivariate Laplace
distribution.

Usage

dmvl(x, mu, Sigma, log=FALSE)
rmvl(n, mu, Sigma)

Arguments

x This is data or parameters in the form of a vector of length k or a matrix with k
columns.

n This is the number of random draws.

mu This is mean vector µ with length k or matrix with k columns.

Sigma This is the k × k covariance matrix Σ.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) =
2

(2π)k/2|Σ|1/2
(π/(2

√
2(θ − µ)TΣ−1(θ − µ)))1/2 exp(−

√
2(θ − µ)TΣ−1(θ − µ))√

((θ − µ)TΣ−1(θ − µ)/2)
k/2−1
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• Inventor: Fang et al. (1990)

• Notation 1: θ ∼ MVL(µ,Σ)
• Notation 2: θ ∼ Lk(µ,Σ)

• Notation 3: p(θ) = MVL(θ|µ,Σ)
• Notation 4: p(θ) = Lk(θ|µ,Σ)
• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k covariance matrix Σ

• Mean: E(θ) = µ

• Variance: var(θ) = Σ

• Mode: mode(θ) = µ

The multivariate Laplace distribution is a multidimensional extension of the one-dimensional or
univariate symmetric Laplace distribution. There are multiple forms of the multivariate Laplace
distribution.

The bivariate case was introduced by Ulrich and Chen (1987), and the first form in larger dimensions
may have been Fang et al. (1990), which requires a Bessel function. Alternatively, multivariate
Laplace was soon introduced as a special case of a multivariate Linnik distribution (Anderson,
1992), and later as a special case of the multivariate power exponential distribution (Fernandez et al.,
1995; Ernst, 1998). Bayesian considerations appear in Haro-Lopez and Smith (1999). Wainwright
and Simoncelli (2000) presented multivariate Laplace as a Gaussian scale mixture. Kotz et al.
(2001) present the distribution formally. Here, the density is calculated with the asymptotic formula
for the Bessel function as presented in Wang et al. (2008).

The multivariate Laplace distribution is an attractive alternative to the multivariate normal distri-
bution due to its wider tails, and remains a two-parameter distribution (though alternative three-
parameter forms have been introduced as well), unlike the three-parameter multivariate t distribu-
tion, which is often used as a robust alternative to the multivariate normal distribution.

Value

dmvl gives the density, and rmvl generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Anderson, D.N. (1992). "A Multivariate Linnik Distribution". Statistical Probability Letters, 14, p.
333–336.

Eltoft, T., Kim, T., and Lee, T. (2006). "On the Multivariate Laplace Distribution". IEEE Signal
Processing Letters, 13(5), p. 300–303.

Ernst, M. D. (1998). "A Multivariate Generalized Laplace Distribution". Computational Statistics,
13, p. 227–232.

Fang, K.T., Kotz, S., and Ng, K.W. (1990). "Symmetric Multivariate and Related Distributions".
Monographs on Statistics and Probability, 36, Chapman-Hall, London.
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Fernandez, C., Osiewalski, J. and Steel, M.F.J. (1995). "Modeling and Inference with v-spherical
Distributions". Journal of the American Statistical Association, 90, p. 1331–1340.

Gomez, E., Gomez-Villegas, M.A., and Marin, J.M. (1998). "A Multivariate Generalization of the
Power Exponential Family of Distributions". Communications in Statistics-Theory and Methods,
27(3), p. 589–600.

Haro-Lopez, R.A. and Smith, A.F.M. (1999). "On Robust Bayesian Analysis for Location and Scale
Parameters". Journal of Multivariate Analysis, 70, p. 30–56.

Kotz., S., Kozubowski, T.J., and Podgorski, K. (2001). "The Laplace Distribution and General-
izations: A Revisit with Applications to Communications, Economics, Engineering, and Finance".
Birkhauser: Boston, MA.

Ulrich, G. and Chen, C.C. (1987). "A Bivariate Double Exponential Distribution and its General-
ization". ASA Proceedings on Statistical Computing, p. 127–129.

Wang, D., Zhang, C., and Zhao, X. (2008). "Multivariate Laplace Filter: A Heavy-Tailed Model for
Target Tracking". Proceedings of the 19th International Conference on Pattern Recognition: FL.

Wainwright, M.J. and Simoncelli, E.P. (2000). "Scale Mixtures of Gaussians and the Statistics of
Natural Images". Advances in Neural Information Processing Systems, 12, p. 855–861.

See Also

daml, dlaplace, dmvn, dmvnp, dmvpe, dmvt, dnorm, dnormp, and dnormv.

Examples

library(LaplacesDemon)
x <- dmvl(c(1,2,3), c(0,1,2), diag(3))
X <- rmvl(1000, c(0,1,2), diag(3))
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Laplace.Cholesky

Multivariate Laplace Distribution: Cholesky Parameterization

Description

These functions provide the density and random number generation for the multivariate Laplace
distribution, given the Cholesky parameterization.

Usage

dmvlc(x, mu, U, log=FALSE)
rmvlc(n, mu, U)
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Arguments

x This is data or parameters in the form of a vector of length k or a matrix with k
columns.

n This is the number of random draws.

mu This is mean vector µ with length k or matrix with k columns.

U This is the k×k upper-triangular matrix that is Cholesky factor U of covariance
matrix Σ.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) =
2

(2π)k/2|Σ|1/2
(π/(2

√
2(θ − µ)TΣ−1(θ − µ)))1/2 exp(−

√
2(θ − µ)TΣ−1(θ − µ))√

((θ − µ)TΣ−1(θ − µ)/2)
k/2−1

• Inventor: Fang et al. (1990)

• Notation 1: θ ∼ MVL(µ,Σ)
• Notation 2: θ ∼ Lk(µ,Σ)

• Notation 3: p(θ) = MVL(θ|µ,Σ)
• Notation 4: p(θ) = Lk(θ|µ,Σ)
• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k covariance matrix Σ

• Mean: E(θ) = µ

• Variance: var(θ) = Σ

• Mode: mode(θ) = µ

The multivariate Laplace distribution is a multidimensional extension of the one-dimensional or
univariate symmetric Laplace distribution. There are multiple forms of the multivariate Laplace
distribution.

The bivariate case was introduced by Ulrich and Chen (1987), and the first form in larger dimensions
may have been Fang et al. (1990), which requires a Bessel function. Alternatively, multivariate
Laplace was soon introduced as a special case of a multivariate Linnik distribution (Anderson,
1992), and later as a special case of the multivariate power exponential distribution (Fernandez et al.,
1995; Ernst, 1998). Bayesian considerations appear in Haro-Lopez and Smith (1999). Wainwright
and Simoncelli (2000) presented multivariate Laplace as a Gaussian scale mixture. Kotz et al.
(2001) present the distribution formally. Here, the density is calculated with the asymptotic formula
for the Bessel function as presented in Wang et al. (2008).

The multivariate Laplace distribution is an attractive alternative to the multivariate normal distri-
bution due to its wider tails, and remains a two-parameter distribution (though alternative three-
parameter forms have been introduced as well), unlike the three-parameter multivariate t distribu-
tion, which is often used as a robust alternative to the multivariate normal distribution.
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In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The di-
agonal is exponentiated after a proposal and before other calculations. Overall, the Cholesky pa-
rameterization is faster than the traditional parameterization. Compared with dmvl, dmvlc must
additionally matrix-multiply the Cholesky back to the covariance matrix, but it does not have to
check for or correct the covariance matrix to positive-definiteness, which overall is slower. Com-
pared with rmvl, rmvlc is faster because the Cholesky decomposition has already been performed.

Value

dmvlc gives the density, and rmvlc generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Anderson, D.N. (1992). "A Multivariate Linnik Distribution". Statistical Probability Letters, 14, p.
333–336.

Eltoft, T., Kim, T., and Lee, T. (2006). "On the Multivariate Laplace Distribution". IEEE Signal
Processing Letters, 13(5), p. 300–303.

Ernst, M. D. (1998). "A Multivariate Generalized Laplace Distribution". Computational Statistics,
13, p. 227–232.

Fang, K.T., Kotz, S., and Ng, K.W. (1990). "Symmetric Multivariate and Related Distributions".
Monographs on Statistics and Probability, 36, Chapman-Hall, London.

Fernandez, C., Osiewalski, J. and Steel, M.F.J. (1995). "Modeling and Inference with v-spherical
Distributions". Journal of the American Statistical Association, 90, p. 1331–1340.

Gomez, E., Gomez-Villegas, M.A., and Marin, J.M. (1998). "A Multivariate Generalization of the
Power Exponential Family of Distributions". Communications in Statistics-Theory and Methods,
27(3), p. 589–600.

Haro-Lopez, R.A. and Smith, A.F.M. (1999). "On Robust Bayesian Analysis for Location and Scale
Parameters". Journal of Multivariate Analysis, 70, p. 30–56.

Kotz., S., Kozubowski, T.J., and Podgorski, K. (2001). "The Laplace Distribution and General-
izations: A Revisit with Applications to Communications, Economics, Engineering, and Finance".
Birkhauser: Boston, MA.

Ulrich, G. and Chen, C.C. (1987). "A Bivariate Double Exponential Distribution and its General-
ization". ASA Proceedings on Statistical Computing, p. 127–129.

Wang, D., Zhang, C., and Zhao, X. (2008). "Multivariate Laplace Filter: A Heavy-Tailed Model for
Target Tracking". Proceedings of the 19th International Conference on Pattern Recognition: FL.

Wainwright, M.J. and Simoncelli, E.P. (2000). "Scale Mixtures of Gaussians and the Statistics of
Natural Images". Advances in Neural Information Processing Systems, 12, p. 855–861.

See Also

chol, daml, dlaplace, dmvnc, dmvnpc, dmvpec, dmvtc, dnorm, dnormp, and dnormv.
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Examples

library(LaplacesDemon)
Sigma <- diag(3)
U <- chol(Sigma)
x <- dmvlc(c(1,2,3), c(0,1,2), U)
X <- rmvlc(1000, c(0,1,2), U)
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Normal

Multivariate Normal Distribution

Description

These functions provide the density and random number generation for the multivariate normal
distribution.

Usage

dmvn(x, mu, Sigma, log=FALSE)
rmvn(n=1, mu, Sigma)

Arguments

x This is data or parameters in the form of a vector of length k or a matrix with k
columns.

n This is the number of random draws.

mu This is mean vector µ with length k or matrix with k columns.

Sigma This is the k × k covariance matrix Σ.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density: p(θ) = 1
(2π)k/2|Σ|1/2 exp(−

1
2 (θ − µ)′Σ−1(θ − µ))

• Inventors: Robert Adrain (1808), Pierre-Simon Laplace (1812), and Francis Galton (1885)

• Notation 1: θ ∼ MVN (µ,Σ)

• Notation 2: θ ∼ Nk(µ,Σ)

• Notation 3: p(θ) = MVN (θ|µ,Σ)
• Notation 4: p(θ) = Nk(θ|µ,Σ)
• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k covariance matrix Σ

• Mean: E(θ) = µ
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• Variance: var(θ) = Σ

• Mode: mode(θ) = µ

The multivariate normal distribution, or multivariate Gaussian distribution, is a multidimensional
extension of the one-dimensional or univariate normal (or Gaussian) distribution. A random vector
is considered to be multivariate normally distributed if every linear combination of its components
has a univariate normal distribution. This distribution has a mean parameter vector µ of length k
and a k × k covariance matrix Σ, which must be positive-definite.

The conjugate prior of the mean vector is another multivariate normal distribution. The conjugate
prior of the covariance matrix is the inverse Wishart distribution (see dinvwishart).

When applicable, the alternative Cholesky parameterization should be preferred. For more infor-
mation, see dmvnc.

For models where the dependent variable, Y, is specified to be distributed multivariate normal given
the model, the Mardia test (see plot.demonoid.ppc, plot.laplace.ppc, or plot.pmc.ppc) may
be used to test the residuals.

Value

dmvn gives the density and rmvn generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dinvwishart, dmatrixnorm, dmvnc, dmvnp, dnorm, dnormp, dnormv, plot.demonoid.ppc, plot.laplace.ppc,
and plot.pmc.ppc.

Examples

library(LaplacesDemon)
x <- dmvn(c(1,2,3), c(0,1,2), diag(3))
X <- rmvn(1000, c(0,1,2), diag(3))
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Normal.Cholesky

Multivariate Normal Distribution: Cholesky Parameterization

Description

These functions provide the density and random number generation for the multivariate normal
distribution, given the Cholesky parameterization.
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Usage

dmvnc(x, mu, U, log=FALSE)
rmvnc(n=1, mu, U)

Arguments

x This is data or parameters in the form of a vector of length k or a matrix with k
columns.

n This is the number of random draws.

mu This is mean vector µ with length k or matrix with k columns.

U This is the k×k upper-triangular matrix that is Cholesky factor U of covariance
matrix Σ.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density: p(θ) = 1
(2π)k/2|Σ|1/2 exp(−

1
2 (θ − µ)′Σ−1(θ − µ))

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ MVN (µ,Σ)

• Notation 2: θ ∼ Nk(µ,Σ)

• Notation 3: p(θ) = MVN (θ|µ,Σ)
• Notation 4: p(θ) = Nk(θ|µ,Σ)
• Parameter 1: location vector µ

• Parameter 2: k × k positive-definite matrix Σ

• Mean: E(θ) = µ

• Variance: var(θ) = Σ

• Mode: mode(θ) = µ

The multivariate normal distribution, or multivariate Gaussian distribution, is a multidimensional
extension of the one-dimensional or univariate normal (or Gaussian) distribution. A random vector
is considered to be multivariate normally distributed if every linear combination of its components
has a univariate normal distribution. This distribution has a mean parameter vector µ of length k and
an upper-triangular k × k matrix that is Cholesky factor U, as per the chol function for Cholesky
decomposition.

In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The di-
agonal is exponentiated after a proposal and before other calculations. Overall, the Cholesky pa-
rameterization is faster than the traditional parameterization. Compared with dmvn, dmvnc must
additionally matrix-multiply the Cholesky back to the covariance matrix, but it does not have to
check for or correct the covariance matrix to positive-definiteness, which overall is slower. Com-
pared with rmvn, rmvnc is faster because the Cholesky decomposition has already been performed.

For models where the dependent variable, Y, is specified to be distributed multivariate normal given
the model, the Mardia test (see plot.demonoid.ppc, plot.laplace.ppc, or plot.pmc.ppc) may
be used to test the residuals.
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Value

dmvnc gives the density and rmvnc generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

chol, dinvwishartc, dmvn, dmvnp, dmvnpc, dnorm, dnormp, dnormv, plot.demonoid.ppc, plot.laplace.ppc,
and plot.pmc.ppc.

Examples

library(LaplacesDemon)
Sigma <- diag(3)
U <- chol(Sigma)
x <- dmvnc(c(1,2,3), c(0,1,2), U)
X <- rmvnc(1000, c(0,1,2), U)
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Normal.Precision

Multivariate Normal Distribution: Precision Parameterization

Description

These functions provide the density and random number generation for the multivariate normal
distribution, given the precision parameterization.

Usage

dmvnp(x, mu, Omega, log=FALSE)
rmvnp(n=1, mu, Omega)

Arguments

x This is data or parameters in the form of a vector of length k or a matrix with k
columns.

n This is the number of random draws.

mu This is mean vector µ with length k or matrix with k columns.

Omega This is the k × k precision matrix Ω.

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate

• Density: p(θ) = (2π)−p/2|Ω|1/2 exp(− 1
2 (θ − µ)TΩ(θ − µ))

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ MVN (µ,Ω−1)

• Notation 2: θ ∼ Nk(µ,Ω
−1)

• Notation 3: p(θ) = MVN (θ|µ,Ω−1)

• Notation 4: p(θ) = Nk(θ|µ,Ω−1)

• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k precision matrix Ω

• Mean: E(θ) = µ

• Variance: var(θ) = Ω−1

• Mode: mode(θ) = µ

The multivariate normal distribution, or multivariate Gaussian distribution, is a multidimensional
extension of the one-dimensional or univariate normal (or Gaussian) distribution. It is usually pa-
rameterized with mean and a covariance matrix, or in Bayesian inference, with mean and a precision
matrix, where the precision matrix is the matrix inverse of the covariance matrix. These functions
provide the precision parameterization for convenience and familiarity. It is easier to calculate a
multivariate normal density with the precision parameterization, because a matrix inversion can be
avoided.

A random vector is considered to be multivariate normally distributed if every linear combination of
its components has a univariate normal distribution. This distribution has a mean parameter vector
µ of length k and a k × k precision matrix Ω, which must be positive-definite.

The conjugate prior of the mean vector is another multivariate normal distribution. The conjugate
prior of the precision matrix is the Wishart distribution (see dwishart).

When applicable, the alternative Cholesky parameterization should be preferred. For more infor-
mation, see dmvnpc.

For models where the dependent variable, Y, is specified to be distributed multivariate normal given
the model, the Mardia test (see plot.demonoid.ppc, plot.laplace.ppc, or plot.pmc.ppc) may
be used to test the residuals.

Value

dmvnp gives the density and rmvnp generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dmvn, dmvnc, dmvnpc, dnorm, dnormp, dnormv, dwishart, plot.demonoid.ppc, plot.laplace.ppc,
and plot.pmc.ppc.
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Examples

library(LaplacesDemon)
x <- dmvnp(c(1,2,3), c(0,1,2), diag(3))
X <- rmvnp(1000, c(0,1,2), diag(3))
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Normal.Precision.Cholesky

Multivariate Normal Distribution: Precision-Cholesky Parameteriza-
tion

Description

These functions provide the density and random number generation for the multivariate normal
distribution, given the precision-Cholesky parameterization.

Usage

dmvnpc(x, mu, U, log=FALSE)
rmvnpc(n=1, mu, U)

Arguments

x This is data or parameters in the form of a vector of length k or a matrix with k
columns.

n This is the number of random draws.

mu This is mean vector µ with length k or matrix with k columns.

U This is the k× k upper-triangular of the precision matrix that is Cholesky factor
U of precision matrix Ω.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density: p(θ) = (2π)−p/2|Ω|1/2 exp(− 1
2 (θ − µ)TΩ(θ − µ))

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ MVN (µ,Ω−1)

• Notation 2: θ ∼ Nk(µ,Ω
−1)

• Notation 3: p(θ) = MVN (θ|µ,Ω−1)

• Notation 4: p(θ) = Nk(θ|µ,Ω−1)

• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k precision matrix Ω

• Mean: E(θ) = µ
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• Variance: var(θ) = Ω−1

• Mode: mode(θ) = µ

The multivariate normal distribution, or multivariate Gaussian distribution, is a multidimensional
extension of the one-dimensional or univariate normal (or Gaussian) distribution. It is usually pa-
rameterized with mean and a covariance matrix, or in Bayesian inference, with mean and a precision
matrix, where the precision matrix is the matrix inverse of the covariance matrix. These functions
provide the precision-Cholesky parameterization for convenience and familiarity. It is easier to cal-
culate a multivariate normal density with the precision parameterization, because a matrix inversion
can be avoided. The precision matrix is replaced with an upper-triangular k × k matrix that is
Cholesky factor U, as per the chol function for Cholesky decomposition.

A random vector is considered to be multivariate normally distributed if every linear combination of
its components has a univariate normal distribution. This distribution has a mean parameter vector
µ of length k and a k × k precision matrix Ω, which must be positive-definite.

In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The diago-
nal is exponentiated after a proposal and before other calculations. Overall, Cholesky parameteriza-
tion is faster than the traditional parameterization. Compared with dmvnp, dmvnpc must additionally
matrix-multiply the Cholesky back to the covariance matrix, but it does not have to check for or cor-
rect the precision matrix to positive-definiteness, which overall is slower. Compared with rmvnp,
rmvnpc is faster because the Cholesky decomposition has already been performed.

For models where the dependent variable, Y, is specified to be distributed multivariate normal given
the model, the Mardia test (see plot.demonoid.ppc, plot.laplace.ppc, or plot.pmc.ppc) may
be used to test the residuals.

Value

dmvnpc gives the density and rmvnpc generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

chol, dmvn, dmvnc, dmvnp, dnorm, dnormp, dnormv, dwishartc, plot.demonoid.ppc, plot.laplace.ppc,
and plot.pmc.ppc.

Examples

library(LaplacesDemon)
Omega <- diag(3)
U <- chol(Omega)
x <- dmvnpc(c(1,2,3), c(0,1,2), U)
X <- rmvnpc(1000, c(0,1,2), U)
joint.density.plot(X[,1], X[,2], color=TRUE)
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dist.Multivariate.Polya

Multivariate Polya Distribution

Description

These functions provide the density and random number generation for the multivariate Polya dis-
tribution.

Usage

dmvpolya(x, alpha, log=FALSE)
rmvpolya(n, alpha)

Arguments

x This is data or parameters in the form of a vector of length k.

n This is the number of random draws to take from the distribution.

alpha This is shape vector α with length k.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Discrete Multivariate

• Density:

p(θ) =
N !∏
k Nk!

(
∑

k αk − 1)!

(
∑

k θk +
∑

k αk − 1)!

∏
(θ + α− 1)!

(α− 1)!

• Inventor: George Polya (1887-1985)

• Notation 1: θ ∼ MPO(α)

• Notation 3: p(θ) = MPO(θ|α)
• Parameter 1: shape parameter vector α

• Mean: E(θ) =

• Variance: var(θ) =

• Mode: mode(θ) =

The multivariate Polya distribution is named after George Polya (1887-1985). It is also called the
Dirichlet compound multinomial distribution or the Dirichlet-multinomial distribution. The mul-
tivariate Polya distribution is a compound probability distribution, where a probability vector p is
drawn from a Dirichlet distribution with parameter vector α, and a set of N discrete samples is
drawn from the categorical distribution with probability vector p and having K discrete categories.
The compounding corresponds to a Polya urn scheme. In document classification, for example, the
distribution is used to represent probabilities over word counts for different document types. The
multivariate Polya distribution is a multivariate extension of the univariate Beta-binomial distribu-
tion.
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Value

dmvpolya gives the density and rmvpolya generates random deviates.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

See Also

dcat, ddirichlet, and dmultinom.

Examples

library(LaplacesDemon)
dmvpolya(x=1:3, alpha=1:3, log=TRUE)
x <- rmvpolya(1000, c(0.1,0.3,0.6))

dist.Multivariate.Power.Exponential

Multivariate Power Exponential Distribution

Description

These functions provide the density and random number generation for the multivariate power ex-
ponential distribution.

Usage

dmvpe(x=c(0,0), mu=c(0,0), Sigma=diag(2), kappa=1, log=FALSE)
rmvpe(n, mu=c(0,0), Sigma=diag(2), kappa=1)

Arguments

x This is data or parameters in the form of a vector of length k or a matrix with k
columns.

n This is the number of random draws.

mu This is mean vector µ with length k or matrix with k columns.

Sigma This is the k × k covariance matrix Σ.

kappa This is the kurtosis parameter, κ, and must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate
• Density:

p(θ) =
kΓ(k/2)

πk/2
√

|Σ|Γ(1 + k/(2κ))21+k/(2κ)
exp(−1

2
(θ − µ)TΣ(θ − µ))κ

• Inventor: Gomez, Gomez-Villegas, and Marin (1998)
• Notation 1: θ ∼ MPE(µ,Σ, κ)
• Notation 2: θ ∼ PEk(µ,Σ, κ)

• Notation 3: p(θ) = MPE(θ|µ,Σ, κ)
• Notation 4: p(θ) = PEk(θ|µ,Σ, κ)
• Parameter 1: location vector µ
• Parameter 2: positive-definite k × k covariance matrix Σ

• Parameter 3: kurtosis parameter κ
• Mean: E(θ) =

• Variance: var(θ) =
• Mode: mode(θ) =

The multivariate power exponential distribution, or multivariate exponential power distribution, is
a multidimensional extension of the one-dimensional or univariate power exponential distribution.
Gomez-Villegas (1998) and Sanchez-Manzano et al. (2002) proposed multivariate and matrix gen-
eralizations of the PE family of distributions and studied their properties in relation to multivariate
Elliptically Contoured (EC) distributions.

The multivariate power exponential distribution includes the multivariate normal distribution (κ =
1) and multivariate Laplace distribution (κ = 0.5) as special cases, depending on the kurtosis or κ
parameter. A multivariate uniform occurs as κ → ∞.

If the goal is to use a multivariate Laplace distribution, the dmvl function will perform faster and
more accurately.

The rmvpe function is a modified form of the rmvpowerexp function in the MNM package.

Value

dmvpe gives the density and rmvpe generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Gomez, E., Gomez-Villegas, M.A., and Marin, J.M. (1998). "A Multivariate Generalization of the
Power Exponential Family of Distributions". Communications in Statistics-Theory and Methods,
27(3), p. 589–600.

Sanchez-Manzano, E.G., Gomez-Villegas, M.A., and Marn-Diazaraque, J.M. (2002). "A Matrix
Variate Generalization of the Power Exponential Family of Distributions". Communications in
Statistics, Part A - Theory and Methods [Split from: J(CommStat)], 31(12), p. 2167–2182.
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See Also

dlaplace, dmvl, dmvn, dmvnp, dnorm, dnormp, dnormv, and dpe.

Examples

library(LaplacesDemon)
n <- 100
k <- 3
x <- matrix(runif(n*k),n,k)
mu <- matrix(runif(n*k),n,k)
Sigma <- diag(k)
dmvpe(x, mu, Sigma, kappa=1)
X <- rmvpe(n, mu, Sigma, kappa=1)
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.Power.Exponential.Cholesky

Multivariate Power Exponential Distribution: Cholesky Parameteri-
zation

Description

These functions provide the density and random number generation for the multivariate power ex-
ponential distribution, given the Cholesky parameterization.

Usage

dmvpec(x=c(0,0), mu=c(0,0), U, kappa=1, log=FALSE)
rmvpec(n, mu=c(0,0), U, kappa=1)

Arguments

x This is data or parameters in the form of a vector of length k or a matrix with k
columns.

n This is the number of random draws.

mu This is mean vector µ with length k or matrix with k columns.

U This is the k×k upper-triangular matrix that is Cholesky factor U of covariance
matrix Σ.

kappa This is the kurtosis parameter, κ, and must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate

• Density:

p(θ) =
kΓ(k/2)

πk/2
√

|Σ|Γ(1 + k/(2κ))21+k/(2κ)
exp(−1

2
(θ − µ)TΣ(θ − µ))κ

• Inventor: Gomez, Gomez-Villegas, and Marin (1998)

• Notation 1: θ ∼ MPE(µ,Σ, κ)
• Notation 2: θ ∼ PEk(µ,Σ, κ)

• Notation 3: p(θ) = MPE(θ|µ,Σ, κ)
• Notation 4: p(θ) = PEk(θ|µ,Σ, κ)
• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k covariance matrix Σ

• Parameter 3: kurtosis parameter κ

• Mean: E(θ) =

• Variance: var(θ) =

• Mode: mode(θ) =

The multivariate power exponential distribution, or multivariate exponential power distribution, is
a multidimensional extension of the one-dimensional or univariate power exponential distribution.
Gomez-Villegas (1998) and Sanchez-Manzano et al. (2002) proposed multivariate and matrix gen-
eralizations of the PE family of distributions and studied their properties in relation to multivariate
Elliptically Contoured (EC) distributions.

The multivariate power exponential distribution includes the multivariate normal distribution (κ =
1) and multivariate Laplace distribution (κ = 0.5) as special cases, depending on the kurtosis or κ
parameter. A multivariate uniform occurs as κ → ∞.

If the goal is to use a multivariate Laplace distribution, the dmvlc function will perform faster and
more accurately.

In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The diag-
onal is exponentiated after a proposal and before other calculations. Overall, the Cholesky parame-
terization is faster than the traditional parameterization. Compared with dmvpe, dmvpec must addi-
tionally matrix-multiply the Cholesky back to the covariance matrix, but it does not have to check
for or correct the covariance matrix to positive-definiteness, which overall is slower. Compared
with rmvpe, rmvpec is faster because the Cholesky decomposition has already been performed.

The rmvpec function is a modified form of the rmvpowerexp function in the MNM package.

Value

dmvpec gives the density and rmvpec generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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References

Gomez, E., Gomez-Villegas, M.A., and Marin, J.M. (1998). "A Multivariate Generalization of the
Power Exponential Family of Distributions". Communications in Statistics-Theory and Methods,
27(3), p. 589–600.

Sanchez-Manzano, E.G., Gomez-Villegas, M.A., and Marn-Diazaraque, J.M. (2002). "A Matrix
Variate Generalization of the Power Exponential Family of Distributions". Communications in
Statistics, Part A - Theory and Methods [Split from: J(CommStat)], 31(12), p. 2167–2182.

See Also

chol, dlaplace, dmvlc, dmvnc, dmvnpc, dnorm, dnormp, dnormv, and dpe.

Examples

library(LaplacesDemon)
n <- 100
k <- 3
x <- matrix(runif(n*k),n,k)
mu <- matrix(runif(n*k),n,k)
Sigma <- diag(k)
U <- chol(Sigma)
dmvpec(x, mu, U, kappa=1)
X <- rmvpec(n, mu, U, kappa=1)
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.t Multivariate t Distribution

Description

These functions provide the density and random number generation for the multivariate t distribu-
tion, otherwise called the multivariate Student distribution.

Usage

dmvt(x, mu, S, df=Inf, log=FALSE)
rmvt(n=1, mu, S, df=Inf)

Arguments

x This is either a vector of length k or a matrix with a number of columns, k, equal
to the number of columns in scale matrix S.

n This is the number of random draws.

mu This is a numeric vector or matrix representing the location parameter,µ (the
mean vector), of the multivariate distribution (equal to the expected value when
df > 1, otherwise represented as ν > 1). When a vector, it must be of length k,
or must have k columns as a matrix, as defined above.
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S This is a k × k positive-definite scale matrix S, such that S*df/(df-2) is the
variance-covariance matrix when df > 2. A vector of length 1 is also allowed (in
this case, k = 1 is set).

df This is the degrees of freedom, and is often represented with ν.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) =
Γ[(ν + k)/2]

Γ(ν/2)νk/2πk/2|Σ|1/2[1 + (1/ν)(θ − µ)TΣ−1(θ − µ)](ν+k)/2

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ tk(µ,Σ, ν)

• Notation 2: p(θ) = tk(θ|µ,Σ, ν)

• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k scale matrix Σ

• Parameter 3: degrees of freedom ν > 0 (df in the functions)

• Mean: E(θ) = µ, for ν > 1, otherwise undefined

• Variance: var(θ) = ν
ν−2Σ, for ν > 2

• Mode: mode(θ) = µ

The multivariate t distribution, also called the multivariate Student or multivariate Student t distri-
bution, is a multidimensional extension of the one-dimensional or univariate Student t distribution.
A random vector is considered to be multivariate t-distributed if every linear combination of its
components has a univariate Student t-distribution. This distribution has a mean parameter vector µ
of length k, and a k × k scale matrix S, which must be positive-definite. When degrees of freedom
ν = 1, this is the multivariate Cauchy distribution.

Value

dmvt gives the density and rmvt generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dinvwishart, dmvc, dmvcp, dmvtp, dst, dstp, and dt.
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Examples

library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
S <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
df <- 4
f <- dmvt(cbind(x,y,z), mu, S, df)
X <- rmvt(1000, c(0,1,2), S, 5)
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.t.Cholesky

Multivariate t Distribution: Cholesky Parameterization

Description

These functions provide the density and random number generation for the multivariate t distribu-
tion, otherwise called the multivariate Student distribution, given the Cholesky parameterization.

Usage

dmvtc(x, mu, U, df=Inf, log=FALSE)
rmvtc(n=1, mu, U, df=Inf)

Arguments

x This is either a vector of length k or a matrix with a number of columns, k, equal
to the number of columns in scale matrix S.

n This is the number of random draws.

mu This is a numeric vector or matrix representing the location parameter,µ (the
mean vector), of the multivariate distribution (equal to the expected value when
df > 1, otherwise represented as ν > 1). When a vector, it must be of length k,
or must have k columns as a matrix, as defined above.

U This is the k×k upper-triangular matrix that is Cholesky factor U of scale matrix
S, such that S*df/(df-2) is the variance-covariance matrix when df > 2.

df This is the degrees of freedom, and is often represented with ν.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) =
Γ[(ν + k)/2]

Γ(ν/2)νk/2πk/2|Σ|1/2[1 + (1/ν)(θ − µ)TΣ−1(θ − µ)](ν+k)/2
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• Inventor: Unknown (to me, anyway)
• Notation 1: θ ∼ tk(µ,Σ, ν)

• Notation 2: p(θ) = tk(θ|µ,Σ, ν)
• Parameter 1: location vector µ
• Parameter 2: positive-definite k × k scale matrix Σ

• Parameter 3: degrees of freedom ν > 0 (df in the functions)
• Mean: E(θ) = µ, for ν > 1, otherwise undefined
• Variance: var(θ) = ν

ν−2Σ, for ν > 2

• Mode: mode(θ) = µ

The multivariate t distribution, also called the multivariate Student or multivariate Student t distri-
bution, is a multidimensional extension of the one-dimensional or univariate Student t distribution.
A random vector is considered to be multivariate t-distributed if every linear combination of its
components has a univariate Student t-distribution. This distribution has a mean parameter vector
µ of length k, and an upper-triangular k× k matrix that is Cholesky factor U, as per the chol func-
tion for Cholesky decomposition. When degrees of freedom ν = 1, this is the multivariate Cauchy
distribution.

In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The di-
agonal is exponentiated after a proposal and before other calculations. Overall, the Cholesky pa-
rameterization is faster than the traditional parameterization. Compared with dmvt, dmvtc must
additionally matrix-multiply the Cholesky back to the scale matrix, but it does not have to check for
or correct the scale matrix to positive-definiteness, which overall is slower. The same is true when
comparing rmvt and rmvtc.

Value

dmvtc gives the density and rmvtc generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

chol, dinvwishartc, dmvc, dmvcp, dmvtp, dst, dstp, and dt.

Examples

library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
S <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
U <- chol(S)
df <- 4
f <- dmvtc(cbind(x,y,z), mu, U, df)
X <- rmvtc(1000, c(0,1,2), U, 5)
joint.density.plot(X[,1], X[,2], color=TRUE)
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dist.Multivariate.t.Precision

Multivariate t Distribution: Precision Parameterization

Description

These functions provide the density and random number generation for the multivariate t distri-
bution, otherwise called the multivariate Student distribution. These functions use the precision
parameterization.

Usage

dmvtp(x, mu, Omega, nu=Inf, log=FALSE)
rmvtp(n=1, mu, Omega, nu=Inf)

Arguments

x This is either a vector of length k or a matrix with a number of columns, k, equal
to the number of columns in precision matrix Ω.

n This is the number of random draws.

mu This is a numeric vector representing the location parameter, µ (the mean vec-
tor), of the multivariate distribution (equal to the expected value when df > 1,
otherwise represented as ν > 1). It must be of length k, as defined above.

Omega This is a k × k positive-definite precision matrix Ω.

nu This is the degrees of freedom ν, which must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) =
Γ((ν + k)/2)

Γ(ν/2)νk/2πk/2
|Ω|1/2(1 + 1

ν
(θ − µ)TΩ(θ − µ))−(ν+k)/2

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ tk(µ,Ω
−1, ν)

• Notation 2: p(θ) = tk(θ|µ,Ω−1, ν)

• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k precision matrix Ω

• Parameter 3: degrees of freedom ν > 0

• Mean: E(θ) = µ, for ν > 1, otherwise undefined

• Variance: var(θ) = ν
ν−2Ω

−1, for ν > 2
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• Mode: mode(θ) = µ

The multivariate t distribution, also called the multivariate Student or multivariate Student t distri-
bution, is a multidimensional extension of the one-dimensional or univariate Student t distribution.
A random vector is considered to be multivariate t-distributed if every linear combination of its
components has a univariate Student t-distribution.

It is usually parameterized with mean and a covariance matrix, or in Bayesian inference, with mean
and a precision matrix, where the precision matrix is the matrix inverse of the covariance matrix.
These functions provide the precision parameterization for convenience and familiarity. It is easier
to calculate a multivariate t density with the precision parameterization, because a matrix inversion
can be avoided.

This distribution has a mean parameter vector µ of length k, and a k × k precision matrix Ω,
which must be positive-definite. When degrees of freedom ν = 1, this is the multivariate Cauchy
distribution.

Value

dmvtp gives the density and rmvtp generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dwishart, dmvc, dmvcp, dmvt, dst, dstp, and dt.

Examples

library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
Omega <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
nu <- 4
f <- dmvtp(cbind(x,y,z), mu, Omega, nu)
X <- rmvtp(1000, c(0,1,2), diag(3), 5)
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Multivariate.t.Precision.Cholesky

Multivariate t Distribution: Precision-Cholesky Parameterization

Description

These functions provide the density and random number generation for the multivariate t distribu-
tion, otherwise called the multivariate Student distribution. These functions use the precision and
Cholesky parameterization.
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Usage

dmvtpc(x, mu, U, nu=Inf, log=FALSE)
rmvtpc(n=1, mu, U, nu=Inf)

Arguments

x This is either a vector of length k or a matrix with a number of columns, k, equal
to the number of columns in precision matrix Ω.

n This is the number of random draws.

mu This is a numeric vector representing the location parameter, µ (the mean vec-
tor), of the multivariate distribution (equal to the expected value when df > 1,
otherwise represented as ν > 1). It must be of length k, as defined above.

U This is a k × k upper-triangular of the precision matrix that is Cholesky fator U
of precision matrix Ω.

nu This is the degrees of freedom ν, which must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density:

p(θ) =
Γ((ν + k)/2)

Γ(ν/2)νk/2πk/2
|Ω|1/2(1 + 1

ν
(θ − µ)TΩ(θ − µ))−(ν+k)/2

• Inventor: Unknown (to me, anyway)

• Notation 1: θ ∼ tk(µ,Ω
−1, ν)

• Notation 2: p(θ) = tk(θ|µ,Ω−1, ν)

• Parameter 1: location vector µ

• Parameter 2: positive-definite k × k precision matrix Ω

• Parameter 3: degrees of freedom ν > 0

• Mean: E(θ) = µ, for ν > 1, otherwise undefined

• Variance: var(θ) = ν
ν−2Ω

−1, for ν > 2

• Mode: mode(θ) = µ

The multivariate t distribution, also called the multivariate Student or multivariate Student t distri-
bution, is a multidimensional extension of the one-dimensional or univariate Student t distribution.
A random vector is considered to be multivariate t-distributed if every linear combination of its
components has a univariate Student t-distribution.

It is usually parameterized with mean and a covariance matrix, or in Bayesian inference, with mean
and a precision matrix, where the precision matrix is the matrix inverse of the covariance matrix.
These functions provide the precision parameterization for convenience and familiarity. It is easier
to calculate a multivariate t density with the precision parameterization, because a matrix inversion
can be avoided. The precision matrix is replaced with an upper-triangular k × k matrix that is
Cholesky factor U, as per the chol function for Cholesky decomposition.
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This distribution has a mean parameter vector µ of length k, and a k × k precision matrix Ω,
which must be positive-definite. When degrees of freedom ν = 1, this is the multivariate Cauchy
distribution.

In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The di-
agonal is exponentiated after a proposal and before other calculations. Overall, the Cholesky pa-
rameterization is faster than the traditional parameterization. Compared with dmvtp, dmvtpc must
additionally matrix-multiply the Cholesky back to the precision matrix, but it does not have to check
for or correct the precision matrix to positive-definiteness, which overall is slower. Compared with
rmvtp, rmvtpc is faster because the Cholesky decomposition has already been performed.

Value

dmvtpc gives the density and rmvtpc generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

chol, dwishartc, dmvc, dmvcp, dmvtc, dst, dstp, and dt.

Examples

library(LaplacesDemon)
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
Omega <- matrix(c(1,2,0,2,5,0.5,0,0.5,3), 3, 3)
U <- chol(Omega)
nu <- 4
f <- dmvtpc(cbind(x,y,z), mu, U, nu)
X <- rmvtpc(1000, c(0,1,2), U, 5)
joint.density.plot(X[,1], X[,2], color=TRUE)

dist.Normal.Inverse.Wishart

Normal-Inverse-Wishart Distribution

Description

These functions provide the density and random number generation for the normal-inverse-Wishart
distribution.

Usage

dnorminvwishart(mu, mu0, lambda, Sigma, S, nu, log=FALSE)
rnorminvwishart(n=1, mu0, lambda, S, nu)
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Arguments

mu This is data or parameters in the form of a vector of length k or a matrix with k
columns.

mu0 This is mean vector µ0 with length k or matrix with k columns.

lambda This is a positive-only scalar.

n This is the number of random draws.

nu This is the scalar degrees of freedom ν.

Sigma This is a k × k covariance matrix Σ.

S This is the symmetric, positive-semidefinite, k × k scale matrix S.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density: p(µ,Σ) = N (µ|µ0,
1
λΣ)W

−1(Σ|ν,S)

• Inventors: Unknown

• Notation 1: (µ,Σ) ∼ NIW(µ0, λ,S, ν)

• Notation 2: p(µ,Σ) = NIW(µ,Σ|µ0, λ,S, ν)

• Parameter 1: location vector µ0

• Parameter 2: λ > 0

• Parameter 3: symmetric, positive-semidefinite k × k scale matrix S

• Parameter 4: degrees of freedom ν ≥ k

• Mean: Unknown

• Variance: Unknown

• Mode: Unknown

The normal-inverse-Wishart distribution, or Gaussian-inverse-Wishart distribution, is a multivariate
four-parameter continuous probability distribution. It is the conjugate prior of a multivariate normal
distribution with unknown mean and covariance matrix.

Value

dnorminvwishart gives the density and rnorminvwishart generates random deviates and returns
a list with two components.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dmvn and dinvwishart.



dist.Normal.Laplace 135

Examples

library(LaplacesDemon)
K <- 3
mu <- rnorm(K)
mu0 <- rnorm(K)
nu <- K + 1
S <- diag(K)
lambda <- runif(1) #Real scalar
Sigma <- as.positive.definite(matrix(rnorm(K^2),K,K))
x <- dnorminvwishart(mu, mu0, lambda, Sigma, S, nu, log=TRUE)
out <- rnorminvwishart(n=10, mu0, lambda, S, nu)
joint.density.plot(out$mu[,1], out$mu[,2], color=TRUE)

dist.Normal.Laplace Normal-Laplace Distribution: Univariate Asymmetric

Description

These functions provide the density and random generation for the univariate, asymmetric, normal-
Laplace distribution with location parameter µ, scale parameter σ, and tail-behavior parameters α
and β.

Usage

dnormlaplace(x, mu=0, sigma=1, alpha=1, beta=1, log=FALSE)
rnormlaplace(n, mu=0, sigma=1, alpha=1, beta=1)

Arguments

x This is a vector of data.

n This is the number of observations, which must be a positive integer that has
length 1.

mu This is the location parameter µ.

sigma This is the scale parameter σ, which must be positive.

alpha This is shape parameter α for left-tail behavior.

beta This is shape parameter β for right-tail behavior.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = αβ
α+βϕ

θ−µ
σ [R(ασ − θ−µ

σ ) +R(βσ + θ−µ
σ )]

• Inventor: Reed (2006)

• Notation 1: θ ∼ NL(µ, σ, α, β)

• Notation 2: p(θ) = NL(θ|µ, σ, α, β)
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• Parameter 1: location parameter µ

• Parameter 2: scale parameter σ > 0

• Parameter 3: shape parameter α > 0

• Parameter 4: shape parameter β > 0

• Mean:

• Variance:

• Mode:

The normal-Laplace (NL) distribution is the convolution of a normal distribution and a skew-
Laplace distribution. When the NL distribution is symmetric (when α = β), it behaves somewhat
like the normal distribution in the middle of its range, somewhat like the Laplace distribution in its
tails, and functions generally between the normal and Laplace distributions. Skewness is parame-
terized by including a skew-Laplace component. It may be applied, for example, to the logarithmic
price of a financial instrument.

Parameters α and β determine the behavior in the left and right tails, respectively. A small value
corresponds to heaviness in the corresponding tail. As σ approaches zero, the NL distribution
approaches a skew-Laplace distribution. As β approaches infinity, the NL distribution approaches
a normal distribution, though it never quite reaches it.

Value

dnormlaplace gives the density, and rnormlaplace generates random deviates.

References

Reed, W.J. (2006). "The Normal-Laplace Distribution and Its Relatives". In Advances in Distribu-
tion Theory, Order Statistics and Inference, p. 61–74, Birkhauser, Boston.

See Also

dalaplace, dallaplace, daml, dlaplace, and dnorm

Examples

library(LaplacesDemon)
x <- dnormlaplace(1,0,1,0.5,2)
x <- rnormlaplace(100,0,1,0.5,2)

#Plot Probability Functions
x <- seq(from=-5, to=5, by=0.1)
plot(x, dlaplace(x,0,0.5), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dlaplace(x,0,1), type="l", col="green")
lines(x, dlaplace(x,0,2), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==0, ", ", lambda==0.5),

paste(mu==0, ", ", lambda==1), paste(mu==0, ", ", lambda==2)),
lty=c(1,1,1), col=c("red","green","blue"))
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dist.Normal.Mixture Mixture of Normal Distributions

Description

These functions provide the density, cumulative, and random generation for the mixture of univari-
ate normal distributions with probability p, mean µ and standard deviation σ.

Usage

dnormm(x, p, mu, sigma, log=FALSE)
pnormm(q, p, mu, sigma, lower.tail=TRUE, log.p=FALSE)
rnormm(n, p, mu, sigma)

Arguments

x, q This is vector of values at which the density will be evaluated.

p This is a vector of length M of probabilities for M components. The sum of the
vector must be one.

n This is the number of observations, which must be a positive integer that has
length 1.

mu This is a vector of length M that is the mean parameter µ.

sigma This is a vector of length M that is the standard deviation parameter σ, which
must be positive.

lower.tail Logical. This defaults to TRUE.

log, log.p Logical. If TRUE, then probabilities p are given as log(p).

Details

• Application: Continuous Univariate

• Density: p(θ) =
∑

piN (µi, σ
2
i )

• Inventor: Unknown

• Notation 1: θ ∼ N (µ, σ2)

• Notation 2: p(θ) = N (θ|µ, σ2)

• Parameter 1: mean parameters µ

• Parameter 2: standard deviation parameters σ > 0

• Mean: E(θ) =
∑

piµi

• Variance: var(θ) =
∑

piσ
0.5
i

• Mode:

A mixture distribution is a probability distribution that is a combination of other probability distribu-
tions, and each distribution is called a mixture component, or component. A probability (or weight)
exists for each component, and these probabilities sum to one. A mixture distribution (though not
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these functions here in particular) may contain mixture components in which each component is
a different probability distribution. Mixture distributions are very flexible, and are often used to
represent a complex distribution with an unknown form. When the number of mixture components
is unknown, Bayesian inference is the only sensible approach to estimation.

A normal mixture, or Gaussian mixture, distribution is a combination of normal probability distri-
butions.

Value

dnormm gives the density, pnormm returns the CDF, and rnormm generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

ddirichlet and dnorm.

Examples

library(LaplacesDemon)
p <- c(0.3,0.3,0.4)
mu <- c(-5, 1, 5)
sigma <- c(1,2,1)
x <- seq(from=-10, to=10, by=0.1)
plot(x, dnormm(x, p, mu, sigma, log=FALSE), type="l") #Density
plot(x, pnormm(x, p, mu, sigma), type="l") #CDF
plot(density(rnormm(10000, p, mu, sigma))) #Random Deviates

dist.Normal.Precision Normal Distribution: Precision Parameterization

Description

These functions provide the density, distribution function, quantile function, and random generation
for the univariate normal distribution with mean µ and precision τ .

Usage

dnormp(x, mean=0, prec=1, log=FALSE)
pnormp(q, mean=0, prec=1, lower.tail=TRUE, log.p=FALSE)
qnormp(p, mean=0, prec=1, lower.tail=TRUE, log.p=FALSE)
rnormp(n, mean=0, prec=1)
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Arguments

x, q These are each a vector of quantiles.
p This is a vector of probabilities.
n This is the number of observations, which must be a positive integer that has

length 1.
mean This is the mean parameter µ.
prec This is the precision parameter τ , which must be positive.
log, log.p Logical. If TRUE, then probabilities p are given as log(p).
lower.tail Logical. If TRUE (default), then probabilities are Pr[X ≤ x], otherwise, Pr[X >

x].

Details

• Application: Continuous Univariate
• Density: p(θ) =

√
τ
2π exp(− τ

2 (θ − µ)2)

• Inventor: Carl Friedrich Gauss or Abraham De Moivre
• Notation 1: θ ∼ N (µ, τ−1)

• Notation 2: p(θ) = N (θ|µ, τ−1)

• Parameter 1: mean parameter µ
• Parameter 2: precision parameter τ > 0

• Mean: E(θ) = µ

• Variance: var(θ) = τ−1

• Mode: mode(θ) = µ

The normal distribution, also called the Gaussian distribution and the Second Law of Laplace, is
usually parameterized with mean and variance, or in Bayesian inference, with mean and precision,
where precision is the inverse of the variance. In contrast, Base R parameterizes the normal distribu-
tion with the mean and standard deviation. These functions provide the precision parameterization
for convenience and familiarity.

Some authors attribute credit for the normal distribution to Abraham de Moivre in 1738. In 1809,
Carl Friedrich Gauss published his monograph “Theoria motus corporum coelestium in section-
ibus conicis solem ambientium”, in which he introduced the method of least squares, method of
maximum likelihood, and normal distribution, among many other innovations.

Gauss, himself, characterized this distribution according to mean and precision, though his defini-
tion of precision differed from the modern one. The modern Bayesian use of precision τ developed
because it was more straightforward to estimate τ with a gamma distribution as a conjugate prior,
than to estimate σ2 with an inverse-gamma distribution as a conjugate prior.

Although the normal distribution is very common, it often does not fit data as well as more robust
alternatives with fatter tails, such as the Laplace or Student t distribution.

A flat distribution is obtained in the limit as τ → 0.

For models where the dependent variable, y, is specified to be normally distributed given the model,
the Jarque-Bera test (see plot.demonoid.ppc or plot.laplace.ppc) may be used to test the resid-
uals.

These functions are similar to those in base R.
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Value

dnormp gives the density, pnormp gives the distribution function, qnormp gives the quantile function,
and rnormp generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dlaplace, dnorm, dnormv, prec2var, dst, dt, plot.demonoid.ppc, and plot.laplace.ppc.

Examples

library(LaplacesDemon)
x <- dnormp(1,0,1)
x <- pnormp(1,0,1)
x <- qnormp(0.5,0,1)
x <- rnormp(100,0,1)

#Plot Probability Functions
x <- seq(from=-5, to=5, by=0.1)
plot(x, dnormp(x,0,0.5), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dnormp(x,0,1), type="l", col="green")
lines(x, dnormp(x,0,5), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==0, ", ", tau==0.5),

paste(mu==0, ", ", tau==1), paste(mu==0, ", ", tau==5)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Normal.Variance Normal Distribution: Variance Parameterization

Description

These functions provide the density, distribution function, quantile function, and random generation
for the univariate normal distribution with mean µ and variance σ2.

Usage

dnormv(x, mean=0, var=1, log=FALSE)
pnormv(q, mean=0, var=1, lower.tail=TRUE, log.p=FALSE)
qnormv(p, mean=0, var=1, lower.tail=TRUE, log.p=FALSE)
rnormv(n, mean=0, var=1)
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Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

mean This is the mean parameter µ.

var This is the variance parameter σ2, which must be positive.

log, log.p Logical. If TRUE, then probabilities p are given as log(p).

lower.tail Logical. If TRUE (default), then probabilities are Pr[X ≤ x], otherwise, Pr[X >
x].

Details

• Application: Continuous Univariate

• Density: p(θ) = 1√
2πσ2

exp(− (θ−µ)2

2σ2 )

• Inventor: Carl Friedrich Gauss or Abraham De Moivre

• Notation 1: θ ∼ N (µ, σ2)

• Notation 2: p(θ) = N (θ|µ, σ2)

• Parameter 1: mean parameter µ

• Parameter 2: variance parameter σ2 > 0

• Mean: E(θ) = µ

• Variance: var(θ) = σ2

• Mode: mode(θ) = µ

The normal distribution, also called the Gaussian distribution and the Second Law of Laplace, is
usually parameterized with mean and variance. Base R uses the mean and standard deviation. These
functions provide the variance parameterization for convenience and familiarity. For example, it is
easier to code dnormv(1,1,1000) than dnorm(1,1,sqrt(1000)).

Some authors attribute credit for the normal distribution to Abraham de Moivre in 1738. In 1809,
Carl Friedrich Gauss published his monograph “Theoria motus corporum coelestium in section-
ibus conicis solem ambientium”, in which he introduced the method of least squares, method of
maximum likelihood, and normal distribution, among many other innovations.

Gauss, himself, characterized this distribution according to mean and precision, though his defini-
tion of precision differed from the modern one.

Although the normal distribution is very common, it often does not fit data as well as more robust
alternatives with fatter tails, such as the Laplace or Student t distribution.

A flat distribution is obtained in the limit as σ2 → ∞.

For models where the dependent variable, y, is specified to be normally distributed given the model,
the Jarque-Bera test (see plot.demonoid.ppc or plot.laplace.ppc) may be used to test the resid-
uals.

These functions are similar to those in base R.
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Value

dnormv gives the density, pnormv gives the distribution function, qnormv gives the quantile function,
and rnormv generates random deviates.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dlaplace, dnorm, dnormp, dst, dt, plot.demonoid.ppc, and plot.laplace.ppc.

Examples

library(LaplacesDemon)
x <- dnormv(1,0,1)
x <- pnormv(1,0,1)
x <- qnormv(0.5,0,1)
x <- rnormv(100,0,1)

#Plot Probability Functions
x <- seq(from=-5, to=5, by=0.1)
plot(x, dnormv(x,0,0.5), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dnormv(x,0,1), type="l", col="green")
lines(x, dnormv(x,0,5), type="l", col="blue")
legend(2, 0.9, expression(paste(mu==0, ", ", sigma^2==0.5),

paste(mu==0, ", ", sigma^2==1), paste(mu==0, ", ", sigma^2==5)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Normal.Wishart Normal-Wishart Distribution

Description

These functions provide the density and random number generation for the normal-Wishart distri-
bution.

Usage

dnormwishart(mu, mu0, lambda, Omega, S, nu, log=FALSE)
rnormwishart(n=1, mu0, lambda, S, nu)
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Arguments

mu This is data or parameters in the form of a vector of length k or a matrix with k
columns.

mu0 This is mean vector µ0 with length k or matrix with k columns.

lambda This is a positive-only scalar.

n This is the number of random draws.

nu This is the scalar degrees of freedom ν.

Omega This is a k × k precision matrix Ω.

S This is the symmetric, positive-semidefinite, k × k scale matrix S.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density: p(µ,Ω) = N (µ|µ0, (λΩ)
−1)W(Ω|ν,S)

• Inventors: Unknown

• Notation 1: (µ,Ω) ∼ NW(µ0, λ,S, ν)

• Notation 2: p(µ,Ω) = NW(µ,Ω|µ0, λ,S, ν)

• Parameter 1: location vector µ0

• Parameter 2: λ > 0

• Parameter 3: symmetric, positive-semidefinite k × k scale matrix S

• Parameter 4: degrees of freedom ν ≥ k

• Mean: Unknown

• Variance: Unknown

• Mode: Unknown

The normal-Wishart distribution, or Gaussian-Wishart distribution, is a multivariate four-parameter
continuous probability distribution. It is the conjugate prior of a multivariate normal distribution
with unknown mean and precision matrix.

Value

dnormwishart gives the density and rnormwishart generates random deviates and returns a list
with two components.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dmvnp and dwishart.
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Examples

library(LaplacesDemon)
K <- 3
mu <- rnorm(K)
mu0 <- rnorm(K)
nu <- K + 1
S <- diag(K)
lambda <- runif(1) #Real scalar
Omega <- as.positive.definite(matrix(rnorm(K^2),K,K))
x <- dnormwishart(mu, mu0, lambda, Omega, S, nu, log=TRUE)
out <- rnormwishart(n=10, mu0, lambda, S, nu)
joint.density.plot(out$mu[,1], out$mu[,2], color=TRUE)

dist.Pareto Pareto Distribution

Description

These functions provide the density, distribution function, quantile function, and random generation
for the pareto distribution.

Usage

dpareto(x, alpha, log=FALSE)
ppareto(q, alpha)
qpareto(p, alpha)
rpareto(n, alpha)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

alpha This is the shape parameter α, which must be positive.

log Logical. If log=TRUE, then the logarithm of the density or result is returned.

Details

• Application: Continuous Univariate

• Density: p(θ) = α
θα+1 , θ ≥ 1

• Inventor: Vilfredo Pareto (1848-1923)

• Notation 1: θ ∼ PA(α)

• Notation 2: p(θ) = PA(θ|α)
• Parameter 1: shape parameter α > 0
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• Mean: E(θ) = α
α−1

• Variance: var(θ) = α
(α−1)2(α−2) , α > 2

• Mode: mode(θ) = 1

The Pareto distribution, sometimes called the Bradford distribution, is related to the exponential
distribution. The gamma distribution is the conjugate prior distribution for the shape parameter α
in the Pareto distribution. The Pareto distribution is the conjugate prior distribution for the range
parameters of a uniform distribution. An extension, elsewhere, is the symmetric Pareto distribution.

Value

dpareto gives the density, ppareto gives the distribution function, qpareto gives the quantile
function, and rpareto generates random deviates.

See Also

dexp, dlnorm, dlnormp, dnorm, dnormp, dnormv.

Examples

library(LaplacesDemon)
x <- dpareto(1,1)
x <- ppareto(0.5,1)
x <- qpareto(0.5,1)
x <- rpareto(10,1)

#Plot Probability Functions
x <- seq(from=1, to=5, by=0.01)
plot(x, dpareto(x,0.1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dpareto(x,0.5), type="l", col="green")
lines(x, dpareto(x,1), type="l", col="blue")
legend(2, 0.9, expression(alpha==0.1, alpha==0.5, alpha==1),

lty=c(1,1,1), col=c("red","green","blue"))

dist.Power.Exponential

Power Exponential Distribution: Univariate Symmetric

Description

These functions provide the density, distribution function, quantile function, and random genera-
tion for the univariate, symmetric, power exponential distribution with location parameter µ, scale
parameter σ, and kurtosis parameter κ.



146 dist.Power.Exponential

Usage

dpe(x, mu=0, sigma=1, kappa=2, log=FALSE)
ppe(q, mu=0, sigma=1, kappa=2, lower.tail=TRUE, log.p=FALSE)
qpe(p, mu=0, sigma=1, kappa=2, lower.tail=TRUE, log.p=FALSE)
rpe(n, mu=0, sigma=1, kappa=2)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

mu This is the location parameter µ.

sigma This is the scale parameter σ, which must be positive.

kappa This is the kurtosis parameter κ, which must be positive.

log, log.p Logical. If log=TRUE, then the logarithm of the density or result is returned.

lower.tail Logical. If lower.tail=TRUE (default), probabilities are Pr[X ≤ x], other-
wise, Pr[X > x].

Details

• Application: Continuous Univariate

• Density: p(θ) = 1
2κ1/κΓ(1+ 1

κ )σ
exp(− |θ−µ|κ

κσκ )

• Inventor: Subbotin, M.T. (1923)

• Notation 1: θ ∼ PE(µ, σ, κ)
• Notation 2: p(θ) = PE(θ|µ, σ, κ)
• Parameter 1: location parameter µ

• Parameter 2: scale parameter σ > 0

• Parameter 3: kurtosis parameter κ > 0

• Mean: E(θ) = µ

• Variance: var(θ) =

• Mode: mode(θ) = µ

The power exponential distribution is also called the exponential power distribution, generalized
error distribution, generalized Gaussian distribution, and generalized normal distribution. The orig-
inal form was introduced by Subbotin (1923) and re-parameterized by Lunetta (1963). These func-
tions use the more recent parameterization by Lunetta (1963). A shape parameter, κ > 0, is added
to the normal distribution. When κ = 1, the power exponential distribution is the same as the
Laplace distribution. When κ = 2, the power exponential distribution is the same as the normal
distribution. As κ → ∞, this becomes a uniform distribution ∈ (µ−σ, µ+σ). Tails that are heavier
than normal occur when κ < 2, or lighter than normal when κ > 2. This distribution is univariate
and symmetric, and there exist multivariate and asymmetric versions.

These functions are similar to those in the normalp package.
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Value

dpe gives the density, ppe gives the distribution function, qpe gives the quantile function, and rpe
generates random deviates.

References

Lunetta, G. (1963). "Di una Generalizzazione dello Schema della Curva Normale". Annali della
Facolt‘a di Economia e Commercio di Palermo, 17, p. 237–244.

Subbotin, M.T. (1923). "On the Law of Frequency of Errors". Matematicheskii Sbornik, 31, p.
296–301.

See Also

dlaplace, dlaplacep, dmvpe, dnorm, dnormp, dnormv, and dunif.

Examples

library(LaplacesDemon)
x <- dpe(1,0,1,2)
x <- ppe(1,0,1,2)
x <- qpe(0.5,0,1,2)
x <- rpe(100,0,1,2)

#Plot Probability Functions
x <- seq(from=0.1, to=3, by=0.01)
plot(x, dpe(x,0,1,0.1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dpe(x,0,1,2), type="l", col="green")
lines(x, dpe(x,0,1,5), type="l", col="blue")
legend(1.5, 0.9, expression(paste(mu==0, ", ", sigma==1, ", ", kappa==0.1),

paste(mu==0, ", ", sigma==1, ", ", kappa==2),
paste(mu==0, ", ", sigma==1, ", ", kappa==5)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Scaled.Inverse.Wishart

Scaled Inverse Wishart Distribution

Description

These functions provide the density and random number generation for the scaled inverse Wishart
distribution.

Usage

dsiw(Q, nu, S, zeta, mu, delta, log=FALSE)
rsiw(nu, S, mu, delta)
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Arguments

Q This is the symmetric, positive-definite k × k matrix Q.

nu This is the scalar degrees of freedom, ν regarding Q. The default recommenda-
tion is nu=k+1.

S This is the symmetric, positive-semidefinite k × k scale matrix S regarding Q.
The default recommendation is S=diag(k).

zeta This is a positive-only vector of length k of auxiliary scale parameters ζ.

mu This is a vector of length k of location hyperparameters µ regarding ζ.

delta This is a positive-only vector of length k of scale hyperparameters δ regarding
ζ.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density: (see below)

• Inventor: O’Malley and Zaslavsky (2005)

• Notation 1: p(Σ) ∼ SIW(Q, ν,S, ζ, µ, δ)

• Notation 2: p(Σ) = SIW(Σ|Q, ν,S, ζ, µ, δ

• Parameter 1: symmetric, positive-definite k × k matrix Q

• Parameter 2: degrees of freedom ν

• Parameter 3: symmetric, positive-semidefinite k × k scale matrix S

• Parameter 4: Auxiliary scale parameter vector ζ

• Parameter 5: Hyperparameter location vector µ

• Parameter 6: Hyperparameter scale vector δ

• Mean:

• Variance:

• Mode:

The scaled inverse Wishart (SIW) distribution is a prior probability distribution for a covariance
matrix, and is an alternative to the inverse Wishart distribution.

While the inverse Wishart distribution is applied directly to covariance matrix Σ, the SIW distribu-
tion is applied to a decomposed matrix Q and diagonal scale matrix ζ. For information on how to
apply it to Q, see the example below.

SIW is more flexible than the inverse Wishart distribution because it has additional, and some say
somewhat redundant, scale parameters. This makes up for one limitation of the inverse Wishart,
namely that all uncertainty about posterior variances is represented in one parameter. The SIW prior
may somewhat alleviate the dependency in the inverse Wishart between variances and correlations,
though the SIW prior still retains some of this relationship.

The Huang-Wand (dhuangwand) prior is a hierarchical alternative.
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Value

dsiw gives the density and rsiw generates random deviates.

References

O’Malley, A.J. and Zaslavsky, A.M. (2005), "Domain-Level Covariance Analysis for Survey Data
with Structured Nonresponse".

See Also

dhuangwand, dinvwishartc, dmvn, and dwishart.

Examples

library(LaplacesDemon)
### In the model specification function, input U and zeta, then:
# Q <- t(U) %*% U
# Zeta <- diag(zeta)
# Sigma <- Zeta %*% Q %*% Zeta
# Sigma.prior <- dsiw(Q, nu=Data$K+1, S=diag(Data$K), zeta, mu=0, delta=1)
### Examples
x <- dsiw(diag(3), 4, diag(3), runif(3), rep(0,3), rep(1,3), log=TRUE)
x <- rsiw(4, diag(3), rep(0,3), rep(1,3))

dist.Skew.Discrete.Laplace

Skew Discrete Laplace Distribution: Univariate

Description

These functions provide the density, distribution function, quantile function, and random generation
for the univariate, skew discrete Laplace distribution with parameters p and q.

Usage

dsdlaplace(x, p, q, log=FALSE)
psdlaplace(x, p, q)
qsdlaplace(prob, p, q)
rsdlaplace(n, p, q)

Arguments

x This is a vector of data.
p This is a scalar or vector of parameter p ∈ [0, 1].
q This is a scalar or vector of parameter q ∈ [0, 1].
prob This is a probability scalar or vector.
n This is the number of observations, which must be a positive integer that has

length 1.
log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Discrete Univariate

• Density 1: p(θ) = (1−p)(1−q)
1−pq pθ; θ = 0, 1, 2, 3, . . .

• Density 2: p(θ) = (1−p)(1−q)
1−pq q|θ|;x = 0,−1,−2,−3, . . .

• Inventor: Kozubowski, T.J. and Inusah, S. (2006)

• Notation 1: θ ∼ DL(p, q)
• Notation 2: p(θ) = DL(θ|p, q)
• Parameter 1: p ∈ [0, 1]

• Parameter 2: q ∈ [0, 1]

• Mean 1: E(θ) = 1
1−p − 1

1−q = p
1−p − q

1−q

• Mean 2: E(|θ|) = q(1−p)2+p(1−q)2

(1−qp)(1−q)(1−p)

• Variance: var(θ) = 1
(1−p)2(1−q)2 [

q(1−p)3(1+q)+p(1−q)3(1+p)
1−pq − (p− q)2]

• Mode:

This is a discrete form of the skew-Laplace distribution. The symmetric discrete Laplace distribu-
tion occurs when p = q. DL(p,0) is a geometric distribution, and DL(0,q) is a geometric distribution
of non-positive integers. The distribution is degenerate when DL(0,0). Since the geometric distri-
bution is a discrete analog of the exponential distribution, the distribution of the difference of two
geometric variables is a discrete Laplace distribution.

These functions are similar to those in the DiscreteLaplace package.

Value

dslaplace gives the density, pslaplace gives the distribution function, qslaplace gives the quan-
tile function, and rslaplace generates random deviates.

References

Kozubowski, T.J. and Inusah, S. (2006). "A Skew Laplace Distribution on Integers". AISM, 58, p.
555–571.

See Also

dalaplace, dexp, dlaplace, dlaplacep, and dslaplace.

Examples

library(LaplacesDemon)
x <- dsdlaplace(1,0.5,0.5)
x <- psdlaplace(1,0.5,0.5)
x <- qsdlaplace(0.5,0.5,0.5)
x <- rsdlaplace(5,0.5,0.5)

#Plot Probability Functions
x <- c(-3:3)
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plot(x, dsdlaplace(x,0.5,0.5), ylim=c(0,0.6), type="l", main="Probability Function",
ylab="density", col="red")

lines(x, dsdlaplace(x,0.3,0.6), type="l", col="green")
lines(x, dsdlaplace(x,0.9,0.1), type="l", col="blue")
legend(-2.5, 0.5, expression(paste(p==0.5, ", ", q==0.5),

paste(p==0.3, ", ", q==0.6),
paste(p==0.9, ", ", q==0.1)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Skew.Laplace Skew-Laplace Distribution: Univariate

Description

These functions provide the density, distribution function, quantile function, and random generation
for the univariate, skew-Laplace distribution with location parameter µ, and two mixture parame-
ters: α and β.

Usage

dslaplace(x, mu, alpha, beta, log=FALSE)
pslaplace(q, mu, alpha, beta)
qslaplace(p, mu, alpha, beta)
rslaplace(n, mu, alpha, beta)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

mu This is the location parameter µ.

alpha This is a mixture parameter α, which must be positive.

beta This is a mixture parameter β, which must be positive.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Univariate

• Density 1: p(θ) = 1
α+β exp( θ−µ

α ), θ ≤ µ

• Density 2: p(θ) = 1
α+β exp(µ−θ

β ), θ > µ

• Inventor: Fieller, et al. (1992)

• Notation 1: θ ∼ SL(µ, α, β)
• Notation 2: p(θ) = SL(θ|µ, α, β)
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• Parameter 1: location parameter µ

• Parameter 2: mixture parameter α > 0

• Parameter 3: mixture parameter β > 0

• Mean: E(θ) = µ+ β − α

• Variance: var(θ) = α2 + β2

• Mode: mode(θ) = µ

This is the three-parameter general skew-Laplace distribution, which is an extension of the two-
parameter central skew-Laplace distribution. The general form allows the mode to be shifted along
the real line with parameter µ. In contrast, the central skew-Laplace has mode zero, and may be
reproduced here by setting µ = 0.

The general skew-Laplace distribution is a mixture of a negative exponential distribution with mean
β, and the negative of an exponential distribution with mean α. The weights of the positive and
negative components are proportional to their means. The distribution is symmetric when α = β,
in which case the mean is µ.

These functions are similar to those in the HyperbolicDist package.

Value

dslaplace gives the density, pslaplace gives the distribution function, qslaplace gives the quan-
tile function, and rslaplace generates random deviates.

References

Fieller, N.J., Flenley, E.C., and Olbricht, W. (1992). "Statistics of Particle Size Data". Applied
Statistics, 41, p. 127–146.

See Also

dalaplace, dexp, dlaplace, dlaplacep, and dsdlaplace.

Examples

library(LaplacesDemon)
x <- dslaplace(1,0,1,1)
x <- pslaplace(1,0,1,1)
x <- qslaplace(0.5,0,1,1)
x <- rslaplace(100,0,1,1)

#Plot Probability Functions
x <- seq(from=0.1, to=3, by=0.01)
plot(x, dslaplace(x,0,1,1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dslaplace(x,0,0.5,2), type="l", col="green")
lines(x, dslaplace(x,0,2,0.5), type="l", col="blue")
legend(1.5, 0.9, expression(paste(mu==0, ", ", alpha==1, ", ", beta==1),

paste(mu==0, ", ", alpha==0.5, ", ", beta==2),
paste(mu==0, ", ", alpha==2, ", ", beta==0.5)),
lty=c(1,1,1), col=c("red","green","blue"))
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dist.Stick Truncated Stick-Breaking Prior Distribution

Description

These functions provide the density and random number generation of the original, truncated stick-
breaking (TSB) prior distribution given θ and γ, as per Ishwaran and James (2001).

Usage

dStick(theta, gamma, log=FALSE)
rStick(M, gamma)

Arguments

M This accepts an integer that is equal to one less than the number of truncated
number of possible mixture components (M = 1). Unlike most random deviate
functions, this is not the number of random deviates to return.

theta This is θ, a vector of length M−1, where M is the truncated number of possible
mixture components.

gamma This is γ, a scalar, and is usually gamma-distributed.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Discrete Multivariate

• Density: p(π) = (1−θ)β−1

B(1,β)

• Inventor: Sethuraman, J. (1994)

• Notation 1: π ∼ Stick(θ, γ)

• Notation 2: π ∼ GEM(θ, γ)

• Notation 3: p(π) = Stick(π|θ, γ)
• Notation 4: p(π) = GEM(π|θ, γ)
• Parameter 1: shape parameter θ ∈ (0, 1)

• Parameter 2: shape parameter γ > 0

• Mean: E(π) = 1
1+γ

• Variance: var(π) = γ
(1+γ)2(γ+2)

• Mode: mode(π) = 0

The original truncated stick-breaking (TSB) prior distribution assigns each θ to be beta-distributed
with parameters α = 1 and β = γ (Ishwaran and James, 2001). This distribution is commonly used
in truncated Dirichlet processes (TDPs).
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Value

dStick gives the density and rStick generates a random deviate vector of length M .

References

Ishwaran, H. and James, L. (2001). "Gibbs Sampling Methods for Stick Breaking Priors". Journal
of the American Statistical Association, 96(453), p. 161–173.

Sethuraman, J. (1994). "A Constructive Definition of Dirichlet Priors". Statistica Sinica, 4, p.
639–650.

See Also

ddirichlet, dmvpolya, and Stick.

Examples

library(LaplacesDemon)
dStick(runif(4), 0.1)
rStick(4, 0.1)

dist.Student.t Student t Distribution: Univariate

Description

These functions provide the density, distribution function, quantile function, and random generation
for the univariate Student t distribution with location parameter µ, scale parameter σ, and degrees
of freedom parameter ν.

Usage

dst(x, mu=0, sigma=1, nu=10, log=FALSE)
pst(q, mu=0, sigma=1, nu=10, lower.tail=TRUE, log.p=FALSE)
qst(p, mu=0, sigma=1, nu=10, lower.tail=TRUE, log.p=FALSE)
rst(n, mu=0, sigma=1, nu=10)

Arguments

x, q These are each a vector of quantiles.

p This is a vector of probabilities.

n This is the number of observations, which must be a positive integer that has
length 1.

mu This is the location parameter µ.

sigma This is the scale parameter σ, which must be positive.

nu This is the degrees of freedom parameter ν, which must be positive.
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lower.tail Logical. If lower.tail=TRUE, then probabilities are Pr[X ≤ x], otherwise,
Pr[X > x].

log, log.p Logical. If log=TRUE, then the logarithm of the density or probability is re-
turned.

Details

• Application: Continuous Univariate

• Density: p(θ) = Γ[(ν+1)/2]
Γ(ν/2)

√
νπσ[1 + 1

ν [
θ−µ
σ ]2](−ν+1)/2

• Inventor: William Sealy Gosset (1908)

• Notation 1: θ ∼ t(µ, σ, ν)

• Notation 2: p(θ) = t(θ|µ, σ, ν)

• Parameter 1: location parameter µ

• Parameter 2: scale parameter σ > 0

• Parameter 3: degrees of freedom ν > 0

• Mean: E(θ) = µ, for ν > 1, otherwise undefined

• Variance: var(θ) = ν
ν−2σ

2, for ν > 2

• Mode: mode(θ) = µ

The Student t-distribution is often used as an alternative to the normal distribution as a model for
data. It is frequently the case that real data have heavier tails than the normal distribution allows
for. The classical approach was to identify outliers and exclude or downweight them in some way.
However, it is not always easy to identify outliers (especially in high dimensions), and the Student
t-distribution is a natural choice of model-form for such data. It provides a parametric approach to
robust statistics.

The degrees of freedom parameter, ν, controls the kurtosis of the distribution, and is correlated
with the scale parameter σ. The likelihood can have multiple local maxima and, as such, it is often
necessary to fix ν at a fairly low value and estimate the other parameters taking this as given. Some
authors report that values between 3 and 9 are often good choices, and some authors suggest 5 is
often a good choice.

In the limit ν → ∞, the Student t-distribution approaches N (µ, σ2). The case of ν = 1 is the
Cauchy distribution.

The pst and qst functions are similar to those in the gamlss.dist package.

Value

dst gives the density, pst gives the distribution function, qst gives the quantile function, and rst
generates random deviates.

See Also

dcauchy, dmvt, dmvtp, dnorm, dnormp, dnormv, dstp, and dt.
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Examples

library(LaplacesDemon)
x <- dst(1,0,1,10)
x <- pst(1,0,1,10)
x <- qst(0.5,0,1,10)
x <- rst(100,0,1,10)

#Plot Probability Functions
x <- seq(from=-5, to=5, by=0.1)
plot(x, dst(x,0,1,0.1), ylim=c(0,1), type="l", main="Probability Function",

ylab="density", col="red")
lines(x, dst(x,0,1,1), type="l", col="green")
lines(x, dst(x,0,1,10), type="l", col="blue")
legend(1, 0.9, expression(paste(mu==0, ", ", sigma==1, ", ", nu==0.5),

paste(mu==0, ", ", sigma==1, ", ", nu==1),
paste(mu==0, ", ", sigma==1, ", ", nu==10)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Student.t.Precision

Student t Distribution: Precision Parameterization

Description

These functions provide the density, distribution function, quantile function, and random genera-
tion for the univariate Student t distribution with location parameter µ, precision parameter τ , and
degrees of freedom parameter ν.

Usage

dstp(x, mu=0, tau=1, nu=10, log=FALSE)
pstp(q, mu=0, tau=1, nu=10, lower.tail=TRUE, log.p=FALSE)
qstp(p, mu=0, tau=1, nu=10, lower.tail=TRUE, log.p=FALSE)
rstp(n, mu=0, tau=1, nu=10)

Arguments

x, q These are each a vector of quantiles.
p This is a vector of probabilities.
n This is the number of observations, which must be a positive integer that has

length 1.
mu This is the location parameter µ.
tau This is the precision parameter τ , which must be positive.
nu This is the degrees of freedom parameter ν, which must be positive.
lower.tail Logical. If lower.tail=TRUE, then probabilities are Pr[X ≤ x], otherwise,

Pr[X > x].
log, log.p Logical. If log=TRUE, then the logarithm of the density or probability is re-

turned.
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Details

• Application: Continuous Univariate

• Density: p(θ) = Γ((ν+1)/2)
Γ(ν/2)

√
τ
νπ (1 +

τ
ν (θ − µ)2)−(ν+1)/2

• Inventor: William Sealy Gosset (1908)

• Notation 1: θ ∼ t(µ,
√
τ−1, ν)

• Notation 2: p(θ) = t(θ|µ,
√
τ−1, ν)

• Parameter 1: location parameter µ

• Parameter 2: precision parameter τ > 0

• Parameter 3: degrees of freedom ν > 0

• Mean: E(θ) = µ, for ν > 1, otherwise undefined

• Variance: var(θ) = 1
τ

ν
ν−2 , for ν > 2

• Mode: mode(θ) = µ

The Student t-distribution is often used as an alternative to the normal distribution as a model for
data. It is frequently the case that real data have heavier tails than the normal distribution allows
for. The classical approach was to identify outliers and exclude or downweight them in some way.
However, it is not always easy to identify outliers (especially in high dimensions), and the Student
t-distribution is a natural choice of model-form for such data. It provides a parametric approach to
robust statistics.

The degrees of freedom parameter, ν, controls the kurtosis of the distribution, and is correlated with
the precision parameter τ . The likelihood can have multiple local maxima and, as such, it is often
necessary to fix ν at a fairly low value and estimate the other parameters taking this as given. Some
authors report that values between 3 and 9 are often good choices, and some authors suggest 5 is
often a good choice.

In the limit ν → ∞, the Student t-distribution approaches N (µ, σ2). The case of ν = 1 is the
Cauchy distribution.

Value

dstp gives the density, pstp gives the distribution function, qstp gives the quantile function, and
rstp generates random deviates.

See Also

dcauchy, dmvt, dmvtp, dnorm, dnormp, dnormv, dst, dt.

Examples

library(LaplacesDemon)
x <- dstp(1,0,1,10)
x <- pstp(1,0,1,10)
x <- qstp(0.5,0,1,10)
x <- rstp(100,0,1,10)

#Plot Probability Functions
x <- seq(from=-5, to=5, by=0.1)
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plot(x, dstp(x,0,1,0.1), ylim=c(0,1), type="l", main="Probability Function",
ylab="density", col="red")

lines(x, dstp(x,0,1,1), type="l", col="green")
lines(x, dstp(x,0,1,10), type="l", col="blue")
legend(1, 0.9, expression(paste(mu==0, ", ", tau==1, ", ", nu==0.5),

paste(mu==0, ", ", tau==1, ", ", nu==1),
paste(mu==0, ", ", tau==1, ", ", nu==10)),
lty=c(1,1,1), col=c("red","green","blue"))

dist.Truncated Truncated Distributions

Description

Density, distribution function, quantile function and random generation for truncated distributions.

Usage

dtrunc(x, spec, a=-Inf, b=Inf, log=FALSE, ...)
extrunc(spec, a=-Inf, b=Inf, ...)
ptrunc(x, spec, a=-Inf, b=Inf, ...)
qtrunc(p, spec, a=-Inf, b=Inf, ...)
rtrunc(n, spec, a=-Inf, b=Inf, ...)
vartrunc(spec, a=-Inf, b=Inf, ...)

Arguments

n This is a the number of random draws for rtrunc.

p This is a vector of probabilities.

x This is a vector to be evaluated.

spec The base name of a probability distribution is specified here. For example, to
estimate the density of a truncated normal distribution, enter norm.

a This is the lower bound of truncation, which defaults to negative infinity.

b This is the upper bound of truncation, which defaults to infinity.

log Logical. If log=TRUE, then the logarithm of the density is returned.

... Additional arguments pertain to the probability distribution specified in the spec
argument.

Details

A truncated distribution is a conditional distribution that results from a priori restricting the domain
of some other probability distribution. More than merely preventing values outside of truncated
bounds, a proper truncated distribution integrates to one within the truncated bounds. For more
information on propriety, see is.proper. In contrast to a truncated distribution, a censored dis-
tribution occurs when the probability distribution is still allowed outside of a pre-specified range.
Here, distributions are truncated to the interval [a, b], such as p(θ) ∈ [a, b].
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The dtrunc function is often used in conjunction with the interval function to truncate prior prob-
ability distributions in the model specification function for use with these numerical approximation
functions: LaplaceApproximation, LaplacesDemon, and PMC.

The R code of Nadarajah and Kotz (2006) has been modified to work with log-densities.

Value

dtrunc gives the density, extrunc gives the expectation, ptrunc gives the distribution function,
qtrunc gives the quantile function, rtrunc generates random deviates, and vartrunc gives the
variance of the truncated distribution.

References

Nadarajah, S. and Kotz, S. (2006). "R Programs for Computing Truncated Distributions". Journal
of Statistical Software, 16, Code Snippet 2, p. 1–8.

See Also

interval, is.proper, LaplaceApproximation, LaplacesDemon, and PMC.

Examples

library(LaplacesDemon)
x <- seq(-0.5, 0.5, by = 0.1)
y <- dtrunc(x, "norm", a=-0.5, b=0.5, mean=0, sd=2)

dist.Wishart Wishart Distribution

Description

These functions provide the density and random number generation for the Wishart distribution.

Usage

dwishart(Omega, nu, S, log=FALSE)
rwishart(nu, S)

Arguments

Omega This is the symmetric, positive-definite k × k matrix Ω.

nu This is the scalar degrees of freedom ν.

S This is the symmetric, positive-semidefinite, k × k scale matrix S.

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate

• Density: p(θ) = (2νk/2πk(k−1)/4
∏k

i=1 Γ(
ν+1−i

2 ))−1|S|−nu/2|Ω|(nu−k−1)/2 exp(− 1
2 tr(S

−1Ω))

• Inventor: John Wishart (1928)

• Notation 1: Ω ∼ Wν(S)

• Notation 2: p(Ω) = Wν(Ω|S)
• Parameter 1: degrees of freedom ν ≥ k

• Parameter 2: symmetric, positive-semidefinite k × k scale matrix S

• Mean: E(Ω) = νS

• Variance: var(Ω) = ν(S2
i,j + Si,iSj,j)

• Mode: mode(Ω) = (ν − k − 1)S, for ν ≥ k + 1

The Wishart distribution is a generalization to multiple dimensions of the chi-square distribution,
or, in the case of non-integer degrees of freedom, of the gamma distribution. However, the Wishart
distribution is not called the multivariate chi-squared distribution because the marginal distribution
of the off-diagonal elements is not chi-squared.

The Wishart is the conjugate prior distribution for the precision matrix Ω, the inverse of which
(covariance matrix Σ) is used in a multivariate normal distribution.

The integral is finite when ν ≥ k, where ν is the scalar degrees of freedom parameter, and k is the
dimension of scale matrix S. The density is finite when νgek + 1, which is recommended.

The degrees of freedom, ν, is equivalent to specifying a prior sample size, indicating the confidence
in S, where S is a prior guess at the order of covariance matrix Σ. A flat prior distribution is obtained
as ν → 0.

When applicable, the alternative Cholesky parameterization should be preferred. For more infor-
mation, see dwishartc.

The Wishart prior lacks flexibility, having only one parameter, ν, to control the variability for all
k(k + 1)/2 elements. Popular choices for the scale matrix S include an identity matrix or sample
covariance matrix. When the model sample size is small, the specification of the scale matrix can
be influential.

Although the related inverse Wishart distribution has a dependency between variance and correla-
tion, the Wishart distribution does not have this dependency.

The matrix gamma (dmatrixgamma) distribution is a more general version of the Wishart distri-
bution, and the Yang-Berger (dyangberger) distribution is an alterative that is a least informative
prior (LIP).

Value

dwishart gives the density and rwishart generates random deviates.

References

Wishart, J. (1928). "The Generalised Product Moment Distribution in Samples from a Normal
Multivariate Population". Biometrika, 20A(1-2), p. 32–52.
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See Also

dchisq, dgamma, dinvwishart, dmatrixgamma, dmvnp, dwishartc, Prec2Cov, and dyangberger.

Examples

library(LaplacesDemon)
x <- dwishart(matrix(c(2,-.3,-.3,4),2,2), 3, matrix(c(1,.1,.1,1),2,2))
x <- rwishart(3, matrix(c(1,.1,.1,1),2,2))

dist.Wishart.Cholesky Wishart Distribution: Cholesky Parameterization

Description

These functions provide the density and random number generation for the Wishart distribution
with the Cholesky parameterization.

Usage

dwishartc(U, nu, S, log=FALSE)
rwishartc(nu, S)

Arguments

U This is the upper-triangular k × k matrix for the Cholesky factor U of precision
matrix Ω.

nu This is the scalar degrees of freedom ν.

S This is the symmetric, positive-semidefinite, k × k scale matrix S.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate

• Density: p(θ) = (2νk/2πk(k−1)/4
∏k

i=1 Γ(
ν+1−i

2 ))−1|S|−nu/2|Ω|(nu−k−1)/2 exp(− 1
2 tr(S

−1Ω))

• Inventor: John Wishart (1928)

• Notation 1: Ω ∼ Wν(S)

• Notation 2: p(Ω) = Wν(Ω|S)
• Parameter 1: degrees of freedom ν ≥ k

• Parameter 2: symmetric, positive-semidefinite k × k scale matrix S

• Mean: E(Ω) = νS

• Variance: var(Ω) = ν(S2
i,j + Si,iSj,j)
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• Mode: mode(Ω) = (ν − k − 1)S, for ν ≥ k + 1

The Wishart distribution is a generalization to multiple dimensions of the chi-square distribution,
or, in the case of non-integer degrees of freedom, of the gamma distribution. However, the Wishart
distribution is not called the multivariate chi-squared distribution because the marginal distribution
of the off-diagonal elements is not chi-squared.

The Wishart is the conjugate prior distribution for the precision matrix Ω, the inverse of which
(covariance matrix Σ) is used in a multivariate normal distribution. In this parameterization, Ω has
been decomposed to the upper-triangular Cholesky factor U, as per chol.

The integral is finite when ν ≥ k, where ν is the scalar degrees of freedom parameter, and k is the
dimension of scale matrix S. The density is finite when νgek + 1, which is recommended.

The degrees of freedom, ν, is equivalent to specifying a prior sample size, indicating the confidence
in S, where S is a prior guess at the order of covariance matrix Σ. A flat prior distribution is obtained
as ν → 0.

In practice, U is fully unconstrained for proposals when its diagonal is log-transformed. The diag-
onal is exponentiated after a proposal and before other calculations. Overall, the Cholesky param-
eterization is faster than the traditional parameterization. Compared with dwishart, dwishartc
must additionally matrix-multiply the Cholesky back to the precision matrix, but it does not have
to check for or correct the precision matrix to positive-semidefiniteness, which overall is slower.
Compared with rwishart, rwishartc must additionally calculate a Cholesky decomposition, and
is therefore slower.

The Wishart prior lacks flexibility, having only one parameter, ν, to control the variability for all
k(k + 1)/2 elements. Popular choices for the scale matrix S include an identity matrix or sample
covariance matrix. When the model sample size is small, the specification of the scale matrix can
be influential.

Although the related inverse Wishart distribution has a dependency between variance and correla-
tion, the Wishart distribution does not have this dependency.

The matrix gamma (dmatrixgamma) distribution is a more general version of the Wishart distri-
bution, and the Yang-Berger (dyangberger) distribution is an alterative that is a least informative
prior (LIP).

Value

dwishartc gives the density and rwishartc generates random deviates.

References

Wishart, J. (1928). "The Generalised Product Moment Distribution in Samples from a Normal
Multivariate Population". Biometrika, 20A(1-2), p. 32–52.

See Also

chol, dchisq, dgamma, dinvwishart, dinvwishartc, dmatrixgamma, dmvnp, dmvnpc, Prec2Cov,
and dyangbergerc.
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Examples

library(LaplacesDemon)
Omega <- matrix(c(2,-.3,-.3,4),2,2)
U <- chol(Omega)
x <- dwishartc(U, 3, matrix(c(1,.1,.1,1),2,2))
x <- rwishartc(3, matrix(c(1,.1,.1,1),2,2))

dist.YangBerger Yang-Berger Distribution

Description

This is the density function for the Yang-Berger prior distribution for a covariance matrix or preci-
sion matrix.

Usage

dyangberger(x, log=FALSE)
dyangbergerc(x, log=FALSE)

Arguments

x This is the k × k positive-definite covariance matrix or precision matrix for
dyangberger or the Cholesky factor U of the covariance matrix or precision
matrix for dyangbergerc.

log Logical. If log=TRUE, then the logarithm of the density is returned.

Details

• Application: Continuous Multivariate
• Density: p(θ) = 1

|θ|
∏

(dj−dj−1) , where d are increasing eigenvalues. See equation 13 in Yang
and Berger (1994).

• Inventor: Yang and Berger (1994)
• Notation 1: θ ∼ YB
• Mean:
• Variance:
• Mode:

Yang and Berger (1994) derived a least informative prior (LIP) for a covariance matrix or precision
matrix. The Yang-Berger (YB) distribution does not have any parameters. It is a reference prior for
objective Bayesian inference. The Cholesky parameterization is also provided here.

The YB prior distribution results in a proper posterior. It involves an eigendecomposition of the
covariance matrix or precision matrix. It is difficult to interpret a model that uses the YB prior, due
to a lack of intuition regarding the relationship between eigenvalues and correlations.

Compared to Jeffreys prior for a covariance matrix, this reference prior encourages equal eigenval-
ues, and therefore results in a covariance matrix or precision matrix with a better shrinkage of its
eigenstructure.
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Value

dyangberger and dyangbergerc give the density.

References

Yang, R. and Berger, J.O. (1994). "Estimation of a Covariance Matrix using the Reference Prior".
Annals of Statistics, 2, p. 1195-1211.

See Also

dinvwishart and dwishart

Examples

library(LaplacesDemon)
X <- matrix(c(1,0.8,0.8,1), 2, 2)
dyangberger(X, log=TRUE)

dist.Zellner Hyperprior-g Prior and Zellner’s g-Prior

Description

These functions provide the density of the hyper-g prior (Liang et al., 2008), and both the density
and random generation of Zellner’s g-prior (Zellner, 1986).

Usage

dhyperg(g, alpha=3, log=FALSE)
dzellner(beta, g, sigma, X, log=FALSE)
rzellner(n, g, sigma, X)

Arguments

alpha This is a positive scale hyperhyperparameter that is proper when α > 2. The
default is alpha=3.

beta This is regression effects β, a vector of length J .

g This is hyperparameter g, a positive scalar.

n This is the number of random deviates to generate.

sigma This is the residual standard deviation σ, a positive scalar.

X This is a full-rank N×J design matrix X for N records and J predictors, where
J + 1 < N . Zellner’s g-prior has been extended (elsewhere) via singular value
decomposition (SVD) to the case where J > N .

log Logical. If log=TRUE, then the logarithm of the density is returned.
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Details

• Application: Continuous Multivariate
• Density: p(θ) = 1

(2π)J/2|(gσ2(XT X)−1)−1|1/2 exp(−
1
2 (θ − µ)′(gσ2(XT X)−1)−1(θ − µ))

• Inventor: Zellner, A. (1986)
• Notation 1: θ ∼ NJ(0, gσ

2(XT X)−1)

• Notation 2: p(θ) = NJ(θ|g, σ2,X)

• Parameter 1: location parameter β
• Parameter 2: scale parameter g > 0

• Parameter 3: scale parameter σ2 > 0

• Mean:
• Variance:
• Mode:

Zellner’s g-prior is a popular, data-dependent, elliptical, improper, least-informative prior distribu-
tion on regression effects β in a Gaussian regression model. It is a particular form in the conjugate
Normal-Gamma family. Zellner’s g-prior is also used for estimating Bayes factors (for hypothesis
testing) with a simpler form, as well as in model selection and variable selection. The marginal
posterior distribution of regression effects β is multivariate t.

One of many nice properties of Zellner’s g-prior is that it adapts automatically to near-collinearity
between different predictors. Zellner’s g-prior puts most of its prior mass in the direction that
causes the regression coefficients of correlated predictors to be smoothed away from each other.
When coupled with model selection, Zellner’s g-prior discourages highly collinear predictors from
entering the models simultaneously by inducing a negative correlation between the coefficients.
However, when it is desirable for collinear predictors to enter simultaneously, a modification has
been proposed (though not included here) in which (XT X)−1 is replaced with (XT X)λ. For more
information, see Krishna et al. (2009).

For variable selection, large values of g, with a prior mean of zero for β, encourage models with
few, large coefficients. Conversely, small values of g encourage saturated models with many, small
coefficients.

The design matrix X is converted to Fisher’s information matrix, which is used as a covariance
matrix for β. This is computationally efficient, because each element of the covariance matrix does
not need to be estimated as a parameter. When X is nearly singular, regression effects β may be
poorly estimated.

Hyperparameter g acts as an inverse relative prior sample size, or as a dimensionality penalty.
Zellner (1986) recommended that a hyperprior distribution is assigned to g so that it is estimated
from the data, although in practice g has often been fixed, usually to N when no information is
available, since it has the interpretation of adding prior information equivalent to one observation.
A variety of hyperpriors have been suggested for g, such as in Bove and Held (2011), Liang et al.
(2008), and Maruyama and George (2011). g becomes diffuse as it approaches infinity, and the
Bayes factor approaches zero. The hyper-g prior of Liang et al. (2008) is proper when α > 2, and
any value in the interval (2, 4] may be reasonable.

Value

dhyperg gives the density of the hyper-g prior of Liang et al. (2008), dzellner gives the density
of Zellner’s g-prior, and rzellner generates random deviates.
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References

Bove, D.S. and Held, L. (2011). "Hyper-g Priors for Generalized Linear Models". Bayesian Analy-
sis, 6(3), p. 387–410.

Krishna, A., Bondell, H.D., and Ghosh, S.K. (2009). "Bayesian Variable Selection Using an Adap-
tive Powered Correlation Prior". Journal of Statistical Planning Inference, 139(8), p. 2665-2674..

Liang, F., Paulo, R., Molina, G., Clyde, M.A., and Berger, J.O. (2008). "Mixtures of g Priors for
Bayesian Variable Selection". Journal of the American Statistical Association, 103, p. 410–423.

Maruyama, Y. and George, E.I. (2011). "Fully Bayes Factors with a Generalised g-Prior". Annals
of Statistics, 39, p. 2740–2765.

Zellner, A. (1986). "On Assessing Prior Distributions and Bayesian Regression Analysis with g-
Prior Distributions". In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de
Finetti, p. 233–243. Elsevier: Amsterdam, North Holland.

See Also

BayesFactor and dmvt

Examples

library(LaplacesDemon)
set.seed(667)
beta <- rnorm(10)
g <- 100
sigma <- 2
X <- cbind(1,matrix(rnorm(100*9),100,9))
dhyperg(g, alpha=3)
dzellner(beta, g, sigma, X)
rzellner(1, g, sigma, X)

Elicitation Prior Elicitation

Description

Prior elicitation is the act of inducing personal opinion to be expressed by the probabilities the
person associates with an event (Savage, 1971). The elicit function elicits personal opinion
and the delicit function estimates probability density to be used with model specification in the
IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LaplacesDemon.hpc, PMC, or
VariationalBayes functions.

Usage

delicit(theta, x, a=-Inf, b=Inf, log=FALSE)
elicit(n, cats, cat.names, show.plot=FALSE)
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Arguments

theta This is a scalar or vector of parameters for which the density is estimated with
respect to the kernel density estimate of x.

x This is the elicited vector.

a This is an optional lower bound for support.

b This is an optional upper bound for support.

log Logical. If log=TRUE, then the logarithm of the density is returned.

n This is the number of chips.

cats This is a vector of k categories, bins, or intervals. When the variable is continu-
ous, the mid-point of each category is used. For example, if the continuous in-
terval [0,1] has 5 equal-sized categories, then cats=c(0.1,0.3,0.5,0.7,0.9).

cat.names This is a vector of category names. For example, if the continuous interval [0,1]
has 5 equal-sized categories, then one way or naming the categories may be
cat.names=c("0:<.2", ".2:<.4", ".4:<.6", ".6:<.8", ".8:1").

show.plot Logical. If show.plot=TRUE, then a barplot is shown after each allocation of
chips.

Details

The elicit function elicits a univariate, discrete, non-conjugate, informative, prior probability
distribution by offering a number of chips (specified as n by the statistician) for the user to allocate
into categories specified by the statistician. The results of multiple elicitations (meaning, with
multiple people), each the output of elicit, may be combined with the c function in base R.

This discrete distribution is included with the data for a model and supplied to a model specification
function, where in turn it is supplied to the delicit function, which estimates the density at the
current value of the prior distribution, p(θ). The prior distribution may be either continuous or
discrete, will be proper, and may have bounded support (constrained to an interval).

For a minimal example, a statistician elicits the prior probability distribution for a regression effect,
β. Non-statisticians would not be asked about expected parameters, but could be asked about how
much y would be expected to change given a one-unit change in x. After consulting with others who
have prior knowledge, the support does not need to be bounded, and their guesses at the range result
in the statistician creating 5 catgories from the interval [-1,4], where each interval has a width of
one. The statistician schedules time with 3 people, and each person participates when the statistician
runs the following R code:

x <- elicit(n=10, cats=c(-0.5, 0.5, 1.5, 2.5, 3.5), cat.names=c("-1:<0", "0:<1", "1:<2",
"2:<3", "3:4"), show.plot=TRUE)

Each of the 3 participants receives 10 chips to allocate among the 5 categories according to personal
beliefs in the probability of the regression effect. When the statistician and each participant accept
their elicited distribution, all 3 vectors are combined into one vector. In the model form, the prior is
expressed as

p(β) ∼ EL

and the code for the model specification is
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elicit.prior <- delicit(beta, x, log=TRUE)

This method is easily extended to priors that are multivariate, correlated, or conditional.

As an alternative, Hahn (2006) also used a categorical approach, eliciting judgements about the
relative likelihood of each category, and then minimizes the KLD (for more information on KLD,
see the KLD function).

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Hahn, E.D. (2006). "Re-examining Informative Prior Elicitation Through the Lens of Markov chain
Monte Carlo Methods". Journal of the Royal Statistical Society, A 169 (1), p. 37–48.

Savage, L.J. (1971). "Elicitation of Personal Probabilities and Expectations". Journal of the Amer-
ican Statistical Association, 66(336), p. 783–801.

See Also

de.Finetti.Game, KLD, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LaplacesDemon.hpc,
PMC, and VariationalBayes.

Examples

library(LaplacesDemon)
x <- c(1,2,2,3,3,3,4,7,8,8,9,10) #Elicited with elicit function
theta <- seq(from=-5,to=15,by=.1)
plot(theta, delicit(theta,x), type="l", xlab=expression(theta),

ylab=expression("p(" * theta * ")"))

ESS Effective Sample Size due to Autocorrelation

Description

This function may be used to estimate the effective sample size (ESS) (not to be confused with
Elliptical Slice Sampling) of a continuous target distribution, where the sample size is reduced by
autocorrelation. ESS is a measure of how well each continuous chain is mixing.

ESS is a univariate function that is often applied to each continuous, marginal posterior distribution.
A multivariate form is not included. By chance alone due to multiple independent tests, 5% of the
continuous parameters may indicate that ESS is below a user threshold of acceptability, such as 100,
even when above the threshold. Assessing convergence is difficult.

Usage

ESS(x)
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Arguments

x This required argument is a vector or matrix of posterior samples.

Details

Effective Sample Size (ESS) was recommended by Radford Neal in the panel discussion of Kass
et al. (1998). When a continuous, marginal posterior distribution is sampled with a Markov chain
Monte Carlo (MCMC) algorithm, there is usually autocorrelation present in the samples. More
autocorrelation is associated with less posterior sampled information, because the information in the
samples is autocorrelated, or put another way, successive samples are not independent from earlier
samples. This reduces the effective sample size of, and precision in representing, the continuous,
marginal posterior distribution. ESS is one of the criteria in the Consort function, where stopping
the MCMC updates is not recommended until ESS ≥ 100. Although the need for precision of each
modeler differs with each model, it is often a good goal to obtain ESS = 1000.

ESS is related to the integrated autocorrelation time (see IAT for more information).

ESS is usually defined as

ESS(θ) =
S

1 + 2
∑∞

k=1 ρk(θ)
,

where S is the number of posterior samples, ρk is the autocorrelation at lag k, and θ is the vector of
marginal posterior samples. The infinite sum is often truncated at lag k when ρk(θ) < 0.05. Just as
with the effectiveSize function in the coda package, the AIC argument in the ar function is used
to estimate the order.

ESS is a measure of how well each continuous chain is mixing, and a continuous chain mixes better
when in the target distribution. This does not imply that a poorly mixing chain still searching for its
target distribution will suddenly mix well after finding it, though mixing should improve. A poorly
mixing continuous chain does not necessarily indicate problems. A smaller ESS is often due to
correlated parameters, and is commonly found with scale parameters. Posterior correlation may be
obtained from the PosteriorChecks function, and plotted with the plotMatrix function. Com-
mon remedies for poor mixing include re-parameterizing the model or trying a different MCMC
algorithm that better handles correlated parameters. Slow mixing is indicative of an inefficiency in
which a continuous chain takes longer to find its target distribution, and once found, takes longer to
explore it. Therefore, slow mixing results in a longer required run-time to find and adequately rep-
resent the continuous target distribution, and increases the chance that the user may make inferences
from a less than adequate representation of the continuous target distribution.

There are many methods of re-parameterization to improve mixing. It is helpful when predictors
are centered and scaled, such as with the CenterScale function. Parameters for predictors are often
assigned prior distributions that are independent per parameter, in which case an exchangeable prior
distribution or a multivariate prior distribution may help. If a parameter with poor mixing is bounded
with the interval function, then transforming it to the real line (such as with a log transformation
for a scale parameter) is often helpful, since constraining a parameter to an interval often reduces
ESS. Another method is to re-parameterize so that one or more latent variables represent the process
that results in slow mixing. Such re-parameterization uses data augmentation.

This is numerically the same as the effectiveSize function in the coda package, but programmed
to accept a simple vector or matrix so it does not require an mcmc or mcmc.list object, and the
result is bound to be less than or equal to the original number of samples.
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Value

A vector is returned, and each element is the effective sample size (ESS) for a corresponding column
of x, after autocorrelation has been taken into account.

References

Kass, R.E., Carlin, B.P., Gelman, A., and Neal, R. (1998). "Markov Chain Monte Carlo in Practice:
A Roundtable Discussion". The American Statistician, 52, p. 93–100.

See Also

CenterScale, Consort, IAT, interval, LaplacesDemon, plotMatrix, and PosteriorChecks.

Gelfand.Diagnostic Gelfand’s Convergence Diagnostic

Description

Gelfand et al. (1990) proposed a convergence diagnostic for Markov chains. The Gelfand.Diagnostic
function is an interpretation of Gelfand’s “thick felt-tip pen” MCMC convergence diagnostic. This
diagnostic plots a series of kernel density plots at k intervals of cumulative samples. Given a vector
of S samples from a marginal posterior distribution, θ, multiple kernel density lines are plotted to-
gether, where each includes samples from a different interval. It is assumed that burnin iterations
have been discarded.

Gelfand et al. (1990) assert that convergence is violated when the plotted lines are farther apart
than the width of a thick, felt-tip pen. This depends on the size of the plot, and, of course, the
pen. The estimated width of a “thick felt-tip pen” is included as a black, vertical line. The pen in
Gelfand.Diagnostic is included for historical reasons. This diagnostic requires numerous sam-
ples.

Usage

Gelfand.Diagnostic(x, k=3, pen=FALSE)

Arguments

x This required argument is a vector of marginal posterior samples, such as se-
lected from the output of LaplacesDemon.

k This argument specifies the number k of kernel density plots given cumulative
intervals of samples. This argument defaults to k = 3.

pen Logical. This argument defaults to pen=FALSE. When pen=TRUE, the thick felt-
tip pen is included as a black, vertical line.

Value

The Gelfand.Diagnostic returns a plot.
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Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Gelfand, A.E., Hills, S., Racine-Poon, A., and Smith, A.F.M. (1990). "Illustration of Bayesian
Inference in Normal Data Models Using Gibbs Sampling". Journal of the American Statistical
Association, 85, p. 972–985.

See Also

burnin and LaplacesDemon.

Examples

library(LaplacesDemon)
x <- rnorm(1000)
Gelfand.Diagnostic(x)

Gelman.Diagnostic Gelman and Rubin’s MCMC Convergence Diagnostic

Description

Gelman and Rubin (1992) proposed a general approach to monitoring convergence of MCMC out-
put in which m > 1 parallel chains are updated with initial values that are overdispersed relative to
each target distribution, which must be normally distributed. Convergence is diagnosed when the
chains have ‘forgotten’ their initial values, and the output from all chains is indistinguishable. The
Gelman.Diagnostic function makes a comparison of within-chain and between-chain variances,
and is similar to a classical analysis of variance. A large deviation between these two variances
indicates non-convergence.

This diagnostic is popular as a stopping rule, though it requires parallel chains. The LaplacesDemon.hpc
function is an extension of LaplacesDemon to enable parallel chains. As an alternative, the popular
single-chain stopping rule is based on MCSE.

Usage

Gelman.Diagnostic(x, confidence=0.95, transform=FALSE)

Arguments

x This required argument accepts an object of class demonoid.hpc, or a list of
multiple objects of class demonoid, where the number of components in the list
is the number of chains.

confidence This is the coverage probability of the confidence interval for the potential scale
reduction factor (PSRF).
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transform Logical. If TRUE, then marginal posterior distributions in x may be transformed
to improve the normality of the distribution, which is assumed. A log-transform
is applied to marginal posterior distributions in the interval (0,∞], or a logit-
transform is applied to marginal posterior distributions in the interval (0, 1).

Details

To use the Gelman.Diagnostic function, the user must first have multiple MCMC chains for the
same model, and three chains is usually sufficient. The easiest way to obtain multiple chains is with
the LaplacesDemon.hpc function.

Although the LaplacesDemon function does not simultaneously update multiple MCMC chains, it
is easy enough to obtain multiple chains, and if the computer has multiple processors (which is
common), then multiple chains may be obtained simultaneously as follows. The model file may
be opened in separate, concurrent R sessions, and it is recommended that a maximum number of
sessions is equal to the number of processors, minus one. Each session constitutes its own chain,
and the code is identical, except the initial values should be randomized with the GIV function so
the chains begin in different places. The resulting object of class demonoid for each chain is saved,
all objects are read into one session, put into a list, and passed to the Gelman.Diagnostic function.

Initial values must be overdispersed with respect to each target distribution, though these distri-
butions are unknown in the beginning. Since the Gelman.Diagnostic function relies heavily on
overdispersion with respect to the target distribution, the user should consider using MCMC twice,
first to estimate the target distributions, and secondly to overdisperse initial values with respect to
them. This may help identify multimodal target distributions. If multiple modes are found, it re-
main possible that more modes exist. When multiple modes are found, and if chains are combined
with the Combine function, each mode is probably not represented in a proportion correct to the
distribution.

The ‘potential scale reduction factor’ (PSRF) is an estimated factor by which the scale of the current
distribution for the target distribution might be reduced if the simulations were continued for an
infinite number of iterations. Each PSRF declines to 1 as the number of iterations approaches
infinity. PSRF is also often represented as R-hat. PSRF is calculated for each marginal posterior
distribution in x, together with upper and lower confidence limits. Approximate convergence is
diagnosed when the upper limit is close to 1. The recommended proximity of each PSRF to 1 varies
with each problem, but a general goal is to achieve PSRF < 1.1. PSRF is an estimate of how much
narrower the posterior might become with an infinite number of iterations. When PSRF = 1.1, for
example, it may be interpreted as a potential reduction of 10% in posterior interval width, given
infinite iterations. The multivariate form bounds above the potential scale reduction factor for any
linear combination of the (possibly transformed) variables.

The confidence limits are based on the assumption that the target distribution is stationary and
normally distributed. The transform argument may be used to improve the normal approximation.

A large PSRF indicates that the between-chain variance is substantially greater than the within-chain
variance, so that longer simulation is needed. If a PSRF is close to 1, then the associated chains
are likely to have converged to one target distribution. A large PSRF (perhaps generally when a
PSRF > 1.2) indicates convergence failure, and can indicate the presence of a multimodal marginal
posterior distribution in which different chains may have converged to different local modes (see
is.multimodal), or the need to update the associated chains longer, because burn-in (see burnin)
has yet to be completed.
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The Gelman.Diagnostic is essentially the same as the gelman.diag function in the coda package,
but here it is programmed to work with objects of class demonoid.

There are two ways to estimate the variance of the stationary distribution: the mean of the empirical
variance within each chain, W , and the empirical variance from all chains combined, which can be
expressed as

σ̂2 =
(n− 1)W

n
+

B

n

where n is the number of iterations and B/n is the empirical between-chain variance.

If the chains have converged, then both estimates are unbiased. Otherwise the first method will
underestimate the variance, since the individual chains have not had time to range all over the
stationary distribution, and the second method will overestimate the variance, since the initial values
were chosen to be overdispersed (and this assumes the target distribution is known, see above).

This convergence diagnostic is based on the assumption that each target distribution is normal. A
Bayesian probability interval (see p.interval) can be constructed using a t-distribution with mean

µ̂ = Sample mean of all chains combined,

variance

V̂ = σ̂2 +
B

mn
,

and degrees of freedom estimated by the method of moments

d =
2V̂ 2

Var(V̂ )

Use of the t-distribution accounts for the fact that the mean and variance of the posterior distribution
are estimated. The convergence diagnostic itself is

R =

√
(d+ 3)V̂

(d+ 1)W

Values substantially above 1 indicate lack of convergence. If the chains have not converged, then
Bayesian probability intervals based on the t-distribution are too wide, and have the potential to
shrink by this factor if the MCMC run is continued.

The multivariate version of Gelman and Rubin’s diagnostic was proposed by Brooks and Gelman
(1998). Unlike the univariate proportional scale reduction factor, the multivariate version does not
include an adjustment for the estimated number of degrees of freedom.

Value

A list is returned with the following components:

PSRF This is a list containing the point-estimates of the potential scale reduction fac-
tor (labelled Point Est.) and the associated upper confidence limits (labelled
Upper C.I.).

MPSRF This is the point-estimate of the multivariate potential scale reduction factor.
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References

Brooks, S.P. and Gelman, A. (1998). "General Methods for Monitoring Convergence of Iterative
Simulations". Journal of Computational and Graphical Statistics, 7, p. 434–455.

Gelman, A. and Rubin, D.B. (1992). "Inference from Iterative Simulation using Multiple Se-
quences". Statistical Science, 7, p. 457–511.

See Also

Combine, GIV, is.multimodal, LaplacesDemon, LaplacesDemon.hpc, MCSE, and p.interval.

Examples

#library(LaplacesDemon)
###After updating multiple chains with LaplacesDemon.hpc, do:
#Gelman.Diagnostic(Fit)

Geweke.Diagnostic Geweke’s Convergence Diagnostic

Description

Geweke (1992) proposed a convergence diagnostic for Markov chains. This diagnostic is based on
a test for equality of the means of the first and last part of a Markov chain (by default the first 10%
and the last 50%). If the samples are drawn from a stationary distribution of the chain, then the two
means are equal and Geweke’s statistic has an asymptotically standard normal distribution.

The test statistic is a standard Z-score: the difference between the two sample means divided by its
estimated standard error. The standard error is estimated from the spectral density at zero, and so
takes into account any autocorrelation.

The Z-score is calculated under the assumption that the two parts of the chain are asymptotically
independent.

The Geweke.Diagnostic is a univariate diagnostic that is usually applied to each marginal posterior
distribution. A multivariate form is not included. By chance alone due to multiple independent tests,
5% of the marginal posterior distributions should appear non-stationary when stationarity exists.
Assessing multivariate convergence is difficult.

Usage

Geweke.Diagnostic(x)

Arguments

x This required argument is a vector or matrix of posterior samples, such as from
the output of the LaplacesDemon function. Each column vector in a matrix is a
chain to be assessed. A minimum of 100 samples are required.
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Details

The Geweke.Diagnostic is essentially the same as the geweke.diag function in the coda package,
but programmed to accept a simple vector or matrix, so it does not require an mcmc object.

Value

A vector is returned, in which each element is a Z-score for a test of equality that compares the
means of the first and last parts of each chain supplied as x to Geweke.Diagnostic.

References

Geweke, J. (1992). "Evaluating the Accuracy of Sampling-Based Approaches to Calculating Poste-
rior Moments". In Bayesian Statistics 4 (ed JM Bernardo, JO Berger, AP Dawid, and AFM Smith).
Clarendon Press, Oxford, UK.

See Also

burnin, is.stationary, and LaplacesDemon

Examples

library(LaplacesDemon)
Geweke.Diagnostic(rnorm(100))
Geweke.Diagnostic(matrix(rnorm(100),10,10))

GIV Generate Initial Values

Description

The GIV function generates initial values for use with the IterativeQuadrature, LaplaceApproximation,
LaplacesDemon, PMC, and VariationalBayes functions.

Usage

GIV(Model, Data, n=1000, PGF=FALSE)

Arguments

Model This required argument is a model specification function. For more information,
see LaplacesDemon.

Data This required argument is a list of data. For more information, see LaplacesDemon.

n This is the number of attempts to generate acceptable initial values.

PGF Logical. When TRUE, a Parameter-Generating Function (PGF) is required to
be in Data, and GIV will generate initial values according to the user-specified
PGF. This argument defaults to FALSE, in which case initial values are generated
randomly without respect to a user-specified function.
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Details

Initial values are required for optimization or sampling algorithms. A user may specify initial
values, or use the GIV function for random generation. Initial values determined by the user may
fail to produce a finite posterior in complicated models, and the GIV function is here to help.

GIV has several uses. First, the IterativeQuadrature, LaplaceApproximation, LaplacesDemon,
and VariationalBayes functions use GIV internally if unacceptable initial values are discovered.
Second, the user may use GIV when developing their model specification function, Model, to check
for potential problems. Third, the user may prefer to randomly generate acceptable initial values.
Lastly, GIV is recommended when running multiple or parallel chains with the LaplacesDemon.hpc
function (such as for later use with the Gelman.Diagnostic) for dispersed starting locations. For
dispersed starting locations, GIV should be run once for each parallel chain, and the results should
be stored per row in a matrix of initial values. For more information, see the LaplacesDemon.hpc
documentation for initial values.

It is strongly recommended that the user specifies a Parameter-Generating Function (PGF), and
includes this function in the list of data. Although the PGF may be specified according to the prior
distributions (possibly considered as a Prior-Generating Function), it is often specified with a more
restricted range. For example, if a user has a model with the following prior distributions

βj ∼ N (0, 1000), j = 1, . . . , 5

σ ∼ HC(25)

then the PGF, given the prior distributions, is

PGF <- function(Data) return(c(rnormv(5,0,1000),rhalfcauchy(1,25)))

However, the user may not want to begin with initial values that could be so far from zero (as
determined by the variance of 1000), and may instead prefer

PGF <- function(Data) return(c(rnormv(5,0,10),rhalfcauchy(1,5)))

When PGF=FALSE, initial values are attempted to be constrained to the interval [−100, 100]. This is
done to prevent numeric overflows with parameters that are exponentiated within the model specifi-
cation function. First, GIV passes the upper and lower bounds of this interval to the model, and any
changed parameters are noted.

At this point, it is hoped that a non-finite posterior is not found. If found, then the remainder of
the process is random and without the previous bounds. This can be particularly problematic in the
case of, say, initial values that are the elements of a matrix that must be positive-definite, especially
with large matrices. If a random solution is not found, then GIV will fail.

If the posterior is finite and PGF=FALSE, then initial values are randomly generated with a normal
proposal and a small variance at the center of the returned range of each parameter. As GIV fails to
find acceptable initial values, the algorithm iterates toward its maximum number of iterations, n. In
each iteration, the variance increases for the proposal.

Initial values are considered acceptable only when the first two returned components of Model
(which are LP and Dev) are finite, and when initial values do not change through constraints, as
returned in the fifth component of the list: parm.

If GIV fails to return acceptable initial values, then it is best to study the model specification function.
When the model is complicated, here is a suggestion. Remove the log-likelihood, LL, from the
equation that calculates the logarithm of the unnormalized joint posterior density, LP. For example,
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convert LP <- LL + beta.prior to LP <- beta.prior. Now, maximize LP, which is merely the set
of prior densities, with any optimization algorithm. Replace LL, and run the model with initial
values that are in regions of high prior density (preferably with PGF=TRUE. If this fails, then the
model specification should be studied closely, because a non-finite posterior should (especially)
never be associated with regions of high prior density.

Value

The GIV function returns a vector equal in length to the number of parameters, and each element is
an initial value for the associated parameter in Data$parm.names. When GIV fails to find acceptable
initial values, each returned element is NA.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

as.initial.values, Gelman.Diagnostic, IterativeQuadrature, LaplaceApproximation, LaplacesDemon,
LaplacesDemon.hpc, PMC, and VariationalBayes.

Examples

library(LaplacesDemon)

############################## Demon Data ###############################
data(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(log(demonsnacks[,c(1,4,10)]+1)))
J <- ncol(X)
for (j in 2:J) X[,j] <- CenterScale(X[,j])

######################### Data List Preparation #########################
mon.names <- c("LP","sigma")
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) {

beta <- rnorm(Data$J)
sigma <- runif(1)
return(c(beta, sigma))
}

MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

########################## Model Specification ##########################
Model <- function(parm, Data)

{
### Parameters
beta <- parm[Data$pos.beta]
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
parm[Data$pos.sigma] <- sigma
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### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,

yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}

######################## Generate Initial Values ########################
Initial.Values <- GIV(Model, MyData, PGF=TRUE)

Hangartner.Diagnostic Hangartner’s Convergence Diagnostic

Description

Hangartner et al. (2011) proposed a convergence diagnostic for discrete Markov chains. A simple
Pearson’s Chi-squared test for two or more non-overlapping periods of a discrete Markov chain is
a reliable diagnostic of convergence. It does not rely upon the estimation of spectral density, on
suspect normality assumptions, or determining overdispersion within a small number of outcomes,
all of which can be problematic with discrete measures. A discrete Markov chain is split into two
or more non-overlapping windows. Two windows are recommended, and results may be sensitive
to the number of selected windows, as well as sample size. As such, a user may try several window
configurations before concluding there is no evidence of non-convergence.

As the number of discrete events in the sample space increases, this diagnostic becomes less appro-
priate and standard diagnostics become more appropriate.

Usage

Hangartner.Diagnostic(x, J=2)

Arguments

x This required argument is a vector of marginal posterior samples of a discrete
Markov chain, such as selected from the output of LaplacesDemon.

J This argument specifies the number J of windows to be used, and defaults to
J = 2.

Value

The Hangartner.Diagnostic returns an object of class hangartner, including the output from a
Pearson’s Chi-squared test. A frequentist p-value less than or equal to 0.05 is usually considered to
be indicative of non-convergence.
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Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Hangartner, D., Gill, J., and Cranmer, S., (2011). "An MCMC Diagnostic for Purely Discrete
Parameters". Paper presented at the annual meeting of the Southern Political Science Association,
Hotel InterContinental, New Orleans, Louisiana Online.

See Also

LaplacesDemon and TransitionMatrix.

Examples

library(LaplacesDemon)
N <- 1000
K <- 3
x <- rcat(N, rep(1/K,K))
hd <- Hangartner.Diagnostic(x, J=2)
hd

Heidelberger.Diagnostic

Heidelberger and Welch’s MCMC Convergence Diagnostic

Description

Heidelberger and Welch (1981; 1983) proposed a two-part MCMC convergence diagnostic that
calculates a test statistic (based on the Cramer-von Mises test statistic) to accept or reject the null
hypothesis that the Markov chain is from a stationary distribution.

Usage

Heidelberger.Diagnostic(x, eps=0.1, pvalue=0.05)

Arguments

x This required argument accepts an object of class demonoid. It attempts to use
Posterior2, but when this is missing it uses Posterior1.

eps This argument specifies the target value for the ratio of halfwidth to sample
mean.

pvalue This argument specifies the level of statistical significance.
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Details

The Heidelberg and Welch MCMC convergence diagnostic consists of two parts:

First Part 1. Generate a chain of N iterations and define an alpha level. 2. Calculate the test
statistic on the whole chain. Accept or reject the null hypothesis that the chain is from a stationary
distribution. 3. If the null hypothesis is rejected, then discard the first 10% of the chain. Calculate
the test statistic and accept or reject the null hypothesis. 4. If the null hypothesis is rejected, then
discard the next 10% and calculate the test statistic. 5. Repeat until the null hypothesis is accepted
or 50% of the chain is discarded. If the test still rejects the null hypothesis, then the chain fails the
test and needs to be run longer.

Second Part If the chain passes the first part of the diagnostic, then the part of the chain that was not
discarded from the first part is used to test the second part.

The halfwidth test calculates half the width of the (1 - alpha)% probability interval (credible interval)
around the mean.

If the ratio of the halfwidth and the mean is lower than eps, then the chain passes the halfwidth test.
Otherwise, the chain fails the halfwidth test and must be updated for more iterations until sufficient
accuracy is obtained. In order to avoid problems caused by sequential testing, the test should not
be repeated too frequently. Heidelberger and Welch (1981) suggest increasing the run length by a
factor I > 1.5, each time, so that estimate has the same, reasonably large, proportion of new data.

The Heidelberger and Welch MCMC convergence diagnostic conducts multiple hypothesis tests.
The number of potentially wrong results increases with the number of non-independent hypothesis
tests conducted.

The Heidelberger.Diagnostic is a univariate diagnostic that is usually applied to each marginal
posterior distribution. A multivariate form is not included. By chance alone due to multiple indepen-
dent tests, 5% of the marginal posterior distributions should appear non-stationary when stationarity
exists. Assessing multivariate convergence is difficult.

Value

The Heidelberger.Diagnostic function returns an object of class heidelberger. This object is a
J×6 matrix, and it is intended to be summarized with the print.heidelberger function. Nonethe-
less, this object of class heidelberger has J rows, each of which corresponds to a Markov chain.
The column names are stest, start, pvalue, htest, mean, and halfwidth. The stest column
indicates convergence with a one, and non-convergence with a zero, regarding the stationarity test.
When non-convergence is indicated, the remaining columns have missing values. The start col-
umn indicates the starting iteration, and the pvalue column shows the p-value associated with the
first test. The htest column indicates convergence for the halfwidth test. The mean and halfwidth
columns report the mean and halfwidth.

Note

The Heidelberger.Diagnostic function was adapted from the heidel.diag function in the coda
package.

References

Heidelberger, P. and Welch, P.D. (1981). "A Spectral Method for Confidence Interval Generation
and Run Length Control in Simulations". Comm. ACM., 24, p. 233–245.
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Heidelberger, P. and Welch, P.D. (1983). "Simulation Run Length Control in the Presence of an
Initial Transient". Opns Res., 31, p. 1109–1144.

Schruben, L.W. (1982). "Detecting Initialization Bias in Simulation Experiments". Opns. Res., 30,
p. 569–590.

See Also

burnin, is.stationary, LaplacesDemon, and print.heidelberger.

Examples

#library(LaplacesDemon)
###After updating with LaplacesDemon, do:
#hd <- Heidelberger.Diagnostic(Fit)
#print(hd)

hpc_server Server Listening

Description

This function is not intended to be called directly by the user. It is an internal-only function to
prevent cluster problems while using the INCA algorithm in the LaplacesDemon.hpc function.

Usage

server_Listening(n=2, port=19009)

Arguments

n This is the number of CPUs. For more information, see LaplacesDemon.hpc.

port This is a port for server listening, and defaults to port 19009.

Details

For the INCA algorithm, a server has been built into the LaplacesDemon.hpc function. The server
exchanges information between processes, and has been designed to be portable. The server_Listening
function is run as a separate process via the system function, when INCA is selected in LaplacesDemon.hpc.

Socket connections and the serialize function are used as per the Snow package to update a
single proposal covariance matrix given all parallel chains. The sockets are opened/closed in each
process with a small random sleep time to avoid collisions during connections to the internal server
of LaplacesDemon.hpc. Blocking sockets are used to synchronize processes.

Author(s)

Silvere Vialet-Chabrand <silvere@vialet-chabrand.com>
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See Also

LaplacesDemon and LaplacesDemon.hpc.

IAT Integrated Autocorrelation Time

Description

The IAT function estimates integrated autocorrelation time, which is the computational inefficiency
of a continuous chain or MCMC sampler. IAT is also called the IACT, ACT, autocorrelation time,
autocovariance time, correlation time, or inefficiency factor. A lower value of IAT is better. IAT is
a MCMC diagnostic that is an estimate of the number of iterations, on average, for an independent
sample to be drawn, given a continuous chain or Markov chain. Put another way, IAT is the number
of correlated samples with the same variance-reducing power as one independent sample.

IAT is a univariate function. A multivariate form is not included.

Usage

IAT(x)

Arguments

x This requried argument is a vector of samples from a chain.

Details

IAT is a MCMC diagnostic that is often used to compare continuous chains of MCMC samplers for
computational inefficiency, where the sampler with the lowest IATs is the most efficient sampler.
Otherwise, chains may be compared within a model, such as with the output of LaplacesDemon to
learn about the inefficiency of the continuous chain. For more information on comparing MCMC
algorithmic inefficiency, see the Juxtapose function.

IAT is also estimated in the PosteriorChecks function. IAT is usually applied to a stationary,
continuous chain after discarding burn-in iterations (see burnin for more information). The IAT of
a continuous chain correlates with the variability of the mean of the chain, and relates to Effective
Sample Size (ESS) and Monte Carlo Standard Error (MCSE).

IAT and ESS are inversely related, though not perfectly, because each is estimated a little differently.
Given N samples and taking autocorrelation into account, ESS estimates a reduced number of M
samples. Conversely, IAT estimates the number of autocorrelated samples, on average, required to
produce one independently drawn sample.

The IAT function is similar to the IAT function in the Rtwalk package of Christen and Fox (2010),
which is currently unavailabe on CRAN.

Value

The IAT function returns the integrated autocorrelation time of a chain.
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Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Christen, J.A. and Fox, C. (2010). "A General Purpose Sampling Algorithm for Continuous Distri-
butions (the t-walk)". Bayesian Analysis, 5(2), p. 263–282.

See Also

burnin, Compare, ESS, LaplacesDemon, MCSE, and PosteriorChecks.

Examples

library(LaplacesDemon)
theta <- rnorm(100)
IAT(theta)

Importance Variable Importance

Description

The Importance function considers variable importance (or predictor importance) to be the effect
that the variable has on replicates yrep (or Yrep) when the variable is removed from the model
by setting it equal to zero. Here, variable importance is considered in terms of the comparison of
posterior predictive checks. This may be considered to be a form of sensitivity analysis, and can be
useful for model revision, variable selection, and model interpretation.

Currently, this function only tests the variable importance of design matrix X.

Usage

Importance(object, Model, Data, Categorical=FALSE, Discrep, d=0, CPUs=1,
Type="PSOCK")

Arguments

object An object of class demonoid, iterquad, laplace, pmc, or vb is required.

Model The model specification function is required.

Data A data set in a list is required. The dependent variable is required to be named
either y or Y. The Importance function will sequentially remove each column
vector in X, so X is required to be in data set Data.

Categorical Logical. If TRUE, then y and yhat are considered to be categorical (such as y=0
or y=1), rather than continuous. This defaults to FALSE.

Discrep This optional argument allows a discrepancy statistic to be included. For more
information on discrepancy statistics, see summary.demonoid.ppc.
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d This is an optional integer to be used with the Discrep argument above, and it
defaults to d=0. For more information on discrepancy, see summary.demonoid.ppc.

CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

Details

Variable importance is defined here as the impact of each variable (predictor, or column vector) in
design matrix X on yrep (or Yrep), when the variable is removed.

First, the full model is predicted with the predict.demonoid, predict.iterquad, predict.laplace,
predict.pmc, or predict.vb function, and summarized with the summary.demonoid.ppc, summary.iterquad.ppc,
summary.laplace.ppc, summary.pmc.ppc, or summary.vb.ppc function, respectively. The re-
sults are stored in the first row of the output. Each successive row in the output corresponds to the
application of predict and summary functions, but with each variable in design matrix X being
set to zero and effectively removed. The results show the impact of sequentially removing each
predictor.

The criterion for variable importance may differ from model to model. As a default, BPIC is recom-
mended. The Bayesian Predictive Information Criterion (BPIC) was introduced by Ando (2007).
BPIC is a variation of the Deviance Information Criterion (DIC) that has been modified for predic-
tive distributions. For more information on DIC (Spiegelhalter et al., 2002), see the accompanying
vignette entitled "Bayesian Inference". BPIC = Dbar + 2pD.

With BPIC, variable importance has a positive relationship, such that larger values indicate a more
important variable, because removing that variable resulted in a worse fit to the data. The best
model has the lowest BPIC.

In a model in which the dependent variable is not categorical, it is also recommended to consider
the L-criterion (Laud and Ibrahim, 1995), provided that sample size is small enough that it does
not result in Inf. For more information on the L-criterion, see the accompanying vignette entitled
"Bayesian Inference".

With the L-criterion, variable importance has a positive relationship, such that larger values indicate
a more important variable, because removing that variable resulted in a worse fit to the data. Ibrahim
(1995) recommended considering the model with the lowest L-criterion, say as L1, and the model
with the closest L-criterion, say as L2, and creating a comparison score as ϕ = (L2 − L1)/SL,
where S.L is from the L1 model. If the comparison score, ϕ is less than 2, then L2 is within 2
standard deviations of L1, and is the recommended cut-off for model choice.

The Importance function may suggest that a model fits the data better with a variable removed.
In which case, the user may choose to leave the variable in the model (perhaps the model is mis-
specified without the variable), investigate and possibly re-specify the relationship between the
independent and dependent variable(s), or remove the variable and update the model again.

In contrast to variable importance, the PosteriorChecks function calculates parameter importance,
which is the probability that each parameter’s marginal posterior distribution is greater than zero,
where an important parameter does not include zero in its probability interval (see p.interval).
Parameter importance and variable importance may disagree, and both should be studied.
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The Importance function tends to indicate that a model fits the data better when variables are
removed that have parameters with marginal posterior distributions that include 0 in the 95% prob-
ability interval (variables associated with lower parameter importance).

Often, in complicated models, it is difficult to assess variable importance by examining the marginal
posterior distribution of the associated parameter(s). Consider polynomial regression, in which each
variable may have multiple parameters.

The information provided by the Importance function may be used for model revision, or reporting
the relative importance of variables.

The plot.importance function is available to plot the output of the Importance function accord-
ing to BPIC, predictive concordance (Gelfand, 1996), the selected discrepancy statistic (Gelman et
al., 1996), or the L-criterion.

Parallel processing may be performed when the user specifies CPUs to be greater than one, implying
that the specified number of CPUs exists and is available. Parallelization may be performed on a
multicore computer or a computer cluster. Either a Simple Network of Workstations (SNOW) or
Message Passing Interface is used (MPI). With small data sets and few samples, parallel processing
may be slower, due to computer network communication. With larger data sets and more samples,
the user should experience a faster run-time.

Value

Importance returns an object of class importance, which is a matrix with a number of rows equal
to the number of columns in design matrix X + 1 (including the full model), and 4 columns, which
are BPIC, Concordance (or Mean.Lift if categorical), Discrep, and L-criterion. Each row represents
a model with a predictor in X removed (except for the first row, which is the full model), and
the resulting posterior predictive checks. For non-categorical dependent variables, an attribute is
returned with the object, and the attribute is a vector of S.L, the calibration number of the L-
criterion.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Ando, T. (2007). "Bayesian Predictive Information Criterion for the Evaluation of Hierarchical
Bayesian and Empirical Bayes Models". Biometrika, 94(2), p. 443–458.

Gelfand, A. (1996). "Model Determination Using Sampling Based Methods". In Gilks, W., Richard-
son, S., Spiegehalter, D., Chapter 9 in Markov Chain Monte Carlo in Practice. Chapman and Hall:
Boca Raton, FL.

Laud, P.W. and Ibrahim, J.G. (1995). "Predictive Model Selection". Journal of the Royal Statistical
Society, B 57, p. 247–262.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A. (2002). "Bayesian Measures of
Model Complexity and Fit (with Discussion)". Journal of the Royal Statistical Society, B 64, p.
583–639.
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See Also

is.importance, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, plot.importance,
PosteriorChecks, p.interval, predict.demonoid, predict.iterquad, predict.laplace, predict.pmc,
predict.vb, summary.demonoid.ppc, summary.iterquad.ppc, summary.laplace.ppc, summary.pmc.ppc,
summary.vb.ppc, and VariationalBayes.

Examples

#First, update the model with the LaplacesDemon function, such as
#the example with linear regression, creating an object called Fit.
#Then
#Importance(Fit, Model, MyData, Discrep="Chi-Square", CPUs=1)

interval Constrain to Interval

Description

This function constrains the value(s) of a scalar, vector, matrix, or array to a specified interval,
[a, b]. In Bayesian inference, it is often used both to truncate a parameter to an interval, such as
p(θ) ∈ [a, b]. The interval function is often used in conjunction with the dtrunc function to
truncate the prior probability distribution associated with the constrained parameter. While dtrunc
prevents assigning density outside of its interval and re-estimates density within the interval, the
interval function is used to prevent the parameter from moving outside of the interval in the first
place.

After the parameter is constrained to an interval in IterativeQuadrature, LaplaceApproximation,
LaplacesDemon, PMC, or VariationalBayes, the constrained parameter should be updated back
into the parm vector, so the algorithm knows it has been constrained.

This is unrelated to the probability interval (see p.interval and LPL.interval).

Usage

interval(x, a=-Inf, b=Inf, reflect=TRUE)

Arguments

x This required argument is a scalar, vector, matrix or array, and its elements will
be constrained to the interval [a,b].

a This optional argument allows the specification of the lower bound of the inter-
val, and defaults to -Inf.

b This optional argument allows the specification of the upper bound of the inter-
val, and defaults to Inf.

reflect Logical. When TRUE, a value outside of the constrained interval is reflected or
bounced back into the interval. When FALSE, a value outside of the interval is
assigned the nearest boundary of the interval. This argument defaults to TRUE.



interval 187

Details

It is common for a parameter to be constrained to an interval. The interval function provides two
methods of constraining proposals. The default is to reflect an out-of-bounds proposal off of the
boundaries until the proposal is within the specified interval. This is rare in the literature but works
very well in practice. The other method does not reflect off of boundaries, but sets the value equal
to the violated boundary. This is also rare in the literature and is not generally recommended.

If the interval function is unacceptable, then there are several alternatives.

It is common to re-parameterize by transforming the constrained parameter to the real line. For ex-
ample, a positive-only scale parameter may be log-transformed. A parameter that is re-parameterized
to the real line often mixes better in MCMC, exhibiting a higher effective sample size (ESS), and
each evaluation of the model specification function is faster as well. However, without a hard
constraint, it remains possible for the transformed parameter still become problematic, such as a
log-transformed scale parameter that reaches negative infinity. This is much more common in the
literature.

Another method is to allow the parameters to move outside of the desired, constrained interval in
MCMC during the model update, and when the model update is finished, to discard any samples
outside of the constraint boundaries. This is a method of rejecting unacceptable proposals in regions
of zero probability. However, it is possible for parameters to remain outside of acceptable bounds
long enough to be problematic.

In LaplacesDemon, the Gibbs sampler allows more control in the FC function, where a user can
customize how constraints are handled.

Value

The interval function returns a scalar, vector, matrix, or array in accord with its argument, x. Each
element is constrained to the interval [a,b].

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dtrunc, ESS, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LPL.interval,
PMC, p.interval, VariationalBayes.

Examples

#See the Examples vignette for numerous examples.
library(LaplacesDemon)
x <- 2
interval(x,0,1)
X <- matrix(runif(25,-2,2),5,5)
interval(X,-1,1)
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is.appeased Appeased

Description

This function returns TRUE if Laplace’s Demon is appeased by the object of class demonoid, and
FALSE otherwise. If appeased, then the object passes several tests that indicate potential convergence
of the Markov chains.

Usage

is.appeased(x)

Arguments

x This is an object of class demonoid.

Details

After updating a model with the LaplacesDemon function, an output object is created. The output
object is of class demonoid. The object may be passed to the Consort function, which will apply
several criteria regarding the potential convergence of its Markov chains. If all criteria are met, then
Laplace’s Demon is appeased. Otherwise, Laplace’s Demon suggests R code to be copy/pasted
and executed. The Consort function prints a large amount of information to the screen. The
is.appeased function may be applied as an alternative, though it only informs the user as to
whether or not Laplace’s Demon was appeased, as TRUE or FALSE.

Value

The is.appeased function returns a logical value indicating whether or not the supplied object
passes several potential Markov chain convergence criteria. If the object passes all criteria, then
Laplace’s Demon is appeased, and the logical value returned is TRUE.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

Consort and LaplacesDemon.
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is.bayesian Logical Check of a Bayesian Model

Description

This function provides a logical test of whether or not a Model specification function is Bayesian.

Usage

is.bayesian(Model, Initial.Values, Data)

Arguments

Model This is a model specification function. For more information, see the LaplacesDemon
function.

Initial.Values This is a vector of initial values, or current parameter values. For more informa-
tion, see the LaplacesDemon function.

Data This is a list of data. For more information, see the LaplacesDemon function.

Details

This function tests whether or not a model is Bayesian by comparing the first two returned argu-
ments: the logarithm of the unnormalized joint posterior density (LP) and deviance (Dev). The
deviance (D) is

D = −2LL

,

where LL is the log-likelihood. Consequently,

LL = D/− 2

,

and LP is the sum of LL and prior probability densities. If LP = LL, then the model is not Bayesian,
because prior densities are absent.

Value

The is.bayesian function returns a logical value of TRUE when the model is Bayesian, and FALSE
otherwise.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

LaplacesDemon.
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is.class Logical Check of Classes

Description

These functions each provide a logical test of the class of an object.

Usage

is.bayesfactor(x)
is.blocks(x)
is.bmk(x)
is.demonoid(x)
is.demonoid.hpc(x)
is.demonoid.ppc(x)
is.demonoid.val(x)
is.hangartner(x)
is.heidelberger(x)
is.importance(x)
is.iterquad(x)
is.iterquad.ppc(x)
is.juxtapose(x)
is.laplace(x)
is.laplace.ppc(x)
is.miss(x)
is.pmc(x)
is.pmc.ppc(x)
is.pmc.val(x)
is.posteriorchecks(x)
is.raftery(x)
is.rejection(x)
is.sensitivity(x)
is.vb(x)
is.vb.ppc(x)

Arguments

x This is an object that will be subjected to a logical test of its class.

Details

Functions in Laplace’s Demon often assigns a class to an output object. For example, after updating
a model with the LaplacesDemon or LaplacesDemon.hpc function, an output object is created. The
output object is of class demonoid or demonoid.hpc, respectively. Likewise, after passing a model
to the LaplaceApproximation function, an output object is created, and it is of class laplace. The
class of these and other objects may be logically tested.
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By assigning a class to an output object, the package is able to discern which other functions are
appropriate for it. For example, after updating a model with LaplacesDemon, which creates an
object of class demonoid, the user may desire to plot its output. Since it is assigned a class, the user
may use the generic plot function, which internally selects the plot.demonoid function, which
differs from plot.laplace for objects of class laplace.

For more information on object classes, see the class function.

Value

The is.bayesfactor function returns a logical value indicating whether or not the supplied object
is of class bayesfactor.

The is.blocks function returns a logical value indicating whether or not the supplied object is of
class blocks.

The is.bmk function returns a logical value indicating whether or not the supplied object is of class
bmk.

The is.demonoid function returns a logical value indicating whether or not the supplied object is
of class demonoid.

The is.demonoid.hpc function returns a logical value indicating whether or not the supplied object
is of class demonoid.hpc.

The is.demonoid.ppc function returns a logical value indicating whether or not the supplied object
is of class demonoid.ppc.

The is.demonoid.val function returns a logical value indicating whether or not the supplied object
is of class demonoid.val.

The is.hangartner function returns a logical value indicating whether or not the supplied object
is of class hangartner.

The is.heidelberger function returns a logical value indicating whether or not the supplied object
is of class heidelberger.

The is.importance function returns a logical value indicating whether or not the supplied object
is of class importance.

The is.iterquad function returns a logical value indicating whether or not the supplied object is
of class iterquad.

The is.iterquad.ppc function returns a logical value indicating whether or not the supplied object
is of class iterquad.ppc.

The is.juxtapose function returns a logical value indicating whether or not the supplied object is
of class juxtapose.

The is.laplace function returns a logical value indicating whether or not the supplied object is of
class laplace.

The is.laplace.ppc function returns a logical value indicating whether or not the supplied object
is of class laplace.ppc.

The is.miss function returns a logical value indicating whether or not the supplied object is of
class miss.

The is.pmc function returns a logical value indicating whether or not the supplied object is of class
pmc.
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The is.pmc.ppc function returns a logical value indicating whether or not the supplied object is of
class pmc.ppc.

The is.pmc.val function returns a logical value indicating whether or not the supplied object is of
class pmc.val.

The is.posteriorchecks function returns a logical value indicating whether or not the supplied
object is of class posteriorchecks.

The is.raftery function returns a logical value indicating whether or not the supplied object is of
class raftery.

The is.rejection function returns a logical value indicating whether or not the supplied object is
of class rejection.

The is.sensitivity function returns a logical value indicating whether or not the supplied object
is of class sensitivity.

The is.vb function returns a logical value indicating whether or not the supplied object is of class
vb.

The is.vb.ppc function returns a logical value indicating whether or not the supplied object is of
class vb.ppc.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

BayesFactor, Blocks, BMK.Diagnostic, class, Hangartner.Diagnostic, Heidelberger.Diagnostic,
Importance, IterativeQuadrature, Juxtapose, LaplaceApproximation, LaplacesDemon, LaplacesDemon.hpc,
MISS, PMC, PosteriorChecks, predict.demonoid, predict.laplace, predict.pmc, predict.vb,
Raftery.Diagnostic, RejectionSampling, SensitivityAnalysis, Validate, and VariationalBayes.

is.constant Logical Check of a Constant

Description

This function provides a logical test of whether or not a vector is a constant.

Usage

is.constant(x)

Arguments

x This is a vector.

Details

As opposed to a variable, a constant is a vector in which the elements contain less than or equal to
one unique value.
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Value

The is.constant function returns a logical result, reporting TRUE when a vector is a constant, or
FALSE otherwise.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

unique

Examples

library(LaplacesDemon)
is.constant(rep(1,10)) #TRUE
is.constant(1:10) #FALSE

is.constrained Logical Check of Constraints

Description

This function provides a logical test of constraints for each initial value or parameter for a model
specification, given data.

Usage

is.constrained(Model, Initial.Values, Data)

Arguments

Model This is a model specification function. For more information, see the LaplacesDemon
function.

Initial.Values This is a vector of initial values, or current parameter values. For more informa-
tion, see the LaplacesDemon function.

Data This is a list of data. For more information, see the LaplacesDemon function.

Details

This function is useful for testing whether or not initial values changed due to constraints when be-
ing passed through a Model specification function. If any initial value changes, then the constrained
values that are ouput in the fifth component of the Model specification are suitable as initial values,
not the tested initial values.

A parameter may be constrained and this function may not discover the constraint, since the dis-
covery depends on the initial values and whether or not they change as they are passed through the
model.
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Value

The is.constrained function returns a logical vector, equal in length to the number of initial
values. Each element receives TRUE if the corresponding initial value changed due to a constraint,
or FALSE if it did not.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

LaplacesDemon.

is.data Logical Check of Data

Description

This function provides a logical test of whether or not a given list of data meets minimum criteria
to be considered data for IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC,
or VariationalBayes.

Usage

is.data(Data)

Arguments

Data This is a list of data. For more information, see the LaplacesDemon function.

Details

This function is useful for testing whether or not a list of data meets minimum criteria to be con-
sidered data in this package. The minimum requirements are that Data is a list, and it contains
mon.names and parm.names.

This function is not extensive. For example, it does not match the length of parm.names with
the length of Initial.Values, or compare the length of mon.names to the number of moni-
tored variables output from the Model specification function. Additional checks are conducted in
IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, and VariationalBayes.

Value

The is.data function returns a logical value. It returns TRUE if Data meets minimum requirements
to be considered data in this package, and FALSE otherwise.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>



is.model 195

See Also

IterativeQuadrature LaplaceApproximation, LaplacesDemon, PMC, and VariationalBayes.

is.model Logical Check of a Model

Description

This function provides a logical test of whether or not a Model specification function meets mininum
requirements to be considered as such.

Usage

is.model(Model, Initial.Values, Data)

Arguments

Model This is a model specification function. For more information, see the LaplacesDemon
function.

Initial.Values This is a vector of initial values, or current parameter values. For more informa-
tion, see the LaplacesDemon function.

Data This is a list of data. For more information, see the LaplacesDemon function.

Details

This function tests for minimum criteria for Model to be considered a model specification function.
Specifically, it tests:

• Model must be a function

• Model must execute without errors

• Model must return a list

• Model must have five components in the list

• The first component must be named LP and have length 1

• The second component must be named Dev and have length 1

• The third component must be named Monitor

• The lengths of Monitor and mon.names must be equal

• The fourth component must be named yhat

• The fifth component must be named parm

• The lengths of parm and parm.names must be equal

This function is not extensive, and checks only for these minimum criteria. Additional checks are
conducted in IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, and VariationalBayes.
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Value

The is.model function returns a logical value of TRUE when Model meets minimum criteria of a
model specification function, and FALSE otherwise.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, and VariationalBayes.

is.proper Logical Check of Propriety

Description

This function provides a logical check of the propriety of a univariate prior probability distribution
or the joint posterior distribution.

Usage

is.proper(f, a, b, tol=1e-5)

Arguments

f This is either a probability density function or an object of class demonoid,
laplace, pmc, or vb.

a This is the lower limit of integration, and may be negative infinity.

b This is the upper limit of integration, and may be positive infinity.

tol This is the tolerance, and indicates the allowable difference from one.

Details

A proper probability distribution is a probability distribution that integrates to one, and an improper
probability distribution does not integrate to one. If a probability distribution integrates to any pos-
itive and finite value other than one, then it is an improper distribution, but is merely unnormalized.
An unnormalized distribution may be multiplied by a constant so that it integrates to one.

In Bayesian inference, the posterior probability distribution should be proper. An improper prior
distribution can cause an improper posterior distribution. When the posterior distribution is im-
proper, inferences are invalid, it is non-integrable, and Bayes factors cannot be used (though there
are exceptions).

To avoid these problems, it is suggested that the prior probability distribution should be proper,
though it is possible to use an improper prior distribution and have it result in a proper posterior
distribution.
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To check the propriety of a univariate prior probability distribution, create a function f. For exam-
ple, to check the propriety of a vague normal distribution, such as

θ ∼ N (0, 1000)

the function is function(x){dnormv(x,0,1000)}. Next, set the lower and upper limits of integra-
tion, a and b. Internally, this function calls integrate from base R, which uses adaptive quadrature.
By using f(x) as shorthand for the specified function, is.proper will check to see if the area of
the following integral is one:

∫ b

a

f(x)dx

Multivariate prior probability distributions currently cannot be checked for approximate propriety.
This is currently unavailable in this package.

To check the propriety of the joint posterior distribution, the only argument to be supplied is an
object of class demonoid, iterquad, laplace, pmc, or vb. The is.proper function checks the
logarithm of the marginal likelihood (see LML) for a finite value, and returns TRUE when the LML is
finite. This indicates that the marginal likelihood is finite for all observed y in the model data set.
This implies:

∫
p(θ|y)p(θ)dθ < ∞

If the object is of class demonoid and the algorithm was adaptive, or if the object is of class
iterquad, laplace, or vb and the algorithm did not converge, then is.proper will return FALSE
because LML was not estimated. In this case, it is possible for the joint posterior to be proper, but
is.proper will be unable to determine propriety without the estimate of LML. If desired, the LML
may be estimated by the user, and if it is finite, then the joint posterior distribution is proper.

Value

The is.proper function returns a logical value indicating whether or not the univariate prior or
joint posterior probability distribution integrates to one within its specified limits. TRUE is returned
for a proper univariate probability distribution.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

dnormv, integrate, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LML, PMC,
and VariationalBayes.
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Examples

library(LaplacesDemon)
### Prior Probability Distribution
is.proper(function(x) {dnormv(x,0,1000)}, -Inf, Inf) #x ~ N(0,1000)
is.proper(function(x) {dhalfcauchy(x,25)}, 0, Inf) #x ~ HC(25)
is.proper(function(x) {dunif(x,0,1)}, 0, 1) #x ~ U(0,1)
is.proper(function(x) {dunif(x,-Inf,Inf)}, -Inf, Inf) #x ~ U(-Inf,Inf)
### Joint Posterior Distribution
##This assumes that Fit is an object of class demonoid, iterquad,
## laplace, or pmc
#is.proper(Fit)

is.stationary Logical Check of Stationarity

Description

This function returns TRUE if the object is stationary according to the Geweke.Diagnostic function,
and FALSE otherwise.

Usage

is.stationary(x)

Arguments

x This is a vector, matrix, or object of class demonoid.

Details

Stationarity, here, refers to the limiting distribution in a Markov chain. A series of samples from
a Markov chain, in which each sample is the result of an iteration of a Markov chain Monte Carlo
(MCMC) algorithm, is analyzed for stationarity, meaning whether or not the samples trend or its
moments change across iterations. A stationary posterior distribution is an equilibrium distribution,
and assessing stationarity is an important diagnostic toward inferring Markov chain convergence.

In the cases of a matrix or an object of class demonoid, all Markov chains (as column vectors) must
be stationary for is.stationary to return TRUE.

Alternative ways to assess stationarity of chains are to use the BMK.Diagnostic or Heidelberger.Diagnostic
functions.

Value

is.stationary returns a logical value indicating whether or not the supplied object is stationary
according to the Geweke.Diagnostic function.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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See Also

BMK.Diagnostic, Geweke.Diagnostic, Heidelberger.Diagnostic, and LaplacesDemon.

Examples

library(LaplacesDemon)
is.stationary(rnorm(100))
is.stationary(matrix(rnorm(100),10,10))

IterativeQuadrature Iterative Quadrature

Description

The IterativeQuadrature function iteratively approximates the first two moments of marginal
posterior distributions of a Bayesian model with deterministic integration.

Usage

IterativeQuadrature(Model, parm, Data, Covar=NULL, Iterations=100,
Algorithm="CAGH", Specs=NULL, Samples=1000, sir=TRUE,
Stop.Tolerance=c(1e-5,1e-15), CPUs=1, Type="PSOCK")

Arguments

Model This required argument receives the model from a user-defined function. The
user-defined function is where the model is specified. IterativeQuadrature
passes two arguments to the model function, parms and Data. For more informa-
tion, see the LaplacesDemon function and “LaplacesDemon Tutorial” vignette.

parm This argument requires a vector of initial values equal in length to the number
of parameters. IterativeQuadrature will attempt to approximate these initial
values for the parameters as means (or posterior modes) of normal integrals. The
GIV function may be used to randomly generate initial values. Parameters must
be continuous.

Data This required argument accepts a list of data. The list of data must include
mon.names which contains monitored variable names, and parm.names which
contains parameter names.

Covar This argument accepts a J × J covariance matrix for J initial values. When a
covariance matrix is not supplied, a scaled identity matrix is used.

Iterations This argument accepts an integer that determines the number of iterations that
IterativeQuadrature will attempt to approximate the posterior with normal
integrals. Iterations defaults to 100. IterativeQuadrature will stop before
this number of iterations if the tolerance is less than or equal to the Stop.Tolerance
criterion. The required amount of computer memory increases with Iterations.
If computer memory is exceeded, then all will be lost.
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Algorithm This optional argument accepts a quoted string that specifies the iterative quadra-
ture algorithm. The default method is Method="CAGH". Options include "AGHSG"
for Adaptive Gauss-Hermite Sparse Grid, and "CAGH" for Componentwise Adap-
tive Gaussian-Hermite.

Specs This argument accepts a list of specifications for an algorithm.
Samples This argument indicates the number of posterior samples to be taken with sam-

pling importance resampling via the SIR function, which occurs only when
sir=TRUE. Note that the number of samples should increase with the number
and intercorrelations of the parameters.

sir This logical argument indicates whether or not Sampling Importance Resam-
pling (SIR) is conducted via the SIR function to draw independent posterior
samples. This argument defaults to TRUE. Even when TRUE, posterior sam-
ples are drawn only when IterativeQuadrature has converged. Posterior
samples are required for many other functions, including plot.iterquad and
predict.iterquad. Less time can be spent on sampling by increasing CPUs, if
available, which parallelizes the sampling.

Stop.Tolerance This argument accepts a vector of two positive numbers, and defaults to 1e-5,1e-15.
Tolerance is calculated each iteration, and the criteria varies by algorithm. The
algorithm is considered to have converged to the user-specified Stop.Tolerance
when the tolerance is less than or equal to the value of Stop.Tolerance, and the
algorithm terminates at the end of the current iteration. Unless stated otherwise,
the first element is the stop tolerance for the change in µ, the second element is
the stop tolerance for the change in mean integration error, and the first tolerance
must be met before the second tolerance is considered.

CPUs This argument accepts an integer that specifies the number of central process-
ing units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur. When multi-
ple CPUs are specified, model function evaluations are parallelized across the
nodes, and sampling with SIR is parallelized when sir=TRUE.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

Details

Quadrature is a historical term in mathematics that means determining area. Mathematicians of
ancient Greece, according to the Pythagorean doctrine, understood determination of area of a figure
as the process of geometrically constructing a square having the same area (squaring). Thus the
name quadrature for this process.

In medieval Europe, quadrature meant the calculation of area by any method. With the invention
of integral calculus, quadrature has been applied to the computation of a univariate definite inte-
gral. Numerical integration is a broad family of algorithms for calculating the numerical value of
a definite integral. Numerical quadrature is a synonym for quadrature applied to one-dimensional
integrals. Multivariate quadrature, also called cubature, is the application of quadrature to multidi-
mensional integrals.

A quadrature rule is an approximation of the definite integral of a function, usually stated as a
weighted sum of function values at specified points within the domain of integration. The speci-
fied points are referred to as abscissae, abscissas, integration points, or nodes, and have associated
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weights. The calculation of the nodes and weights of the quadrature rule differs by the type of
quadrature. There are numerous types of quadrature algorithms. Bayesian forms of quadrature
usually use Gauss-Hermite quadrature (Naylor and Smith, 1982), and placing a Gaussian Process
on the function is a common extension (O’Hagan, 1991; Rasmussen and Ghahramani, 2003) that
is called ‘Bayesian Quadrature’. Often, these and other forms of quadrature are also referred to as
model-based integration.

Gauss-Hermite quadrature uses Hermite polynomials to calculate the rule. However, there are two
versions of Hermite polynomials, which result in different kernels in different fields. In physics,
the kernel is exp(-x^2), while in probability the kernel is exp(-x^2/2). The weights are a normal
density. If the parameters of the normal distribution, µ and σ2, are estimated from data, then it
is referred to as adaptive Gauss-Hermite quadrature, and the parameters are the conditional mean
and conditional variance. Outside of Gauss-Hermite quadrature, adaptive quadrature implies that a
difficult range in the integrand is subdivided with more points until it is well-approximated. Gauss-
Hermite quadrature performs well when the integrand is smooth, and assumes normality or multi-
variate normality. Adaptive Gauss-Hermite quadrature has been demonstrated to outperform Gauss-
Hermite quadrature in speed and accuracy.

A goal in quadrature is to minimize integration error, which is the error between the evaluations
and the weights of the rule. Therefore, a goal in Bayesian Gauss-Hermite quadrature is to minimize
integration error while approximating a marginal posterior distribution that is assumed to be smooth
and normally-distributed. This minimization often occurs by increasing the number of nodes until
a change in mean integration error is below a tolerance, rather than minimizing integration error
itself, since the target may be only approximately normally distributed, or minimizing the sum of
integration error, which would change with the number of nodes.

To approximate integrals in multiple dimensions, one approach applies N nodes of a univariate
quadrature rule to multiple dimensions (using the GaussHermiteCubeRule function for example)
via the product rule, which results in many more multivariate nodes. This requires the number of
function evaluations to grow exponentially as dimension increases. Multidimensional quadrature
is usually limited to less than ten dimensions, both due to the number of nodes required, and be-
cause the accuracy of multidimensional quadrature algorithms decreases as the dimension increases.
Three methods may overcome this curse of dimensionality in varying degrees: componentwise
quadrature, sparse grids, and Monte Carlo.

Componentwise quadrature is the iterative application of univariate quadrature to each parameter.
It is applicable with high-dimensional models, but sacrifices the ability to calculate the conditional
covariance matrix, and calculates only the variance of each parameter.

Sparse grids were originally developed by Smolyak for multidimensional quadrature. A sparse grid
is based on a one-dimensional quadrature rule. Only a subset of the nodes from the product rule
is included, and the weights are appropriately rescaled. Although a sparse grid is more efficient
because it reduces the number of nodes to achieve the same accuracy, the user must contend with
increasing the accuracy of the grid, and it remains inapplicable to high-dimensional integrals.

Monte Carlo is a large family of sampling-based algorithms. O’Hagan (1987) asserts that Monte
Carlo is frequentist, inefficient, regards irrelevant information, and disregards relevant information.
Quadrature, he maintains (O’Hagan, 1992), is the most Bayesian approach, and also the most effi-
cient. In high dimensions, he concedes, a popular subset of Monte Carlo algorithms is currently the
best for cheap model function evaluations. These algorithms are called Markov chain Monte Carlo
(MCMC). High-dimensional models with expensive model evaluation functions, however, are not
well-suited to MCMC. A large number of MCMC algorithms is available in the LaplacesDemon
function.



202 IterativeQuadrature

Following are some reasons to consider iterative quadrature rather than MCMC. Once an MCMC
sampler finds equilibrium, it must then draw enough samples to represent all targets. Iterative
quadrature does not need to continue drawing samples. Multivariate quadrature is consistently re-
ported as more efficient than MCMC when its assumptions hold, though multivariate quadrature is
limited to small dimensions. High-dimensional models therefore default to MCMC, between the
two. Componentwise quadrature algorithms like CAGH, however, may also be more efficient with
cloc-time than MCMC in high dimensions, especially against componentwise MCMC algorithms.
Another reason to consider iterative quadrature are that assessing convergence in MCMC is a diffi-
cult topic, but not for iterative quadrature. A user of iterative quadrature does not have to contend
with effective sample size and autocorrelation, assessing stationarity, acceptance rates, diminish-
ing adaptation, etc. Stochastic sampling in MCMC is less efficient when samples occur in close
proximity (such as when highly autocorrelated), whereas in quadrature the nodes are spread out by
design.

In general, the conditional means and conditional variances progress smoothly to the target in mul-
tidimensional quadrature. For componentwise quadrature, movement to the target is not smooth,
and often resembles a Markov chain or optimization algorithm.

Iterative quadrature is often applied after LaplaceApproximation to obtain a more reliable estimate
of parameter variance or covariance than the negative inverse of the Hessian matrix of second
derivatives, which is suitable only when the contours of the logarithm of the unnormalized joint
posterior density are approximately ellipsoidal (Naylor and Smith, 1982, p. 224).

When Algorithm="AGH", the Naylor and Smith (1982) algorithm is used. The AGH algorithm uses
multivariate quadrature with the physicist’s (not the probabilist’s) kernel.

There are four algorithm specifications: N is the number of univariate nodes, Nmax is the maximum
number of univariate nodes, Packages accepts any package required for the model function when
parallelized, and Dyn.libs accepts dynamic libraries for parallelization, if required. The number
of univariate nodes begins at N and increases by one each iteration. The number of multivariate
nodes grows quickly with N . Naylor and Smith (1982) recommend beginning with as few nodes as
N = 3. Any of the following events will cause N to increase by 1 when N is less than Nmax:

• All LP weights are zero (and non-finite weights are set to zero)

• µ does not result in an increase in LP

• All elements in Σ are not finite

• The square root of the sum of the squared changes in µ is less than or equal to the Stop.Tolerance

Tolerance includes two metrics: change in mean integration error and change in parameters. In-
cluding the change in parameters for tolerance was not mentioned in Naylor and Smith (1982).

Naylor and Smith (1982) consider a transformation due to correlation. This is not included here.

The AGH algorithm does not currently handle constrained parameters, such as with the interval
function. If a parameter is constrained and changes during a model evaluation, this changes the
node and the multivariate weight. This is currently not corrected.

An advantage of AGH over componentwise adaptive quadrature is that AGH estimates covariance,
where a componentwise algorithm ignores it. A disadvantage of AGH over a componentwise al-
gorithm is that the number of nodes increases so quickly with dimension, that AGH is limited to
small-dimensional models.
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When Algorithm="AGHSG", the Naylor and Smith (1982) algorithm is applied to a sparse grid,
rather than a traditional multivariate quadrature rule. This is identical to the AGH algorithm above,
except that a sparse grid replaces the multivariate quadrature rule.

The sparse grid reduces the number of nodes. The cost of reducing the number of nodes is that the
user must consider the accuracy, K.

There are four algorithm specifications: K is the accuracy (as a positive integer), Kmax is the maxi-
mum accuracy, Packages accepts any package required for the model function when parallelized,
and Dyn.libs accepts dynamic libraries for parallelization, if required. These arguments repre-
sent accuracy rather than the number of univariate nodes, but otherwise are similar to the AGH
algorithm.

When Algorithm="CAGH", a componentwise version of the adaptive Gauss-Hermite quadrature
of Naylor and Smith (1982) is used. Each iteration, each marginal posterior distribution is ap-
proximated sequentially, in a random order, with univariate quadrature. The conditional mean and
conditional variance are also approximated each iteration, making it an adaptive algorithm.

There are four algorithm specifications: N is the number of nodes, Nmax is the maximum number
of nodes, Packages accepts any package required for the model function when parallelized, and
Dyn.libs accepts dynamic libraries for parallelization, if required. The number of nodes begins
at N . All parameters have the same number of nodes. Any of the following events will cause
N to increase by 1 when N is less than Nmax, and these conditions refer to all parameters (not
individually):

• Any LP weights are not finite

• All LP weights are zero

• µ does not result in an increase in LP

• The square root of the sum of the squared changes in µ is less than or equal to the Stop.Tolerance

It is recommended to begin with N=3 and set Nmax between 10 and 100. As long as CAGH does
not experience problematic weights, and as long as CAGH is improving LP with µ, the number of
nodes does not increase. When CAGH becomes either universally problematic or universally stable,
then N slowly increases until the sum of both the mean integration error and the sum of the squared
changes in µ is less than the Stop.Tolerance for two consecutive iterations.

If the highest LP occurs at the lowest or highest node, then the value at that node becomes the
conditional mean, rather than calculating it from all weighted samples; this facilitates movement
when the current integral is poorly centered toward a well-centered integral. If all weights are zero,
then a random proposal is generated with a small variance.

Tolerance includes two metrics: change in mean integration error and change in parameters, as the
square root of the sum of the squared differences.

When a parameter constraint is encountered, the node and weight of the quadrature rule is recalcu-
lated.

An advantage of CAGH over multidimensional adaptive quadrature is that CAGH may be applied
in large dimensions. Disadvantages of CAGH are that only variance, not covariance, is estimated,
and ignoring covariance may be problematic.
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Value

IterativeQuadrature returns an object of class iterquad that is a list with the following compo-
nents:

Algorithm This is the name of the iterative quadrature algorithm.

Call This is the matched call of IterativeQuadrature.

Converged This is a logical indicator of whether or not IterativeQuadrature converged
within the specified Iterations according to the supplied Stop.Tolerance
criterion. Convergence does not indicate that the global maximum has been
found, but only that the tolerance was less than or equal to the Stop.Tolerance
criteria.

Covar This is the estimated covariance matrix. The Covar matrix may be scaled and
input into the Covar argument of the LaplacesDemon or PMC function for further
estimation. To scale this matrix for use with Laplace’s Demon or PMC, multiply
it by 2.382/d, where d is the number of initial values.

Deviance This is a vector of the iterative history of the deviance in the IterativeQuadrature
function, as it sought convergence.

History This is a matrix of the iterative history of the parameters in the IterativeQuadrature
function, as it sought convergence.

Initial.Values This is the vector of initial values that was originally given to IterativeQuadrature
in the parm argument.

LML This is an approximation of the logarithm of the marginal likelihood of the data
(see the LML function for more information). When the model has converged
and sir=TRUE, the NSIS method is used. When the model has converged and
sir=FALSE, the LME method is used. This is the logarithmic form of equation
4 in Lewis and Raftery (1997). As a rough estimate of Kass and Raftery (1995),
the LME-based LML is worrisome when the sample size of the data is less
than five times the number of parameters, and LML should be adequate in most
problems when the sample size of the data exceeds twenty times the number
of parameters (p. 778). The LME is inappropriate with hierarchical models.
However LML is estimated, it is useful for comparing multiple models with the
BayesFactor function.

LP.Final This reports the final scalar value for the logarithm of the unnormalized joint
posterior density.

LP.Initial This reports the initial scalar value for the logarithm of the unnormalized joint
posterior density.

LPw This is the latest matrix of the logarithm of the unnormalized joint posterior
density. It is weighted and normalized so that each column sums to one.

M This is the final N × J matrix of quadrature weights that have been corrected
for non-standard normal distributions, where N is the number of nodes and J is
the number of parameters.

Minutes This is the number of minutes that IterativeQuadrature was running, and
this includes the initial checks as well as drawing posterior samples and creating
summaries.
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Monitor When sir=TRUE, a number of independent posterior samples equal to Samples
is taken, and the draws are stored here as a matrix. The rows of the matrix are
the samples, and the columns are the monitored variables.

N This is the final number of nodes.

Posterior When sir=TRUE, a number of independent posterior samples equal to Samples
is taken, and the draws are stored here as a matrix. The rows of the matrix are
the samples, and the columns are the parameters.

Summary1 This is a summary matrix that summarizes the point-estimated posterior means.
Uncertainty around the posterior means is estimated from the covariance matrix.
Rows are parameters. The following columns are included: Mean, SD (Standard
Deviation), LB (Lower Bound), and UB (Upper Bound). The bounds constitute
a 95% probability interval.

Summary2 This is a summary matrix that summarizes the posterior samples drawn with
sampling importance resampling (SIR) when sir=TRUE, given the point-estimated
posterior modes and the covariance matrix. Rows are parameters. The following
columns are included: Mean, SD (Standard Deviation), LB (Lower Bound), and
UB (Upper Bound). The bounds constitute a 95% probability interval.

Tolerance.Final

This is the last Tolerance of the LaplaceApproxiation algorithm.

Tolerance.Stop This is the Stop.Tolerance criteria.

Z This is the final N × J matrix of the conditional mean, where N is the number
of nodes and J is the number of parameters.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

References

Naylor, J.C. and Smith, A.F.M. (1982). "Applications of a Method for the Efficient Computation of
Posterior Distributions". Applied Statistics, 31(3), p. 214–225.

O’Hagan, A. (1987). "Monte Carlo is Fundamentally Unsound". The Statistician, 36, p. 247–249.

O’Hagan, A. (1991). "Bayes-Hermite Quadrature". Journal of Statistical Planning and Inference,
29, p. 245–260.

O’Hagan, A. (1992). "Some Bayesian Numerical Analysis". In Bernardo, J.M., Berger, J.O., David,
A.P., and Smith, A.F.M., editors, Bayesian Statistics, 4, p. 356–363, Oxford University Press.

Rasmussen, C.E. and Ghahramani, Z. (2003). "Bayesian Monte Carlo". In Becker, S. and Ober-
mayer, K., editors, Advances in Neural Information Processing Systems, 15, MIT Press, Cambridge,
MA.

See Also

GaussHermiteCubeRule, GaussHermiteQuadRule, GIV, Hermite, Hessian, LaplaceApproximation,
LaplacesDemon, LML, PMC, SIR, and SparseGrid.
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Examples

# The accompanying Examples vignette is a compendium of examples.
#################### Load the LaplacesDemon Library #####################
library(LaplacesDemon)

############################## Demon Data ###############################
data(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(log(demonsnacks[,10]+1)))
J <- ncol(X)
for (j in 2:J) X[,j] <- CenterScale(X[,j])

######################### Data List Preparation #########################
mon.names <- "mu[1]"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) {

beta <- rnorm(Data$J)
sigma <- runif(1)
return(c(beta, sigma))
}

MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

########################## Model Specification ##########################
Model <- function(parm, Data)

{
### Parameters
beta <- parm[Data$pos.beta]
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
parm[Data$pos.sigma] <- sigma
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=mu[1],

yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}

############################ Initial Values #############################
#Initial.Values <- GIV(Model, MyData, PGF=TRUE)
Initial.Values <- rep(0,J+1)

######################### Adaptive Gauss-Hermite ########################
#Fit <- IterativeQuadrature(Model, Initial.Values, MyData, Covar=NULL,
# Iterations=100, Algorithm="AGH",
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# Specs=list(N=5, Nmax=7, Packages=NULL, Dyn.libs=NULL), CPUs=1)

################## Adaptive Gauss-Hermite Sparse Grid ###################
#Fit <- IterativeQuadrature(Model, Initial.Values, MyData, Covar=NULL,
# Iterations=100, Algorithm="AGHSG",
# Specs=list(K=5, Kmax=7, Packages=NULL, Dyn.libs=NULL), CPUs=1)

################# Componentwise Adaptive Gauss-Hermite ##################
#Fit <- IterativeQuadrature(Model, Initial.Values, MyData, Covar=NULL,
# Iterations=100, Algorithm="CAGH",
# Specs=list(N=3, Nmax=10, Packages=NULL, Dyn.libs=NULL), CPUs=1)

#Fit
#print(Fit)
#PosteriorChecks(Fit)
#caterpillar.plot(Fit, Parms="beta")
#plot(Fit, MyData, PDF=FALSE)
#Pred <- predict(Fit, Model, MyData, CPUs=1)
#summary(Pred, Discrep="Chi-Square")
#plot(Pred, Style="Covariates", Data=MyData)
#plot(Pred, Style="Density", Rows=1:9)
#plot(Pred, Style="Fitted")
#plot(Pred, Style="Jarque-Bera")
#plot(Pred, Style="Predictive Quantiles")
#plot(Pred, Style="Residual Density")
#plot(Pred, Style="Residuals")
#Levene.Test(Pred)
#Importance(Fit, Model, MyData, Discrep="Chi-Square")

#End

joint.density.plot Joint Density Plot

Description

This function plots the joint kernel density from samples of two marginal posterior distributions.

Usage

joint.density.plot(x, y, Title=NULL, contour=TRUE, color=FALSE, Trace=NULL)

Arguments

x, y These are vectors consisting of samples from two marginal posterior distribu-
tions, such as those output by LaplacesDemon in components Posterior1 (all
samples) or Posterior2 (stationary samples).

Title This is the title of the joint posterior density plot.
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contour This logical argument indicates whether or not contour lines will be added to the
plot. contour defaults to TRUE.

color This logical argument indicates whether or not color will be added to the plot.
color defaults to FALSE.

Trace This argument defaults to NULL, in which case it does not trace the exploration
of the joint density. To trace the exploration of the joint density, specify Trace
with the beginning and ending iteration or sample. For example, to view the
trace of the first ten iterations or samples, specify Trace=c(1,10).

Details

This function produces either a bivariate scatterplot that may have kernel density contour lines
added, or a bivariate plot with kernel density-influenced colors, which may also have kernel density
contour lines added. A joint density plot may be more informative than two univariate density plots.

The Trace argument allows the user to view the exploration of the joint density, such as from
MCMC chain output. An efficient algorithm jumps to random points of the joint density, and an
inefficient algorithm explores more slowly. The initial point of the trace (which is the first ele-
ment passed to Trace) is plotted with a green dot. The user should consider plotting the joint
density of the two marginal posterior distributions with the highest IAT, as identified with the
PosteriorChecks function, since these are the two least efficient MCMC chains. Different se-
quences of iterations may be plotted. This ‘joint trace plot’ may show behavior of the MCMC
algorithm to the user.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

IAT, LaplacesDemon, and PosteriorChecks

Examples

library(LaplacesDemon)
X <- rmvn(1000, runif(2), diag(2))
joint.density.plot(X[,1], X[,2], Title="Joint Density Plot",

contour=TRUE, color=FALSE)
joint.density.plot(X[,1], X[,2], Title="Joint Density Plot",

contour=FALSE, color=TRUE)
joint.density.plot(X[,1], X[,2], Title="Joint Density Plot",

contour=TRUE, color=TRUE)
joint.density.plot(X[,1], X[,2], Title="Joint Trace Plot",

contour=FALSE, color=TRUE, Trace=c(1,10))



joint.pr.plot 209

joint.pr.plot Joint Probability Region Plot

Description

Given two vectors, the joint.pr.plot function creates a scatterplot with ellipses of probability
regions.

Usage

joint.pr.plot(x, y, quantiles=c(0.25,0.50,0.75,0.95))

Arguments

x This required argument is a vector.

y This required argument is a vector.

quantiles These are the quantiles for which probability regions are estimated with ellipses.
The center of the ellipse is plotted by default. The 0.95 quantile creates a prob-
ability region that contains approximately 95% of the data or samples of x and
y. By default, four quantiles are included.

Details

A probability region is also commonly called a credible region. For more information on probability
regions, see p.interval.

Joint probability regions are plotted only for two variables, and the regions are estimated with
functions modified from the car package. The internal ellipse functions assume bivariate normality.

This function is often used to plot posterior distributions of samples, such as from the LaplacesDemon
function.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

LaplacesDemon and p.interval

Examples

library(LaplacesDemon)
x <- rnorm(100)
y <- rnorm(100)
joint.pr.plot(x, y)
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Juxtapose Juxtapose MCMC Algorithm Inefficiency

Description

This function gives a side-by-side comparison of (or juxtaposes) the inefficiency of MCMC algo-
rithms in LaplacesDemon for applied use, and is a valuable tool for selecting what is likely to be the
least inefficient algorithm for the user’s current model, prior to updating the final, intended model.

Usage

Juxtapose(x)

Arguments

x This is a list of multiple components. Each component must be an object of
class demonoid.

Details

Laplace’s Demon recommends using the Juxtapose function on the user’s model (or most likely a
simplified version of it) with a smaller, simulated data set to select the least inefficient MCMC al-
gorithm before using real data and updating the model for numerous iterations. The least inefficient
MCMC algorithm differs for different models and data sets. Using Juxtapose in this way does not
guarantee that the selected algorithm will remain the best choice with real data, but it should be
better than otherwise selecting an algorithm.

The user must make a decision regarding their model and data. The more similar the model and data
is to the final, intended model and data, the more appropriate will be the results of the Juxtapose
function. However, if the full model and data are used, then the user may as well instead skip using
Juxtapose and proceed directly to LaplacesDemon. Replacing the actual data set with a smaller,
simulated set is fairly straightforward, but the decision-making will most likely focus on what is the
best way to reduce the full model specification. A simple approach may be to merely reduce the
number of predictors. However, complicated models may have several components that slow down
estimation time, and extend the amount of time until global stationarity is estimated. Laplace’s
Demon offers no guidance here, and leaves it in the realm of user discretion.

First, the user should simulate a smaller data set, and if best, reduce the model specification.
Next, the user must select candidate algorithms. Then, the user must update each algorithm with
LaplacesDemon for numerous iterations, with the goal of achieving stationarity for all parameters
early in the iterations. Each update should begin with the same model specification function, vector
of initial values, and data. Each output object of class demonoid should be renamed. An example
follows.

Suppose a user considers three candidate algorithms for their model: AMWG, NUTS, and twalk.
The user updates each model, saving the model that used the AMWG algorithm as, say, Fit1, the
NUTS model as Fit2, and the twalk model as Fit3.

Next, the output model objects are put in a list and passed to the Juxtapose function. See the
example below.
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The Juxtapose function uses an internal version of the IAT, which is a slightly modified version
of that found in the SamplerCompare package. The Juxtapose function returns an object of class
juxtapose. It is a matrix in which each row is a result and each column is an algorithm.

The rows are:

• iter.min: This is the iterations per minute.

• t.iter.min: This is the thinned iterations per minute.

• prop.stat: This is the proportion of iterations that were stationary.

• IAT.025: This is the 2.5% quantile of the integrated autocorrelation time of the worst param-
eter, estimated only on samples when all parameters are estimated to be globally stationary.

• IAT.500: This is the median integrated autocorrelation time of the worst parameter, estimated
only on samples when all parameters are estimated to be globally stationary.

• IAT.975: This is the 97.5% quantile of the integrated autocorrelation time of the worst param-
eter, estimated only on samples when all parameters are estimated to be globally stationary.

• ISM.025: This is the 2.5% quantile of the number of independent samples per minute.

• ISM.500: This is the median of the number of the independent samples per minute. The least
inefficient MCMC algorithm has the highest ISM.500.

• ISM.975: This is the 97.5% quantile of the number of the independent samples per minute.

As for calculating ISM , let TIM be the observed number of thinned iterations per minute, PS
be the percent of iterations in which all parameters were estimated to be globally stationary, and
IATq be a quantile from a simulated distribution of the integrated autocorrelation time among the
parameters.

ISM =
PS × TIM

IATq

There are various ways to measure the inefficiency of MCMC samplers. IAT is used perhaps most
often. As with the SamplerCompare package, Laplace’s Demon uses the worst parameter, in terms
of IAT. Often, the number of evaluations or number of parameters is considered. The Juxtapose
function, instead considers the final criterion of MCMC efficiency, in an applied context, to be
ISM, or the number of Independent (thinned) Samples per Minute. The algorithm with the highest
ISM.500 is the best, or least inefficient, algorithm with respect to its worst IAT, the proportion of
iterations required to seem to have global stationarity, and the number of (thinned) iterations per
minute.

A disadvantage of using time is that it will differ by computer, and is less likely to be reported in
a journal. The advantage, though, is that it is more meaningful to a user. Increases in the number
of evaluations, parameters, and time should all correlate well, but time may enlighten a user as to
expected run-time given the model just studied, even though the real data set will most likely be
larger than the simulated data used initially. NUTS is an example of a sampler in which the number
of evaluations varies per iteration. For an alternative approach, see Thompson (2010).

The Juxtapose function also adjusts ISM by prop.stat, the proportion of the iterations in which all
chains were estimated to be stationary. This adjustment is weighted by burn-in iterations, penalizing
an algorithm that took longer to achieve global stationarity. The goal, again, is to assist the user in
selecting the least inefficient MCMC algorithm in an applied setting.
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The Juxtapose function has many other potential uses than those described above. One additional
use of the Juxtapose function is to compare inefficiencies within a single algorithm in which
algorithmic specifications varied with different model updates. Another use is to investigate parallel
chains in an object of class demonoid.hpc, as returned from the LaplacesDemon.hpc function. Yet
another use is to compare the effects of small changes to a model specification function, such as
with priors, or due to an increase in the amount of simulated data.

An object of class juxtapose may be plotted with the plot.juxtapose function, which displays
ISM by default, or optionally IAT. For more information, see the plot.juxtapose function.

Independent samples per minute, calculated as ESS divided by minutes of run-time, are also avail-
able by parameter in the PosteriorChecks function.

Value

This function returns an object of class juxtapose. It is a 9 × J matrix with nine results for J
MCMC algorithms.

References

Thompson, M. (2010). "Graphical Comparison of MCMC Performance". ArXiv e-prints, eprint
1011.4458.

See Also

IAT, is.juxtapose, LaplacesDemon, LaplacesDemon.hpc, plot.juxtapose, and PosteriorChecks.

Examples

### Update three demonoid objects, each from different MCMC algorithms.
### Suppose Fit1 was updated with AFSS, Fit2 with AMWG, and
### Fit3 with NUTS. Then, compare the inefficiencies:
#Juxt <- Juxtapose(list(Fit1=Fit1, Fit2=Fit2, Fit3=Fit3)); Juxt
#plot(Juxt, Style="ISM")

KLD Kullback-Leibler Divergence (KLD)

Description

This function calculates the Kullback-Leibler divergence (KLD) between two probability distribu-
tions, and has many uses, such as in lowest posterior loss probability intervals, posterior predictive
checks, prior elicitation, reference priors, and Variational Bayes.

Usage

KLD(px, py, base)



KLD 213

Arguments

px This is a required vector of probability densities, considered as p(x). Log-
densities are also accepted, in which case both px and py must be log-densities.

py This is a required vector of probability densities, considered as p(y). Log-
densities are also accepted, in which case both px and py must be log-densities.

base This optional argument specifies the logarithmic base, which defaults to base=exp(1)
(or e) and represents information in natural units (nats), where base=2 repre-
sents information in binary units (bits).

Details

The Kullback-Leibler divergence (KLD) is known by many names, some of which are Kullback-
Leibler distance, K-L, and logarithmic divergence. KLD is an asymmetric measure of the differ-
ence, distance, or direct divergence between two probability distributions p(y) and p(x) (Kullback
and Leibler, 1951). Mathematically, however, KLD is not a distance, because of its asymmetry.

Here, p(y) represents the “true” distribution of data, observations, or theoretical distribution, and
p(x) represents a theory, model, or approximation of p(y).
For probability distributions p(y) and p(x) that are discrete (whether the underlying distribution is
continuous or discrete, the observations themselves are always discrete, such as from i = 1, . . . , N ),

KLD[p(y)||p(x)] =
N∑
i

p(yi) log
p(yi)
p(xi)

In Bayesian inference, KLD can be used as a measure of the information gain in moving from a
prior distribution, p(θ), to a posterior distribution, p(θ|y). As such, KLD is the basis of reference
priors and lowest posterior loss intervals (LPL.interval), such as in Berger, Bernardo, and Sun
(2009) and Bernardo (2005). The intrinsic discrepancy was introduced by Bernardo and Rueda
(2002). For more information on the intrinsic discrepancy, see LPL.interval.

Value

KLD returns a list with the following components:

KLD.px.py This is KLDi[p(xi)||p(yi)].

KLD.py.px This is KLDi[p(yi)||p(xi)].

mean.KLD This is the mean of the two components above. This is the expected posterior
loss in LPL.interval.

sum.KLD.px.py This is KLD[p(x)||p(y)]. This is a directed divergence.

sum.KLD.py.px This is KLD[p(y)||p(x)]. This is a directed divergence.

mean.sum.KLD This is the mean of the two components above.
intrinsic.discrepancy

This is minimum of the two directed divergences.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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References

Berger, J.O., Bernardo, J.M., and Sun, D. (2009). "The Formal Definition of Reference Priors". The
Annals of Statistics, 37(2), p. 905–938.

Bernardo, J.M. and Rueda, R. (2002). "Bayesian Hypothesis Testing: A Reference Approach".
International Statistical Review, 70, p. 351–372.

Bernardo, J.M. (2005). "Intrinsic Credible Regions: An Objective Bayesian Approach to Interval
Estimation". Sociedad de Estadistica e Investigacion Operativa, 14(2), p. 317–384.

Kullback, S. and Leibler, R.A. (1951). "On Information and Sufficiency". The Annals of Mathe-
matical Statistics, 22(1), p. 79–86.

See Also

LPL.interval and VariationalBayes.

Examples

library(LaplacesDemon)
px <- dnorm(runif(100),0,1)
py <- dnorm(runif(100),0.1,0.9)
KLD(px,py)

KS.Diagnostic Kolmogorov-Smirnov Convergence Diagnostic

Description

The Kolmogorov-Smirnov test is a nonparametric test of stationarity that has been applied as an
MCMC diagnostic (Brooks et al, 2003), such as to the posterior samples from the LaplacesDemon
function. The first and last halves of the chain are compared. This test assumes IID, which is
violated in the presence of autocorrelation.

The KS.Diagnostic is a univariate diagnostic that is usually applied to each marginal posterior
distribution. A multivariate form is not included. By chance alone due to multiple independent
tests, 5% of the marginal posterior distributions should appear non-stationary when stationarity
exists. Assessing multivariate convergence is difficult.

Usage

KS.Diagnostic(x)

Arguments

x This is a vector of posterior samples for which a Kolmogorov-Smirnov test will
be applied that compares the first and last halves for stationarity.
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Details

There are two main approaches to using the Kolmogorov-Smirnov test as an MCMC diagnostic.
There is a version of the test that has been adapted to account for autocorrelation (and is not included
here). Otherwise, the chain is thinned enough that autocorrelation is not present or is minimized,
in which case the two-sample Kolmogorov-Smirnov test is applied. The CDFs of both samples are
compared. The ks.test function in base R is used.

The advantage of the Kolmogorov-Smirnov test is that it is easier and faster to calculate. The disad-
vantages are that autocorrelation biases results, and the test is generally biased on the conservative
side (indicating stationarity when it should not).

Value

The KS.Diagnostic function returns a frequentist p-value, and stationarity is indicated when p >
0.05.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Brooks, S.P., Giudici, P., and Philippe, A. (2003). "Nonparametric Convergence Assessment for
MCMC Model Selection". Journal of Computational and Graphical Statistics. 12(1), p. 1–22.

See Also

is.stationary, ks.test, and LaplacesDemon.

Examples

library(LaplacesDemon)
x <- rnorm(1000)
KS.Diagnostic(x)

LaplaceApproximation Laplace Approximation

Description

The LaplaceApproximation function deterministically maximizes the logarithm of the unnormal-
ized joint posterior density with one of several optimization algorithms. The goal of Laplace
Approximation is to estimate the posterior mode and variance of each parameter. This func-
tion is useful for optimizing initial values and estimating a covariance matrix to be input into the
IterativeQuadrature, LaplacesDemon, PMC, or VariationalBayes function, or sometimes for
model estimation in its own right.
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Usage

LaplaceApproximation(Model, parm, Data, Interval=1.0E-6,
Iterations=100, Method="SPG", Samples=1000, CovEst="Hessian",
sir=TRUE, Stop.Tolerance=1.0E-5, CPUs=1, Type="PSOCK")

Arguments

Model This required argument receives the model from a user-defined function. The
user-defined function is where the model is specified. LaplaceApproximation
passes two arguments to the model function, parms and Data. For more informa-
tion, see the LaplacesDemon function and “LaplacesDemon Tutorial” vignette.

parm This argument requires a vector of initial values equal in length to the num-
ber of parameters. LaplaceApproximation will attempt to optimize these ini-
tial values for the parameters, where the optimized values are the posterior
modes, for later use with the IterativeQuadrature, LaplacesDemon, PMC, or
the VariationalBayes function. The GIV function may be used to randomly
generate initial values. Parameters must be continuous.

Data This required argument accepts a list of data. The list of data must include
mon.names which contains monitored variable names, and parm.names which
contains parameter names. LaplaceApproximation must be able to determine
the sample size of the data, and will look for a scalar sample size variable n or
N. If not found, it will look for variable y or Y, and attempt to take its number of
rows as sample size. LaplaceApproximation needs to determine sample size
due to the asymptotic nature of this method. Sample size should be at least

√
J

with J exchangeable parameters.

Interval This argument receives an interval for estimating approximate gradients. The
logarithm of the unnormalized joint posterior density of the Bayesian model
is evaluated at the current parameter value, and again at the current parameter
value plus this interval.

Iterations This argument accepts an integer that determines the number of iterations that
LaplaceApproximation will attempt to maximize the logarithm of the unnor-
malized joint posterior density. Iterations defaults to 100. LaplaceApproximation
will stop before this number of iterations if the tolerance is less than or equal to
the Stop.Tolerance criterion. The required amount of computer memory in-
creases with Iterations. If computer memory is exceeded, then all will be
lost.

Method This optional argument accepts a quoted string that specifies the method used for
Laplace Approximation. The default method is Method="SPG". Options include
"AGA" for adaptive gradient ascent, "BFGS" for the Broyden-Fletcher-Goldfarb-
Shanno algorithm, "BHHH" for the algorithm of Berndt et al., "CG" for conjugate
gradient, "DFP" for the Davidon-Fletcher-Powell algorithm, "HAR" for adaptive
hit-and-run, "HJ" for Hooke-Jeeves, "LBFGS" for limited-memory BFGS, "LM"
for Levenberg-Marquardt, "NM" for Nelder-Mead, "NR" for Newton-Raphson,
"PSO" for Particle Swarm Optimization, "Rprop" for resilient backpropagation,
"SGD" for Stochastic Gradient Descent, "SOMA" for the Self-Organizing Migra-
tion Algorithm, "SPG" for Spectral Projected Gradient, "SR1" for Symmetric
Rank-One, and "TR" for Trust Region.
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Samples This argument indicates the number of posterior samples to be taken with sam-
pling importance resampling via the SIR function, which occurs only when
sir=TRUE. Note that the number of samples should increase with the number
and intercorrelations of the parameters.

CovEst This argument accepts a quoted string that indicates how the covariance matrix
is estimated after the model finishes. This covariance matrix is used to obtain the
standard deviation of each parameter, and may also be used for posterior sam-
pling via Sampling Importance Resampling (SIR) (see the sir argument below),
if converged. By default, the covariance matrix is approximated as the negative
inverse of the "Hessian" matrix of second derivatives, estimated with Richard-
son extrapolation. Alternatives include CovEst="Identity", CovEst="OPG", or
CovEst="Sandwich". When CovEst="Identity", the covariance matrix is not
estimated, and is merely assigned an identity matrix. When LaplaceApproximation
is performed internally by LaplacesDemon, an identity matrix is returned and
scaled. When CovEst="OPG", the covariance matrix is approximated with the
inverse of the sum of the outer products of the gradient, which requires X,
and either y or Y in the list of data. For OPG, a partial derivative is taken
for each row in X, and each element in y or row in Y. Therefore, this requires
N +NJ model evaluations for a data set with N records and J variables. The
OPG method is an asymptotic approximation of the Hessian, and usually re-
quires fewer calculations with a small data set, or more with large data sets.
Both methods require a matrix inversion, which becomes costly as dimension
grows. The Richardson-based Hessian method is more accurate, but requires
more calculation in large dimensions. An alternative approach to obtaining co-
variance is to use the BayesianBootstrap on the data, or sample the posterior
with iterative quadrature (IterativeQuadrature), MCMC (LaplacesDemon),
or VariationalBayes.

sir This logical argument indicates whether or not Sampling Importance Resam-
pling (SIR) is conducted via the SIR function to draw independent posterior
samples. This argument defaults to TRUE. Even when TRUE, posterior sam-
ples are drawn only when LaplaceApproximation has converged. Posterior
samples are required for many other functions, including plot.laplace and
predict.laplace. The only time that it is advantageous for sir=FALSE is when
LaplaceApproximation is used to help the initial values for IterativeQuadrature,
LaplacesDemon, PMC, or VariationalBayes, and it is unnecessary for time to
be spent on sampling. Less time can be spent on sampling by increasing CPUs,
which parallelizes the sampling.

Stop.Tolerance This argument accepts any positive number and defaults to 1.0E-5. Tolerance is
calculated each iteration, and the criteria varies by algorithm. The algorithm is
considered to have converged to the user-specified Stop.Tolerance when the
tolerance is less than or equal to the value of Stop.Tolerance, and the algo-
rithm terminates at the end of the current iteration. Often, multiple criteria are
used, in which case the maximum of all criteria becomes the tolerance. For
example, when partial derivatives are taken, it is commonly required that the
Euclidean norm of the partial derivatives is a criterion, and another common cri-
terion is the Euclidean norm of the differences between the current and previous
parameter values. Several algorithms have other, specific tolerances.

CPUs This argument accepts an integer that specifies the number of central processing
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units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur. Parallelization
occurs only for sampling with SIR when sir=TRUE.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

Details

The Laplace Approximation or Laplace Method is a family of asymptotic techniques used to ap-
proximate integrals. Laplace’s method accurately approximates unimodal posterior moments and
marginal posterior distributions in many cases. Since it is not applicable in all cases, it is recom-
mended here that Laplace Approximation is used cautiously in its own right, or preferably, it is used
before MCMC.

After introducing the Laplace Approximation (Laplace, 1774, p. 366–367), a proof was published
later (Laplace, 1814) as part of a mathematical system of inductive reasoning based on probability.
Laplace used this method to approximate posterior moments.

Since its introduction, the Laplace Approximation has been applied successfully in many disci-
plines. In the 1980s, the Laplace Approximation experienced renewed interest, especially in statis-
tics, and some improvements in its implementation were introduced (Tierney et al., 1986; Tierney
et al., 1989). Only since the 1980s has the Laplace Approximation been seriously considered by
statisticians in practical applications.

There are many variations of Laplace Approximation, with an effort toward replacing Markov chain
Monte Carlo (MCMC) algorithms as the dominant form of numerical approximation in Bayesian
inference. The run-time of Laplace Approximation is a little longer than Maximum Likelihood
Estimation (MLE), usually shorter than variational Bayes, and much shorter than MCMC (Azevedo
and Shachter, 1994).

The speed of Laplace Approximation depends on the optimization algorithm selected, and typi-
cally involves many evaluations of the objective function per iteration (where an MCMC algorithm
with a multivariate proposal usually evaluates once per iteration), making many MCMC algorithms
faster per iteration. The attractiveness of Laplace Approximation is that it typically improves the
objective function better than iterative quadrature, MCMC, and PMC when the parameters are in
low-probability regions. Laplace Approximation is also typically faster than MCMC and PMC be-
cause it is seeking point-estimates, rather than attempting to represent the target distribution with
enough simulation draws. Laplace Approximation extends MLE, but shares similar limitations,
such as its asymptotic nature with respect to sample size and that marginal posterior distributions
are Gaussian. Bernardo and Smith (2000) note that Laplace Approximation is an attractive family
of numerical approximation algorithms, and will continue to develop.

LaplaceApproximation seeks a global maximum of the logarithm of the unnormalized joint poste-
rior density. The approach differs by Method. The LaplacesDemon function uses the LaplaceApproximation
algorithm to optimize initial values and save time for the user.

Most optimization algorithms assume that the logarithm of the unnormalized joint posterior density
is defined and differentiable. Some methods calculate an approximate gradient for each initial value
as the difference in the logarithm of the unnormalized joint posterior density due to a slight increase
in the parameter.

When Method="AGA", the direction and distance for each parameter is proposed based on an ap-
proximate truncated gradient and an adaptive step size. The step size parameter, which is often
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plural and called rate parameters in other literature, is adapted each iteration with the univariate ver-
sion of the Robbins-Monro stochastic approximation in Garthwaite (2010). The step size shrinks
when a proposal is rejected and expands when a proposal is accepted.

Gradient ascent is criticized for sometimes being relatively slow when close to the maximum, and
its asymptotic rate of convergence is inferior to other methods. However, compared to other pop-
ular optimization algorithms such as Newton-Raphson, an advantage of the gradient ascent is that
it works in infinite dimensions, requiring only sufficient computer memory. Although Newton-
Raphson converges in fewer iterations, calculating the inverse of the negative Hessian matrix of
second-derivatives is more computationally expensive and subject to singularities. Therefore, gra-
dient ascent takes longer to converge, but is more generalizable.

When Method="BFGS", the BFGS algorithm is used, which was proposed by Broyden (1970),
Fletcher (1970), Goldfarb (1970), and Shanno (1970), independently. BFGS may be the most
efficient and popular quasi-Newton optimiziation algorithm. As a quasi-Newton algorithm, the
Hessian matrix is approximated using rank-one updates specified by (approximate) gradient eval-
uations. Since BFGS is very popular, there are many variations of it. This is a version by Nash
that has been adapted from the Rvmmin package, and is used in the optim function of base R.
The approximate Hessian is not guaranteed to converge to the Hessian. When BFGS is used, the
approximate Hessian is not used to calculate the final covariance matrix.

When Method="BHHH", the algorithm of Berndt et al. (1974) is used, which is commonly pro-
nounced B-triple H. The BHHH algorithm is a quasi-Newton method that includes a step-size pa-
rameter, partial derivatives, and an approximation of a covariance matrix that is calculated as the
inverse of the sum of the outer product of the gradient (OPG), calculated from each record. The
OPG method becomes more costly with data sets with more records. Since partial derivatives must
be calculated per record of data, the list of data has special requirements with this method, and
must include design matrix X, and dependent variable y or Y. Records must be row-wise. An ad-
vantage of BHHH over NR (see below) is that the covariance matrix is necessarily positive definite,
and gauranteed to provide an increase in LP each iteration (given a small enough step-size), even in
convex areas. The covariance matrix is better approximated with larger data sample sizes, and when
closer to the maximum of LP. Disadvantages of BHHH include that it can give small increases in
LP, especially when far from the maximum or when LP is highly non-quadratic.

When Method="CG", a nonlinear conjugate gradient algorithm is used. CG uses partial derivatives,
but does not use the Hessian matrix or any approximation of it. CG usually requires more iterations
to reach convergence than other algorithms that use the Hessian or an approximation. However,
since the Hessian becomes computationally expensive as the dimension of the model grows, CG
is applicable to large dimensional models when CovEst="Hessian" is avoided. CG was originally
developed by Hestenes and Stiefel (1952), though this version is adapted from the Rcgminu function
in package Rcgmin.

When Method="DFP", the Davidon-Fletcher-Powell algorithm is used. DFP was the first popu-
lar, multidimensional, quasi-Newton optimization algorithm. The DFP update of an approximate
Hessian matrix maintains symmetry and positive-definiteness. The approximate Hessian is not
guaranteed to converge to the Hessian. When DFP is used, the approximate Hessian is not used
to calculate the final covariance matrix. Although DFP is very effective, it was superseded by the
BFGS algorithm.

When Method="HAR", a hit-and-run algorithm with a multivariate proposal and adaptive length is
used. The length parameter is adapted each iteration with the univariate version of the Robbins-
Monro stochastic approximation in Garthwaite (2010). The length shrinks when a proposal is
rejected and expands when a proposal is accepted. This is the same algorithm as the HARM or
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Hit-And-Run Metropolis MCMC algorithm with adaptive length, except that a Metropolis step is
not used.

When Method="HJ", the Hooke-Jeeves (1961) algorithm is used. This was adapted from the HJK
algorithm in package dfoptim. Hooke-Jeeves is a derivative-free, direct search method. Each iter-
ation involves two steps: an exploratory move and a pattern move. The exploratory move explores
local behavior, and the pattern move takes advantage of pattern direction. It is sometimes described
as a hill-climbing algorithm. If the solution improves, it accepts the move, and otherwise rejects
it. Step size decreases with each iteration. The decreasing step size can trap it in local maxima,
where it gets stuck and convergences erroneously. Users are encouraged to attempt again after what
seems to be convergence, starting from the latest point. Although getting stuck at local maxima can
be problematic, the Hooke-Jeeves algorithm is also attractive because it is simple, fast, does not
depend on derivatives, and is otherwise relatively robust.

When Method="LBFGS", the limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algo-
rithm is called in optim, once per iteration.

When Method="LM", the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) is
used. Also known as the Levenberg-Marquardt Algorithm (LMA) or the Damped Least-Squares
(DLS) method, LM is a trust region (not to be confused with TR below) quasi-Newton optimization
algorithm that provides minimizes nonlinear least squares, and has been adapted here to maximize
LP. LM uses partial derivatives and approximates the Hessian with outer-products. It is suitable for
nonlinear optimization up to a few hundred parameters, but loses its efficiency in larger problems
due to matrix inversion. LM is considered between the Gauss-Newton algorithm and gradient de-
scent. When far from the solution, LM moves slowly like gradient descent, but is guaranteed to
converge. When LM is close to the solution, LM becomes a damped Gauss-Newton method. This
was adapted from the lsqnonlin algorithm in package pracma.

When Method="NM", the Nelder-Mead (1965) algorithm is used. This was adapted from the nelder_mead
function in package pracma. Nelder-Mead is a derivative-free, direct search method that is known
to become inefficient in large-dimensional problems. As the dimension increases, the search direc-
tion becomes increasingly orthogonal to the steepest ascent (usually descent) direction. However,
in smaller dimensions, it is a popular algorithm. At each iteration, three steps are taken to improve
a simplex: reflection, extension, and contraction.

When Method="NR", the Newton-Raphson optimization algorithm, also known as Newton’s Method,
is used. Newton-Raphson uses derivatives and a Hessian matrix. The algorithm is included for its
historical significance, but is known to be problematic when starting values are far from the targets,
and calculating and inverting the Hessian matrix can be computationally expensive. As programmed
here, when the Hessian is problematic, it tries to use only the derivatives, and when that fails, a jitter
is applied. Newton-Raphson should not be the first choice of the user, and BFGS should always be
preferred.

When Method="PSO", the Standard Particle Swarm Optimization 2007 algorithm is used. A swarm
of particles is moved according to velocity, neighborhood, and the best previous solution. The
neighborhood for each particle is a set of informing particles. PSO is derivative-free. PSO has been
adapted from the psoptim function in package pso.

When Method="Rprop", the approximate gradient is taken for each parameter in each iteration, and
its sign is compared to the approximate gradient in the previous iteration. A weight element in a
weight vector is associated with each approximate gradient. A weight element is multiplied by 1.2
when the sign does not change, or by 0.5 if the sign changes. The weight vector is the step size,
and is constrained to the interval [0.001, 50], and initial weights are 0.0125. This is the resilient
backpropagation algorithm, which is often denoted as the “Rprop-” algorithm of Riedmiller (1994).
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When Method="SGD", a stochastic gradient descent algorithm is used that is designed only for big
data, and gained popularity after successful use in the NetFlix competition. This algorithm has spe-
cial requirements for the Model specification function and the Data list. See the “LaplacesDemon
Tutorial” vignette for more information.

When Method="SOMA", a population of ten particles or individuals moves in the direction of the best
particle, the leader. The leader does not move in each iteration, and a line-search is used for each
non-leader, up to three times the difference in parameter values between each non-leader and leader.
This algorithm is derivative-free and often considered in the family of evolution algorithms. Nu-
merous model evaluations are performed per non-leader per iteration. This algorithm was adapted
from package soma.

When Method="SPG", a Spectral Projected Gradient algorithm is used. SPG is a non-monotone
algorithm that is suitable for high-dimensional models. The approximate gradient is used, but the
Hessian matrix is not. When used with large models, CovEst="Hessian" should be avoided. SPG
has been adapted from the spg function in package BB.

When Method="SR1", the Symmetric Rank-One (SR1) algorithm is used. SR1 is a quasi-Newton
algorithm, and the Hessian matrix is approximated, often without being positive-definite. At the
posterior modes, the true Hessian is usually positive-definite, but this is often not the case during
optimization when the parameters have not yet reached the posterior modes. Other restrictions,
including constraints, often result in the true Hessian being indefinite at the solution. For these
reasons, SR1 often outperforms BFGS. The approximate Hessian is not guaranteed to converge to
the Hessian. When SR1 is used, the approximate Hessian is not used to calculate the final covariance
matrix.

When Method="TR", the Trust Region algorithm of Nocedal and Wright (1999) is used. The TR
algorithm attempts to reach its objective in the fewest number of iterations, is therefore very effi-
cient, as well as safe. The efficiency of TR is attractive when model evaluations are expensive. The
Hessian is approximated each iteration, making TR best suited to models with small to medium
dimensions, say up to a few hundred parameters. TR has been adapted from the trust function in
package trust.

Value

LaplaceApproximation returns an object of class laplace that is a list with the following compo-
nents:

Call This is the matched call of LaplaceApproximation.

Converged This is a logical indicator of whether or not LaplaceApproximation converged
within the specified Iterations according to the supplied Stop.Tolerance
criterion. Convergence does not indicate that the global maximum has been
found, but only that the tolerance was less than or equal to the Stop.Tolerance
criterion.

Covar This covariance matrix is estimated according to the CovEst argument. The
Covar matrix may be scaled and input into the Covar argument of the LaplacesDemon
or PMC function for further estimation, or the diagonal of this matrix may be used
to represent the posterior variance of the parameters, provided the algorithm
converged and matrix inversion was successful. To scale this matrix for use
with Laplace’s Demon or PMC, multiply it by 2.382/d, where d is the number
of initial values.
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Deviance This is a vector of the iterative history of the deviance in the LaplaceApproximation
function, as it sought convergence.

History This is a matrix of the iterative history of the parameters in the LaplaceApproximation
function, as it sought convergence.

Initial.Values This is the vector of initial values that was originally given to LaplaceApproximation
in the parm argument.

LML This is an approximation of the logarithm of the marginal likelihood of the data
(see the LML function for more information). When the model has converged
and sir=TRUE, the NSIS method is used. When the model has converged and
sir=FALSE, the LME method is used. This is the logarithmic form of equation
4 in Lewis and Raftery (1997). As a rough estimate of Kass and Raftery (1995),
the LME-based LML is worrisome when the sample size of the data is less
than five times the number of parameters, and LML should be adequate in most
problems when the sample size of the data exceeds twenty times the number
of parameters (p. 778). The LME is inappropriate with hierarchical models.
However LML is estimated, it is useful for comparing multiple models with the
BayesFactor function.

LP.Final This reports the final scalar value for the logarithm of the unnormalized joint
posterior density.

LP.Initial This reports the initial scalar value for the logarithm of the unnormalized joint
posterior density.

Minutes This is the number of minutes that LaplaceApproximation was running, and
this includes the initial checks as well as drawing posterior samples and creating
summaries.

Monitor When sir=TRUE, a number of independent posterior samples equal to Samples
is taken, and the draws are stored here as a matrix. The rows of the matrix are
the samples, and the columns are the monitored variables.

Posterior When sir=TRUE, a number of independent posterior samples equal to Samples
is taken, and the draws are stored here as a matrix. The rows of the matrix are
the samples, and the columns are the parameters.

Step.Size.Final

This is the final, scalar Step.Size value at the end of the LaplaceApproximation
algorithm.

Step.Size.Initial

This is the initial, scalar Step.Size.

Summary1 This is a summary matrix that summarizes the point-estimated posterior modes.
Uncertainty around the posterior modes is estimated from the covariance matrix.
Rows are parameters. The following columns are included: Mode, SD (Standard
Deviation), LB (Lower Bound), and UB (Upper Bound). The bounds constitute
a 95% probability interval.

Summary2 This is a summary matrix that summarizes the posterior samples drawn with
sampling importance resampling (SIR) when sir=TRUE, given the point-estimated
posterior modes and the covariance matrix. Rows are parameters. The following
columns are included: Mode, SD (Standard Deviation), LB (Lower Bound), and
UB (Upper Bound). The bounds constitute a 95% probability interval.
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Tolerance.Final

This is the last Tolerance of the LaplaceApproximation algorithm.

Tolerance.Stop This is the Stop.Tolerance criterion.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>
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See Also
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Examples

# The accompanying Examples vignette is a compendium of examples.
#################### Load the LaplacesDemon Library #####################
library(LaplacesDemon)

############################## Demon Data ###############################
data(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(log(demonsnacks[,10]+1)))
J <- ncol(X)
for (j in 2:J) X[,j] <- CenterScale(X[,j])

######################### Data List Preparation #########################
mon.names <- "mu[1]"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) {

beta <- rnorm(Data$J)
sigma <- runif(1)
return(c(beta, sigma))
}

MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

########################## Model Specification ##########################
Model <- function(parm, Data)
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{
### Parameters
beta <- parm[Data$pos.beta]
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
parm[Data$pos.sigma] <- sigma
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=mu[1],

yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}

############################ Initial Values #############################
#Initial.Values <- GIV(Model, MyData, PGF=TRUE)
Initial.Values <- rep(0,J+1)

Fit <- LaplaceApproximation(Model, Initial.Values, Data=MyData,
Iterations=100, Method="NM", CPUs=1)

Fit
print(Fit)
#PosteriorChecks(Fit)
#caterpillar.plot(Fit, Parms="beta")
#plot(Fit, MyData, PDF=FALSE)
#Pred <- predict(Fit, Model, MyData, CPUs=1)
#summary(Pred, Discrep="Chi-Square")
#plot(Pred, Style="Covariates", Data=MyData)
#plot(Pred, Style="Density", Rows=1:9)
#plot(Pred, Style="Fitted")
#plot(Pred, Style="Jarque-Bera")
#plot(Pred, Style="Predictive Quantiles")
#plot(Pred, Style="Residual Density")
#plot(Pred, Style="Residuals")
#Levene.Test(Pred)
#Importance(Fit, Model, MyData, Discrep="Chi-Square")

#Fit$Covar is scaled (2.38^2/d) and submitted to LaplacesDemon as Covar.
#Fit$Summary[,1] is submitted to LaplacesDemon as Initial.Values.
#End

LaplacesDemon Laplace’s Demon
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Description

The LaplacesDemon function is the main function of Laplace’s Demon. Given data, a model speci-
fication, and initial values, LaplacesDemon maximizes the logarithm of the unnormalized joint pos-
terior density with MCMC and provides samples of the marginal posterior distributions, deviance,
and other monitored variables.

The LaplacesDemon.hpc function extends LaplacesDemon to parallel chains for multicore or clus-
ter high performance computing.

Usage

LaplacesDemon(Model, Data, Initial.Values, Covar=NULL, Iterations=10000,
Status=100, Thinning=10, Algorithm="MWG", Specs=list(B=NULL),
Debug=list(DB.chol=FALSE, DB.eigen=FALSE, DB.MCSE=FALSE,
DB.Model=TRUE), LogFile="", ...)

LaplacesDemon.hpc(Model, Data, Initial.Values, Covar=NULL,
Iterations=10000, Status=100, Thinning=10, Algorithm="MWG",
Specs=list(B=NULL), Debug=list(DB.chol=FALSE, DB.eigen=FALSE,
DB.MCSE=FALSE, DB.Model=TRUE), LogFile="", Chains=2, CPUs=2,
Type="PSOCK", Packages=NULL, Dyn.libs=NULL)

Arguments

Model This required argument receives the model from a user-defined function that
must be named Model. The user-defined function is where the model is speci-
fied. LaplacesDemon passes two arguments to the model function, parms and
Data, and receives five arguments from the model function: LP (the logarithm of
the unnormalized joint posterior), Dev (the deviance), Monitor (the monitored
variables), yhat (the variables for posterior predictive checks), and parm, the
vector of parameters, which may be constrained in the model function. More
information on the Model specification function may be found in the "Laplaces-
Demon Tutorial" vignette, and the is.model function. Many examples of model
specification functions may be found in the "Examples" vignette.

Data This required argument accepts a list of data. The list of data must contain
mon.names which contains monitored variable names, and must contain parm.names
which contains parameter names. The as.parm.names function may be helpful
for preparing the data, and the is.data function may be helpful for checking
data.

Initial.Values For LaplacesDemon, this argument requires a vector of initial values equal in
length to the number of parameters. For LaplacesDemon.hpc, this argument
also accepts a vector, in which case the same initial values will be applied to
all parallel chains, or the argument accepts a matrix in which each row is a
parallel chain and the number of columns is equal in length to the number of
parameters. When a matrix is supplied for LaplacesDemon.hpc, each parallel
chain begins with its own initial values that are preferably dispersed. For both
LaplacesDemon and LaplacesDemon.hpc, each initial value will be the start-
ing point for an adaptive chain or a non-adaptive Markov chain of a parameter.
Parameters are assumed to be continuous, unless specified to be discrete (see
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dparm below), which is not accepted by all algorithms (see dcrmrf for an alter-
native). If all initial values are set to zero, then Laplace’s Demon will attempt
to optimize the initial values with the LaplaceApproximation function. Af-
ter Laplace’s Demon finishes updating, it may be desired to continue updating
from where it left off. To continue, this argument should receive the last itera-
tion of the previous update. For example, if the output object is called Fit, then
Initial.Values=as.initial.values(Fit). Initial values may be generated
randomly with the GIV function.

Covar This argument defaults to NULL, but may otherwise accept a K × K proposal
covariance matrix (where K is the number of dimensions or parameters), a vari-
ance vector, or a list of covariance matrices (for blockwise sampling in some al-
gorithms). When the model is updated for the first time and prior variance or co-
variance is unknown, then Covar=NULL should be used. Some algorithms require
covariance, some only require variance, and some require neither. Laplace’s De-
mon automatically converts the user input to the required form. Once Laplace’s
Demon has finished updating, it may be desired to continue updating where
it left off, in which case the proposal covariance matrix from the last run can
be input into the next run. The covariance matrix may also be input from the
LaplaceApproximation function, if used.

Iterations This required argument accepts integers larger than 10, and determines the num-
ber of iterations that Laplace’s Demon will update the parameters while search-
ing for target distributions. The required amount of computer memory will in-
crease with Iterations. If computer memory is exceeded, then all will be lost.
The Combine function can be used later to combine multiple updates.

Status This argument accepts an integer between 1 and the number of iterations, and
indicates how often, in iterations, the user would like the status printed to the
screen or log file. Usually, the following is reported: the number of iterations,
the proposal type (for example, multivariate or componentwise, or mixture, or
subset), and LP. For example, if a model is updated for 1,000 iterations and
Status=200, then a status message will be printed at the following iterations:
200, 400, 600, 800, and 1,000.

Thinning This argument accepts integers between 1 and the number of iterations, and
indicates that every nth iteration will be retained, while the other iterations are
discarded. If Thinning=5, then every 5th iteration will be retained. Thinning
is performed to reduce autocorrelation and the number of marginal posterior
samples.

Algorithm This argument accepts the abbreviated name of the MCMC algorithm, which
must appear in quotes. A list of MCMC algorithms appears below in the Details
section, and the abbreviated name is in parenthesis.

Specs This argument defaults to NULL, and accepts a list of specifications for the MCMC
algorithm declared in the Algorithm argument. The specifications associated
with each algorithm may be seen below in the examples, must appear in the
order shown, and are described in the details section below.

Debug This argument accepts a list of logical scalars that control whether or not errors
or warnings are reported due to a try function or non-finite values. List com-
ponents include DB.chol regarding chol, DB.eigen regarding eigen, DB.MCSE
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regarding MCSE, and DB.Model regarding the Model specification function. Er-
rors and warnings should be investigated, but do not necessarily indicate a faulty
Model specification function or a bug in the software. For example, a sam-
pler may make a proposal that would result in a matrix that is not positive
definite, when it should be. This kind of error or warning is acceptable, pro-
vided the sampler handles it correctly by rejecting the proposal, and provided
the Model specification function is not causing the issue. Oftentimes, block-
wise sampling with carefully chosen blocks will mostly or completely eliminate
errors or warnings that occur otherwise in larger, multivariate proposals. Sim-
ilarly, debugged componentwise algorithms tend to provide more information
than multivariate algorithms, since usually the parameter and both its current
and proposed values may be reported. If confident in the Model specifica-
tion function, and errors or warnings are produced frequently that are accept-
able, then consider setting DB.Model=FALSE for cleaner output and faster sam-
pling. If the Model specification function is not faulty and there is a bug in
LaplacesDemon, then please report it with a bug description and reproducible
code on https://github.com/LaplacesDemonR/LaplacesDemon/issues.

LogFile This argument is used to specify a log file name in quotes in the working di-
rectory as a destination, rather than the console, for the output messages of cat
and stop commands. It is helpful to assign a log file name when using multiple
cores, such as with LaplacesDemon.hpc. Doing so allows the user to check the
progress in the log. A number of log files are created, one for each chain, and
one for the overall process.

Chains This argument is required only for LaplacesDemon.hpc, and indicates the num-
ber of parallel chains.

CPUs This argument is required for parallel independent or interactive chains in LaplacesDemon
or LaplacesDemon.hpc, and indicates the number of central processing units
(CPUs) of the computer or cluster. For example, when a user has a quad-core
computer, CPUs=4.

Type This argument defaults to "PSOCK" and uses the Simple Network of Worksta-
tions (SNOW) for parallelization. Alternatively, Type="MPI" may be specified
to use Message Passing Interface (MPI) for parallelization.

Packages This optional argument is for use with parallel independent or interacting chains,
and defaults to NULL. This argument accepts a vector of package names to load
into each parallel chain. If the Model specification depends on any packages,
then these package names need to be in this vector.

Dyn.libs This optional argument is for use with parallel independent or interacting chain,
and defaults to NULL. This argument accepts a vector of the names of dynamic
link libraries (shared objects) to load into each parallel chain. The libraries must
be located in the working directory.

... Additional arguments are unused.

Details

LaplacesDemon offers numerous MCMC algorithms for numerical approximation in Bayesian in-
ference. The algorithms are

https://github.com/LaplacesDemonR/LaplacesDemon/issues


LaplacesDemon 229

• Adaptive Directional Metropolis-within-Gibbs (ADMG)

• Adaptive Griddy-Gibbs (AGG)

• Adaptive Hamiltonian Monte Carlo (AHMC)

• Adaptive Metropolis (AM)

• Adaptive Metropolis-within-Gibbs (AMWG)

• Adaptive-Mixture Metropolis (AMM)

• Affine-Invariant Ensemble Sampler (AIES)

• Componentwise Hit-And-Run Metropolis (CHARM)

• Delayed Rejection Adaptive Metropolis (DRAM)

• Delayed Rejection Metropolis (DRM)

• Differential Evolution Markov Chain (DEMC)

• Elliptical Slice Sampler (ESS)

• Gibbs Sampler (Gibbs)

• Griddy-Gibbs (GG)

• Hamiltonian Monte Carlo (HMC)

• Hamiltonian Monte Carlo with Dual-Averaging (HMCDA)

• Hit-And-Run Metropolis (HARM)

• Independence Metropolis (IM)

• Interchain Adaptation (INCA)

• Metropolis-Adjusted Langevin Algorithm (MALA)

• Metropolis-Coupled Markov Chain Monte Carlo (MCMCMC)

• Metropolis-within-Gibbs (MWG)

• Multiple-Try Metropolis (MTM)

• No-U-Turn Sampler (NUTS)

• Oblique Hyperrectangle Slice Sampler (OHSS)

• Preconditioned Crank-Nicolson (pCN)

• Random Dive Metropolis-Hastings (RDMH)

• Random-Walk Metropolis (RWM)

• Reflective Slice Sampler (RSS)

• Refractive Sampler (Refractive)

• Reversible-Jump (RJ)

• Robust Adaptive Metropolis (RAM)

• Sequential Adaptive Metropolis-within-Gibbs (SAMWG)

• Sequential Metropolis-within-Gibbs (SMWG)

• Slice Sampler (Slice)

• Stochastic Gradient Langevin Dynamics (SGLD)

• Tempered Hamiltonian Monte Carlo (THMC)
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• t-walk (twalk)

• Univariate Eigenvector Slice Sampler (UESS)

• Updating Sequential Adaptive Metropolis-within-Gibbs (USAMWG)

• Updating Sequential Metropolis-within-Gibbs (USMWG)

It is a goal for the documentation in the LaplacesDemon to be extensive. However, details of
MCMC algorithms are best explored online at https://web.archive.org/web/20150206014000/
http://www.bayesian-inference.com/mcmc, as well as in the "LaplacesDemon Tutorial" vi-
gnette, and the "Bayesian Inference" vignette. Algorithm specifications (Specs) are listed below:

• A is used in AFSS, HMCDA, MALA, NUTS, OHSS, and UESS. In MALA, it is the maximum
acceptable value of the Euclidean norm of the adaptive parameters mu and sigma, and the
Frobenius norm of the covariance matrix. In AFSS, HMCDA, NUTS, OHSS, and UESS, it is
the number of initial, adaptive iterations to be discarded as burn-in.

• Adaptive is the iteration in which adaptation begins, and is used in AM, AMM, DRAM,
INCA, and Refractive. Most of these algorithms adapt according to an observed covariance
matrix, and should sample before beginning to adapt.

• alpha.star is the target acceptance rate in MALA and RAM, and is optional in CHARM
and HARM. The recommended value for multivariate proposals is alpha.star=0.234, for
componentwise proposals is alpha.star=0.44, and for MALA is alpha.star=0.574.

• at affects the traverse move in twalk. at=6 is recommended. It helps when some parameters
are highly correlated, and the correlation structure may change through the state-space. The
traverse move is associated with an acceptance rate that decreases as the number of parameters
increases, and is the reason that n1 is used to select a subset of parameters each iteration. If
adjusted, it is recommended to stay in the interval [2,10].

• aw affects the walk move in twalk, and aw=1.5 is recommended. If adjusted, it is recom-
mended to stay in the interval [0.3,2].

• beta is a scale parameter for AIES, and defaults to 2, or an autoregressive parameter for pCN.

• bin.n is the scalar size parameter for a binomial prior distribution of model size for the RJ
algorithm.

• bin.p is the scalar probability parameter for a binomial prior distribution of model size for
the RJ algorithm.

• B is a list of blocked parameters. Each component of the list represents a block of parameters,
and contains a vector in which each element is the position of the associated parameter in
parm.names. This function is optional in the AFSS, AMM, AMWG, ESS, HARM, MWG,
RAM, RWM, Slice, and UESS algorithms. For more information on blockwise sampling, see
the Blocks function.

• Begin indicates the time-period in which to begin updating (filtering or predicting) in the
USAMWG and USMWG algorithms.

• Bounds is used in the Slice algorithm. It is a vector of length two with the lower and upper
boundary of the slice. For continuous parameters, it is often set to negative and positive
infinity, while for discrete parameters it is set to the minimum and maximum discrete values
to be sampled. When blocks are used, this must be supplied as a list with the same number of
list components as the number of blocks.

https://web.archive.org/web/20150206014000/http://www.bayesian-inference.com/mcmc
https://web.archive.org/web/20150206014000/http://www.bayesian-inference.com/mcmc
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• delta is used in HMCDA, MALA, and NUTS. In HMCDA and NUTS, it is the target accep-
tance rate, and the recommended value is 0.65 in HMCDA and 0.6 in NUTS. In MALA, it
is a constant in the bounded drift function, may be in the interval [1e-10,1000], and 1 is the
default.

• Dist is the proposal distribution in RAM, and may either be Dist="t" for t-distributed or
Dist="N" for normally-distributed.

• dparm accepts a vector of integers that indicate discrete parameters. This argument is for use
with the AGG or GG algorithm.

• Dyn is a T × K matrix of dynamic parameters, where T is the number of time-periods and
K is the number of dynamic parameters. Dyn is used by SAMWG, SMWG, USAMWG,
and USMWG. Non-dynamic parameters are updated first in each sampler iteration, then dy-
namic parameters are updated in a random order in each time-period, and sequentially by
time-period.

• epsilon is used in AHMC, HMC, HMCDA, MALA, NUTS, SGLD, and THMC. It is the step-
size in all algorithms except MALA. It is a vector equal in length to the number of parameters
in AHMC, HMC, and THMC. It is a scalar in HMCDA and NUTS. It is either a scalar or a
vector equal in length to the number of iterations in SGLD. When epsilon=NULL in HMCDA
or NUTS (only), a reasonable initial value is found. In MALA, it is a vector of length two.
The first element is the acceptable minimum of adaptive scale sigma, and the second element
is added to the diagonal of the covariance matrix for regularization.

• FC is used in Gibbs and accepts a function that receives two arguments: the vector of all
parameters and the list of data (similar to the Model specification function). FC must return
the updated vector of all parameters. The user specifies FC to calculate the full conditional
distribution of one or more parameters.

• file is the quoted name of a numeric matrix of data, without headers, for SGLD. The big data
set must be a .csv file. This matrix has Nr rows and Nc columns. Each iteration, SGLD will
randomly select a block of rows, where the number of rows is specified by the size argument.

• Fit is an object of class demonoid in the USAMWG and USMWG algorithms. Posterior
samples before the time-period specified in the Begin argument are not updated, and are used
instead from Fit.

• gamma controls the step size in DEMC or the decay of adaptation in MALA and RAM. In
DEMC, it is positive and defaults to 2.38/

√
2J when NULL, where J is the length of initial

values. For RAM, it is in the interval (0.5,1], and 0.66 is recommended. For MALA, it is in
the interval (1,Iterations), and defaults to 1.

• Grid accepts either a vector or a list of vectors of evenly-spaced points on a grid for the AGG
or GG algorithm. When the argument is a vector, the same grid is applied to all parameters.
When the argument is a list, each component in the list has a grid that is applied to the corre-
sponding parameter. The algorithm will evaluate each continuous parameter at the latest value
plus each point in the grid, or each discrete parameter (see dparm) at each grid point (which
should be each discrete value).

• K is a scalar number of proposals in MTM.
• L is a scalar number of leapfrog steps in AHMC, HMC, and THMC. When L=1, the algorithm

reduces to Langevin Monte Carlo (LMC).
• lambda is used in HMCDA and MCMCMC. In HMCDA, it is a scalar trajectory length. In

MCMCMC, it is either a scalar that controls temperature spacing, or a vector of temperature
spacings.
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• Lmax is a scalar maximum for L (see above) in HMCDA and NUTS.

• m is used in the AFSS, AHMC, HMC, Refractive, RSS, Slice, THMC, and UESS algorithms.
In AHMC, HMC, and THMC, it is a J × J mass matrix for J initial values. In AFSS and
UESS, it is a scalar, and is the maximum number of steps for creating the slice interval. In
Refractive and RSS, it is a scalar, and is the number of steps to take per iteration. In Slice, it is
either a scalar or a list with as many list components as blocks. It must be an integer in [1,Inf],
and indicates the maximum number of steps for creating the slice interval.

• mu is a vector that is equal in length to the initial values. This vector will be used as the
mean of the proposal distribution, and is usually the posterior mode of a previously-updated
LaplaceApproximation.

• MWG is used in Gibbs to specify a vector of parameters that are to receive Metropolis-within-
Gibbs updates. Each element is an integer that indicates the parameter.

• Nc is either the number of (un-parallelized) parallel chains in DEMC (and must be at least 3)
or the number of columns of big data in SGLD.

• Nr is the number of rows of big data in SGLD.

• n is the number of previous iterations in ADMG, AFSS, AMM, AMWG, OHSS, RAM, and
UESS.

• n1 affects the size of the subset of each set of points to adjust, and is used in twalk. It relates to
the number of parameters, and n1=4 is recommended. If adjusted, it is recommended to stay
in the interval [2,20].

• parm.p is a vector of probabilities for parameter selection in the RJ algorithm, and must be
equal in length to the number of initial values.

• r is a scalar used in the Refractive algorithm to indicate the ratio between r1 and r2.

• Periodicity specifies how often in iterations the adaptive algorithm should adapt, and is used
by AHMC, AM, AMM, AMWG, DRAM, INCA, SAMWG, and USAMWG. If Periodicity=10,
then the algorithm adapts every 10th iteration. A higher Periodicity is associated with an
algorithm that runs faster, because it does not have to calculate adaptation as often, though the
algorithm adapts less often to the target distributions, so it is a trade-off. It is recommended to
use the lowest value that runs fast enough to suit the user, or provide sufficient adaptation.

• selectable is a vector of indicators of whether or not a parameter is selectable for variable
selection in the RJ algorithm. Non-selectable parameters are assigned a zero, and are always
in the model. Selectable parameters are assigned a one. This vector must be equal in length to
the number of initial values.

• selected is a vector of indicators of whether or not each parameter is selected when the RJ
algorithm begins, and must be equal in length to the number of initial values.

• SIV stands for secondary initial values and is used by twalk. SIV must be the same length
as Initial.Values, and each element of these two vectors must be unique from each other,
both before and after being passed to the Model function. SIV defaults to NULL, in which case
values are generated with GIV.

• size is the number of rows of big data to be read into SGLD each iteration.

• smax is the maximum allowable tuning parameter sigma, the standard deviation of the condi-
tional distribution, in the AGG algorithm.
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• Temperature is used in the THMC algorithm to heat up the momentum in the first half of
the leapfrog steps, and then cool down the momentum in the last half. Temperature must be
positive. When greater than 1, THMC should explore more diffuse distributions, and may be
helpful with multimodal distributions.

• Type is used in the Slice algorithm. It is either a scalar or a list with the same number of list
components as blocks. This accepts "Continuous" for continuous parameters, "Nominal"
for discrete parameters that are unordered, and "Ordinal" for discrete parameters that are
ordered.

• w is used in AFSS, AMM, DEMC, Refractive, RSS, and Slice. It is a mixture weight for both
the AMM and DEMC algorithms, and in these algorithms it is in the interval (0,1]. For AMM,
it is recommended to use w=0.05, as per Roberts and Rosenthal (2009). The two mixture
components in AMM are adaptive multivariate and static/symmetric univariate proposals. The
mixture is determined at each iteration with mixture weight w. In the AMM algorithm, a
higher value of w is associated with more static/symmetric univariate proposals, and a lower
w is associated with more adaptive multivariate proposals. AMM will be unable to include
the multivariate mixture component until it has accumulated some history, and models with
more parameters will take longer to be able to use adaptive multivariate proposals. In DEMC,
it indicates the probability that each iteration uses a snooker update, rather than a projection
update, and the recommended default is w=0.1. In the Refractive algorithm, w is a scalar step
size parameter. In AFSS, RSS, and the Slice algorithms, this is a step size interval for creating
the slice interval. In AFSS and RSS, a scalar or vector equal in length the number of initial
values is accepted. In Slice, a scalar or a list with a number of list components equal to the
number of blocks is accepted.

• Z accepts a T × J matrix or T × J × Nc array of thinned samples for T thinned iterations,
J parameters, and Nc chains for DEMC. Z defaults to NULL. The matrix of thinned posterior
samples from a previous run may be used, in which case the samples are copied across the
chains.

Value

LaplacesDemon returns an object of class demonoid, and LaplacesDemon.hpc returns an object of
class demonoid.hpc that is a list of objects of class demonoid, where the number of components in
the list is the number of parallel chains. Each object of class demonoid is a list with the following
components:

Acceptance.Rate

This is the acceptance rate of the MCMC algorithm, indicating the percentage
of iterations in which the proposals were accepted. For more information on
acceptance rates, see the AcceptanceRate function.

Algorithm This reports the specific algorithm used.

Call This is the matched call of LaplacesDemon.

Covar This stores the K × K proposal covariance matrix (where K is the dimension
or number of parameters), variance vector, or list of covariance matrices. If
variance or covariance is used for adaptation, then this covariance is returned.
Otherwise, the variance of the samples of each parameter is returned. If the
model is updated in the future, then this vector, matrix, or list can be used to
start the next update where the last update left off. Only the diagonal of this
matrix is reported in the associated print function.
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CovarDHis This N × K matrix stores the diagonal of the proposal covariance matrix of
each adaptation in each of N rows for K dimensions, where the dimension
is the number of parameters or length of the initial values vector. The proposal
covariance matrix should change less over time. An exception is that the AHMC
algorithm stores an algorithm specification here, which is not the diagonal of the
proposal covariance matrix.

Deviance This is a vector of the deviance of the model, with a length equal to the number
of thinned samples that were retained. Deviance is useful for considering model
fit, and is equal to the sum of the log-likelihood for all rows in the data set, which
is then multiplied by negative two.

DIC1 This is a vector of three values: Dbar, pD, and DIC. Dbar is the mean deviance,
pD is a measure of model complexity indicating the effective number of pa-
rameters, and DIC is the Deviance Information Criterion, which is a model fit
statistic that is the sum of Dbar and pD. DIC1 is calculated over all retained
samples. Note that pD is calculated as var(Deviance)/2 as in Gelman et al.
(2004).

DIC2 This is identical to DIC1 above, except that it is calculated over only the samples
that were considered by the BMK.Diagnostic to be stationary for all parameters.
If stationarity (or a lack of trend) is not estimated for all parameters, then DIC2
is set to missing values.

Initial.Values This is the vector of Initial.Values, which may have been optimized with the
IterativeQuadrature or LaplaceApproximation function.

Iterations This reports the number of Iterations for updating.

LML This is an approximation of the logarithm of the marginal likelihood of the
data (see the LML function for more information). LML is estimated only with
stationary samples, and only with a non-adaptive algorithm, including Adap-
tive Griddy-Gibbs (AGG), Affine-Invariant Ensemble Sampler (AIES), Com-
ponentwise Hit-And-Run (CHARM), Delayed Rejection Metropolis (DRM),
Elliptical Slice Sampling (ESS), Gibbs Sampler (Gibbs), Griddy-Gibbs (GG),
Hamiltonian Monte Carlo (HMC), Hit-And-Run Metropolis (HARM), Inde-
pendence Metropolis (IM), Metropolis-Coupled Markov Chain Monte Carlo
(MCMCMC), Metropolis-within-Gibbs (MWG), Multiple-Try Metropolis, No-
U-Turn Sampler (NUTS), Random Dive Metropolis-Hastings (RDMH), Random-
Walk Metropolis (RWM), Reflective Slice Sampler (RSS), Refractive Sampler
(Refractive), Reversible-Jump (RJ), Sequential Metropolis-within-Gibbs (SMWG),
Slice Sampler (Slice), Stochastic Gradient Langevin Dynamics (SGLD), Tem-
pered Hamiltonian Monte Carlo (THMC), or t-walk (twalk). LML is estimated
with nonparametric self-normalized importance sampling (NSIS), given LL and
the marginal posterior samples of the parameters. LML is useful for comparing
multiple models with the BayesFactor function.

Minutes This indicates the number of minutes that LaplacesDemon was running, and
includes the initial checks as well as time it took the LaplaceApproximation
function, assessing stationarity, effective sample size (ESS), and creating sum-
maries.

Model This contains the model specification Model.
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Monitor This is a vector or matrix of one or more monitored variables, which are vari-
ables that were specified in the Model function to be observed as chains (or
Markov chains, if Adaptive=0), but that were not deviance or parameters.

Parameters This reports the number of parameters.

Posterior1 This is a matrix of marginal posterior distributions composed of thinned sam-
ples, with a number of rows equal to the number of thinned samples and a num-
ber of columns equal to the number of parameters. This matrix includes all
thinned samples.

Posterior2 This is a matrix equal to Posterior1, except that rows are included only if sta-
tionarity (a lack of trend) is indicated by the BMK.Diagnostic for all parameters.
If stationarity did not occur, then this matrix is missing.

Rec.BurnIn.Thinned

This is the recommended burn-in for the thinned samples, where the value indi-
cates the first row that was stationary across all parameters, and previous rows
are discarded as burn-in. Samples considered as burn-in are discarded because
they do not represent the target distribution and have not adequately forgotten
the initial value of the chain (or Markov chain, if Adaptive=0).

Rec.BurnIn.UnThinned

This is the recommended burn-in for all samples, in case thinning will not be
necessary.

Rec.Thinning This is the recommended value for the Thinning argument according to the
autocorrelation in the thinned samples, and it is limited to the interval [1,1000].

Specs This is an optional list of algorithm specifications.

Status This is the value in the Status argument.

Summary1 This is a matrix that summarizes the marginal posterior distributions of the pa-
rameters, deviance, and monitored variables over all samples in Posterior1.
The following summary statistics are included: mean, standard deviation, MCSE
(Monte Carlo Standard Error), ESS is the effective sample size due to autocor-
relation, and finally the 2.5%, 50%, and 97.5% quantiles are reported. MCSE is
essentially a standard deviation around the marginal posterior mean that is due
to uncertainty associated with using MCMC. The acceptable size of the MCSE
depends on the acceptable uncertainty associated around the marginal poste-
rior mean. Laplace’s Demon prefers to continue updating until each MCSE is
less than 6.27% of each marginal posterior standard deviation (see the MCSE and
Consort functions). The default IMPS method is used. Next, the desired preci-
sion of ESS depends on the user’s goal, and Laplace’s Demon prefers to con-
tinue until each ESS is at least 100, which should be enough to describe 95%
boundaries of an approximately Gaussian distribution (see the ESS for more in-
formation).

Summary2 This matrix is identical to the matrix in Summary1, except that it is calculated
only on the stationary samples found in Posterior2. If universal stationarity
was not estimated for the parameters, then this matrix is set to missing values.

Thinned.Samples

This is the number of thinned samples that were retained.

Thinning This is the value of the Thinning argument.
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See Also
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Examples

# The accompanying Examples vignette is a compendium of examples.
#################### Load the LaplacesDemon Library #####################
library(LaplacesDemon)

############################## Demon Data ###############################
data(demonsnacks)
y <- log(demonsnacks$Calories)

http://hdl.handle.net/1807/31955
http://hdl.handle.net/1807/31955
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X <- cbind(1, as.matrix(log(demonsnacks[,c(1,4,10)]+1)))
J <- ncol(X)
for (j in 2:J) X[,j] <- CenterScale(X[,j])

######################### Data List Preparation #########################
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) {

beta <- rnorm(Data$J)
sigma <- runif(1)
return(c(beta, sigma))
}

MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

########################## Model Specification ##########################
Model <- function(parm, Data)

{
### Parameters
beta <- parm[Data$pos.beta]
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
parm[Data$pos.sigma] <- sigma
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,

yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}

#library(compiler)
#Model <- cmpfun(Model) #Consider byte-compiling for more speed

set.seed(666)

############################ Initial Values #############################
Initial.Values <- GIV(Model, MyData, PGF=TRUE)

###########################################################################
# Examples of MCMC Algorithms #
###########################################################################

#################### Automated Factor Slice Sampler #####################
Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,

Covar=NULL, Iterations=1000, Status=100, Thinning=1,
Algorithm="AFSS", Specs=list(A=Inf, B=NULL, m=100, n=0, w=1))

Fit
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print(Fit)
#Consort(Fit)
#plot(BMK.Diagnostic(Fit))
#PosteriorChecks(Fit)
#caterpillar.plot(Fit, Parms="beta")
#BurnIn <- Fit$Rec.BurnIn.Thinned
#plot(Fit, BurnIn, MyData, PDF=FALSE)
#Pred <- predict(Fit, Model, MyData, CPUs=1)
#summary(Pred, Discrep="Chi-Square")
#plot(Pred, Style="Covariates", Data=MyData)
#plot(Pred, Style="Density", Rows=1:9)
#plot(Pred, Style="ECDF")
#plot(Pred, Style="Fitted")
#plot(Pred, Style="Jarque-Bera")
#plot(Pred, Style="Predictive Quantiles")
#plot(Pred, Style="Residual Density")
#plot(Pred, Style="Residuals")
#Levene.Test(Pred)
#Importance(Fit, Model, MyData, Discrep="Chi-Square")

############# Adaptive Directional Metropolis-within-Gibbs ##############
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="ADMG", Specs=list(n=0, Periodicity=50))

######################## Adaptive Griddy-Gibbs ##########################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="AGG", Specs=list(Grid=GaussHermiteQuadRule(3)$nodes,
# dparm=NULL, smax=Inf, CPUs=1, Packages=NULL, Dyn.libs=NULL))

################## Adaptive Hamiltonian Monte Carlo #####################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="AHMC", Specs=list(epsilon=0.02, L=2, m=NULL,
# Periodicity=10))

########################## Adaptive Metropolis ##########################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="AM", Specs=list(Adaptive=500, Periodicity=10))

################### Adaptive Metropolis-within-Gibbs ####################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="AMWG", Specs=list(B=NULL, n=0, Periodicity=50))

###################### Adaptive-Mixture Metropolis ######################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="AMM", Specs=list(Adaptive=500, B=NULL, n=0,
# Periodicity=10, w=0.05))
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################### Affine-Invariant Ensemble Sampler ###################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="AIES", Specs=list(Nc=2*length(Initial.Values), Z=NULL,
# beta=2, CPUs=1, Packages=NULL, Dyn.libs=NULL))

################# Componentwise Hit-And-Run Metropolis ##################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="CHARM", Specs=NULL)

########### Componentwise Hit-And-Run (Adaptive) Metropolis #############
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="CHARM", Specs=list(alpha.star=0.44))

################# Delayed Rejection Adaptive Metropolis #################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="DRAM", Specs=list(Adaptive=500, Periodicity=10))

##################### Delayed Rejection Metropolis ######################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="DRM", Specs=NULL)

################## Differential Evolution Markov Chain ##################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="DEMC", Specs=list(Nc=3, Z=NULL, gamma=NULL, w=0.1))

####################### Elliptical Slice Sampler ########################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="ESS", Specs=list(B=NULL))

############################# Gibbs Sampler #############################
### NOTE: Unlike the other samplers, Gibbs requires specifying a
### function (FC) that draws from full conditionals.
#FC <- function(parm, Data)
# {
# ### Parameters
# beta <- parm[Data$pos.beta]
# sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
# sigma2 <- sigma*sigma
# ### Hyperparameters
# betamu <- rep(0,length(beta))
# betaprec <- diag(length(beta))/1000
# ### Update beta
# XX <- crossprod(Data$X)
# Xy <- crossprod(Data$X, Data$y)
# IR <- backsolve(chol(XX/sigma2 + betaprec), diag(length(beta)))
# btilde <- crossprod(t(IR)) %*% (Xy/sigma2 + betaprec %*% betamu)
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# beta <- btilde + IR %*% rnorm(length(beta))
# return(c(beta,sigma))
# }
##library(compiler)
##FC <- cmpfun(FC) #Consider byte-compiling for more speed
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="Gibbs", Specs=list(FC=FC, MWG=pos.sigma))

############################# Griddy-Gibbs ##############################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="GG", Specs=list(Grid=seq(from=-0.1, to=0.1, len=5),
# dparm=NULL, CPUs=1, Packages=NULL, Dyn.libs=NULL))

####################### Hamiltonian Monte Carlo #########################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="HMC", Specs=list(epsilon=0.001, L=2, m=NULL))

############# Hamiltonian Monte Carlo with Dual-Averaging ###############
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=1, Thinning=1,
# Algorithm="HMCDA", Specs=list(A=500, delta=0.65, epsilon=NULL,
# Lmax=1000, lambda=0.1))

####################### Hit-And-Run Metropolis ##########################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="HARM", Specs=NULL)

################## Hit-And-Run (Adaptive) Metropolis ####################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="HARM", Specs=list(alpha.star=0.234, B=NULL))

######################## Independence Metropolis ########################
### Note: the mu and Covar arguments are populated from a previous Laplace
### Approximation.
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=Fit$Covar, Iterations=1000, Status=100, Thinning=1,
# Algorithm="IM",
# Specs=list(mu=Fit$Summary1[1:length(Initial.Values),1]))

######################### Interchain Adaptation #########################
#Initial.Values <- rbind(Initial.Values, GIV(Model, MyData, PGF=TRUE))
#Fit <- LaplacesDemon.hpc(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="INCA", Specs=list(Adaptive=500, Periodicity=10),
# LogFile="MyLog", Chains=2, CPUs=2, Type="PSOCK", Packages=NULL,
# Dyn.libs=NULL)
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################ Metropolis-Adjusted Langevin Algorithm #################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="MALA", Specs=list(A=1e7, alpha.star=0.574, gamma=1,
# delta=1, epsilon=c(1e-6,1e-7)))

############# Metropolis-Coupled Markov Chain Monte Carlo ###############
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="MCMCMC", Specs=list(lambda=1, CPUs=2, Packages=NULL,
# Dyn.libs=NULL))

####################### Metropolis-within-Gibbs #########################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="MWG", Specs=list(B=NULL))

######################## Multiple-Try Metropolis ########################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="MTM", Specs=list(K=4, CPUs=1, Packages=NULL, Dyn.libs=NULL))

########################## No-U-Turn Sampler ############################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=1, Thinning=1,
# Algorithm="NUTS", Specs=list(A=500, delta=0.6, epsilon=NULL,
# Lmax=Inf))

################# Oblique Hyperrectangle Slice Sampler ##################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="OHSS", Specs=list(A=Inf, n=0))

##################### Preconditioned Crank-Nicolson #####################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="pCN", Specs=list(beta=0.1))

###################### Robust Adaptive Metropolis #######################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="RAM", Specs=list(alpha.star=0.234, B=NULL, Dist="N",
# gamma=0.66, n=0))

################### Random Dive Metropolis-Hastings ####################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="RDMH", Specs=NULL)

########################## Refractive Sampler ###########################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="Refractive", Specs=list(Adaptive=1, m=2, w=0.1, r=1.3))
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########################### Reversible-Jump #############################
#bin.n <- J-1
#bin.p <- 0.2
#parm.p <- c(1, rep(1/(J-1),(J-1)), 1)
#selectable <- c(0, rep(1,J-1), 0)
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="RJ", Specs=list(bin.n=bin.n, bin.p=bin.p,
# parm.p=parm.p, selectable=selectable,
# selected=c(0,rep(1,J-1),0)))

######################## Random-Walk Metropolis #########################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="RWM", Specs=NULL)

######################## Reflective Slice Sampler #######################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="RSS", Specs=list(m=5, w=1e-5))

############## Sequential Adaptive Metropolis-within-Gibbs ##############
#NOTE: The SAMWG algorithm is only for state-space models (SSMs)
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="SAMWG", Specs=list(Dyn=Dyn, Periodicity=50))

################## Sequential Metropolis-within-Gibbs ###################
#NOTE: The SMWG algorithm is only for state-space models (SSMs)
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="SMWG", Specs=list(Dyn=Dyn))

############################# Slice Sampler #############################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=1, Thinning=1,
# Algorithm="Slice", Specs=list(B=NULL, Bounds=c(-Inf,Inf), m=100,
# Type="Continuous", w=1))

################# Stochastic Gradient Langevin Dynamics #################
#NOTE: The Data and Model functions must be coded differently for SGLD.
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=10, Thinning=10,
# Algorithm="SGLD", Specs=list(epsilon=1e-4, file="X.csv", Nr=1e4,
# Nc=6, size=10))

################### Tempered Hamiltonian Monte Carlo ####################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="THMC", Specs=list(epsilon=0.001, L=2, m=NULL,
# Temperature=2))
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############################### t-walk #################################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="twalk", Specs=list(SIV=NULL, n1=4, at=6, aw=1.5))

################# Univariate Eigenvector Slice Sampler #################
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=1000, Status=100, Thinning=1,
# Algorithm="UESS", Specs=list(A=Inf, B=NULL, m=100, n=0))

########## Updating Sequential Adaptive Metropolis-within-Gibbs #########
#NOTE: The USAMWG algorithm is only for state-space model updating
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=100000, Status=100, Thinning=100,
# Algorithm="USAMWG", Specs=list(Dyn=Dyn, Periodicity=50, Fit=Fit,
# Begin=T.m))

############## Updating Sequential Metropolis-within-Gibbs ##############
#NOTE: The USMWG algorithm is only for state-space model updating
#Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,
# Covar=NULL, Iterations=100000, Status=100, Thinning=100,
# Algorithm="USMWG", Specs=list(Dyn=Dyn, Fit=Fit, Begin=T.m))

#End

LaplacesDemon.RAM LaplacesDemon RAM Estimate

Description

This function estimates the random-access memory (RAM) required to update a given model and
data with the LaplacesDemon function.

Warning: Unwise use of this function may crash a computer, so please read the details below.

Usage

LaplacesDemon.RAM(Model, Data, Iterations, Thinning, Algorithm="RWM")

Arguments

Model This is a model specification function. For more information, see LaplacesDemon.

Data This is a list of Data. For more information, see LaplacesDemon.

Iterations This is the number of iterations for which LaplacesDemon would update. For
more information, see LaplacesDemon.

Thinning This is the amount of thinning applied to the chains in LaplacesDemon.For more
information, see LaplacesDemon.

Algorithm This argument accepts the name of the algorithm as a string, as entered in
LaplacesDemon.For more information, see LaplacesDemon.
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Details

The LaplacesDemon.RAM function uses the object.size function to estimate the size in MB of
RAM required to update one chain in LaplacesDemon for a given model and data, and for a number
of iterations and specified thinning. When RAM is exceeded, the computer will crash. This function
can be useful when trying to estimate how many iterations to update a model without crashing the
computer. However, when estimating the required RAM, LaplacesDemon.RAM actually creates
several large objects, such as post (see below). If too many iterations are given as an argument
to LaplacesDemon.RAM, for example, then it will crash the computer while trying to estimate the
required RAM.

The best way to use this function is as follows. First, prepare the model specification and list of data.
Second, observe how much RAM the computer is using at the moment, as well as the maximum
available RAM. The majority of the difference of these two is the amount of RAM the computer may
dedicate to updating the model. Next, use this function with a small number of iterations (important
in some algorithms), and with few thinned samples (important in all algorithms). Note the estimated
RAM. Increase the number of iterations and thinned samples, and again note the RAM. Continue
to increase the number of iterations and thinned samples until, say, arbitrarily within 90% of the
above-mentioned difference in RAM.

The computer operating system uses RAM, as does any other software running at the moment. R is
currently using RAM, and other functions in the LaplacesDemon package, and any other package
that is currently activated, are using RAM. There are numerous small objects that are not included in
the returned list, that use RAM. For example, there may be a scalar called alpha for the acceptance
probability, etc.

One potentially larger object that is not included, and depends on the algorithm, is a matrix used
for estimating LML. Its use occurs with non-adaptive MCMC algorithms, only with enough globally
stationary samples, and only when the ratio of parameters to samples is not excessive. If used, then
the user should create a matrix of the appropriate dimensions and use the object.size function to
estimate the RAM.

If the data is too large for RAM, then consider using either the BigData function or the SGLD
algorithm in LaplacesDemon.

Value

LaplacesDemon.RAM returns a list with several components. Each component is an estimate in MB
for an object. The list has the following components:

Covar This is the estimated size in MB of RAM required for the covariance matrix,
variance vector, or both (some algorithms store both internally, creating one
from the other). Blocked covariance matrices are not considered at this time.

Data This is the estimated size in MB of RAM required for the list of data.

Deviance This is the estimated size in MB of RAM required for the deviance vector.

Initial.Values This is the estimated size in MB of RAM required for the vector of initial values.

Model This is the estimated size in MB of RAM required for the model specification
function.

Monitor This is the estimated size in MB of RAM required for the N×J matrix Monitor,
where N is the number of thinned samples and J is the number of monitored
variables.
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post This is the estimated size in MB of RAM required for a matrix of posterior sam-
ples. This matrix is used in some algorithms, and is not returned by LaplacesDemon.

Posterior1 This is the estimated size in MB of RAM required for the N×J matrix Posterior1,
where N is the number of thinned samples and J is the number of initial values
or parameters.

Posterior2 This is the estimated size in MB of RAM required for the N×J matrix Posterior2,
where N is the number of globally stationary thinned samples and J is the num-
ber of initial values or parameters. Maximum RAM use is assumed here, so the
same N is used, as in Posterior1.

Summary1 This is the estimated size in MB of RAM required for the summary table of all
thinned posterior samples of parameters, deviance, and monitored variables.

Summary2 This is the estimated size in MB of RAM required for the summary table of
all globally stationary thinned posterior samples of parameters, deviance, and
monitored variables.

Total This is the estimated size in MB of RAM required in total to update one chain in
LaplacesDemon for a given model and data, and for a number of iterations and
specified thinning.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

See Also

BigData, LaplacesDemon, LML, and object.size.

Levene.Test Levene’s Test

Description

The Levene.Test function is a Bayesian form of Levene’s test (Levene, 1960) of equality of vari-
ances.

Usage

Levene.Test(x, Method="U", G=NULL, Data=NULL)

Arguments

x This required argument must be an object of class demonoid.ppc, iterquad.ppc,
laplace.ppc, pmc.ppc, or vb.ppc.

Method The method defaults to U for a univariate dependent variable (DV), y. When the
DV is multivariate, Method="C" applies Levene’s test to each column associated
in Y. When Method="R", Levene’s test is applied to each row associated in Y.
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G This argument defaults to NULL, or is required to have the same dimensions as
the DV. For example, if the DV is univariate, then G must have a length equal
to y, which is usually represented with a length of N for the number of records
or T for the number of time-periods. If the DV is multivariate, then G must be
a matrix, like Y, and have the same number of rows and columns. The purpose
of the G argument is to allow the user to specify each element of y or Y to be
in a particular group, so the variance of the groups can be tested. As such,
each element of G must consist of an integer from one to the number of groups
desired to be tested. The reason this test allows this degree of specificity is so
the user can specify groups, such as according to covariate levels. By default, 4
groups are specified, where the first quarter of the records are group 1 and the
last quarter of the records are group 4.

Data This argument is required when the DV is multivariate, hence when Method="C"
or Method="R". The DV is required to be named Y.

Details

This function is a Bayesian form of Levene’s test. Levene’s test is used to assess the probability
of the equality of residual variances in different groups. When residual variance does not differ by
group, it is often called homoscedastic (or homoskedastic) residual variance. Homoskedastic resid-
ual variance is a common assumption. An advantage of Levene’s test to other tests of homoskedastic
residual variance is that Levene’s test does not require normality of the residuals.

The Levene.Test function estimates the test statistic, W , as per Levene’s test. This Bayesian
form, however, estimates W from the observed residuals as W obs, and W from residuals that are
replicated from a homoskedastic process as W rep. Further, W obs and W rep are estimated for each
posterior sample. Finally, the probability that the distribution of W obs is greater than the distribution
of W rep is reported (see below).

Value

The Levene.Test function returns a plot (or for multivariate Y, a series of plots), and a vector with
a length equal to the number of Levene’s tests conducted.

One plot is produced per univariate application of Levene’s test. Each plot shows the test statistic
W, both from the observed process (W.obs as a black density) and the replicated process (W.rep as a
red line). The mean of W.obs is reported, along with its 95% quantile-based probability interval (see
p.interval), the probability p(W obs > W rep), and the indicated results, either homoskedastic or
heteroskedastic.

Each element of the returned vector is the probability p(W obs > W rep). When the probability is
p < 0.025 or p > 0.975, heteroskedastic variance is indicated. Otherwise, the variances of the
groups are assumed not to differ effectively.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to Probability and Statistics, p.
278–292. Stanford University Press: Stanford, CA.

See Also

IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, p.interval, and VariationalBayes.

Examples

#First, update the model with IterativeQuadrature, LaplaceApproximation,
# LaplacesDemon, PMC, or VariationalBayes.
#Then, use the predict function, creating, say, object Pred.
#Finally:
#Levene.Test(Pred)

LML Logarithm of the Marginal Likelihood

Description

This function approximates the logarithm of the marginal likelihood (LML), where the marginal
likelihood is also called the integrated likelihood or the prior predictive distribution of y in Bayesian
inference. The marginal likelihood is

p(y) =
∫

p(y|Θ)p(Θ)dΘ

The prior predictive distribution indicates what y should look like, given the model, before y has
been observed. The presence of the marginal likelihood of y normalizes the joint posterior dis-
tribution, p(Θ|y), ensuring it is a proper distribution and integrates to one (see is.proper). The
marginal likelihood is the denominator of Bayes’ theorem, and is often omitted, serving as a con-
stant of proportionality. Several methods of approximation are available.

Usage

LML(Model=NULL, Data=NULL, Modes=NULL, theta=NULL, LL=NULL, Covar=NULL,
method="NSIS")

Arguments

Model This is the model specification for the model that was updated either in IterativeQuadrature,
LaplaceApproximation, LaplacesDemon, LaplacesDemon.hpc, or VariationalBayes.
This argument is used only with the LME method.

Data This is the list of data passed to the model specification. This argument is used
only with the LME method.
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Modes This is a vector of the posterior modes (or medians, in the case of MCMC). This
argument is used only with the GD or LME methods.

theta This is a matrix of posterior samples (parameters only), and is specified only
with the GD, HME, or NSIS methods.

LL This is a vector of MCMC samples of the log-likelihood, and is specified only
with the GD, codeHME, or NSIS methods.

Covar This argument accepts the covariance matrix of the posterior modes, and is used
only with the GD or LME methods.

method The method may be "GD", "HME", "LME", or "NSIS", and defaults to "NSIS".
"GD" uses the Gelfand-Dey estimator, "HME" uses the Harmonic Mean Estima-
tor, "LME" uses the Laplace-Metropolis Estimator, and "NSIS" uses nonpara-
metric self-normalized importance sampling (NSIS).

Details

Generally, a user of LaplaceApproximation, LaplacesDemon, LaplacesDemon.hpc, PMC, or VariationalBayes
does not need to use the LML function, because these methods already include it. However, LML may
be called by the user, should the user desire to estimate the logarithm of the marginal likelihood with
a different method, or with non-stationary chains. The LaplacesDemon and LaplacesDemon.hpc
functions only call LML when all parameters are stationary, and only with non-adaptive algorithms.

The GD method, where GD stands for Gelfand-Dey (1994), is a modification of the harmonic mean
estimator (HME) that results in a more stable estimator of the logarithm of the marginal likelihood.
This method is unbiased, simulation-consistent, and usually satisfies the Gaussian central limit
theorem.

The HME method, where HME stands for harmonic mean estimator, of Newton-Raftery (1994) is
the easiest, and therefore fastest, estimation of the logarithm of the marginal likelihood. However,
it is an unreliable estimator and should be avoided, because small likelihood values can overly
influence the estimator, variance is often infinite, and the Gaussian central limit theorem is usually
not satisfied. It is included here for completeness. There is not a function in this package that uses
this method by default. Given N samples, the estimator is 1/[ 1N

∑
N exp(−LL)].

The LME method uses the Laplace-Metropolis Estimator (LME), in which the estimation of the
Hessian matrix is approximated numerically. It is the slowest method here, though it returns an
estimate in more cases than the other methods. The supplied Model specification must be executed
a number of times equal to k2 × 4, where k is the number of parameters. In large dimensions,
this is very slow. The Laplace-Metropolis Estimator is inappropriate with hierarchical models.
The IterativeQuadrature, LaplaceApproximation, and VariationalBayes functions use LME
when it has converged and sir=FALSE, in which case it uses the posterior means or modes, and is
itself Laplace Approximation.

The Laplace-Metropolis Estimator (LME) is the logarithmic form of equation 4 in Lewis and
Raftery (1997). In a non-hierarchical model, the marginal likelihood may easily be approximated
with the Laplace-Metropolis Estimator for model m as

p(y|m) = (2π)dm/2|Σm|1/2p(y|Θm,m)p(Θm|m)

where d is the number of parameters and Σ is the inverse of the negative of the approximated
Hessian matrix of second derivatives.
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As a rough estimate of Kass and Raftery (1995), LME is worrisome when the sample size of the
data is less than five times the number of parameters, and LME should be adequate in most problems
when the sample size of the data exceeds twenty times the number of parameters (p. 778).

The NSIS method is essentially the MarginalLikelihood function in the MargLikArrogance pack-
age. After HME, this is the fastest method available here. The IterativeQuadrature, LaplaceApproximation,
and VariationalBayes functions use NSIS when converged and sir=TRUE. The LaplacesDemon,
LaplacesDemon.hpc, and PMC functions use NSIS. At least 301 stationary samples are required, and
the number of parameters cannot exceed half the number of stationary samples.

Value

LML returns a list with two components:

LML This is an approximation of the logarithm of the marginal likelihood (LML),
which is notoriously difficult to estimate. For this reason, several methods
are provided. The marginal likelihood is useful when comparing models, such
as with Bayes factors in the BayesFactor function. When the method fails,
NA is returned, and it is most likely that the joint posterior is improper (see
is.proper).

VarCov This is a variance-covariance matrix, and is the negative inverse of the Hessian
matrix, if estimated. The GD, HME, and NSIS methods do not estimate VarCov,
and return NA.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Gelfand, A.E. and Dey, D.K. (1994). "Bayesian Model Choice: Asymptotics and Exact Calcula-
tions". Journal of the Royal Statistical Society, Series B 56, p. 501–514.

Kass, R.E. and Raftery, A.E. (1995). "Bayes Factors". Journal of the American Statistical Associa-
tion, 90(430), p. 773–795.

Lewis, S.M. and Raftery, A.E. (1997). "Estimating Bayes Factors via Posterior Simulation with the
Laplace-Metropolis Estimator". Journal of the American Statistical Association, 92, p. 648–655.

Newton, M.A. and Raftery, A.E. (1994). "Approximate Bayesian Inference by the Weighted Like-
lihood Bootstrap". Journal of the Royal Statistical Society, Series B 3, p. 3–48.

See Also

BayesFactor, is.proper, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LaplacesDemon.hpc,
PMC, and VariationalBayes.

Examples

### If a model object were created and called Fit, then:
#
### Applying HME to an object of class demonoid or pmc:
#LML(LL=Fit$Deviance*(-1/2), method="HME")
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#
### Applying LME to an object of class demonoid:
#LML(Model, MyData, Modes=apply(Fit$Posterior1, 2, median), method="LME")
#
### Applying NSIS to an object of class demonoid
#LML(theta=Fit$Posterior1, LL=Fit$Deviance*-(1/2), method="NSIS")
#
### Applying LME to an object of class iterquad:
#LML(Model, MyData, Modes=Fit$Summary1[,1], method="LME")
#
### Applying LME to an object of class laplace:
#LML(Model, MyData, Modes=Fit$Summary1[,1], method="LME")
#
### Applying LME to an object of class vb:
#LML(Model, MyData, Modes=Fit$Summary1[,1], method="LME")

log-log The log-log and complementary log-log functions

Description

The log-log and complementary log-log functions, as well as the inverse functions, are provided.

Usage

cloglog(p)
invcloglog(x)
invloglog(x)
loglog(p)

Arguments

x This is a vector of real values that will be transformed to the interval [0,1].

p This is a vector of probabilities p in the interval [0,1] that will be transformed to
the real line.

Details

The logit and probit links are symmetric, because the probabilities approach zero or one at the same
rate. The log-log and complementary log-log links are asymmetric. Complementary log-log links
approach zero slowly and one quickly. Log-log links approach zero quickly and one slowly. Either
the log-log or complementary log-log link will tend to fit better than logistic and probit, and are
frequently used when the probability of an event is small or large. A mixture of the two links, the
log-log and complementary log-log is often used, where each link is weighted. The reason that logit
is so prevalent is because logistic parameters can be interpreted as odds ratios.

Value

cloglog returns x, invcloglog and invloglog return probability p, and loglog returns x.
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Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

LaplacesDemon

Examples

library(LaplacesDemon)
x <- -5:5
p <- invloglog(x)
x <- loglog(p)

logit The logit and inverse-logit functions

Description

The logit and inverse-logit (also called the logistic function) are provided.

Usage

invlogit(x)
logit(p)

Arguments

x This object contains real values that will be transformed to the interval [0,1].

p This object contains of probabilities p in the interval [0,1] that will be trans-
formed to the real line.

Details

The logit function is the inverse of the sigmoid or logistic function, and transforms a continuous
value (usually probability p) in the interval [0,1] to the real line (where it is usually the logarithm
of the odds). The logit function is log(p/(1− p)).

The invlogit function (called either the inverse logit or the logistic function) transforms a real
number (usually the logarithm of the odds) to a value (usually probability p) in the interval [0,1].
The invlogit function is 1

1+exp(−x) .

If p is a probability, then p
1−p is the corresponding odds, while the logit of p is the logarithm of

the odds. The difference between the logits of two probabilities is the logarithm of the odds ratio.
The derivative of probability p in a logistic function (such as invlogit) is: d

dx = p(1− p).

In the LaplacesDemon package, it is common to re-parameterize a model so that a parameter that
should be in an interval can be updated from the real line by using the logit and invlogit func-
tions, though the interval function provides an alternative. For example, consider a parameter θ
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that must be in the interval [0,1]. The algorithms in IterativeQuadrature, LaplaceApproximation,
LaplacesDemon, PMC, and VariationalBayes are unaware of the desired interval, and may at-
tempt θ outside of this interval. One solution is to have the algorithms update logit(theta)
rather than theta. After logit(theta) is manipulated by the algorithm, it is transformed via
invlogit(theta) in the model specification function, where θ ∈ [0, 1].

Value

invlogit returns probability p, and logit returns x.

See Also

interval, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, plogis, PMC, qlogis,
and VariationalBayes.

Examples

library(LaplacesDemon)
x <- -5:5
p <- invlogit(x)
x <- logit(p)

LossMatrix Loss Matrix

Description

A loss matrix is useful in Bayesian decision theory for selecting the Bayes action, the optimal
Bayesian decision, when there are a discrete set of possible choices (actions) and a discrete set of
possible outcomes (states of the world). The Bayes action is the action that minimizes expected
loss, which is equivalent to maximizing expected utility.

Usage

LossMatrix(L, p.theta)

Arguments

L This required argument accepts a S × A matrix or S × A × N array of losses,
where S is the number of states of the world, A is the number of actions, and
N is the number of samples. These losses have already been estimated, given a
personal loss function. One or more personal losses has already been estimated
for each combination of possible actions a = 1, . . . , A and possible states s =
1, . . . , S.

p.theta This required argument accepts a S×A matrix or S×A×N array of state prior
probabilities, where S is the number of states of the world, A is the number of
actions, and N is the number of samples. The sum of each column must equal
one.
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Details

Bayesian inference is often tied to decision theory (Bernardo and Smith, 2000), and decision theory
has long been considered the foundations of statistics (Savage, 1954).

Before using the LossMatrix function, the user should have already considered all possible actions
(choices), states of the world (outcomes unknown at the time of decision-making), chosen a loss
function L(θ, α), estimated loss, and elicited prior probabilities p(θ|x).
Although possible actions (choices) for the decision-maker and possible states (outcomes) may be
continuous or discrete, the loss matrix is used for discrete actions and states. An example of a
continuous action may be that a decision-maker has already decided to invest, and the remaining,
current decision is how much to invest. Likewise, an example of continuous states of the world
(outcomes) may be how much profit or loss may occur after a given continuous unit of time.

The coded example provided below is taken from Berger (1985, p. 6-7) and described here. The set
of possible actions for a decision-maker is to invest in bond ZZZ or alternatively in bond XXX, as
it is called here. A real-world decision should include a mutually exhaustive list of actions, such as
investing in neither, but perhaps the decision-maker has already decided to invest and narrowed the
options down to these two bonds.

The possible states of the world (outcomes unknown at the time of decision-making) are considered
to be two states: either the chosen bond will not default or it will default. Here, the loss function is
a negative linear identity of money, and hence a loss in element L[1,1] of -500 is a profit of 500,
while a loss in L[2,1] of 1,000 is a loss of 1,000.

The decision-maker’s dilemma is that bond ZZZ may return a higher profit than bond XXX, however
there is an estimated 10% chance, the prior probability, that bond ZZZ will default and return a
substantial loss. In contrast, bond XXX is considered to be a sure-thing and return a steady but
smaller profit. The Bayes action is to choose the first action and invest in bond ZZZ, because it
minimizes expected loss, even though there is a chance of default.

A more realistic application of a loss matrix may be to replace the point-estimates of loss with
samples given uncertainty around the estimated loss, and replace the point-estimates of the prior
probability of each state with samples given the uncertainty of the probability of each state. The
loss function used in the example is intuitive, but a more popular monetary loss function may be
− log(E(W |R)), the negative log of the expectation of wealth, given the return. There are many
alternative loss functions.

Although isolated decision-theoretic problems exist such as the provided example, decision the-
ory may also be applied to the results of a probability model (such as from IterativeQuadrature,
LaplaceApproximation, LaplacesDemon, PMC), or VariationalBayes, contingent on how a decision-
maker is considering to use the information from the model. The statistician may pass the results
of a model to a client, who then considers choosing possible actions, given this information. The
statistician should further assist the client with considering actions, states of the world, then loss
functions, and finally eliciting the client’s prior probabilities (such as with the elicit function).

When the outcome is finally observed, the information from this outcome may be used to refine the
priors of the next such decision. In this way, Bayesian learning occurs.

Value

The LossMatrix function returns a list with two components:

BayesAction This is a numeric scalar that indicates the action that minimizes expected loss.
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E.Loss This is a vector of expected losses, one for each action.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Berger, J.O. (1985). "Statistical Decision Theory and Bayesian Analysis", Second Edition. Springer:
New York, NY.

Bernardo, J.M. and Smith, A.F.M. (2000). "Bayesian Theory". John Wiley \& Sons: West Sussex,
England.

Savage, L.J. (1954). "The Foundations of Statistics". John Wiley \& Sons: West Sussex, England.

See Also

elicit, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, and VariationalBayes.

Examples

library(LaplacesDemon)
### Point-estimated loss and state probabilities
L <- matrix(c(-500,1000,-300,-300), 2, 2)
rownames(L) <- c("s[1]: !Defaults","s[2]: Defaults")
colnames(L) <- c("a[1]: Buy ZZZ", "a[2]: Buy XXX")
L
p.theta <- matrix(c(0.9, 0.1, 1, 0), 2, 2)
Fit <- LossMatrix(L, p.theta)

### Point-estimated loss and samples of state probabilities
L <- matrix(c(-500,1000,-300,-300), 2, 2)
rownames(L) <- c("s[1]: Defaults","s[2]: !Defaults")
colnames(L) <- c("a[1]: Buy ZZZ", "a[2]: Buy XXX")
L
p.theta <- array(runif(4000), dim=c(2,2,1000)) #Random probabilities,
#just for a quick example. And, since they must sum to one:
for (i in 1:1000) {

p.theta[,,i] <- p.theta[,,i] / matrix(colSums(p.theta[,,i]),
dim(p.theta)[1], dim(p.theta)[2], byrow=TRUE)}

Fit <- LossMatrix(L, p.theta)
Fit

### Point-estimates of loss may be replaced with samples as well.
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LPL.interval Lowest Posterior Loss Interval

Description

This function returns the Lowest Posterior Loss (LPL) interval for one parameter, given samples
from the density of its prior distribution and samples of the posterior distribution.

Usage

LPL.interval(Prior, Posterior, prob=0.95, plot=FALSE, PDF=FALSE)

Arguments

Prior This is a vector of samples of the prior density.

Posterior This is a vector of posterior samples.

prob This is a numeric scalar in the interval (0,1) giving the Lowest Posterior Loss
(LPL) interval, and defaults to 0.95, representing a 95% LPL interval.

plot Logical. When plot=TRUE, two plots are produced. The top plot shows the
expected posterior loss. The LPL region is shaded black, and the area outside
the region is gray. The bottom plot shows LPL interval of θ on the kernel density
of θ. Again, the LPL region is shaded black, and the outside area is gray. A
vertical, red, dotted line is added at zero for both plots. The plot argument
defaults to FALSE. The plot treats the distribution as if it were unimodal; disjoint
regions are not estimated here. If multimodality should result in disjoint regions,
then consider using HPD intervals in the p.interval function.

PDF Logical. When PDF=TRUE, and only when plot=TRUE, plots are saved as a .pdf
file in the working directory.

Details

The Lowest Posterior Loss (LPL) interval (Bernardo, 2005), or LPLI, is a probability interval based
on intrinsic discrepancy loss between prior and posterior distributions. The expected posterior loss
is the loss associated with using a particular value θi ∈ θ of the parameter as the unknown true value
of θ (Bernardo, 2005). Parameter values with smaller expected posterior loss should always be
preferred. The LPL interval includes a region in which all parameter values have smaller expected
posterior loss than those outside the region.

Although any loss function could be used, the loss function should be invariant under reparam-
eterization. Any intrinsic loss function is invariant under reparameterization, but not necessarily
invariant under one-to-one transformations of data x. When a loss function is also invariant under
one-to-one transformations, it is usually also invariant when reduced to a sufficient statistic. Only
an intrinsic loss function that is invariant when reduced to a sufficient statistic should be considered.

The intrinsic discrepancy loss is easily a superior loss function to the overused quadratic loss func-
tion, and is more appropriate than other popular measures, such as Hellinger distance, Kullback-
Leibler divergence (KLD), and Jeffreys logarithmic divergence. The intrinsic discrepancy loss is
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also an information-theory related divergence measure. Intrinsic discrepancy loss is a symmetric,
non-negative loss function, and is a continuous, convex function. Intrinsic discrepancy loss was
introduced by Bernardo and Rueda (2002) in a different context: hypothesis testing. Formally, it is:

δf(p2, p1) = min[κ(p2|p1), κ(p1|p2)]

where δ is the discrepancy, κ is the KLD, and p1 and p2 are the probability distributions. The
intrinsic discrepancy loss is the loss function, and the expected posterior loss is the mean of the
directed divergences.

The LPL interval is also called an intrinsic credible interval or intrinsic probability interval, and the
area inside the interval is often called an intrinsic credible region or intrinsic probability region.

In practice, whether a reference prior or weakly informative prior (WIP) is used, the LPL interval
is usually very close to the HPD interval, though the posterior losses may be noticeably different.
If LPL used a zero-one loss function, then the HPD interval would be produced. An advantage
of the LPL interval over HPD interval (see p.interval) is that the LPL interval is invariant to
reparameterization. This is due to the invariant reparameterization property of reference priors. The
quantile-based probability interval is also invariant to reparameterization. The LPL interval enjoys
the same advantage as the HPD interval does over the quantile-based probability interval: it does
not produce equal tails when inappropriate.

Compared with probability intervals, the LPL interval is slightly less convenient to calculate. Al-
though the prior distribution is specified within the Model specification function, the user must
specify it for the LPL.interval function as well. A comparison of the quantile-based probabil-
ity interval, HPD interval, and LPL interval is available here: https://web.archive.org/web/
20150214090353/http://www.bayesian-inference.com/credible.

Value

A matrix is returned with one row and two columns. The row represents the parameter and the
column names are "Lower" and "Upper". The elements of the matrix are the lower and upper
bounds of the LPL interval.

Author(s)

Statisticat, LLC.

References

Bernardo, J.M. (2005). "Intrinsic Credible Regions: An Objective Bayesian Approach to Interval
Estimation". Sociedad de Estadistica e Investigacion Operativa, 14(2), p. 317–384.

Bernardo, J.M. and Rueda, R. (2002). "Bayesian Hypothesis Testing: A Reference Approach".
International Statistical Review, 70, p. 351–372.

See Also

KLD, p.interval, LaplacesDemon, and PMC.

https://web.archive.org/web/20150214090353/http://www.bayesian-inference.com/credible
https://web.archive.org/web/20150214090353/http://www.bayesian-inference.com/credible
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Examples

library(LaplacesDemon)
#Although LPL is intended to be applied to output from LaplacesDemon or
#PMC, here is an example in which p(theta) ~ N(0,100), and
#p(theta | y) ~ N(1,10), given 1000 samples.
theta <- rnorm(1000,1,10)
LPL.interval(Prior=dnorm(theta,0,100^2), Posterior=theta, prob=0.95,

plot=TRUE)
#A more practical example follows, but it assumes a model has been
#updated with LaplacesDemon or PMC, the output object is called Fit, and
#that the prior for the third parameter is normally distributed with
#mean 0 and variance 100:
#temp <- Fit$Posterior2[,3]
#names(temp) <- colnames(Fit$Posterior2)[3]
#LPL.interval(Prior=dnorm(temp,0,100^2), Posterior=temp, prob=0.95,
# plot=TRUE, PDF=FALSE)

Math Math Utility Functions

Description

These are utility functions for math.

Usage

GaussHermiteQuadRule(N)
Hermite(x, N, prob=TRUE)
logadd(x, add=TRUE)
partial(Model, parm, Data, Interval=1e-6, Method="simple")

Arguments

N This required argument accepts a positive integer that indicates the number of
nodes.

x This is a numeric vector.

add Logical. This defaults to TRUE, in which case log(x + y) is performed. Other-
wise, log(x− y) is performed.

Model This is a model specification function. For more information, see LaplacesDemon.

parm This is a vector parameters.

prob Logical. This defaults to TRUE, which uses the probabilist’s kernel for the Her-
mite polynomial. Otherwise, FALSE uses the physicist’s kernel.

Data This is a list of data. For more information, see LaplacesDemon.

Interval This is the interval of numeric differencing.
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Method This accepts a quoted string, and defaults to "simple", which is finite-differencing.
Alternatively Method="Richardson" uses Richardson extrapolation, which is
more accurate, but takes longer to calculate. Another method called automatic
differentiation is currently unsupported, but is even more accurate, and takes
even longer to calculate.

Details

The GaussHermiteQuadRule function returns nodes and weights for univariate Gauss-Hermite
quadrature. The nodes and weights are obtained from a tridiagonal eigenvalue problem. Weights
are calculated from the physicist’s (rather than the probabilist’s) kernel. This has been adapted
from the GaussHermite function in the pracma package. The GaussHermiteCubeRule function is
a multivariate version. This is used in the IterativeQuadrature function.

The Hermite function evaluates a Hermite polynomial of degree N at x, using either the prob-
abilist’s (prob=TRUE) or physicist’s (prob=FALSE) kernel. This function was adapted from the
hermite function in package EQL.

The logadd function performs addition (or subtraction) when the terms are logarithmic. The equa-
tions are:

log(x+ y) = log(x) + log(1 + exp(log(y)− log(x)))

log(x− y) = log(x) + log(1− exp(log(y)− log(x)))

The partial function estimates partial derivatives of parameters in a model specification with data,
using either forward finite-differencing or Richardson extrapolation. In calculus, a partial derivative
of a function of several variables is its derivative with respect to one of those variables, with the
others held constant. Related functions include Jacobian which returns a matrix of first-order
partial derivatives, and Hessian, which returns a matrix of second-order partial derivatives of the
model specification function with respect to its parameters. The partial function is not intended
to be called by the user, but is used by other functions. This is essentially the grad function in the
numDeriv package, but defaulting to forward finite-differencing with a smaller interval.

Value

logadd returns the result of log(x+ y) or log(x− y).

partial returns a vector of partial derivatives.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

GaussHermiteCubeRule, Hessian, IterativeQuadrature, Jacobian, LaplaceApproximation,
LaplacesDemon, and VariationalBayes.
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Matrices Matrix Utility Functions

Description

These are utility functions for working with matrices.

Usage

as.indicator.matrix(x)
as.inverse(x)
as.parm.matrix(x, k, parm, Data, a=-Inf, b=Inf, restrict=FALSE, chol=FALSE)
as.positive.definite(x)
as.positive.semidefinite(x)
as.symmetric.matrix(x, k=NULL)
is.positive.definite(x)
is.positive.semidefinite(x)
is.square.matrix(x)
is.symmetric.matrix(x)
Cov2Cor(Sigma)
CovEstim(Model, parm, Data, Method="Hessian")
GaussHermiteCubeRule(N, dims, rule)
Hessian(Model, parm, Data, Interval=1e-6, Method="Richardson")
Jacobian(Model, parm, Data, Interval=1e-6, Method="simple")
logdet(x)
lower.triangle(x, diag=FALSE)
read.matrix(file, header=FALSE, sep=",", nrow=0, samples=0, size=0, na.rm=FALSE)
SparseGrid(J, K)
TransitionMatrix(theta.y=NULL, y.theta=NULL, p.theta=NULL)
tr(x)
upper.triangle(x, diag=FALSE)

Arguments

N This required argument accepts a positive integer that indicates the number of
nodes.

x This is a matrix (though as.symmetric.matrix also accepts vectors).

J This required argument indicates the dimension of the integral and accepts a
positive integer.

k For as.parm.matrix, this is a required argument, indicating the dimension of
the matrix. For as.symmetric.matrix, this is an optional argument that spec-
ifies the dimension of the symmetric matrix. This applies only when x is a
vector. It defaults to NULL, in which case it calculates k <- (-1 + sqrt(1 + 8 *
length(x)))/ 2.

K This required argument indicates the accuracy and accepts a positive integer.
Larger values result in many more integration nodes.
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diag Logical. If TRUE, then the elements in the main diagonal are also returned.

dims This required argument indicates the dimension of the integral and accepts a
positive integer.

Sigma This is a covariance matrix, Σ, and may be entered either as a matrix or vector.

Model This is a model specification function. For more information, see LaplacesDemon.

parm This is a vector of parameters passed to the model specification.

Data This is the list of data passed to the model specification. For more information,
see LaplacesDemon.

a, b These optional arguments allow the elements of x to be bound to the interval
[a, b]. For example, elements of a correlation matrix are in the interval [−1, 1].

restrict Logical. If TRUE, then x[1,1] is restricted to 1. This is useful in multinomial
probit, for example. The variable, LaplacesDemonMatrix, is created in a new
environment, LDEnv so as.parm.matrix can keep track of changes from itera-
tion to iteration.

rule This is an optional argument that accepts a univariate Gauss-Hermite quadrature
rule. Usually, this argument is left empty. A rule may be supplied that differs
from the traditional rule, such as when constraints have been observed, and one
or more nodes and weights were adjusted.

chol Logical. If TRUE, then x is an upper-triangular matrix.

file This is the name of the file from which the numeric data matrix will be imported
or read.

header Logical. When TRUE, the first row of the file must contain names of the columns,
and will be converted to the column names of the numeric matrix. When FALSE,
the first row of the file contains data, not column names.

Interval This accepts a small scalar number for precision.

Method This accepts a quoted string. For Hessian, it defaults to Method="Richardson",
which uses Richardson extrapolation. For Jacobian, it defaults to Method="simple",
which uses finite-differencing. Richardson Richardson extrapolation is more ac-
curate, but slower to calculate. Since error due to finite-differencing propagates
through to higher derivatives, finite-differencing should not be used when ap-
proximating a Hessian matrix. Another method called automatic differentiation
is not currently available here, but should be more accurate, though even slower
to calculate. Another popular alternative is to use the BayesianBootstrap on
the data. For CovEstim, this accepts Method="Hessian", Method="Identity"
(which simply assigns an identity matrix), Method="OPG" (which calculates the
sum of outer products of record-level gradients), or Method="Sandwich", which
is the sandwich estimator and combines the Hessian and OPG estimates.

nrow This is the number of rows of the numeric matrix, and defaults to nrow=0. If the
number is known, the function will perform noticeably faster when it does not
have to check.

p.theta This accepts a matrix of prior probabilities for a transition matrix, and defaults
to NULL. If used, each row must sum to 1.

samples This is the number of samples to take from the numeric matrix. When samples=0,
sampling is not performed and the entire matrix is returned.
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sep This argument indicates a character with which it will separate fields when cre-
ating column vectors. For example, a read a comma-separated file (.csv), use
sep=",".

size This is the batch size to be used only when reading a numeric matrix that is larger
than the available computer memory (RAM), and only when samples is greater
than zero. Sampling of a big data matrix is performed by first determining the
records to keep, and then reading batches, one by one, and keeping the matching
records.

theta.y This accepts a vector of posterior samples of a discrete Markov chain, and de-
faults to NULL. If used, the order of the samples affects the transition probability.

na.rm Logical. When TRUE, rows with missing values are removed from the matrix
after it is read. Rather than removing missing values, the user may consider
imputing missing values inside the model, or before the model with the MISS
function. Examples of within-model imputation may be found in the accompa-
nying "Examples" vignette.

y.theta This accepts a vector of data that are samples of a discrete distribution, and de-
faults to NULL. If used, the order of the samples affects the transition probability.

Details

The as.indicator.matrix function creates an indicator matrix from a vector. This function is
useful for converting a discrete vector into a matrix in which each column represents one of the
discrete values, and each occurence of that value in the related column is indicated by a one, and is
otherwise filled with zeroes. This function is similar to the class.ind function in the nnet package.

The as.inverse function returns the matrix inverse of x. The solve function in base R also returns
the matrix inverse, but solve can return a matrix that is not symmetric, and can fail due to singu-
larities. The as.inverse function tries to use the solve function to return a matrix inverse, and
when it fails due to a singularity, as.inverse uses eigenvalue decomposition (in which eigenvalues
below a tolerance are replaced with the tolerance), and coerces the result to a symmetric matrix.
This is similar to the solvcov function in the fpc package.

The as.parm.matrix function prepares a correlation, covariance, or precision matrix in two impor-
tant ways. First, as.parm.matrix obtains the parameters for the matrix specified in the x argument
by matching the name of the matrix in the x argument with any parameters in parm, given the param-
eter names in the Data listed in parm.names. These obtained parameters are organized into a matrix
as the elements of the upper-triangular, including the diagonal. A copy is made, without the diag-
onal, and the lower-triangular is filled in, completing the matrix. Second, as.parm.matrix checks
for positive-definiteness. If matrix x is positive-definite, then the matrix is stored as a variable called
LaplacesDemonMatrix in a new environment called LDEnv. If matrix x is not positive-definite, then
LaplacesDemonMatrix in LDEnv is sought as a replacement. If this variable exists, then it is used
to replace the matrix. If not, then the matrix is replaced with an identity matrix. Back in the model
specification, after using as.parm.matrix, it is recommended that the user also pass the resulting
matrix back into the parm vector, so the sampler or algorithm knows that the elements of the matrix
have changed.

The as.positive.definite function returns the nearest positive-definite matrix for a matrix that
is square and symmetric (Higham, 2002). This version is intended only for covariance and precision
matrices, and has been optimized for speed. A more extensible function is nearPD in the matrixcalc
package, which is also able to work with correlation matrices, and matrices that are asymmetric.
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The as.positive.semidefinite function iteratively seeks to return a square, symmetric matrix
that is at least positive-semidefinite, by replacing each negative eigenvalue and calculating its pro-
jection. This is intended only for covariance and precision matrices. A similar function is makePsd
in the RTAQ package, though it is not iterative, and returns matrices that fail a logical check with
is.positive.semidefinite.

The as.symmetric.matrix function accepts either a vector or matrix, and returns a symmetric
matrix. In the case of a vector, it can be either all elements of the matrix, or the lower triangular.
In the case of a x being entered as a matrix, this function tolerates non-finite values in one triangle
(say, the lower), as long as the corresponding element is finite in the other (say, the upper) triangle.

The Cov2Cor function converts a covariance matrix into a correlation matrix, and accepts the covari-
ance matrix either in matrix or vector form. This function may be useful inside a model specification
and also with converting posterior draws of the elements of a covariance matrix to a correlation ma-
trix. Cov2Cor is an expanded form of the cov2cor function in the stats package, where Cov2Cor
is also able to accept and return a vectorized matrix.

The CovEstim function estimates a covariance matrix with one of several methods. This is mainly
used by LaplaceApproximation, where the parm argument receives the posterior modes. See the
CovEst argument for more details.

The GaussHermiteCubeRule function returns a matrix of nodes and a vector of weights for a dims-
dimensional integral given N univariate nodes. The number of multivariate nodes will differ from
the number of univariate nodes. This function is for use with multivariate quadrature, often called
cubature. This has been adapted from the multiquad function in the NominalLogisticBiplot pack-
age. The GaussHermiteQuadRule function is a univariate version. A customized univariate rule
may be supplied when constraints necessitate that one or more nodes and weights had to be altered.

The Hessian returns a symmetric, Hessian matrix, which is a matrix of second partial derivatives.
The estimation of the Hessian matrix is approximated numerically using Richardson extrapolation
by default. This is a slow function. This function is not intended to be called by the user, but is
made available here. This is essentially the hessian function from the numDeriv package, adapted
to Laplace’s Demon.

The is.positive.definite function is a logical test of whether or not a matrix is positive-definite.
A k × k symmetric matrix X is positive-definite if all of its eigenvalues are positive (λi > 0, i ∈
k). All main-diagonal elements must be positive. The determinant of a positive-definite matrix
is always positive, so a positive-definite matrix is always nonsingular. Non-symmetric, positive-
definite matrices exist, but are not considered here.

The is.positive.semidefinite function is a logical test of whether or not a matrix is positive-
semidefinite. A kxk symmetric matrix X is positive-semidefinite if all of its eigenvalues are non-
negative (λi ≥ 0, i ∈ k).

The is.square.matrix function is a logical test of whether or not a matrix is square. A square
matrix is a matrix with the same number of rows and columns, and is usually represented as a k×k
matrix X.

The is.symmetric.matrix function is a logical test of whether or not a matrix is symmetric. A
symmetric matrix is a square matrix that is equal to its transpose, X = XT . For example, where i
indexes rows and j indexes columns, Xi,j = Xj,i. This differs from the isSymmetric function in
base R that is inexact, using all.equal.

The Jacobian function estimates the Jacobian matrix, which is a matrix of all first-order par-
tial derivatives of the Model. The Jacobian matrix is estimated by default with forward finite-
differencing, or optionally with Richardson extrapolation. This function is not intended to be called
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by the user, but is made available here. This is essentially the jacobian function from the numDeriv
package, adapted to LaplacesDemon.

The logdet function returns the logarithm of the determinant of a positive-definite matrix via the
Cholesky decomposition. The determinant is a value associated with a square matrix, and was used
historically to determine if a system of linear equations has a unique solution. The term determinant
was introduced by Gauss, where Laplace referred to it as the resultant. When the determinant is
zero, the matrix is singular and non-invertible; there are either no solutions or many solutions. A
unique solution exists when the determinant is non-zero. The det function in base R works well for
small matrices, but can return erroneously return zero in larger matrices. It is better to work with
the log-determinant.

The lower.triangle function returns a vector of the lower triangular elements of a matrix, and the
diagonal is included when diag=TRUE.

The read.matrix function is provided here as one of many convenient ways to read a numeric
matrix into R. The most common method of storing data in R is the data frame, because it is
versatile. For example, a data frame may contain character, factor, and numeric variables together.
For iterative estimation, common in Bayesian inference, the data frame is much slower than the
numeric matrix. For this reason, the LaplacesDemon package does not use data frames, and has not
traditionally accepted character or factor data. The read.matrix function returns either an entire
numeric matrix, or row-wise samples from a numeric matrix. Samples may be taken from a matrix
that is too large for available computer memory (RAM), such as with big data.

The SparseGrid function returns a sparse grid for a J-dimensional integral with accuracy K, given
Gauss-Hermite quadrature rules. A grid of order eqnK provides an exact result for a polynomial
of total order of 2K − 1 or less. SparseGrid returns a matrix of nodes and a vector of weights.
A sparse grid is more efficient than the full grid in the GaussHermiteCubeRule function. This has
been adapted from the SparseGrid package.

The TransitionMatrix function has several uses. A user may supply a vector of marginal posterior
samples of a discrete Markov chain as theta.y, and an observed posterior transition matrix is
returned. Otherwise, a user may supply data (y.theta) and/or a prior (p.theta), in which case
a posterior transition matrix is returned. A common row-wise prior is the dirichlet distribution.
Transition probabilities are from row element to column element.

The tr function returns the trace of a matrix. The trace of a matrix is the sum of the elements in the
main diagonal of a square matrix. For example, the trace of a k × k matrix X, is

∑
k=1 Xk,k.

The upper.triangle function returns a vector of the lower triangular elements of a matrix, and the
diagonal is included when diag=TRUE.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Higham, N.J. (2002). "Computing the Nearest Correlation Matrix - a Problem from Finance". IMA
Journal of Numerical Analysis, 22, p. 329–343.
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See Also

BayesianBootstrap, Cov2Prec, cov2cor, ddirichlet, GaussHermiteQuadRule, isSymmetric,
LaplaceApproximation, LaplacesDemon, lower.tri, MISS, Prec2Cov, solve, and upper.tri.

MCSE Monte Carlo Standard Error

Description

Monte Carlo Standard Error (MCSE) is an estimate of the inaccuracy of Monte Carlo samples,
usually regarding the expectation of posterior samples, E(θ), from Monte Carlo or Markov chain
Monte Carlo (MCMC) algorithms, such as with the LaplacesDemon or LaplacesDemon.hpc func-
tions. MCSE approaches zero as the number of independent posterior samples approaches infinity.
MCSE is essentially a standard deviation around the posterior mean of the samples, E(θ), due to
uncertainty associated with using an MCMC algorithm, or Monte Carlo methods in general.

The acceptable size of the MCSE depends on the acceptable uncertainty associated around the
marginal posterior mean, E(θ), and the goal of inference. It has been argued that MCSE is generally
unimportant when the goal of inference is θ rather than E(θ) (Gelman et al., 2004, p. 277), and that a
sufficient ESS is more important. Others perceive MCSE to be a vital part of reporting any Bayesian
model, and as a stopping rule (Flegal et al., 2008).

In LaplacesDemon, MCSE is part of the posterior summaries because it is easy to estimate, and
Laplace’s Demon prefers to continue updating until each MCSE is less than 6.27% of its associated
marginal posterior standard deviation (for more information on this stopping rule, see the Consort
function), since MCSE has been demonstrated to be an excellent stopping rule.

Acceptable error may be specified, if known, in the MCSS (Monte Carlo Sample Size) function to
estimate the required number of posterior samples.

MCSE is a univariate function that is often applied to each marginal posterior distribution. A mul-
tivariate form is not included. By chance alone due to multiple independent tests, 5% of the pa-
rameters should indicate unacceptable MSCEs, even when acceptable. Assessing convergence is
difficult.

Usage

MCSE(x, method="IMPS", batch.size="sqrt", warn=FALSE)
MCSS(x, a)

Arguments

x This is a vector of posterior samples for which MCSE or MCSS will be esti-
mated.

a This is a scalar argument of acceptable error for the mean of x, and a must
be positive. As acceptable error decreases, the required number of samples in-
creases.
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method This is an optional argument for the method of MCSE estimation, and defaults
to Geyer’s "IMPS" method. Optional methods include "sample.variance" and
"batch.mean". Note that "batch.mean" is recommended only when the num-
ber of posterior samples is at least 1,000.

batch.size This is an optional argument that corresponds only with method="batch.means",
and determines either the size of the batches (accepting a numerical argument) or
the method of creating the size of batches, which is either "sqrt" or "cuberoot",
and refers to the length of x. The default argument is "sqrt".

warn Logical. If warn=TRUE, then a warning is provided with method="batch.means"
whenever posterior sample size is less than 1,000, or a warning is produced when
more autcovariance is recommended with method="IMPS".

Details

The default method for estimating MCSE is Geyer’s Initial Monotone Positive Sequence (IMPS)
estimator (Geyer, 1992), which takes the asymptotic variance into account and is time-series based.
This method goes by other names, such as Initial Positive Sequence (IPS).

The simplest method for estimating MCSE is to modify the formula for standard error, σ(x)/
√
N ,

to account for non-independence in the sequence x of posterior samples. Non-independence is
estimated with the ESS function for Effective Sample Size (see the ESS function for more details),
where M = ESS(x), and MCSE is σ(x)/

√
M . Although this is the fastest and easiest method of

estimation, it does not incorporate an estimate of the asymptotic variance of x.

The batch means method (Jones et al., 2006; Flegal et al., 2008) separates elements of x into batches
and estimates MCSE as a function of multiple batches. This method is excellent, but is not recom-
mended when the number of posterior samples is less than 1,000. These journal articles also assert
that MCSE is a better stopping rule than MCMC convergence diagnostics.

The MCSS function estimates the required number of posterior samples, given the user-specified
acceptable error, posterior samples x, and the observed variance (rather than asymptotic variance).
Due to the observed variance, this is a rough estimate.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References
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Third Significant Figure?". Statistical Science, 23, p. 250–260.
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Markov chain Monte Carlo". Journal of the American Statistical Association, 101(1), p. 1537–
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See Also

Consort, ESS, LaplacesDemon, and LaplacesDemon.hpc.
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Examples

library(LaplacesDemon)
x <- rnorm(1000)
MCSE(x)
MCSE(x, method="batch.means")
MCSE(x, method="sample.variance")
MCSS(x, a=0.01)

MinnesotaPrior Minnesota Prior

Description

The Minnesota prior, also called the Litterman prior, is a shrinkage prior for autoregressive parame-
ters in vector autoregressive (VAR) models. There are many variations of the Minnesota prior. This
Minnesota prior is calculated as presented in Lutkepohl (2005, p. 225), and returns one or more
prior covariance matrices in an array.

Usage

MinnesotaPrior(J, lags=c(1,2), lambda=1, theta=0.5, sigma)

Arguments

J This is the scalar number of time-series in the VAR.

lags This accepts an integer vector of lags of the autoregressive parameters. The lags
are not required to be successive.

lambda This accepts a scalar, positive-only hyperparameter that controls how tightly the
parameter of the first lag is concentrated around zero. A smaller value results
in smaller diagonal variance. When equal to zero, the posterior equals the prior
and data is not influential. When equal to infinity, no shrinkage occurs and pos-
terior expectations are closest to estimates from ordinary least squares (OLS). It
has been asserted that as the number, J , of time-series increases, this hyperpa-
rameter should decrease.

theta This accepts a scalar hyperparameter in the interval [0,1]. When one, off-
diagonal elements have variance similar or equal to diagonal elements. When
zero, off-diagonal elements have zero variance. A smaller value is associated
with less off-diagonal variance.

sigma This accepts a vector of length J of residual standard deviations of the dependent
variables given the expectations.
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Details

The Minnesota prior was introduced in Doan, Litterman, and Sims (1984) as a shrinkage prior
for autoregressive parameters in vector autoregressive (VAR) models. The Minnesota prior was
reviewed in Litterman (1986), and numerous variations have been presented since. This is the
version of the Minnesota prior as described in Lutkepohl (2005, p. 225) for stationary time-series.

Given one or more J × J matrices of autoregressive parameters in a VAR model, the user specifies
two tuning hyperparameters for the Minnesota prior: lambda and theta. Each iteration of the
numerical approximation algorithm, the latest vector of residual standard deviation parameters is
supplied to the MinnesotaPrior function, which then returns an array that contains one or more
prior covariance matrices for the autoregressive parameters. Multiple prior covariance matrices are
returned when multiple lags are specified. The tuning hyperparameters, lambda and theta, can be
estimated from the data via hierarchical Bayes.

It is important to note that the Minnesota prior does not technically return a covariance matrix, be-
cause the matrix is not symmetric, and therefore not positive-definite. For this reason, a Minnesota
prior covariance matrix should not be supplied as a covariance matrix to a multivariate normal
distribution, such as with the dmvn function, though it would be accepted and then (incorrectly)
converted to a symmetric matrix. Instead, dnormv should be used for element-wise evaluation.

While the Minnesota prior is used to specify the prior covariance for VAR autoregressive parame-
ters, prior means are often all set to zero, or sometimes the first lag is set to an identity matrix.

An example is provided in the Examples vignette.

Value

This function returns a J × J × L array for J time-series and L lags.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

References
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Realistic Prior Distributions". Econometric Reviews, 3, p. 1–144.
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See Also

dmvn, dnormv, and LaplacesDemon.
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MISS Multiple Imputation Sequential Sampling

Description

This function performs multiple imputation (MI) on a numeric matrix by sequentially sampling
variables with missing values, given all other variables in the data set.

Usage

MISS(X, Iterations=100, Algorithm="GS", Fit=NULL, verbose=TRUE)

Arguments

X This required argument accepts a numeric matrix of data that contains both ob-
served and missing values. Data set X must not have any rows or columns that
are completely missing. X must not have any constants. The user must apply any
data transformations appropriate for these models. Missing values are assumed
to be Missing At Random (MAR).

Iterations This is the number of iterations to perform sequential sampling via MCMC al-
gorithms.

Algorithm The MCMC algorithm defaults to the Gibbs Sampler (GS).

Fit This optional argument accepts an object of class miss. When supplied, MISS
will continue where it left off, provided the user does not change the algorithm
(different methods are used with different algortihms, so model parameters will
not match). In short, changing algorithms requires starting from scratch.

verbose Logical. When FALSE, only the iteration prints to the console. When TRUE,
which is the default, both the iteration and which variable is being imputed are
printed to the console.

Details

Imputation is a family of statistical methods for replacing missing values with estimates. Introduced
by Rubin and Schenker (1986) and Rubin (1987), Multiple Imputation (MI) is a family of imputa-
tion methods that includes multiple estimates, and therefore includes variability of the estimates.

The Multiple Imputation Sequential Sampler (MISS) function performs MI by determining the type
of variable and therefore the sampler for each variable, and then sequentially progresses through
each variable in the data set that has missing values, updating its prediction of those missing values
given all other variables in the data set each iteration.

MI is best performed within a model, where it is called full-likelihood imputation. Examples may
be found in the "Examples" vignette. However, sometimes it is impractical to impute within a model
when there are numerous missing values and a large number of parameters are therefore added. As
an alternative, MI may be performed on the data set before the data is passed to the model, such as
in the IterativeQuadrature, LaplaceApproximation, LaplacesDemon, or VariationalBayes
function. This is less desirable, but MISS is available for MCMC-based MI in this case.
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Missing values are initially set to column means for continuous variables, and are set to one for
discrete variables.

MISS uses the following methods and MCMC algorithms:

Missing values of continuous variables are estimated with a ridge-stabilized linear regression Gibbs
sampler.

Missing values of binary variables that have only 0 or 1 for values are estimated either with a binary
robit (t-link logistic regression model) Gibbs sampler of Albert and Chib (1993).

Missing values of discrete variables with 3 or more (ordered or unordered) discrete values are con-
sidered continuous.

In the presence of big data, it is suggested that the user sequentially read in batches of data that
are small enough to be manageable, and then apply the MISS function to each batch. Each batch
should be representative of the whole, of course.

It is common for multiple imputation functions to handle variable transformations. MISS does not
transform variables, but imputes what it gets. For example, if a user has a variable that should be
positive only, then it is recommended here that the user log-transform the variable, pass the data set
to MISS, and when finished, exponentiate both the observed and imputed values of that variable.

The CenterScale function should also be considered to speed up convergence.

It is hoped that MISS is helpful, though it is not without limitation and there are numerous alter-
natives outside of the LaplacesDemon package. If MISS does not fulfill the needs of the user, then
the following packages are recommended: Amelia, mi, or mice. MISS emphasizes MCMC more
than these alternatives, though MISS is not as extensive. When a data set does not have a simple
structure, such as merely continuous or binary or unordered discrete, the LaplacesDemon function
should be considered, where a user can easily specify complicated structures such as multilevel,
spatial or temporal dependence, and more.

Matrix inversions are required in the Gibbs sampler. Matrix inversions become more cumbersome
as the number J of variables increases.

If a large number of iterations is used, then the user may consider studying the imputations for
approximate convergence with the BMK.Diagnostic function, by supplying the transpose of cod-
eFit$Imp. In the presence of numerous missing values, say more than 100, the user may consider
iterating through the study of the imputations of 100 missing values at a time.

Value

This function returns an object of class miss that is a list with five components:

Algorithm This indicates which algorithm was selected.
Imp This is a M × T matrix of M missing values and T iterations that contains

imputations.
parm This is a list of length J for J variables, and each component of the list contains

parameters associated with the prediction of missing values for that variable.
PostMode This is a vector of posterior modes. If the user intends to replace missing values

in a data set with only one estimate per missing values (single, not multiple
imputation), then this vector contains these values.

Type This is a vector of length J for J variables that indicates the type of each vari-
able, as MISS will consider it. When Type=1, the variable is considered to be
continuous. When Type=2, only two discrete values (0 and 1) were found.
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Author(s)
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See Also

ABB, BMK.Diagnostic, CenterScale, IterativeQuadrature LaplaceApproximation, LaplacesDemon,
and VariationalBayes.

Examples

#library(LaplacesDemon)
### Create Data
#N <- 20 #Number of Simulated Records
#J <- 5 #Number of Simulated Variables
#pM <- 0.25 #Percent Missing
#Sigma <- as.positive.definite(matrix(runif(J*J),J,J))
#X <- rmvn(N, rep(0,J), Sigma)
#m <- sample.int(N*J, round(pM*N*J))
#X[m] <- NA
#head(X)

### Begin Multiple Imputation
#Fit <- MISS(X, Iterations=100, Algorithm="GS", verbose=TRUE)
#Fit
#summary(Fit)
#plot(Fit)
#plot(BMK.Diagnostic(t(Fit$Imp)))

### Continue Updating if Necessary
#Fit <- MISS(X, Iterations=100, Algorithm="GS", Fit, verbose=TRUE)
#summary(Fit)
#plot(Fit)
#plot(BMK.Diagnostic(t(Fit$Imp)))

### Replace Missing Values in Data Set with Posterior Modes
#Ximp <- X
#Ximp[which(is.na(X))] <- Fit$PostMode

### Original and Imputed Data Sets
#head(X)
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#head(Ximp)
#summary(X)
#summary(Ximp)

### or Multiple Data Sets, say 3
#Ximp <- array(X, dim=c(nrow(X), ncol(X), 3))
#for (i in 1:3) {
# Xi <- X
# Xi[which(is.na(X))] <- Fit$Imp[,sample.int(ncol(Fit$Imp), 1)]
# Ximp[,,i] <- Xi}
#head(X)
#head(Ximp[,,1])
#head(Ximp[,,2])
#head(Ximp[,,3])

#End

Mode The Mode(s) of a Vector

Description

The mode is a measure of central tendency. It is the value that occurs most frequently, or in a
continuous probability distribution, it is the value with the most density. A distribution may have no
modes (such as with a constant, or in a uniform distribution when no value occurs more frequently
than any other), or one or more modes.

Usage

is.amodal(x, min.size=0.1)
is.bimodal(x, min.size=0.1)
is.multimodal(x, min.size=0.1)
is.trimodal(x, min.size=0.1)
is.unimodal(x, min.size=0.1)
Mode(x)
Modes(x, min.size=0.1)

Arguments

x This is a vector in which a mode (or modes) will be sought.

min.size This is the minimum size that can be considered a mode, where size means
the proportion of the distribution between areas of increasing kernel density
estimates.
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Details

The is.amodal function is a logical test of whether or not x has a mode. If x has a mode, then TRUE
is returned, otherwise FALSE.

The is.bimodal function is a logical test of whether or not x has two modes. If x has two modes,
then TRUE is returned, otherwise FALSE.

The is.multimodal function is a logical test of whether or not x has multiple modes. If x has
multiple modes, then TRUE is returned, otherwise FALSE.

The is.trimodal function is a logical test of whether or not x has three modes. If x has three
modes, then TRUE is returned, otherwise FALSE.

The is.unimodal function is a logical test of whether or not x has one mode. If x has one mode,
then TRUE is returned, otherwise FALSE.

The Mode function returns the most frequent value when x is discrete. If x is a constant, then it is
considered amodal, and NA is returned. If multiple modes exist, this function returns only the mode
with the highest density, or if two or more modes have the same density, then it returns the first
mode found. Otherwise, the Mode function returns the value of x associated with the highest kernel
density estimate, or the first one found if multiple modes have the same density.

The Modes function is a simple, deterministic function that differences the kernel density of x and
reports a number of modes equal to half the number of changes in direction, although the min.size
function can be used to reduce the number of modes returned, and defaults to 0.1, eliminating
modes that do not have at least 10% of the distributional area. The Modes function returns a list with
three components: modes, modes.dens, and size. The elements in each component are ordered
according to the decreasing density of the modes. The modes component is a vector of the values of
x associated with the modes. The modes.dens component is a vector of the kernel density estimates
at the modes. The size component is a vector of the proportion of area underneath each mode.

The IterativeQuadrature, LaplaceApproximation, and VariationalBayes functions charac-
terize the marginal posterior distributions by posterior modes (means) and variance. A related topic
is MAP or maximum a posteriori estimation.

Otherwise, the results of Bayesian inference tend to report the posterior mean or median, along with
probability intervals (see p.interval and LPL.interval), rather than posterior modes. In many
types of models, such as mixture models, the posterior may be multimodal. In such a case, the usual
recommendation is to choose the highest mode if feasible and possible. However, the highest mode
may be uncharacteristic of the majority of the posterior.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

IterativeQuadrature, LaplaceApproximation, LaplacesDemon, LPL.interval, p.interval,
and VariationalBayes.

Examples

library(LaplacesDemon)
### Below are distributions with different numbers of modes.
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x <- c(1,1) #Amodal
x <- c(1,2,2,2,3) #Unimodal
x <- c(1,2) #Bimodal
x <- c(1,3,3,3,3,4,4,4,4,4) #min.size affects the answer
x <- c(1,1,3,3,3,3,4,4,4,4,4) #Trimodal

### And for each of the above, the functions below may be applied.
Mode(x)
Modes(x)
is.amodal(x)
is.bimodal(x)
is.multimodal(x)
is.trimodal(x)
is.unimodal(x)

Model.Specification.Time

Model Specification Time

Description

The Model.Spec.Time function returns the time in minutes to evaluate a model specification a
number of times, as well as the evaluations per minute, and componentwise iterations per minute.

Usage

Model.Spec.Time(Model, Initial.Values, Data, n=1000)

Arguments

Model This requried argument is a model specification function. For more information,
see LaplacesDemon.

Initial.Values This required argument is a vector of initial values for the parameters.

Data This required argument is a list of data. For more information, see LaplacesDemon.

n This is the number of evaluations of the model specification, and accuracy in-
creases with n.

Details

The largest single factor to affect the run-time of an algorithm – whether it is with IterativeQuadrature,
LaplaceApproximation, LaplacesDemon, PMC, or VariationalBayes – is the time that it takes to
evaluate the model specification. This has also been observed in Rosenthal (2007). It is highly
recommended that a user of the LaplacesDemon package should attempt to reduce the run-time of
the model specification, usually by testing alternate forms of code for speed. This is especially true
with big data, such as with the BigData function.

Every function in the LaplacesDemon package is byte-compiled, which is a recent option in R.
This reduces run-time, thanks to Tierney’s compiler package in base R. The model specification,
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however, is specified by the user, and should be byte-compiled. The reduction in run-time may range
from mild to dramatic, depending on the model. It is highly recommended that users concerned with
run-time activate the compiler package and use the cmpfun function, as per the example below.

A model specification function that is optimized for speed and involves many records may result in
a model update run-time that is considerably less than other popular MCMC-based software algo-
rithms that loop through records, even when those algorithms are coded in C or other fast languages.
For a comparison, see the “Laplace’s Demon Tutorial” vignette.

However, if a model specification function in the LaplacesDemon package is not fully vectorized
(contains for loops and apply functions), then run-time will typically be slower than other popular
MCMC-based software algorithms.

The speed of calculating the model specification function is affected by parameter constraints, such
as with the interval function. Parameter constraints may add considerable variability to the speed
of this calculation, and usually more variation occurs with initial values that are far from the target
distributions.

Distributions in the LaplacesDemon package usually have logical checks to ensure correctness.
These checks may slow the calculation of the density, for example. If the user is confident these
checks are unnecessary for their model, then the user may copy the code to a new function name
and comment-out the checks to improve speed.

When speed is of paramount importance, a user is encouraged to experiment with writing the model
specification function in another language such as in C++ with the Rcpp package, and calling drop-in
replacement functions from within the Model function, or re-writing the model function entirely in
C++. For an introduction to including C++ in LaplacesDemon, see https://web.archive.org/
web/20150227225556/http://www.bayesian-inference.com/softwarearticlescppsugar.

When a model specification function is computationally expensive, another approach to reduce run-
time may be for the user to write parallelized code within the model, splitting up difficult tasks and
assigning each to a separate CPU.

Another use for Model.Spec.Time is to allow the user to make an informed decision about which
MCMC algorithm to select, given the speed of their model specification. For example, the Adap-
tive Metropolis-within-Gibbs (AMWG) of Roberts and Rosenthal (2009) is currently the adap-
tive MCMC algorithm of choice in general in many cases, but this choice is conditional on run-
time. While other MCMC algorithms in LaplacesDemon evaluate the model specification func-
tion once per iteration, componentwise algorithms such as in the MWG family evaluate it once
per parameter per iteration, significantly increasing run-time per iteration in large models. The
Model.Spec.Time function may forewarn the user of the associated run-time, and if it should be
decided to go with an alternate MCMC algorithm, such as AMM, in which each element of its
covariance matrix must stabilize for the chains to become stationary. AMM, for example, will
require many more iterations of burn-in (for more information, see the burnin function), but with
numerous iterations, allows more thinning. A general recommendation may be to use AMWG when
Componentwise.Iters.per.Minute >= 1000, but this is subjective and best determined by each
user for each model. A better decision may be made by comparing MCMC algorithms with the
Juxtapose function for a particular model.

Following are a few common suggestions for increasing the speed of R code in the model specifica-
tion function. There are often exceptions to these suggestions, so case-by-case experimentation is
also suggested.

• Replace exponents with multiplied terms, such as x^2 with x*x.

https://web.archive.org/web/20150227225556/http://www.bayesian-inference.com/softwarearticlescppsugar
https://web.archive.org/web/20150227225556/http://www.bayesian-inference.com/softwarearticlescppsugar
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• Replace mean(x) with sum(x)/length(x).

• Replace parentheses (when possible) with curly brackets, such as x*(a+b) with x*{a+b}.

• Replace tcrossprod(Data$X, t(beta)) with Data$X %*% beta when there are few predic-
tors, and avoid tcrossprod(beta, Data$X), which is always slowest.

• Vectorize functions and eliminate apply and for functions. There are often specialized func-
tions. For example, max.col(X) is faster than apply(X, 1, which.max).

When seeking speed, things to consider beyond the LaplacesDemon package are the Basic Linear
Algebra System (BLAS) and hardware. The ATLAS (Automatically Tuned Linear Algebra System)
should be worth installing (and there are several alternatives), but this discussion is beyond the scope
of this documentation. Lastly, the speed at which the computer can process iterations is limited by
its hardware, and more should be considered than merely the CPU (Central Processing Unit). Again,
though, this is beyond the scope of this documentation.

Value

The Model.Spec.Time function returns a list with three components:

Time This is the time in minutes to evaluate the model specification n times.

Evals.per.Minute

This is the number of evaluations of the model specification per minute: n /
Time. This is also the number of iterations per minute in an algorithm that is not
componentwise, where one evaluation occurs per iteration.

Componentwise.Iters.per.Minute

This is the number of iterations per minute in a componentwise MCMC algo-
rithm, such as AMWG or MWG. It is the evaluations per minute divided by the
number of parameters, since an evaluation must occur for each parameter, for
each iteration.

Author(s)

Statisticat, LLC.

References

Roberts, G.O. and Rosenthal, J.S. (2009). "Examples of Adaptive MCMC". Computational Statis-
tics and Data Analysis, 18, p. 349–367.

See Also

.C, .Fortran,

apply, BigData, interval, IterativeQuadrature, Juxtapose, LaplaceApproximation, LaplacesDemon,
max.col, PMC, system.time, and VariationalBayes.
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Examples

# The accompanying Examples vignette is a compendium of examples.
#################### Load the LaplacesDemon Library #####################
library(LaplacesDemon)

############################## Demon Data ###############################
data(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(log(demonsnacks[,c(1,4,10)]+1)))
J <- ncol(X)
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}

######################### Data List Preparation #########################
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) return(c(rnormv(Data$J,0,10), rhalfcauchy(1,5)))
MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,

parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

########################## Model Specification ##########################
Model <- function(parm, Data)

{
### Parameters
beta <- parm[Data$pos.beta]
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
parm[Data$pos.sigma] <- sigma
### Log of Prior Densities
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,

yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}

set.seed(666)

############################ Initial Values #############################
Initial.Values <- GIV(Model, MyData, PGF=TRUE)

############################ Model.Spec.Time ############################
### Not byte-compiled
Model.Spec.Time(Model, Initial.Values, MyData)
### Byte-compiled
library(compiler)
Model <- cmpfun(Model)
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Model.Spec.Time(Model, Initial.Values, MyData)

p.interval Probability Interval

Description

This function returns one or more probability intervals of posterior samples.

Usage

p.interval(obj, HPD=TRUE, MM=TRUE, prob=0.95, plot=FALSE, PDF=FALSE, ...)

Arguments

obj This can be either a vector or matrix of posterior samples, or an object of class
demonoid, iterquad, laplace, pmc, or vb. If it is an object of class demonoid,
then it will use only stationary posterior samples and monitored target distribu-
tions (automatically discarding the burn-in; if stationarity does not exist, then it
will use all samples).

HPD Logical. This argument defaults to TRUE, in which case one or more High-
est Posterior Density (HPD) intervals is returned. When FALSE, one or more
quantile-based probability intervals is returned.

MM Logical. This argument defaults to TRUE, in which case each column vector is
checked for multimodality, and if found, the multimodal form of a Highest Pos-
terior Density (HPD) interval is additionally estimated, even when HPD=FALSE.

prob This is a numeric scalar in the interval (0,1) giving the target probability interval,
and defaults to 0.95, representing a 95% probability interval. A 95% probability
interval, for example, is an interval that contains 95% of a posterior probability
distribution.

plot Logical. When plot=TRUE, each kernel density is plotted and shaded gray, and
the area under the curve within the probability interval is shaded black. If the
kernel density is considered to be multimodal, then up to three intervals are
shaded black. A vertical, red, dotted line is added at zero. The plot argument
defaults to FALSE.

PDF Logical. When PDF=TRUE, and only when plot=TRUE, plots are saved as a .pdf
file in the working directory.

... Additional arguments are unused.

Details

A probability interval, also called a credible interval or Bayesian confidence interval, is an interval
in the domain of a posterior probability distribution. When generalized to multivariate forms, it is
called a probability region (or credible region), though some sources refer to a probability region
(or credible region) as the area within the probability interval. Bivariate probability regions may be
plotted with the joint.pr.plot function.
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The p.interval function may return different probability intervals: a quantile-based probability
interval, a unimodal Highest Posterior Density (HPD) interval, and multimodal HPD intervals. An-
other type of probability interval is the Lowest Posterior Loss (LPL) interval, which is calculated
with the LPL.interval function.

The quantile-based probability interval is used most commonly, possibly because it is simple, the
fastest to calculate, invariant under transformation, and more closely resembles the frequentist con-
fidence interval. The lower and upper bounds of the quantile-based probability interval are cal-
culated with the quantile function. A 95% quantile-based probability interval reports the values
of the posterior probability distribution that indicate the 2.5% and 97.5% quantiles, which contain
the central 95% of the distribution. The quantile-based probability interval is centered around the
median and has equal-sized tails.

The HPD (highest posterior density) interval is identical to the quantile-based probability interval
when the posterior probability distribution is unimodal and symmetric. Otherwise, the HPD interval
is the smallest interval, because it is estimated as the interval that contains the highest posterior
density. Unlike the quantile-based probability interval, the HPD interval could be one-tailed or
two-tailed, whichever is more appropriate. However, unlike the quantile-based interval, the HPD
interval is not invariant to reparameterization (Bernardo, 2005).

The unimodal HPD interval is estimated from the empirical CDF of the sample for each parameter
(or deviance or monitored variable) as the shortest interval for which the difference in the ECDF
values of the end-points is the user-specified probability width. This assumes the distribution is not
severely multimodal.

As an example, imagine an exponential posterior distribution. A quantile-based probability interval
would report the highest density region near zero to be outside of its interval. In contrast, the
unimodal HPD interval is recommended for such skewed posterior distributions.

When MM=TRUE, the is.multimodal function is applied to each column vector after the unimodal
interval (either quantile-based or HPD) is estimated. If multimodality is found, then multimodal
HPD intervals are estimated with kernel density and printed to the screen as a character string. The
original unimodal intervals are returned in the output matrix, because the matrix is constrained to
have a uniform number of columns per row, and because multimodal HPD intervals may be disjoint.

Disjoint multimodal HPD intervals have multiple intervals for one posterior probability distribution.
An example may be when there is a bimodal, Gaussian distribution with means -10 and 10, variances
of 1 and 1, and a 95% probability interval is specified. In this case, there is not enough density
between these two distant modes to have only one probability interval.

The user should also consider LPL.interval, since it is invariant to reparameterization like the
quantile-based probability interval, but could be one- or two-tailed, whichever is more appropriate,
like the HPD interval. A comparison of the quantile-based probability interval, HPD interval, and
LPL interval is available here: https://web.archive.org/web/20150214090353/http://www.
bayesian-inference.com/credible.

Value

A matrix is returned with rows corresponding to the parameters (or deviance or monitored vari-
ables), and columns "Lower" and "Upper". The elements of the matrix are the unimodal proba-
bility intervals. The attribute "Probability" is the user-selected probability width. If MM=TRUE
and multimodal posterior distributions are found, then multimodal HPD intervals are printed to the
screen in a character string.

https://web.archive.org/web/20150214090353/http://www.bayesian-inference.com/credible
https://web.archive.org/web/20150214090353/http://www.bayesian-inference.com/credible
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Author(s)

Statisticat, LLC

References

Bernardo, J.M. (2005). "Intrinsic Credible Regions: An Objective Bayesian Approach to Interval
Estimation". Sociedad de Estadistica e Investigacion Operativa, 14(2), p. 317–384.

See Also

is.multimodal, IterativeQuadrature, joint.pr.plot, LaplaceApproximation, LaplacesDemon,
LPL.interval, PMC, and VariationalBayes.

Examples

##First, update the model with the LaplacesDemon function.
##Then
#p.interval(Fit, HPD=TRUE, MM=TRUE, prob=0.95)

plot.bmk Plot Hellinger Distances

Description

This function plots Hellinger distances in an object of class bmk.

Usage

## S3 method for class 'bmk'
plot(x, col=colorRampPalette(c("black","red"))(100),

title="", PDF=FALSE, Parms=NULL, ...)

Arguments

x This required argument is an object of class bmk. See the BMK.Diagnostic
function for more information.

col This argument specifies the colors of the cells. By default, the colorRampPalette
function colors large Hellinger distances as red, small as black, and provides
100 color gradations.

title This argument specifies the title of the plot, and the default does not include a
title.

PDF Logical. When TRUE, the plot is saved as a .pdf file.
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Parms This argument accepts a vector of quoted strings to be matched for selecting pa-
rameters for plotting. This argument defaults to NULL and selects every parame-
ter for plotting. Each quoted string is matched to one or more parameter names
with the grep function. For example, if the user specifies Parms=c("eta",
"tau"), and if the parameter names are beta[1], beta[2], eta[1], eta[2], and
tau, then all parameters will be selected, because the string eta is within beta.
Since grep is used, string matching uses regular expressions, so beware of meta-
characters, though these are acceptable: ".", "[", and "]".

... Additional arguments are unused.

Details

The plot.bmk function plots the Hellinger distances in an object of class bmk. This is useful for
quickly finding portions of chains with large Hellinger distances, which indicates non-stationarity
and non-convergence.

See Also

BMK.Diagnostic

Examples

library(LaplacesDemon)
N <- 1000 #Number of posterior samples
J <- 10 #Number of parameters
Theta <- matrix(runif(N*J),N,J)
colnames(Theta) <- paste("beta[", 1:J, "]", sep="")
for (i in 2:N) {Theta[i,1] <- Theta[i-1,1] + rnorm(1)}
HD <- BMK.Diagnostic(Theta, batches=10)
plot(HD, title="Hellinger distance between batches")

plot.demonoid Plot samples from the output of Laplace’s Demon

Description

This may be used to plot, or save plots of, samples in an object of class demonoid or demonoid.hpc.
Plots include a trace plot, density plot, autocorrelation or ACF plot, and if an adaptive algorithm was
used, the absolute difference in the proposal variance, or the value of epsilon, across adaptations.

Usage

## S3 method for class 'demonoid'
plot(x, BurnIn=0, Data, PDF=FALSE, Parms, FileName, ...)
## S3 method for class 'demonoid.hpc'
plot(x, BurnIn=0, Data, PDF=FALSE, Parms, FileName, ...)
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Arguments

x This required argument is an object of class demonoid or demonoid.hpc.

BurnIn This argument requires zero or a positive integer that indicates the number of
thinned samples to discard as burn-in for the purposes of plotting. For more
information on burn-in, see burnin.

Data This required argument must receive the list of data that was supplied to LaplacesDemon
to create the object of class demonoid.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

Parms This argument accepts a vector of quoted strings to be matched for selecting pa-
rameters for plotting. This argument defaults to NULL and selects every parame-
ter for plotting. Each quoted string is matched to one or more parameter names
with the grep function. For example, if the user specifies Parms=c("eta",
"tau"), and if the parameter names are beta[1], beta[2], eta[1], eta[2], and
tau, then all parameters will be selected, because the string eta is within beta.
Since grep is used, string matching uses regular expressions, so beware of meta-
characters, though these are acceptable: ".", "[", and "]".

FileName This argument accepts a string and save the plot under the specified name. If
PDF=FALSE this argument in unused. By default, FileName = paste0("laplacesDemon-plot_",
format(Sys.time(), "yyyy-mm-dd_h:m:s"), ".pdf")

... Additional arguments are unused.

Details

The plots are arranged in a 3 × 3 matrix. Each row represents a parameter, the deviance, or a
monitored variable. The left column displays trace plots, the middle column displays kernel density
plots, and the right column displays autocorrelation (ACF) plots.

Trace plots show the thinned history of the chain or Markov chain, with its value in the y-axis
moving by thinned sample across the x-axis. A chain or Markov chain with good properties does
not suggest a trend upward or downward as it progresses across the x-axis (it should appear sta-
tionary), and it should mix well, meaning it should appear as though random samples are being
taken each time from the same target distribution. Visual inspection of a trace plot cannot verify
convergence, but apparent non-stationarity or poor mixing can certainly suggest non-convergence.
A red, smoothed line also appears to aid visual inspection.

Kernel density plots depict the marginal posterior distribution. Although there is no distributional
assumption about this density, kernel density estimation uses Gaussian basis functions.

Autocorrelation plots show the autocorrelation or serial correlation between values of thinned sam-
ples at nearby thinned samples. Samples with autocorrelation do not violate any assumption, but
are inefficient because they reduce the effective sample size (ESS), and indicate that the chain is
not mixing well, since each value is influenced by values that are previous and nearby. The x-axis
indicates lags with respect to thinned samples, and the y-axis represents autocorrelation. The ideal
autocorrelation plot shows perfect correlation at zero lag, and quickly falls to zero autocorrelation
for all other lags.

If an adaptive algorithm was used, then the distribution of absolute differences in the proposal
variances, or the value of epsilon, is plotted across adaptations. The proposal variance, or epsilon,
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should change less as the adaptive algorithm approaches the target distributions. The absolute differ-
ences in the proposal variance plot should approach zero. This is called the condition of diminishing
adaptation. If it is not approaching zero, then consider using a different adaptive MCMC algorithm.
The following quantiles are plotted for absolute changes proposal variance: 0.025, 0.500, and 0.975.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

See Also

burnin, ESS, LaplacesDemon, and LaplacesDemon.hpc.

Examples

### See the LaplacesDemon function for an example.

plot.demonoid.ppc Plots of Posterior Predictive Checks

Description

This may be used to plot, or save plots of, samples in an object of class demonoid.ppc. A variety
of plots is provided.

Usage

## S3 method for class 'demonoid.ppc'
plot(x, Style=NULL, Data=NULL, Rows=NULL,

PDF=FALSE, ...)

Arguments

x This required argument is an object of class demonoid.ppc.

Style This optional argument specifies one of several styles of plots, and defaults
to NULL (which is the same as "Density"). Styles of plots are indicated in
quotes. Optional styles include "Covariates", "Covariates, Categorical
DV", "Density", "DW", "DW, Multivariate, C", "ECDF", "Fitted", "Fitted,
Multivariate, C", "Fitted, Multivariate, R", "Jarque-Bera", "Jarque-Bera,
Multivariate, C", "Mardia", "Predictive Quantiles", "Residual Density",
"Residual Density, Multivariate, C", "Residual Density, Multivariate,
R", "Residuals", "Residuals, Multivariate, C", "Residuals, Multivariate,
R", "Space-Time by Space", "Space-Time by Time", "Spatial", "Spatial
Uncertainty", "Time-Series", "Time-Series, Multivariate, C", and "Time-Series,
Multivariate, R". Details are given below.
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Data This optional argument accepts the data set used when updating the model. Data
is required only with certain plot styles, including "Covariates", "Covariates,
Categorical DV", "DW, Multivariate, C", "Fitted, Multivariate, C", "Fitted,
Multivariate, R", "Jarque-Bera, Multivariate, C", "Mardia", "Residual
Density, Multivariate, C", "Residual Density, Multivariate, R", "Residuals,
Multivariate, C", "Residuals, Multivariate, R", "Space-Time by Space",
"Space-Time by Time", "Spatial", "Spatial Uncertainty", "Time-Series,
Multivariate, C", and "Time-Series, Multivariate, R".

Rows This optional argument is for a vector of row numbers that specify the records
associated by row in the object of class demonoid.ppc. Only these rows are
plotted. The default is to plot all rows. Some plots do not allow rows to be
specified.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

... Additional arguments are unused.

Details

This function can be used to produce a variety of posterior predictive plots, and the style of plot is
selected with the Style argument. Below are some notes on the styles of plots.

Covariates requires Data to be specified, and also requires that the covariates are named X or x.
A plot is produced for each covariate column vector against yhat, and is appropriate when y is not
categorical.

Covariates, Categorical DV requires Data to be specified, and also requires that the covariates
are named X or x. A plot is produced for each covariate column vector against yhat, and is appro-
priate when y is categorical.

Density plots show the kernel density of the posterior predictive distribution for each selected row
of y (all are selected by default). A vertical red line indicates the position of the observed y along the
x-axis. When the vertical red line is close to the middle of a normal posterior predictive distribution,
then there is little discrepancy between y and the posterior predictive distribution. When the vertical
red line is in the tail of the distribution, or outside of the kernel density altogether, then there is a
large discrepancy between y and the posterior predictive distribution. Large discrepancies may be
considered outliers, and moreover suggest that an improvement in model fit should be considered.

DW plots the distributions of the Durbin-Watson (DW) test statistics (Durbin and Watson, 1950), both
observed (dobs as a transparent, black density) and replicated (drep as a transparent, red density).
The distribution of dobs is estimated from the model, and drep is simulated from normal residuals
without autocorrelation, where the number of simulations are the same as the observed number.
This DW test may be applied to the residuals of univariate time-series models (or otherwise ordered
residuals) to detect first-order autocorrelation. Autocorrelated residuals are not independent. The
DW test is applicable only when the residuals are normally-distributed, higher-order autocorrelation
is not present, and y is not used also as a lagged predictor. The DW test statistic, dobs, occurs in the
interval (0,4), where 0 is perfect positive autocorrelation, 2 is no autocorrelation, and 4 is perfect
negative autocorrelation. The following summary is reported on the plot: the mean of dobs (and its
95% probability interval), the probability that dobs > drep, and whether or not autocorrelation is
found. Positive autocorrelation is reported when the observed process is greater than the replicated
process in 2.5% of the samples, and negative autocorrelation is reported when the observed process
is greater than the replicated process in 97.5% of the samples.
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DW, Multivariate, C requires Data to be specified, and also requires that variable Y exist in the
data set with exactly that name. These plots compare each column-wise vector of residuals with a
univariate Durbin-Watson test, as in DW above. This plot is appropriate when Y is multivariate, not
categorical, and residuals are desired to be tested column-wise for first-order autocorrelation.

ECDF (Empirical Cumulative Distribution Function) plots compare the ECDF of y with three ECDFs
of yhat based on the 2.5%, 50% (median), and 97.5% of its distribution. The ECDF(y) is defined as
the proportion of values less than or equal to y. This plot is appropriate when y is univariate and at
least ordinal.

Fitted plots compare y with the probability interval of its replicate, and provide loess smoothing.
This plot is appropriate when y is univariate and not categorical.

Fitted, Multivariate, C requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each column-wise vector of y in Y
with its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen column-wise.

Fitted, Multivariate, R requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each row-wise vector of y in Y with
its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen row-wise.

Jarque-Bera plots the distributions of the Jarque-Bera (JB) test statistics (Jarque and Bera, 1980),
both observed (JBobs as a transparent black density) and replicated (JBrep as a transparent red den-
sity). The distribution of JBobs is estimated from the model, and JBrep is simulated from normal
residuals, where the number of simulations are the same as the observed number. This Jarque-Bera
test may be applied to the residuals of univariate models to test for normality. The Jarque-Bera test
does not test normality per se, but whether or not the distribution has kurtosis and skewness that
match a normal distribution, and is therefore a test of the moments of a normal distribution. The
following summary is reported on the plot: the mean of JBobs (and its 95% probability interval),
the probability that JBobs > JBrep, and whether or not normality is indicated. Non-normality is
reported when the observed process is greater than the replicated process in either 2.5% or 97.5%
of the samples.

Jarque-Bera, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise vector of
residuals with a univariate Jarque-Bera test, as in Jarque-Bera above. This plot is appropriate
when Y is multivariate, not categorical, and residuals are desired to be tested column-wise for
normality.

Mardia plots the distributions of the skewness (K3) and kurtosis (K4) test statistics (Mardia, 1970),
both observed (K3obs and K4obs as transparent black density) and replicated (K3rep and K4rep

as transparent red density). The distributions of K3obs and K4obs are estimated from the model,
and both K3rep K4rep are simulated from multivariate normal residuals, where the number of sim-
ulations are the same as the observed number. This Mardia’s test may be applied to the residuals
of multivariate models to test for multivariate normality. Mardia’s test does not test for multivari-
ate normality per se, but whether or not the distribution has kurtosis and skewness that match a
multivariate normal distribution, and is therefore a test of the moments of a multivariate normal dis-
tribution. The following summary is reported on the plots: the means of K3obs and K4obs (and the
associated 95% probability intervals), the probabilities that K3obs > K3rep and K4obs > K4rep,
and whether or not multivariate normality is indicated. Non-normality is reported when the ob-
served process is greater than the replicated process in either 2.5% or 97.5% of the samples. Mardia
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requires Data to be specified, and also requires that variable Y exist in the data set with exactly that
name. Y must be a N × P matrix of N records and P variables. Source code was modified from
the deprecated package QRMlib.

Predictive Quantiles plots compare y with the predictive quantile (PQ) of its replicate. This may
be useful in looking for patterns with outliers. Instances outside of the gray lines are considered
outliers.

Residual Density plots the residual density of the median of the samples. A vertical red line oc-
curs at zero. This plot may be useful for inspecting a distributional assumption of residual variance.
This plot is appropriate when y is univariate and continuous.

Residual Density, Multivariate C requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are column-wise plots of residual density, given
the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen column-wise.

Residual Density, Multivariate R requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are row-wise plots of residual density, given
the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen row-wise.

Residuals plots compare y with its residuals. The probability interval is plotted as a line. This plot
is appropriate when y is univariate.

Residuals, Multivariate, C requires Data to be specified, and also requires that variable Y exist
in the data set with exactly that name. These are plots of each column-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen column-wise.

Residuals, Multivariate, R requires Data to be specified, and also requires that variable Y ex-
ist in the data set with exactly that name. These are plots of each row-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen row-wise.

Space-Time by Space requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one time-series plot per
point s in space, for a total of S plots. Therefore, these are time-series plots for each point s in space
across T time-periods. See Time-Series plots below.

Space-Time by Time requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one spatial plot per time-
period, and T plots will be produced. See Spatial plots below.

Spatial requires Data to be specified, and also requires that the following variables exist in the
data set with exactly these names: latitude and longitude. This spatial plot shows yrep plotted
according to its coordinates, and is color-coded so that higher values of yrep become more red, and
lower values become more yellow.

Spatial Uncertainty requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude and longitude. This spatial plot shows
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the probability interval of yrep plotted according to its coordinates, and is color-coded so that wider
probability intervals become more red, and lower values become more yellow.

Time-Series plots compare y with its replicate, including the median and probability interval quan-
tiles. This plot is appropriate when y is univariate and ordered by time.

Time-Series, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise time-series in Y
with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by column in Y.

Time-Series, Multivariate, R requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each row-wise time-series in Y
with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by row in Y, such as is typically true in panel
models.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

References

Durbin, J., and Watson, G.S. (1950). "Testing for Serial Correlation in Least Squares Regression,
I." Biometrika, 37, p. 409–428.

Jarque, C.M. and Bera, A.K. (1980). "Efficient Tests for Normality, Homoscedasticity and Serial
Independence of Regression Residuals". Economics Letters, 6(3), p. 255–259.

Mardia, K.V. (1970). "Measures of Multivariate Skewness and Kurtosis with Applications". Biometrika,
57(3), p. 519–530.

See Also

LaplacesDemon and predict.demonoid.

Examples

### See the LaplacesDemon function for an example.

plot.importance Plot Variable Importance

Description

This may be used to plot variable importance with BPIC, predictive concordance, a discrepancy
statistic, or the L-criterion regarding an object of class importance.

Usage

## S3 method for class 'importance'
plot(x, Style="BPIC", ...)
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Arguments

x This required argument is an object of class importance.

Style When Style="BPIC", BPIC is shown, and BPIC is the default. Otherwise,
predictive concordance is plotted when Style="Concordance", a discrepancy
statistic is plotted when Style="Discrep", or the L-criterion is plotted when
Style="L-criterion".

... Additional arguments are unused.

Details

The x-axis is either BPIC (Ando, 2007), predictive concordance (Gelfand, 1996), a discrepancy
statistic (Gelman et al., 1996), or the L-criterion (Laud and Ibrahim, 1995) of the Importance
function (depending on the Style argument), and variables are on the y-axis. A more important
variable is associated with a dot that is plotted farther to the right. For more information on variable
importance, see the Importance function.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

References

Ando, T. (2007). "Bayesian Predictive Information Criterion for the Evaluation of Hierarchical
Bayesian and Empirical Bayes Models". Biometrika, 94(2), p. 443–458.

Gelfand, A. (1996). "Model Determination Using Sampling Based Methods". In Gilks, W., Richard-
son, S., Spiegehalter, D., Chapter 9 in Markov Chain Monte Carlo in Practice. Chapman and Hall:
Boca Raton, FL.

Gelman, A., Meng, X.L., and Stern H. (1996). "Posterior Predictive Assessment of Model Fitness
via Realized Discrepancies". Statistica Sinica, 6, p. 733–807.

Laud, P.W. and Ibrahim, J.G. (1995). "Predictive Model Selection". Journal of the Royal Statistical
Society, B 57, p. 247–262.

See Also

Importance

plot.iterquad Plot the output of IterativeQuadrature

Description

This may be used to plot, or save plots of, the iterated history of the parameters and, if posterior
samples were taken, density plots of parameters and monitors in an object of class iterquad.
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Usage

## S3 method for class 'iterquad'
plot(x, Data, PDF=FALSE, Parms, ...)

Arguments

x This required argument is an object of class iterquad.

Data This required argument must receive the list of data that was supplied to IterativeQuadrature
to create the object of class iterquad.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

Parms This argument accepts a vector of quoted strings to be matched for selecting pa-
rameters for plotting. This argument defaults to NULL and selects every parame-
ter for plotting. Each quoted string is matched to one or more parameter names
with the grep function. For example, if the user specifies Parms=c("eta",
"tau"), and if the parameter names are beta[1], beta[2], eta[1], eta[2], and
tau, then all parameters will be selected, because the string eta is within beta.
Since grep is used, string matching uses regular expressions, so beware of meta-
characters, though these are acceptable: ".", "[", and "]".

... Additional arguments are unused.

Details

The plots are arranged in a 2 × 2 matrix. The purpose of the iterated history plots is to show how
the value of each parameter and the deviance changed by iteration as the IterativeQuadrature
attempted to fit a normal distribution to the marginal posterior distributions.

The plots on the right show several densities, described below.

• The transparent black density is the normalized quadrature weights for non-standard normal
distributions, M . For multivariate quadrature, there are often multiple weights at a given node,
and the average M is shown. Vertical black lines indicate the nodes.

• The transparent red density is the normalized LP weights. For multivariate quadrature, there
are often multiple weights at a given node, and the average normalized and weighted LP is
shown. Vertical red lines indicate the nodes.

• The transparent green density is the normal density implied given the conditional mean and
conditional variance.

• The transparent blue density is the kernel density estimate of posterior samples generated
with Sampling Importance Resampling. This is plotted only if the algorithm converged, and
if sir=TRUE.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

IterativeQuadrature
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Examples

### See the IterativeQuadrature function for an example.

plot.iterquad.ppc Plots of Posterior Predictive Checks

Description

This may be used to plot, or save plots of, samples in an object of class iterquad.ppc. A variety
of plots is provided.

Usage

## S3 method for class 'iterquad.ppc'
plot(x, Style=NULL, Data=NULL, Rows=NULL,

PDF=FALSE, ...)

Arguments

x This required argument is an object of class iterquad.ppc.

Style This optional argument specifies one of several styles of plots, and defaults
to NULL (which is the same as "Density"). Styles of plots are indicated in
quotes. Optional styles include "Covariates", "Covariates, Categorical
DV", "Density", "DW", "DW, Multivariate, C", "ECDF", "Fitted", "Fitted,
Multivariate, C", "Fitted, Multivariate, R", "Jarque-Bera", "Jarque-Bera,
Multivariate, C", "Mardia", "Predictive Quantiles", "Residual Density",
"Residual Density, Multivariate, C", "Residual Density, Multivariate,
R", "Residuals", "Residuals, Multivariate, C", "Residuals, Multivariate,
R", "Space-Time by Space", "Space-Time by Time", "Spatial", "Spatial
Uncertainty", "Time-Series", "Time-Series, Multivariate, C", and "Time-Series,
Multivariate, R". Details are given below.

Data This optional argument accepts the data set used when updating the model. Data
is required only with certain plot styles, including "Covariates", "Covariates,
Categorical DV", "DW, Multivariate, C", "Fitted, Multivariate, C", "Fitted,
Multivariate, R", "Jarque-Bera, Multivariate, C", "Mardia", "Residual
Density, Multivariate, C", "Residual Density, Multivariate, R", "Residuals,
Multivariate, C", "Residuals, Multivariate, R", "Space-Time by Space",
"Space-Time by Time", "Spatial", "Spatial Uncertainty", "Time-Series,
Multivariate, C", and "Time-Series, Multivariate, R".

Rows This optional argument is for a vector of row numbers that specify the records
associated by row in the object of class iterquad.ppc. Only these rows are
plotted. The default is to plot all rows. Some plots do not allow rows to be
specified.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

... Additional arguments are unused.
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Details

This function can be used to produce a variety of posterior predictive plots, and the style of plot is
selected with the Style argument. Below are some notes on the styles of plots.
Covariates requires Data to be specified, and also requires that the covariates are named X or x.
A plot is produced for each covariate column vector against yhat, and is appropriate when y is not
categorical.
Covariates, Categorical DV requires Data to be specified, and also requires that the covariates
are named X or x. A plot is produced for each covariate column vector against yhat, and is appro-
priate when y is categorical.
Density plots show the kernel density of the posterior predictive distribution for each selected row
of y (all are selected by default). A vertical red line indicates the position of the observed y along the
x-axis. When the vertical red line is close to the middle of a normal posterior predictive distribution,
then there is little discrepancy between y and the posterior predictive distribution. When the vertical
red line is in the tail of the distribution, or outside of the kernel density altogether, then there is a
large discrepancy between y and the posterior predictive distribution. Large discrepancies may be
considered outliers, and moreover suggest that an improvement in model fit should be considered.
DW plots the distributions of the Durbin-Watson (DW) test statistics (Durbin and Watson, 1950), both
observed (dobs as a transparent, black density) and replicated (drep as a transparent, red density).
The distribution of dobs is estimated from the model, and drep is simulated from normal residuals
without autocorrelation, where the number of simulations are the same as the observed number.
This DW test may be applied to the residuals of univariate time-series models (or otherwise ordered
residuals) to detect first-order autocorrelation. Autocorrelated residuals are not independent. The
DW test is applicable only when the residuals are normally-distributed, higher-order autocorrelation
is not present, and y is not used also as a lagged predictor. The DW test statistic, dobs, occurs in the
interval (0,4), where 0 is perfect positive autocorrelation, 2 is no autocorrelation, and 4 is perfect
negative autocorrelation. The following summary is reported on the plot: the mean of dobs (and its
95% probability interval), the probability that dobs > drep, and whether or not autocorrelation is
found. Positive autocorrelation is reported when the observed process is greater than the replicated
process in 2.5% of the samples, and negative autocorrelation is reported when the observed process
is greater than the replicated process in 97.5% of the samples.
DW, Multivariate, C requires Data to be specified, and also requires that variable Y exist in the
data set with exactly that name. These plots compare each column-wise vector of residuals with a
univariate Durbin-Watson test, as in DW above. This plot is appropriate when Y is multivariate, not
categorical, and residuals are desired to be tested column-wise for first-order autocorrelation.
ECDF (Empirical Cumulative Distribution Function) plots compare the ECDF of y with three ECDFs
of yhat based on the 2.5%, 50% (median), and 97.5% of its distribution. The ECDF(y) is defined as
the proportion of values less than or equal to y. This plot is appropriate when y is univariate and at
least ordinal.
Fitted plots compare y with the probability interval of its replicate, and provide loess smoothing.
This plot is appropriate when y is univariate and not categorical.
Fitted, Multivariate, C requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each column-wise vector of y in Y
with its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen column-wise.
Fitted, Multivariate, R requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each row-wise vector of y in Y with
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its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen row-wise.

Jarque-Bera plots the distributions of the Jarque-Bera (JB) test statistics (Jarque and Bera, 1980),
both observed (JBobs as a transparent black density) and replicated (JBrep as a transparent red den-
sity). The distribution of JBobs is estimated from the model, and JBrep is simulated from normal
residuals, where the number of simulations are the same as the observed number. This Jarque-Bera
test may be applied to the residuals of univariate models to test for normality. The Jarque-Bera test
does not test normality per se, but whether or not the distribution has kurtosis and skewness that
match a normal distribution, and is therefore a test of the moments of a normal distribution. The
following summary is reported on the plot: the mean of JBobs (and its 95% probability interval),
the probability that JBobs > JBrep, and whether or not normality is indicated. Non-normality is
reported when the observed process is greater than the replicated process in either 2.5% or 97.5%
of the samples.

Jarque-Bera, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise vector of
residuals with a univariate Jarque-Bera test, as in Jarque-Bera above. This plot is appropriate
when Y is multivariate, not categorical, and residuals are desired to be tested column-wise for
normality.

Mardia plots the distributions of the skewness (K3) and kurtosis (K4) test statistics (Mardia, 1970),
both observed (K3obs and K4obs as transparent black density) and replicated (K3rep and K4rep

as transparent red density). The distributions of K3obs and K4obs are estimated from the model,
and both K3rep K4rep are simulated from multivariate normal residuals, where the number of sim-
ulations are the same as the observed number. This Mardia’s test may be applied to the residuals
of multivariate models to test for multivariate normality. Mardia’s test does not test for multivari-
ate normality per se, but whether or not the distribution has kurtosis and skewness that match a
multivariate normal distribution, and is therefore a test of the moments of a multivariate normal dis-
tribution. The following summary is reported on the plots: the means of K3obs and K4obs (and the
associated 95% probability intervals), the probabilities that K3obs > K3rep and K4obs > K4rep,
and whether or not multivariate normality is indicated. Non-normality is reported when the ob-
served process is greater than the replicated process in either 2.5% or 97.5% of the samples. Mardia
requires Data to be specified, and also requires that variable Y exist in the data set with exactly that
name. Y must be a N × P matrix of N records and P variables. Source code was modified from
the deprecated package QRMlib.

Predictive Quantiles plots compare y with the predictive quantile (PQ) of its replicate. This may
be useful in looking for patterns with outliers. Instances outside of the gray lines are considered
outliers.

Residual Density plots the residual density of the median of the samples. A vertical red line oc-
curs at zero. This plot may be useful for inspecting a distributional assumption of residual variance.
This plot is appropriate when y is univariate and continuous.

Residual Density, Multivariate C requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are column-wise plots of residual density, given
the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen column-wise.

Residual Density, Multivariate R requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are row-wise plots of residual density, given
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the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen row-wise.

Residuals plots compare y with its residuals. The probability interval is plotted as a line. This plot
is appropriate when y is univariate.

Residuals, Multivariate, C requires Data to be specified, and also requires that variable Y exist
in the data set with exactly that name. These are plots of each column-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen column-wise.

Residuals, Multivariate, R requires Data to be specified, and also requires that variable Y ex-
ist in the data set with exactly that name. These are plots of each row-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen row-wise.

Space-Time by Space requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one time-series plot per
point s in space, for a total of S plots. Therefore, these are time-series plots for each point s in space
across T time-periods. See Time-Series plots below.

Space-Time by Time requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one spatial plot per time-
period, and T plots will be produced. See Spatial plots below.

Spatial requires Data to be specified, and also requires that the following variables exist in the
data set with exactly these names: latitude and longitude. This spatial plot shows yrep plotted
according to its coordinates, and is color-coded so that higher values of yrep become more red, and
lower values become more yellow.

Spatial Uncertainty requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude and longitude. This spatial plot shows
the probability interval of yrep plotted according to its coordinates, and is color-coded so that wider
probability intervals become more red, and lower values become more yellow.

Time-Series plots compare y with its replicate, including the median and probability interval quan-
tiles. This plot is appropriate when y is univariate and ordered by time.

Time-Series, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise time-series in Y
with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by column in Y.

Time-Series, Multivariate, R requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each row-wise time-series in Y
with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by row in Y, such as is typically true in panel
models.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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References
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See Also

IterativeQuadrature and predict.iterquad.

Examples

### See the IterativeQuadrature function for an example.

plot.juxtapose Plot MCMC Juxtaposition

Description

This may be used to plot a juxtaposition of MCMC algorithms according either to IAT or ISM
(Independent Samples per Minute).

Usage

## S3 method for class 'juxtapose'
plot(x, Style="ISM", ...)

Arguments

x This required argument is an object of class juxtapose.

Style This argument accepts either IAT or ISM, and defaults to ISM.

... Additional arguments are unused.

Details

When Style="IAT", the medians and 95% probability intervals of the integrated autocorrelation
times (IATs) of MCMC algorithms are displayed in a caterpillar plot. The best, or least inefficient,
MCMC algorithm is the algorithm with the lowest IAT.

When Style="ISM", the medians and 95% probability intervals of the numbers of independent
samples per minute (ISM) of MCMC algorithms are displayed in a caterpillar plot. The best, or
least inefficient, MCMC algorithm is the algorithm with the highest ISM.

For more information, see the Juxtapose function.
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Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

Juxtapose

plot.laplace Plot the output of LaplaceApproximation

Description

This may be used to plot, or save plots of, the iterated history of the parameters and, if posterior
samples were taken, density plots of parameters and monitors in an object of class laplace.

Usage

## S3 method for class 'laplace'
plot(x, Data, PDF=FALSE, Parms, ...)

Arguments

x This required argument is an object of class laplace.

Data This required argument must receive the list of data that was supplied to LaplaceApproximation
to create the object of class laplace.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

Parms This argument accepts a vector of quoted strings to be matched for selecting pa-
rameters for plotting. This argument defaults to NULL and selects every parame-
ter for plotting. Each quoted string is matched to one or more parameter names
with the grep function. For example, if the user specifies Parms=c("eta",
"tau"), and if the parameter names are beta[1], beta[2], eta[1], eta[2], and
tau, then all parameters will be selected, because the string eta is within beta.
Since grep is used, string matching uses regular expressions, so beware of meta-
characters, though these are acceptable: ".", "[", and "]".

... Additional arguments are unused.

Details

The plots are arranged in a 2 × 2 matrix. The purpose of the iterated history plots is to show how
the value of each parameter and the deviance changed by iteration as the LaplaceApproximation
attempted to maximize the logarithm of the unnormalized joint posterior density. If the algorithm
converged, and if sir=TRUE in LaplaceApproximation, then plots are produced of selected param-
eters and all monitored variables.
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Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

LaplaceApproximation

Examples

### See the LaplaceApproximation function for an example.

plot.laplace.ppc Plots of Posterior Predictive Checks

Description

This may be used to plot, or save plots of, samples in an object of class laplace.ppc. A variety of
plots is provided.

Usage

## S3 method for class 'laplace.ppc'
plot(x, Style=NULL, Data=NULL, Rows=NULL,

PDF=FALSE, ...)

Arguments

x This required argument is an object of class laplace.ppc.

Style This optional argument specifies one of several styles of plots, and defaults
to NULL (which is the same as "Density"). Styles of plots are indicated in
quotes. Optional styles include "Covariates", "Covariates, Categorical
DV", "Density", "DW", "DW, Multivariate, C", "ECDF", "Fitted", "Fitted,
Multivariate, C", "Fitted, Multivariate, R", "Jarque-Bera", "Jarque-Bera,
Multivariate, C", "Mardia", "Predictive Quantiles", "Residual Density",
"Residual Density, Multivariate, C", "Residual Density, Multivariate,
R", "Residuals", "Residuals, Multivariate, C", "Residuals, Multivariate,
R", "Space-Time by Space", "Space-Time by Time", "Spatial", "Spatial
Uncertainty", "Time-Series", "Time-Series, Multivariate, C", and "Time-Series,
Multivariate, R". Details are given below.

Data This optional argument accepts the data set used when updating the model. Data
is required only with certain plot styles, including "Covariates", "Covariates,
Categorical DV", "DW, Multivariate, C", "Fitted, Multivariate, C", "Fitted,
Multivariate, R", "Jarque-Bera, Multivariate, C", "Mardia", "Residual
Density, Multivariate, C", "Residual Density, Multivariate, R", "Residuals,
Multivariate, C", "Residuals, Multivariate, R", "Space-Time by Space",
"Space-Time by Time", "Spatial", "Spatial Uncertainty", "Time-Series,
Multivariate, C", and "Time-Series, Multivariate, R".
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Rows This optional argument is for a vector of row numbers that specify the records
associated by row in the object of class laplace.ppc. Only these rows are
plotted. The default is to plot all rows. Some plots do not allow rows to be
specified.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

... Additional arguments are unused.

Details

This function can be used to produce a variety of posterior predictive plots, and the style of plot is
selected with the Style argument. Below are some notes on the styles of plots.

Covariates requires Data to be specified, and also requires that the covariates are named X or x.
A plot is produced for each covariate column vector against yhat, and is appropriate when y is not
categorical.

Covariates, Categorical DV requires Data to be specified, and also requires that the covariates
are named X or x. A plot is produced for each covariate column vector against yhat, and is appro-
priate when y is categorical.

Density plots show the kernel density of the posterior predictive distribution for each selected row
of y (all are selected by default). A vertical red line indicates the position of the observed y along the
x-axis. When the vertical red line is close to the middle of a normal posterior predictive distribution,
then there is little discrepancy between y and the posterior predictive distribution. When the vertical
red line is in the tail of the distribution, or outside of the kernel density altogether, then there is a
large discrepancy between y and the posterior predictive distribution. Large discrepancies may be
considered outliers, and moreover suggest that an improvement in model fit should be considered.

DW plots the distributions of the Durbin-Watson (DW) test statistics (Durbin and Watson, 1950), both
observed (dobs as a transparent, black density) and replicated (drep as a transparent, red density).
The distribution of dobs is estimated from the model, and drep is simulated from normal residuals
without autocorrelation, where the number of simulations are the same as the observed number.
This DW test may be applied to the residuals of univariate time-series models (or otherwise ordered
residuals) to detect first-order autocorrelation. Autocorrelated residuals are not independent. The
DW test is applicable only when the residuals are normally-distributed, higher-order autocorrelation
is not present, and y is not used also as a lagged predictor. The DW test statistic, dobs, occurs in the
interval (0,4), where 0 is perfect positive autocorrelation, 2 is no autocorrelation, and 4 is perfect
negative autocorrelation. The following summary is reported on the plot: the mean of dobs (and its
95% probability interval), the probability that dobs > drep, and whether or not autocorrelation is
found. Positive autocorrelation is reported when the observed process is greater than the replicated
process in 2.5% of the samples, and negative autocorrelation is reported when the observed process
is greater than the replicated process in 97.5% of the samples.

DW, Multivariate, C requires Data to be specified, and also requires that variable Y exist in the
data set with exactly that name. These plots compare each column-wise vector of residuals with a
univariate Durbin-Watson test, as in DW above. This plot is appropriate when Y is multivariate, not
categorical, and residuals are desired to be tested column-wise for first-order autocorrelation.

ECDF (Empirical Cumulative Distribution Function) plots compare the ECDF of y with three ECDFs
of yhat based on the 2.5%, 50% (median), and 97.5% of its distribution. The ECDF(y) is defined as
the proportion of values less than or equal to y. This plot is appropriate when y is univariate and at
least ordinal.
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Fitted plots compare y with the probability interval of its replicate, and provide loess smoothing.
This plot is appropriate when y is univariate and not categorical.

Fitted, Multivariate, C requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each column-wise vector of y in Y
with its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen column-wise.

Fitted, Multivariate, R requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each row-wise vector of y in Y with
its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen row-wise.

Jarque-Bera plots the distributions of the Jarque-Bera (JB) test statistics (Jarque and Bera, 1980),
both observed (JBobs as a transparent black density) and replicated (JBrep as a transparent red den-
sity). The distribution of JBobs is estimated from the model, and JBrep is simulated from normal
residuals, where the number of simulations are the same as the observed number. This Jarque-Bera
test may be applied to the residuals of univariate models to test for normality. The Jarque-Bera test
does not test normality per se, but whether or not the distribution has kurtosis and skewness that
match a normal distribution, and is therefore a test of the moments of a normal distribution. The
following summary is reported on the plot: the mean of JBobs (and its 95% probability interval),
the probability that JBobs > JBrep, and whether or not normality is indicated. Non-normality is
reported when the observed process is greater than the replicated process in either 2.5% or 97.5%
of the samples.

Jarque-Bera, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise vector of
residuals with a univariate Jarque-Bera test, as in Jarque-Bera above. This plot is appropriate
when Y is multivariate, not categorical, and residuals are desired to be tested column-wise for
normality.

Mardia plots the distributions of the skewness (K3) and kurtosis (K4) test statistics (Mardia, 1970),
both observed (K3obs and K4obs as transparent black density) and replicated (K3rep and K4rep

as transparent red density). The distributions of K3obs and K4obs are estimated from the model,
and both K3rep K4rep are simulated from multivariate normal residuals, where the number of sim-
ulations are the same as the observed number. This Mardia’s test may be applied to the residuals
of multivariate models to test for multivariate normality. Mardia’s test does not test for multivari-
ate normality per se, but whether or not the distribution has kurtosis and skewness that match a
multivariate normal distribution, and is therefore a test of the moments of a multivariate normal dis-
tribution. The following summary is reported on the plots: the means of K3obs and K4obs (and the
associated 95% probability intervals), the probabilities that K3obs > K3rep and K4obs > K4rep,
and whether or not multivariate normality is indicated. Non-normality is reported when the ob-
served process is greater than the replicated process in either 2.5% or 97.5% of the samples. Mardia
requires Data to be specified, and also requires that variable Y exist in the data set with exactly that
name. Y must be a N × P matrix of N records and P variables. Source code was modified from
the deprecated package QRMlib.

Predictive Quantiles plots compare y with the predictive quantile (PQ) of its replicate. This may
be useful in looking for patterns with outliers. Instances outside of the gray lines are considered
outliers.

Residual Density plots the residual density of the median of the samples. A vertical red line oc-
curs at zero. This plot may be useful for inspecting a distributional assumption of residual variance.
This plot is appropriate when y is univariate and continuous.
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Residual Density, Multivariate C requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are column-wise plots of residual density, given
the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen column-wise.

Residual Density, Multivariate R requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are row-wise plots of residual density, given
the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen row-wise.

Residuals plots compare y with its residuals. The probability interval is plotted as a line. This plot
is appropriate when y is univariate.

Residuals, Multivariate, C requires Data to be specified, and also requires that variable Y exist
in the data set with exactly that name. These are plots of each column-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen column-wise.

Residuals, Multivariate, R requires Data to be specified, and also requires that variable Y ex-
ist in the data set with exactly that name. These are plots of each row-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen row-wise.

Space-Time by Space requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one time-series plot per
point s in space, for a total of S plots. Therefore, these are time-series plots for each point s in space
across T time-periods. See Time-Series plots below.

Space-Time by Time requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one spatial plot per time-
period, and T plots will be produced. See Spatial plots below.

Spatial requires Data to be specified, and also requires that the following variables exist in the
data set with exactly these names: latitude and longitude. This spatial plot shows yrep plotted
according to its coordinates, and is color-coded so that higher values of yrep become more red, and
lower values become more yellow.

Spatial Uncertainty requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude and longitude. This spatial plot shows
the probability interval of yrep plotted according to its coordinates, and is color-coded so that wider
probability intervals become more red, and lower values become more yellow.

Time-Series plots compare y with its replicate, including the median and probability interval quan-
tiles. This plot is appropriate when y is univariate and ordered by time.

Time-Series, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise time-series in Y
with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by column in Y.

Time-Series, Multivariate, R requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each row-wise time-series in Y
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with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by row in Y, such as is typically true in panel
models.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Durbin, J., and Watson, G.S. (1950). "Testing for Serial Correlation in Least Squares Regression,
I." Biometrika, 37, p. 409–428.

Jarque, C.M. and Bera, A.K. (1980). "Efficient Tests for Normality, Homoscedasticity and Serial
Independence of Regression Residuals". Economics Letters, 6(3), p. 255–259.

Mardia, K.V. (1970). "Measures of Multivariate Skewness and Kurtosis with Applications". Biometrika,
57(3), p. 519–530.

See Also

LaplaceApproximation and predict.laplace.

Examples

### See the LaplaceApproximation function for an example.

plot.miss Plot samples from the output of MISS

Description

This may be used to plot, or save plots of, samples in an object of class miss. Plots include a trace
plot, density plot, and autocorrelation or ACF plot.

Usage

## S3 method for class 'miss'
plot(x, PDF=FALSE, ...)

Arguments

x This required argument is an object of class miss.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

... Additional arguments are unused.



plot.pmc 301

Details

The plots are arranged in a 3×3 matrix. Each row represents the predictive distribution of a missing
value. The left column displays trace plots, the middle column displays kernel density plots, and
the right column displays autocorrelation (ACF) plots.

Trace plots show the thinned history of the predictive distribution, with its value in the y-axis mov-
ing by iteration across the x-axis. Simulations of a predictive distribution with good properties do
not suggest a trend upward or downward as it progresses across the x-axis (it should appear sta-
tionary), and it should mix well, meaning it should appear as though random samples are being
taken each time from the same target distribution. Visual inspection of a trace plot cannot verify
convergence, but apparent non-stationarity or poor mixing can certainly suggest non-convergence.
A red, smoothed line also appears to aid visual inspection.

Kernel density plots depict the marginal posterior distribution. There is no distributional assumption
about this density.

Autocorrelation plots show the autocorrelation or serial correlation between sampled values at
nearby iterations. Samples with autocorrelation do not violate any assumption, but are inefficient
because they reduce the effective sample size (ESS), and indicate that the chain is not mixing well,
since each value is influenced by values that are previous and nearby. The x-axis indicates lags with
respect to samples by iteration, and the y-axis represents autocorrelation. The ideal autocorrelation
plot shows perfect correlation at zero lag, and quickly falls to zero autocorrelation for all other lags.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

See Also

MISS.

Examples

### See the MISS function for an example.

plot.pmc Plot samples from the output of PMC

Description

This may be used to plot, or save plots of, samples in an object of class pmc. Plots include a
trace plot and density plot for parameters, a density plot for deviance and monitored variables, and
convergence plots.

Usage

## S3 method for class 'pmc'
plot(x, BurnIn=0, Data, PDF=FALSE, Parms, ...)
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Arguments

x This required argument is an object of class pmc.
BurnIn This argument requires zero or a positive integer that indicates the number of

iterations to discard as burn-in for the purposes of plotting.
Data This required argument must receive the list of data that was supplied to PMC to

create the object of class pmc.
PDF This logical argument indicates whether or not the user wants Laplace’s Demon

to save the plots as a .pdf file.
Parms This argument accepts a vector of quoted strings to be matched for selecting pa-

rameters for plotting. This argument defaults to NULL and selects every parame-
ter for plotting. Each quoted string is matched to one or more parameter names
with the grep function. For example, if the user specifies Parms=c("eta",
"tau"), and if the parameter names are beta[1], beta[2], eta[1], eta[2], and
tau, then all parameters will be selected, because the string eta is within beta.
Since grep is used, string matching uses regular expressions, so beware of meta-
characters, though these are acceptable: ".", "[", and "]".

... Additional arguments are unused.

Details

The plots are arranged in a 2× 2 matrix. Each row represents a parameter, the deviance, or a mon-
itored variable. For parameters, the left column displays trace plots and the right column displays
kernel density plots.

Trace plots show the history of the distribution of independent importance samples. When multi-
ple mixture components are used, each mixture component has a different color. These plots are
unavailable for the deviance and monitored variables.

Kernel density plots depict the marginal posterior distribution. Although there is no distributional
assumption about this density, kernel density estimation uses Gaussian basis functions.

Following these plots are three plots for convergence. First, ESSN (red) and perplexity (black) are
plotted by iteration. Convergence occurs when both of these seem to stabilize, and higher is better.
The second plot shows the distribution of the normalized importance weights by iteration. The
third plot appears only when multiple mixture components are used. The third plot displays the
probabilities of each mixture component by iteration. Although the last two plots are not formally
convergence plots, they are provided so the user can verify the distribution of importance weights
and the mixture probabilities have become stable.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

ESS and PMC.

Examples

### See the PMC function for an example.
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plot.pmc.ppc Plots of Posterior Predictive Checks

Description

This may be used to plot, or save plots of, samples in an object of class pmc.ppc. A variety of plots
is provided.

Usage

## S3 method for class 'pmc.ppc'
plot(x, Style=NULL, Data=NULL, Rows=NULL,

PDF=FALSE, ...)

Arguments

x This required argument is an object of class pmc.ppc.

Style This optional argument specifies one of several styles of plots, and defaults
to NULL (which is the same as "Density"). Styles of plots are indicated in
quotes. Optional styles include "Covariates", "Covariates, Categorical
DV", "Density", "DW", "DW, Multivariate, C", "ECDF", "Fitted", "Fitted,
Multivariate, C", "Fitted, Multivariate, R", "Jarque-Bera", "Jarque-Bera,
Multivariate, C", "Mardia", "Predictive Quantiles", "Residual Density",
"Residual Density, Multivariate, C", "Residual Density, Multivariate,
R", "Residuals", "Residuals, Multivariate, C", "Residuals, Multivariate,
R", "Space-Time by Space", "Space-Time by Time", "Spatial", "Spatial
Uncertainty", "Time-Series", "Time-Series, Multivariate, C", and "Time-Series,
Multivariate, R". Details are given below.

Data This optional argument accepts the data set used when updating the model. Data
is required only with certain plot styles, including "Covariates", "Covariates,
Categorical DV", "DW, Multivariate, C", "Fitted, Multivariate, C", "Fitted,
Multivariate, R", "Jarque-Bera, Multivariate, C", "Mardia", "Residual
Density, Multivariate, C", "Residual Density, Multivariate, R", "Residuals,
Multivariate, C", "Residuals, Multivariate, R", "Space-Time by Space",
"Space-Time by Time", "Spatial", "Spatial Uncertainty", "Time-Series,
Multivariate, C", and "Time-Series, Multivariate, R".

Rows This optional argument is for a vector of row numbers that specify the records
associated by row in the object of class pmc.ppc. Only these rows are plotted.
The default is to plot all rows. Some plots do not allow rows to be specified.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

... Additional arguments are unused.
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Details

This function can be used to produce a variety of posterior predictive plots, and the style of plot is
selected with the Style argument. Below are some notes on the styles of plots.
Covariates requires Data to be specified, and also requires that the covariates are named X or x.
A plot is produced for each covariate column vector against yhat, and is appropriate when y is not
categorical.
Covariates, Categorical DV requires Data to be specified, and also requires that the covariates
are named X or x. A plot is produced for each covariate column vector against yhat, and is appro-
priate when y is categorical.
Density plots show the kernel density of the posterior predictive distribution for each selected row
of y (all are selected by default). A vertical red line indicates the position of the observed y along the
x-axis. When the vertical red line is close to the middle of a normal posterior predictive distribution,
then there is little discrepancy between y and the posterior predictive distribution. When the vertical
red line is in the tail of the distribution, or outside of the kernel density altogether, then there is a
large discrepancy between y and the posterior predictive distribution. Large discrepancies may be
considered outliers, and moreover suggest that an improvement in model fit should be considered.
DW plots the distributions of the Durbin-Watson (DW) test statistics (Durbin and Watson, 1950), both
observed (dobs as a transparent, black density) and replicated (drep as a transparent, red density).
The distribution of dobs is estimated from the model, and drep is simulated from normal residuals
without autocorrelation, where the number of simulations are the same as the observed number.
This DW test may be applied to the residuals of univariate time-series models (or otherwise ordered
residuals) to detect first-order autocorrelation. Autocorrelated residuals are not independent. The
DW test is applicable only when the residuals are normally-distributed, higher-order autocorrelation
is not present, and y is not used also as a lagged predictor. The DW test statistic, dobs, occurs in the
interval (0,4), where 0 is perfect positive autocorrelation, 2 is no autocorrelation, and 4 is perfect
negative autocorrelation. The following summary is reported on the plot: the mean of dobs (and its
95% probability interval), the probability that dobs > drep, and whether or not autocorrelation is
found. Positive autocorrelation is reported when the observed process is greater than the replicated
process in 2.5% of the samples, and negative autocorrelation is reported when the observed process
is greater than the replicated process in 97.5% of the samples.
DW, Multivariate, C requires Data to be specified, and also requires that variable Y exist in the
data set with exactly that name. These plots compare each column-wise vector of residuals with a
univariate Durbin-Watson test, as in DW above. This plot is appropriate when Y is multivariate, not
categorical, and residuals are desired to be tested column-wise for first-order autocorrelation.
ECDF (Empirical Cumulative Distribution Function) plots compare the ECDF of y with three ECDFs
of yhat based on the 2.5%, 50% (median), and 97.5% of its distribution. The ECDF(y) is defined as
the proportion of values less than or equal to y. This plot is appropriate when y is univariate and at
least ordinal.
Fitted plots compare y with the probability interval of its replicate, and provide loess smoothing.
This plot is appropriate when y is univariate and not categorical.
Fitted, Multivariate, C requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each column-wise vector of y in Y
with its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen column-wise.
Fitted, Multivariate, R requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each row-wise vector of y in Y with
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its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen row-wise.

Jarque-Bera plots the distributions of the Jarque-Bera (JB) test statistics (Jarque and Bera, 1980),
both observed (JBobs as a transparent black density) and replicated (JBrep as a transparent red den-
sity). The distribution of JBobs is estimated from the model, and JBrep is simulated from normal
residuals, where the number of simulations are the same as the observed number. This Jarque-Bera
test may be applied to the residuals of univariate models to test for normality. The Jarque-Bera test
does not test normality per se, but whether or not the distribution has kurtosis and skewness that
match a normal distribution, and is therefore a test of the moments of a normal distribution. The
following summary is reported on the plot: the mean of JBobs (and its 95% probability interval),
the probability that JBobs > JBrep, and whether or not normality is indicated. Non-normality is
reported when the observed process is greater than the replicated process in either 2.5% or 97.5%
of the samples.

Jarque-Bera, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise vector of
residuals with a univariate Jarque-Bera test, as in Jarque-Bera above. This plot is appropriate
when Y is multivariate, not categorical, and residuals are desired to be tested column-wise for
normality.

Mardia plots the distributions of the skewness (K3) and kurtosis (K4) test statistics (Mardia, 1970),
both observed (K3obs and K4obs as transparent black density) and replicated (K3rep and K4rep

as transparent red density). The distributions of K3obs and K4obs are estimated from the model,
and both K3rep K4rep are simulated from multivariate normal residuals, where the number of sim-
ulations are the same as the observed number. This Mardia’s test may be applied to the residuals
of multivariate models to test for multivariate normality. Mardia’s test does not test for multivari-
ate normality per se, but whether or not the distribution has kurtosis and skewness that match a
multivariate normal distribution, and is therefore a test of the moments of a multivariate normal dis-
tribution. The following summary is reported on the plots: the means of K3obs and K4obs (and the
associated 95% probability intervals), the probabilities that K3obs > K3rep and K4obs > K4rep,
and whether or not multivariate normality is indicated. Non-normality is reported when the ob-
served process is greater than the replicated process in either 2.5% or 97.5% of the samples. Mardia
requires Data to be specified, and also requires that variable Y exist in the data set with exactly that
name. Y must be a N × P matrix of N records and P variables. Source code was modified from
the deprecated package QRMlib.

Predictive Quantiles plots compare y with the predictive quantile (PQ) of its replicate. This may
be useful in looking for patterns with outliers. Instances outside of the gray lines are considered
outliers.

Residual Density plots the residual density of the median of the samples. A vertical red line oc-
curs at zero. This plot may be useful for inspecting a distributional assumption of residual variance.
This plot is appropriate when y is univariate and continuous.

Residual Density, Multivariate C requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are column-wise plots of residual density, given
the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen column-wise.

Residual Density, Multivariate R requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are row-wise plots of residual density, given



306 plot.pmc.ppc

the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen row-wise.

Residuals plots compare y with its residuals. The probability interval is plotted as a line. This plot
is appropriate when y is univariate.

Residuals, Multivariate, C requires Data to be specified, and also requires that variable Y exist
in the data set with exactly that name. These are plots of each column-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen column-wise.

Residuals, Multivariate, R requires Data to be specified, and also requires that variable Y ex-
ist in the data set with exactly that name. These are plots of each row-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen row-wise.

Space-Time by Space requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one time-series plot per
point s in space, for a total of S plots. Therefore, these are time-series plots for each point s in space
across T time-periods. See Time-Series plots below.

Space-Time by Time requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one spatial plot per time-
period, and T plots will be produced. See Spatial plots below.

Spatial requires Data to be specified, and also requires that the following variables exist in the
data set with exactly these names: latitude and longitude. This spatial plot shows yrep plotted
according to its coordinates, and is color-coded so that higher values of yrep become more red, and
lower values become more yellow.

Spatial Uncertainty requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude and longitude. This spatial plot shows
the probability interval of yrep plotted according to its coordinates, and is color-coded so that wider
probability intervals become more red, and lower values become more yellow.

Time-Series plots compare y with its replicate, including the median and probability interval quan-
tiles. This plot is appropriate when y is univariate and ordered by time.

Time-Series, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise time-series in Y
with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by column in Y.

Time-Series, Multivariate, R requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each row-wise time-series in Y
with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by row in Y, such as is typically true in panel
models.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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See Also

PMC and predict.pmc.

Examples

### See the PMC function for an example.

plot.vb Plot the output of VariationalBayes

Description

This may be used to plot, or save plots of, the iterated history of the parameters and variances, and
if posterior samples were taken, density plots of parameters and monitors in an object of class vb.

Usage

## S3 method for class 'vb'
plot(x, Data, PDF=FALSE, Parms, ...)

Arguments

x This required argument is an object of class vb.

Data This required argument must receive the list of data that was supplied to VariationalBayes
to create the object of class vb.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

Parms This argument accepts a vector of quoted strings to be matched for selecting pa-
rameters for plotting. This argument defaults to NULL and selects every parame-
ter for plotting. Each quoted string is matched to one or more parameter names
with the grep function. For example, if the user specifies Parms=c("eta",
"tau"), and if the parameter names are beta[1], beta[2], eta[1], eta[2], and
tau, then all parameters will be selected, because the string eta is within beta.
Since grep is used, string matching uses regular expressions, so beware of meta-
characters, though these are acceptable: ".", "[", and "]".

... Additional arguments are unused.
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Details

The plots are arranged in a 3×3 matrix. The purpose of the iterated history plots is to show how the
value of each parameter, variance, and the deviance changed by iteration as the VariationalBayes
attempted to maximize the logarithm of the unnormalized joint posterior density. If the algorithm
converged, and if sir=TRUE in VariationalBayes, then plots are produced of selected parameters
and all monitored variables.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

VariationalBayes

Examples

### See the VariationalBayes function for an example.

plot.vb.ppc Plots of Posterior Predictive Checks

Description

This may be used to plot, or save plots of, samples in an object of class vb.ppc. A variety of plots
is provided.

Usage

## S3 method for class 'vb.ppc'
plot(x, Style=NULL, Data=NULL, Rows=NULL,

PDF=FALSE, ...)

Arguments

x This required argument is an object of class vb.ppc.

Style This optional argument specifies one of several styles of plots, and defaults
to NULL (which is the same as "Density"). Styles of plots are indicated in
quotes. Optional styles include "Covariates", "Covariates, Categorical
DV", "Density", "DW", "DW, Multivariate, C", "ECDF", "Fitted", "Fitted,
Multivariate, C", "Fitted, Multivariate, R", "Jarque-Bera", "Jarque-Bera,
Multivariate, C", "Mardia", "Predictive Quantiles", "Residual Density",
"Residual Density, Multivariate, C", "Residual Density, Multivariate,
R", "Residuals", "Residuals, Multivariate, C", "Residuals, Multivariate,
R", "Space-Time by Space", "Space-Time by Time", "Spatial", "Spatial
Uncertainty", "Time-Series", "Time-Series, Multivariate, C", and "Time-Series,
Multivariate, R". Details are given below.
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Data This optional argument accepts the data set used when updating the model. Data
is required only with certain plot styles, including "Covariates", "Covariates,
Categorical DV", "DW, Multivariate, C", "Fitted, Multivariate, C", "Fitted,
Multivariate, R", "Jarque-Bera, Multivariate, C", "Mardia", "Residual
Density, Multivariate, C", "Residual Density, Multivariate, R", "Residuals,
Multivariate, C", "Residuals, Multivariate, R", "Space-Time by Space",
"Space-Time by Time", "Spatial", "Spatial Uncertainty", "Time-Series,
Multivariate, C", and "Time-Series, Multivariate, R".

Rows This optional argument is for a vector of row numbers that specify the records
associated by row in the object of class vb.ppc. Only these rows are plotted.
The default is to plot all rows. Some plots do not allow rows to be specified.

PDF This logical argument indicates whether or not the user wants Laplace’s Demon
to save the plots as a .pdf file.

... Additional arguments are unused.

Details

This function can be used to produce a variety of posterior predictive plots, and the style of plot is
selected with the Style argument. Below are some notes on the styles of plots.

Covariates requires Data to be specified, and also requires that the covariates are named X or x.
A plot is produced for each covariate column vector against yhat, and is appropriate when y is not
categorical.

Covariates, Categorical DV requires Data to be specified, and also requires that the covariates
are named X or x. A plot is produced for each covariate column vector against yhat, and is appro-
priate when y is categorical.

Density plots show the kernel density of the posterior predictive distribution for each selected row
of y (all are selected by default). A vertical red line indicates the position of the observed y along the
x-axis. When the vertical red line is close to the middle of a normal posterior predictive distribution,
then there is little discrepancy between y and the posterior predictive distribution. When the vertical
red line is in the tail of the distribution, or outside of the kernel density altogether, then there is a
large discrepancy between y and the posterior predictive distribution. Large discrepancies may be
considered outliers, and moreover suggest that an improvement in model fit should be considered.

DW plots the distributions of the Durbin-Watson (DW) test statistics (Durbin and Watson, 1950), both
observed (dobs as a transparent, black density) and replicated (drep as a transparent, red density).
The distribution of dobs is estimated from the model, and drep is simulated from normal residuals
without autocorrelation, where the number of simulations are the same as the observed number.
This DW test may be applied to the residuals of univariate time-series models (or otherwise ordered
residuals) to detect first-order autocorrelation. Autocorrelated residuals are not independent. The
DW test is applicable only when the residuals are normally-distributed, higher-order autocorrelation
is not present, and y is not used also as a lagged predictor. The DW test statistic, dobs, occurs in the
interval (0,4), where 0 is perfect positive autocorrelation, 2 is no autocorrelation, and 4 is perfect
negative autocorrelation. The following summary is reported on the plot: the mean of dobs (and its
95% probability interval), the probability that dobs > drep, and whether or not autocorrelation is
found. Positive autocorrelation is reported when the observed process is greater than the replicated
process in 2.5% of the samples, and negative autocorrelation is reported when the observed process
is greater than the replicated process in 97.5% of the samples.
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DW, Multivariate, C requires Data to be specified, and also requires that variable Y exist in the
data set with exactly that name. These plots compare each column-wise vector of residuals with a
univariate Durbin-Watson test, as in DW above. This plot is appropriate when Y is multivariate, not
categorical, and residuals are desired to be tested column-wise for first-order autocorrelation.

ECDF (Empirical Cumulative Distribution Function) plots compare the ECDF of y with three ECDFs
of yhat based on the 2.5%, 50% (median), and 97.5% of its distribution. The ECDF(y) is defined as
the proportion of values less than or equal to y. This plot is appropriate when y is univariate and at
least ordinal.

Fitted plots compare y with the probability interval of its replicate, and provide loess smoothing.
This plot is appropriate when y is univariate and not categorical.

Fitted, Multivariate, C requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each column-wise vector of y in Y
with its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen column-wise.

Fitted, Multivariate, R requires Data to be specified, and also requires that variable Y exists
in the data set with exactly that name. These plots compare each row-wise vector of y in Y with
its replicates and provide loess smoothing. This plot is appropriate when Y is multivariate, not
categorical, and desired to be seen row-wise.

Jarque-Bera plots the distributions of the Jarque-Bera (JB) test statistics (Jarque and Bera, 1980),
both observed (JBobs as a transparent black density) and replicated (JBrep as a transparent red den-
sity). The distribution of JBobs is estimated from the model, and JBrep is simulated from normal
residuals, where the number of simulations are the same as the observed number. This Jarque-Bera
test may be applied to the residuals of univariate models to test for normality. The Jarque-Bera test
does not test normality per se, but whether or not the distribution has kurtosis and skewness that
match a normal distribution, and is therefore a test of the moments of a normal distribution. The
following summary is reported on the plot: the mean of JBobs (and its 95% probability interval),
the probability that JBobs > JBrep, and whether or not normality is indicated. Non-normality is
reported when the observed process is greater than the replicated process in either 2.5% or 97.5%
of the samples.

Jarque-Bera, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise vector of
residuals with a univariate Jarque-Bera test, as in Jarque-Bera above. This plot is appropriate
when Y is multivariate, not categorical, and residuals are desired to be tested column-wise for
normality.

Mardia plots the distributions of the skewness (K3) and kurtosis (K4) test statistics (Mardia, 1970),
both observed (K3obs and K4obs as transparent black density) and replicated (K3rep and K4rep

as transparent red density). The distributions of K3obs and K4obs are estimated from the model,
and both K3rep K4rep are simulated from multivariate normal residuals, where the number of sim-
ulations are the same as the observed number. This Mardia’s test may be applied to the residuals
of multivariate models to test for multivariate normality. Mardia’s test does not test for multivari-
ate normality per se, but whether or not the distribution has kurtosis and skewness that match a
multivariate normal distribution, and is therefore a test of the moments of a multivariate normal dis-
tribution. The following summary is reported on the plots: the means of K3obs and K4obs (and the
associated 95% probability intervals), the probabilities that K3obs > K3rep and K4obs > K4rep,
and whether or not multivariate normality is indicated. Non-normality is reported when the ob-
served process is greater than the replicated process in either 2.5% or 97.5% of the samples. Mardia
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requires Data to be specified, and also requires that variable Y exist in the data set with exactly that
name. Y must be a N × P matrix of N records and P variables. Source code was modified from
the deprecated package QRMlib.

Predictive Quantiles plots compare y with the predictive quantile (PQ) of its replicate. This may
be useful in looking for patterns with outliers. Instances outside of the gray lines are considered
outliers.

Residual Density plots the residual density of the median of the samples. A vertical red line oc-
curs at zero. This plot may be useful for inspecting a distributional assumption of residual variance.
This plot is appropriate when y is univariate and continuous.

Residual Density, Multivariate C requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are column-wise plots of residual density, given
the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen column-wise.

Residual Density, Multivariate R requires Data to be specified, and also requires that variable
Y exist in the data set with exactly that name. These are row-wise plots of residual density, given
the median of the samples. These plots may be useful for inspecting a distributional assumption
of residual variance. This plot is appropriate when Y is multivariate, continuous, and densities are
desired to be seen row-wise.

Residuals plots compare y with its residuals. The probability interval is plotted as a line. This plot
is appropriate when y is univariate.

Residuals, Multivariate, C requires Data to be specified, and also requires that variable Y exist
in the data set with exactly that name. These are plots of each column-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen column-wise.

Residuals, Multivariate, R requires Data to be specified, and also requires that variable Y ex-
ist in the data set with exactly that name. These are plots of each row-wise vector of residuals.
The probability interval is plotted as a line. This plot is appropriate when Y is multivariate, not
categorical, and the residuals are desired to be seen row-wise.

Space-Time by Space requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one time-series plot per
point s in space, for a total of S plots. Therefore, these are time-series plots for each point s in space
across T time-periods. See Time-Series plots below.

Space-Time by Time requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude, longitude, S, and T. These space-time
plots compare the S x T matrix Y with the S x T matrix Yrep, producing one spatial plot per time-
period, and T plots will be produced. See Spatial plots below.

Spatial requires Data to be specified, and also requires that the following variables exist in the
data set with exactly these names: latitude and longitude. This spatial plot shows yrep plotted
according to its coordinates, and is color-coded so that higher values of yrep become more red, and
lower values become more yellow.

Spatial Uncertainty requires Data to be specified, and also requires that the following variables
exist in the data set with exactly these names: latitude and longitude. This spatial plot shows
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the probability interval of yrep plotted according to its coordinates, and is color-coded so that wider
probability intervals become more red, and lower values become more yellow.

Time-Series plots compare y with its replicate, including the median and probability interval quan-
tiles. This plot is appropriate when y is univariate and ordered by time.

Time-Series, Multivariate, C requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each column-wise time-series in Y
with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by column in Y.

Time-Series, Multivariate, R requires Data to be specified, and also requires that variable Y
exist in the data set with exactly that name. These plots compare each row-wise time-series in Y
with its replicate, including the median and probability interval quantiles. This plot is appropriate
when y is multivariate and each time-series is indexed by row in Y, such as is typically true in panel
models.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References
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I." Biometrika, 37, p. 409–428.
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See Also

predict.vb and VariationalBayes.

Examples

### See the VariationalBayes function for an example.

plotMatrix Plot a Numerical Matrix

Description

This function plots a numerical matrix, and is often used to plot the following matrices: correlation,
covariance, distance, and precision.

Usage

plotMatrix(x, col=colorRampPalette(c("red","black","green"))(100),
cex=1, circle=TRUE, order=FALSE, zlim=NULL, title="", PDF=FALSE, ...)
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Arguments

x This required argument is a numerical matrix, or an object of class bayesfactor,
demonoid, iterquad, laplace, pmc, posteriorchecks, or vb. See more infor-
mation below regarding these classes. One component of a blocked proposal
covariance matrix must be pointed to explicitly, rather than to the object of class
demonoid.

col This argument specifies the colors of the circles. By default, the colorRampPalette
function colors strong positive correlation as green, zero correlation as black,
and strong negative correlation as red, and provides 100 color gradations.

cex When circle=TRUE, this argument specifies the size of the marginal text, the
names of the parameters or variables, and defaults to 1.

circle Logical. When TRUE, each element in the numeric matrix is represented with
a circle, and a larger circle is assigned to elements that are farther from zero.
Also, when TRUE, the gradation scale does not appear to the right of the plot.

order Logical. This argument defaults to FALSE, and presents the parameters or vari-
ables in the same order as in the numeric matrix. When TRUE, the parameters or
variables are ordered using principal components analysis.

zlim When circle=FALSE, the gradation scale may be constrained to an interval by
zlim, such as zlim=c(-1,1), and only values within the interval are plotted.

title This argument specifies the title of the plot, and the default does not include a
title. When x is of class posteriorchecks, the title is changed to Posterior
Correlation.

PDF Logical. When TRUE, the plot is saved as a .pdf file.

... Additional arguments are unused.

Details

The plotMatrix function produces one of two styles of plots, depending on the circle argument.
A K × K numeric matrix of K parameters or variables is plotted. The plot is a matrix of the
same dimensions, in which each element is colored (and sized, when circle=TRUE) according to
its value.

Although plotMatrix does not provide the same detail as a numeric matrix, it is easier to discover
elements of interest according to color (and size when circle=TRUE).

The plotMatrix function is not inherently Bayesian, and does not include uncertainty in matri-
ces. Nonetheless, it is included because it is a useful graphical presentation of a numeric matri-
ces, and is recommended to be used with the posterior correlation matrix in an object of class
posteriorchecks.

When x is an object of class bayesfactor, matrix B is plotted. When x is an object of class
demonoid (if it is a matrix), iterquad, laplace, pmc, or vb, the covariance matrix Covar is plotted.
When x is an object of class posteriorchecks, the posterior correlation matrix is plotted.

This is a modified version of the circle.corr function of Taiyun Wei.

Author(s)

Taiyun Wei
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See Also

PosteriorChecks

Examples

library(LaplacesDemon)
### Although it is most commonly used with an object of class
### posteriorchecks, it is applied here to a different correlation matrix.
data(mtcars)
plotMatrix(cor(mtcars), col=colorRampPalette(c("green","gray10","red"))(100),

cex=1, circle=FALSE, order=TRUE)
plotMatrix(cor(mtcars), col=colorRampPalette(c("green","gray10","red"))(100),

cex=1, circle=TRUE, order=TRUE)

plotSamples Plot Samples

Description

This function provides basic plots that are extended to include samples.

Usage

plotSamples(X, Style="KDE", LB=0.025, UB=0.975, Title=NULL)

Arguments

X This required argument is a N×S numerical matrix of N records and S samples.

Style This argument accepts the following quoted strings: "barplot", "dotchart", "hist",
"KDE", or "Time-Series". It defaults to Style="KDE".

LB This argument accepts the lower bound of a probability interval, which must be
in the interval [0,0.5).

UB This argument accepts the upper bound of a probability interval, which must be
in the interval (0.5,1].

Title This argument defaults to NULL, and otherwise accepts a quoted string that will
be the title of the plot.

Details

The plotSamples function extends several basic plots from points to samples. For example, it is
common to use the hist function to plot a histogram from a column vector. However, the user may
desire to plot a histogram of a column vector that was sampled numerous times, rather than a simple
column vector, in which a (usually 95%) probability interval is also plotted to show the uncertainty
around the sampled median of each bin in the histogram.

The plotSamples function extends the barplot, dotchart, and hist functions to include uncer-
tainty due to samples. The KDE style of plot is added so that a probability interval is shown around
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a sampled kernel density estimate of a distribution, and the Time-Series style of plot is added so
that a probability interval is shown around a sampled univariate time-series.

For each style of plot, three quantiles are plotted: the lower bound (LB), median, and upper bound
(UB).

One of many potential Bayesian applications is to examine the uncertainty in a predictive distribu-
tion.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

Examples

#library(LaplacesDemon)
#N <- 100
#S <- 100
#X <- matrix(rnorm(N*S),N,S)
#rownames(X) <- 1:100
#plotSamples(X, Style="barplot", LB=0.025, UB=0.975)
#plotSamples(X[1:10,], Style="dotchart", LB=0.025, UB=0.975)
#plotSamples(X, Style="hist", LB=0.025, UB=0.975)
#plotSamples(X, Style="KDE", LB=0.025, UB=0.975)
#plotSamples(X, Style="Time-Series", LB=0.025, UB=0.975)

PMC Population Monte Carlo

Description

The PMC function updates a model with Population Monte Carlo. Given a model specification, data,
and initial values, PMC maximizes the logarithm of the unnormalized joint posterior density and
provides samples of the marginal posterior distributions, deviance, and other monitored variables.

Usage

PMC(Model, Data, Initial.Values, Covar=NULL, Iterations=10, Thinning=1,
alpha=NULL, M=1, N=1000, nu=9, CPUs=1, Type="PSOCK")

Arguments

Model This is a model specification function. For more information, see LaplacesDemon.

Initial.Values This is either a vector initial values, one for each of K parameters, or in the
case of a mixture of M components, this is a M × K matrix of initial values.
If all initial values are zero in this vector, or in the first row of a matrix, then
LaplaceApproximation is used to optimize initial values, in which case all
mixture components receive the same initial values and covariance matrix from
the object of class laplace. Parameters must be continuous.
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Data This is a list of data. For more information, see LaplacesDemon.

Covar This is a K × K covariance matrix for K parameters, or for multiple mixture
components, this is a K × K × M array of M covariance matrices, where M
is the number of mixture components. Covar defaults to NULL, in which case a
scaled identity matrix (with the same scale as in LaplacesDemon) is applied to
all mixture components.

Iterations This is the number of iterations during which PMC will update the model. Up-
dating the model for only one iteration is the same as applying non-adaptive
importance sampling.

Thinning This is the number by which the posterior is thinned. To have 1,000 posterior
samples with M=3 mixture components and N=10000 samples each, Thinning=30.
For more information, see the Thin function.

alpha This is a vector of length M , the number of mixture components. α is the
probability of each mixture component. The default value is NULL, which assigns
an equal probability to each component.

M This is the number M of multivariate t distribution mixture components.

N This is the number N of samples per mixture component. The required number
of samples increases with the number K of parameters. These samples are also
called walkers or particles.

nu This is the degrees of freedom parameter ν for the multivariate t distribution for
each mixture component. If a multivariate normal distribution is preferred, then
set ν > 1e4.

CPUs This argument is required for parallel processing, and and indicates the number
of central processing units (CPUs) of the computer or cluster. For example,
when a user has a quad-core computer, CPUs=4.

Type This argument defaults to "PSOCK" and uses the Simple Network of Worksta-
tions (SNOW) for parallelization. Alternatively, Type="MPI" may be specified
to use Message Passing Interface (MPI) for parallelization.

Details

The PMC function uses the adaptive importance sampling algorithm of Wraith et al. (2009), also
called Mixture PMC or M-PMC (Cappe et al., 2008). Iterative adaptive importance sampling was
introduced in the 1980s. Modern PMC was introduced (Cappe et al., 2004), and extended to mul-
tivariate Gaussian or t-distributed mixtures (Cappe et al., 2008). This version uses a multivariate t
distribution for each mixture component, and also allows a multivariate normal distribution when
the degrees of freedom, ν > 1e4. At each iteration, a mixture distribution is sampled with impor-
tance sampling, and the samples (or populations) are adapted to improve the importance sampling.
Adaptation is a variant of EM (Expectation-Maximization). The sample is self-normalized, and is an
example of self-normalized importance sampling (SNIS), or self-importance sampling. The vector
α contains the probability of each mixture component. These, as well as multivariate t distribution
mixture parameters (except ν), are adapted each iteration.

Advantages of PMC over MCMC include:

• It is difficult to assess convergence of MCMC chains, and this is not necessary in PMC (Wraith
et al., 2009).
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• MCMC chains have autocorrelation that effectively reduces posterior samples. PMC produces
independent samples that are not reduced with autocorrelation.

• PMC has been reported to produce samples with less variance than MCMC.

• It is difficult to parallelize MCMC. Posterior samples from parallel chains can be pooled when
all chains have converged, but until this occurs, parallelization is unhelpful. PMC, on the other
hand, can parallelize the independent, Monte Carlo samples during each iteration and reduce
run-time as the number of processors increases. Currently, PMC is not parallelized here.

• The multivariate mixture in PMC can represent a multimodal posterior, where MCMC with
parallel chains may be used to identify a multimodal posterior, but probably will not yield
combined samples that proportionally represent it.

Disadvantages of PMC, compared to MCMC, include:

• In PMC, the required number of samples at each iteration increases quickly with respect to an
increase in parameters. MCMC is more suitable for models with large numbers of parameters,
and therefore, MCMC is more generalizable.

• PMC is more sensitive to initial values than MCMC, especially as the number of parameters
increases.

• PMC is more sensitive to the initial covariance matrix (or matrices for mixture components)
than adaptive MCMC. PMC requires more information about the target distributions before
updating. The covariance matrix from a converged iterative quadrature algorithm, Laplace Ap-
proximation, or Variational Bayes may be required (see IterativeQuadrature, LaplaceApproximation,
or VariationalBayes for more information).

Since PMC requires better initial information than iterative quadrature, Laplace Approximation,
MCMC, and Variational Bayes, it is not recommended to begin updating a model that has little
prior information with PMC, especially when the model has more than a few parameters. Instead,
iterative quadrature, Laplace Approximation, MCMC, or Variational Bayes should be used. How-
ever, once convergence is found or assumed, it is recommended to attempt to update the model
with PMC, given the latest parameters and convariance matrix from iterative quadrature, Laplace
Approximation, MCMC, or Variational Bayes. Used in this way, PMC may improve the model fit
obtained with MCMC and should reduce the variance of the marginal posterior distributions, which
is desirable for predictive modeling.

Convergence is assessed by observing two outputs: normalized effective sample size (ESSN) and
normalized perplexity (Perplexity). These are described below. PMC is considered to have con-
verged when these diagnostics stabilize (Wraith et al., 2009), or when the normalized perplex-
ity becomes sufficiently close to 1 (Cappe et al., 2008). If they do not stabilize, then it is sug-
gested to begin PMC again with a larger number N of samples, and possibly with different initial
values and covariance matrix or matrices. IterativeQuadrature, LaplaceApproximation, or
VariationalBayes may be helpful to provide better starting values for PMC.

If a message appears that warns about ‘bad weights’, then PMC is attempting to work with an iteration
in which importance weights are problematic. If this occurs in the first iteration, then all importance
weights are set to 1/N . If this occurs in other iterations, then the information from the previous
iteration is used instead and different draws are made from that importance distribution. This may
allow PMC to eventually adapt successfully to the target. If not, the user is advised to begin again
with a larger number N of samples, and possibly different initial values and covariance matrix or
matrices, as above. PMC can experience difficulty when it begins with poor initial conditions.
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The user may combine samples from previous iterations with samples from the latest iteration for
inference, if the algorithm converged before the last iteration. Currently, a function is not provided
for combining previous samples.

Value

The returned object is an object of class pmc with the following components:

alpha This is a M × T matrix of the probabilities of mixture components, where M is
the number of mixture components and T is the number of iterations.

Call This is the matched call of PMC.

Covar This stores the K ×K × T ×M proposal covariance matrix in an array, where
K is the dimension or number of parameters or initial values, T is the number of
iterations, and M is the number of mixture components. If the model is updated
in the future, then the latest covariance matrix for each mixture component can
be extracted and used to start the next update where the last update left off.

Deviance This is a vector of the deviance of the model, with a length equal to the number
of thinned samples that were retained. Deviance is useful for considering model
fit, and is equal to the sum of the log-likelihood for all rows in the data set, which
is then multiplied by negative two.

DIC This is a vector of three values: Dbar, pD, and DIC. Dbar is the mean deviance,
pD is a measure of model complexity indicating the effective number of parame-
ters, and DIC is the Deviance Information Criterion, which is a model fit statistic
that is the sum of Dbar and pD. DIC is calculated over the thinned samples. Note
that pD is calculated as var(Deviance)/2 as in Gelman et al. (2004).

ESSN This is a vector of length T that contains the normalized effective sample size
(ESSN) per iteration across T iterations. ESSN is used as a convergence diag-
nostic. ESSN is normalized between zero and one, and can be interpreted as the
proportion of samples with non-zero weight. Higher is better.

Initial.Values This is the vector or matrix of Initial.Values.

Iterations This reports the number of Iterations for updating.

LML This is an approximation of the logarithm of the marginal likelihood of the data
(see the LML function for more information). LML is estimated with nonpara-
metric self-normalized importance sampling (NSIS), given LL and the marginal
posterior samples of the parameters. LML is useful for comparing multiple mod-
els with the BayesFactor function.

M This reports the number of mixture components.

Minutes This indicates the number of minutes that PMC was running, and this includes
the initial checks as well as time it took to perform final sampling and create
summaries.

Model This contains the model specification Model.

N This is the number of un-thinned samples per mixture component.

itemnuThis is the degrees of freedom parameter ν for each multivariate t distribution in each mixture
component.
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Mu This is a T ×K ×M array of means for the importance sampling distribution
across T iterations, K parameters, and M mixture components.

Monitor This is a S × J matrix of thinned samples of monitored variables, where S is
the number of thinned samples and J is the number of monitored variables.

Parameters This reports the number K of parameters.

Perplexity This is a vector of length T that contains the normalized perplexity per itera-
tion across T iterations, and is used as a convergence diagnostic. Perplexity is
an approximation of the negative of the Kullback-Leibler divergence (see KLD)
between the target and the importance function. Perplexity is normalized be-
tween zero and one, and a higher normalized perplexity relates to less diver-
gence, so higher is better. A normalized perplexity that is close to one indicates
good agreement between the target density and the importance function. This is
based on the Shannon entropy of the normalized importance weights, which is
used frequently to measure the quality of importance samples.

Posterior1 This is an N × K × T × M array of un-thinned posterior samples across N
samples, K parameters, T iterations, and M mixture components.

Posterior2 This is a S ×K matrix of thinned posterior samples, where S is the number of
thinned samples and K is the number of parameters.

Summary This is a matrix that summarizes the marginal posterior distributions of the pa-
rameters, deviance, and monitored variables from thinned samples. The follow-
ing summary statistics are included: mean, standard deviation, MCSE (Monte
Carlo Standard Error), ESS is the effective sample size due to autocorrelation,
and finally the 2.5%, 50%, and 97.5% quantiles are reported. MCSE is essen-
tially a standard deviation around the marginal posterior mean that is due to
uncertainty associated with using Monte Carlo sampling. The acceptable size of
the MCSE depends on the acceptable uncertainty associated around the marginal
posterior mean. The default IMPS method is used. Next, the desired precision of
ESS depends on the user’s goal.

Thinned.Samples

This is the number of thinned samples in Posterior2.

Thinning This is the amount of thinning requested by the user.

W This is a N × T matrix of normalized importance weights, where N is the
number of un-thinned samples per mixture component and T is the number of
iterations. Computationally, the algorithm uses the logarithm of the weights.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Cappe, O., Douc, R., Guillin, A., Marin, J.M., and Robert, C. (2008). "Adaptive Importance Sam-
pling in General Mixture Classes". Statistics and Computing, 18, p. 587–600.

Cappe, O., Guillin, A., Marin, J.M., and Robert, C. (2004). "Population Monte Carlo". Journal of
Computational and Graphical Statistics, 13, p. 907–929.
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Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004). "Bayesian Data Analysis, Texts in Statistical
Science, 2nd ed.". Chapman and Hall, London.

Wraith, D., Kilbinger, M., Benabed, K., Cappe, O., Cardoso, J.F., Fort, G., Prunet, S., and Robert,
C.P. (2009). "Estimation of Cosmological Parameters Using Adaptive Importance Sampling".
Physical Review D, 80(2), p. 023507.

See Also

BayesFactor, IterativeQuadrature, LaplaceApproximation, LML, PMC.RAM, Thin, and VariationalBayes.

Examples

# The accompanying Examples vignette is a compendium of examples.
#################### Load the LaplacesDemon Library #####################
library(LaplacesDemon)

############################## Demon Data ###############################
data(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(log(demonsnacks[,c(1,4,10)]+1)))
J <- ncol(X)
for (j in 2:J) X[,j] <- CenterScale(X[,j])

######################### Data List Preparation #########################
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) {

beta <- rnorm(Data$J)
sigma <- runif(1)
return(c(beta, sigma))
}

MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

########################## Model Specification ##########################
Model <- function(parm, Data)

{
### Parameters
beta <- parm[Data$pos.beta]
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)
parm[Data$pos.sigma] <- sigma
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,
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yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}

set.seed(666)

############################ Initial Values #############################
Initial.Values <- GIV(Model, MyData, PGF=TRUE)

######################## Population Monte Carlo #########################
Fit <- PMC(Model, MyData, Initial.Values, Covar=NULL, Iterations=5,

Thinning=1, alpha=NULL, M=1, N=100, CPUs=1)
Fit
print(Fit)
PosteriorChecks(Fit)
caterpillar.plot(Fit, Parms="beta")
plot(Fit, BurnIn=0, MyData, PDF=FALSE)
Pred <- predict(Fit, Model, MyData, CPUs=1)
summary(Pred, Discrep="Chi-Square")
plot(Pred, Style="Covariates", Data=MyData)
plot(Pred, Style="Density", Rows=1:9)
plot(Pred, Style="ECDF")
plot(Pred, Style="Fitted")
plot(Pred, Style="Jarque-Bera")
plot(Pred, Style="Predictive Quantiles")
plot(Pred, Style="Residual Density")
plot(Pred, Style="Residuals")
Levene.Test(Pred)
Importance(Fit, Model, MyData, Discrep="Chi-Square")

#End

PMC.RAM PMC RAM Estimate

Description

This function estimates the random-access memory (RAM) required to update a given model and
data with PMC.

Warning: Unwise use of this function may crash a computer, so please read the details below.

Usage

PMC.RAM(Model, Data, Iterations, Thinning, M, N)

Arguments

Model This is a model specification function. For more information, see PMC.

Data This is a list of Data. For more information, see PMC.
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Iterations This is the number of iterations for which PMC would update. For more informa-
tion, see PMC.

Thinning This is the amount of thinning applied to the samples in PMC.For more informa-
tion, see PMC.

M This is the number of mixture components in PMC.

N This is the number of samples in PMC.

Details

The PMC.RAM function uses the object.size function to estimate the size in MB of RAM required
to update in PMC for a given model and data, and for a number of iterations and specified thinning.
When RAM is exceeded, the computer will crash. This function can be useful when trying to esti-
mate how many samples and iterations to update a model without crashing the computer. However,
when estimating the required RAM, PMC.RAM actually creates several large objects, such as post
(see below). If too many iterations are given as an argument to PMC.RAM, for example, then it will
crash the computer while trying to estimate the required RAM.

The best way to use this function is as follows. First, prepare the model specification and list of data.
Second, observe how much RAM the computer is using at the moment, as well as the maximum
available RAM. The majority of the difference of these two is the amount of RAM the computer may
dedicate to updating the model. Next, use this function with a small number of iterations. Note the
estimated RAM. Increase the number of iterations, and again note the RAM. Continue to increase
the number of iterations until, say, arbitrarily within 90% of the above-mentioned difference in
RAM.

The computer operating system uses RAM, as does any other software running at the moment. R is
currently using RAM, and other functions in the LaplacesDemon package, and any other package
that is currently activated, are using RAM. There are numerous small objects that are not included
in the returned list, that use RAM. For example, perplexity is a small vector, etc.

A potentially large objects that is not included is a matrix used for estimating LML.

Value

PMC.RAM returns a list with several components. Each component is an estimate in MB for an object.
The list has the following components:

alpha This is the estimated size in MB of RAM required for the matrix of mixture
probabilities by iteration.

Covar This is the estimated size in MB of RAM required for the covariance matrix or
matrices.

Data This is the estimated size in MB of RAM required for the list of data.

Deviance This is the estimated size in MB of RAM required for the deviance vector before
thinning.

Initial.Values This is the estimated size in MB of RAM required for the matrix or vector of
initial values.

LH This is the estimated size in MB of RAM required for the N ×T ×M array LH,
where N is the number of samples, T is the number of iterations, and M is the
number of mixture components. The LH array is not returned by PMC.
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LP This is the estimated size in MB of RAM required for the N ×T ×M array LP,
where N is the number of samples, T is the number of iterations, and M is the
number of mixture components. The LP array is not returned by PMC.

Model This is the estimated size in MB of RAM required for the model specification
function.

Monitor This is the estimated size in MB of RAM required for the N×J matrix Monitor,
where N is the number of unthinned samples and J is the number of monitored
variables. Although it is thinned later in the algorithm, the full matrix is created.

Posterior1 This is the estimated size in MB of RAM required for the N ×J ×T ×M array
Posterior1, where N is the number of samples, J is the number of parameters,
T is the number of iterations, and M is the number of mixture components.

Posterior2 This is the estimated size in MB of RAM required for the N×J matrix Posterior2,
where N is the number of samples and J is the number of initial values or pa-
rameters. Although this is thinned later, at one point it is un-thinned.

Summary This is the estimated size in MB of RAM required for the summary table.

W This is the estimated size in MB of RAM required for the matrix of importance
weights.

Total This is the estimated size in MB of RAM required in total to update with PMC
for a given model and data, and for a number of iterations, specified thinning,
mixture components, and number of samples.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

BigData, LML, object.size, and PMC.

PosteriorChecks Posterior Checks

Description

Not to be confused with posterior predictive checks, this function provides additional information
about the marginal posterior distributions of continuous parameters, such as the probability that each
posterior coefficient of the parameters (referred to generically as θ), is greater than zero [p(θ > 0)],
the estimated number of modes, the kurtosis and skewness of the posterior distributions, the burn-in
of each chain (for MCMC only), integrated autocorrelation time, independent samples per minute,
and acceptance rate. A posterior correlation matrix is provided only for objects of class demonoid
or pmc.

For discrete parameters, see the Hangartner.Diagnostic.

Usage

PosteriorChecks(x, Parms)
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Arguments

x This required argument accepts an object of class demonoid, iterquad, laplace,
pmc, or vb.

Parms This argument accepts a vector of quoted strings to be matched for selecting
parameters. This argument defaults to NULL and selects every parameter. Each
quoted string is matched to one or more parameter names with the grep func-
tion. For example, if the user specifies Parms=c("eta", "tau"), and if the
parameter names are beta[1], beta[2], eta[1], eta[2], and tau, then all parame-
ters will be selected, because the string eta is within beta. Since grep is used,
string matching uses regular expressions, so beware of meta-characters, though
these are acceptable: ".", "[", and "]".

Details

PosteriorChecks is a supplemental function that returns a list with two components. Following is
a summary of popular uses of the PosteriorChecks function.

First (and only for MCMC users), the user may be considering the current MCMC algorithm versus
others. In this case, the PosteriorChecks function is often used to find the two MCMC chains
with the highest IAT, and these chains are studied for non-randomness with a joint trace plot, via
the joint.density.plot function. The best algorithm has the chains with the highest independent
samples per minute (ISM).

Posterior correlation may be studied between model updates as well as after a model seems to
have converged. While frequentists consider multicollinear predictor variables, Bayesians tend to
consider posterior correlation of the parameters. Models with multicollinear parameters take more
iterations to converge. Hierarchical models often have high posterior correlations. Posterior cor-
relation often contributes to a lower effective sample size (ESS). Common remedies include trans-
forming the predictors, re-parameterization to reduce posterior correlation, using WIPs (Weakly-
Informative Priors), or selecting a different numerical approximation algorithm. An example of
re-parameterization is to constrain related parameters to sum to zero. Another approach is to spec-
ify the parameters according to a multivariate distribution that is assisted by estimating a covariance
matrix. Some algorithms are more robust to posterior correlation than others. For example, pos-
terior correlation should generally be less problematic for twalk than AMWG in LaplacesDemon.
Posterior correlation may be plotted with the plotMatrix function, and may be useful for blocking
parameters. For more information on blockwise sampling, see the Blocks function.

After a user is convinced of the applicability of the current MCMC algorithm, and that the chains
have converged, PosteriorChecks is often used to identify multimodal marginal posterior distri-
butions for further study or model re-specification.

Although many marginal posterior distributions appear normally distributed, there is no such as-
sumption. Nonetheless, a marginal posterior distribution tends to be distributed the same as its prior
distribution. If a parameter has a prior specified with a Laplace distribution, then the marginal pos-
terior distribution tends also to be Laplace-distributed. In the common case of normality, kurtosis
and skewness may be used to identify discrepancies between the prior and posterior, and perhaps
this should be called a ‘prior-posterior check’.

Lastly, parameter importance may be considered, in which case it is recommended to be considered
simultaneously with variable importance from the Importance function.
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Value

PosteriorChecks returns an object of class posteriorchecks that is a list with the following
components:

Posterior.Correlation

This is a correlation matrix of the parameters selected with the Parms argument.
This component is returned as NA for objects of classes "laplace" or "vb".

Posterior.Summary

This is a matrix in which each row is a parameter and there are eight columns:
p(theta > 0), N.Modes, Kurtosis, Skewness, Burn-In, IAT, ISM, and AR. The
first column, p(theta > 0), indicates parameter importance by reporting how
much of the distribution is greater than zero. An important parameter distri-
bution will have a result at least as extreme as 0.025 or 0.975, and an unim-
portant parameter distribution is centered at 0.5. This is not the importance of
the associated variable relative to how well the model fits the data. For vari-
able importance, see the Importance function. The second column, N.Modes,
is the number of modes, estimated with the Modes function. Kurtosis and skew-
ness are useful posterior checks that may suggest that a posterior distribution
is non-normal or does not fit well with a distributional assumption, assuming a
distributional assumption exists, which it may not. The burn-in is estimated for
each chain (only for objects of class demonoid with the burnin function. The
integrated autocorrelation time is estimated with IAT. The number of indepen-
dent samples per minute (ISM) is calculated for objects of class "demonoid" as
ESS divided by minutes. Lastly, the local acceptance rate of each MCMC chain
is calculated with the AcceptanceRate function, and is set to 1 for objects of
class iterquad, laplace, pmc, or vb.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

AcceptanceRate, Blocks, burnin, ESS, Hangartner.Diagnostic, joint.density.plot, IAT,
Importance, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, Modes, plotMatrix,
PMC, and VariationalBayes.

Examples

### See the LaplacesDemon function for an example.

Precision Precision
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Description

Bayesians often use precision rather than variance. These are elementary utility functions to facili-
tate conversions between precision, standard deviation, and variance regarding scalars, vectors, and
matrices, and these functions are designed for those who are new to Bayesian inference. The names
of these functions consist of two different scale parameters, separated by a ‘2’, and capital letters
refer to matrices while lower case letters refer to scalars and vectors. For example, the Prec2Cov
function converts a precision matrix to a covariance matrix, while the prec2sd function converts a
scalar or vector of precision parameters to standard deviation parameters.

The modern Bayesian use of precision developed because it was more straightforward in a normal
distribution to estimate precision τ with a gamma distribution as a conjugate prior, than to estimate
σ2 with an inverse-gamma distribution as a conjugate prior. Today, conjugacy is usually considered
to be merely a convenience, and in this example, a non-conjugate half-Cauchy prior distribution is
recommended as a weakly informative prior distribution for scale parameters.

Usage

Cov2Prec(Cov)
Prec2Cov(Prec)
prec2sd(prec=1)
prec2var(prec=1)
sd2prec(sd=1)
sd2var(sd=1)
var2prec(var=1)
var2sd(var=1)

Arguments

Cov This is a covariance matrix, usually represented as Σ.

Prec This is a precision matrix, usually represented as Ω.

prec This is a precision scalar or vector, usually represented as τ .

sd This is a standard deviation scalar or vector, usually represented as σ.

var This is a variance scalar or vector, usually represented as σ2.

Details

Bayesians often use precision rather than variance, where precision is the inverse of the vari-
ance. For example, a linear regression may be represented equivalently as y ∼ N (µ, σ2), or
y ∼ N (µ, τ−1), where σ2 is the variance, and τ is the precision, which is the inverse of the
variance.

Value

Cov2Prec This returns a precision matrix, Ω, from a covariance matrix, Σ, where Ω =
Σ−1.

Prec2Cov This returns a covariance matrix, Σ, from a precision matrix, Ω, where Σ =
Ω−1.

prec2sd This returns a standard deviation, σ, from a precision, τ , where σ =
√
τ−1.
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prec2var This returns a variance, σ2, from a precision, τ , where σ2 = τ−1.

sd2prec This returns a precision, τ , from a standard deviation, σ, where τ = σ−2.

sd2var This returns a variance, σ2, from a standard deviation, σ, where σ2 = σσ.

var2prec This returns a precision, τ , from a variance, σ2, where τ = 1
σ2 .

var2sd This returns a standard deviation, σ, from a variance, σ2, where σ =
√
σ2.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

Cov2Cor

Examples

library(LaplacesDemon)
Cov2Prec(matrix(c(1,0.1,0.1,1),2,2))
Prec2Cov(matrix(c(1,0.1,0.1,1),2,2))
prec2sd(0.5)
prec2var(0.5)
sd2prec(1.4142)
sd2var(01.4142)
var2prec(2)
var2sd(2)

predict.demonoid Posterior Predictive Checks

Description

This may be used to predict either new, unobserved instances of y (called ynew) or replicates of y
(called yrep), and then perform posterior predictive checks. Either ynew or yrep is predicted given
an object of class demonoid, the model specification, and data.

Usage

## S3 method for class 'demonoid'
predict(object, Model, Data, CPUs=1, Type="PSOCK", ...)

Arguments

object An object of class demonoid is required.

Model The model specification function is required.

Data A data set in a list is required. The dependent variable is required to be named
either y or Y.
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CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

... Additional arguments are unused.

Details

This function passes each iteration of marginal posterior samples along with data to Model, where
the fourth component in the return list is labeled yhat, and is a vector of expectations of y, given
the samples, model specification, and data. Stationary samples are used if detected, otherwise non-
stationary samples will be used. To predict yrep, simply supply the data set used to estimate the
model. To predict ynew, supply a new data set instead (though for some model specifications, this
cannot be done, and ynew must be specified in the Model function). If the new data set does not
have y, then create y in the list and set it equal to something sensible, such as mean(y) from the
original data set.

The variable y must be a vector. If instead it is matrix Y, then it will be converted to vector y. The
vectorized length of y or Y must be equal to the vectorized length of yhat, the fourth component of
the return list of the Model function.

Parallel processing may be performed when the user specifies CPUs to be greater than one, implying
that the specified number of CPUs exists and is available. Parallelization may be performed on a
multicore computer or a computer cluster. Either a Simple Network of Workstations (SNOW) or
Message Passing Interface is used (MPI). With small data sets and few samples, parallel processing
may be slower, due to computer network communication. With larger data sets and more samples,
the user should experience a faster run-time.

For more information on posterior predictive checks, see https://web.archive.org/web/20150215050702/
http://www.bayesian-inference.com/posteriorpredictivechecks.

Value

This function returns an object of class demonoid.ppc (where ppc stands for posterior predictive
checks). The returned object is a list with the following components:

y This stores the vectorized form of y, the dependent variable.

yhat This is a N × S matrix, where N is the number of records of y and S is the
number of posterior samples.

Deviance This is a vector of predictive deviance.

Author(s)

Statisticat, LLC.

See Also

LaplacesDemon

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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predict.iterquad Posterior Predictive Checks

Description

This may be used to predict either new, unobserved instances of y (called ynew) or replicates of y
(called yrep), and then perform posterior predictive checks. Either ynew or yrep is predicted given
an object of class iterquad, the model specification, and data. This function requires that posterior
samples were produced with IterativeQuadrature.

Usage

## S3 method for class 'iterquad'
predict(object, Model, Data, CPUs=1, Type="PSOCK", ...)

Arguments

object An object of class iterquad is required.

Model The model specification function is required.

Data A data set in a list is required. The dependent variable is required to be named
either y or Y.

CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

... Additional arguments are unused.

Details

Since iterative quadrature characterizes marginal posterior distributions with means and variances,
and posterior predictive checks involve samples, the predict.iterquad function requires the use
of independent samples of the marginal posterior distributions, provided by IterativeQuadrature
when sir=TRUE.

The samples of the marginal posterior distributions of the target distributions (the parameters) are
passed along with the data to the Model specification and used to draw samples from the deviance
and monitored variables. At the same time, the fourth component in the returned list, which is
labeled yhat, is a vector of expectations of y, given the samples, model specification, and data.
To predict yrep, simply supply the data set used to estimate the model. To predict ynew, supply a
new data set instead (though for some model specifications, this cannot be done, and ynew must be
specified in the Model function). If the new data set does not have y, then create y in the list and set
it equal to something sensible, such as mean(y) from the original data set.

The variable y must be a vector. If instead it is matrix Y, then it will be converted to vector y. The
vectorized length of y or Y must be equal to the vectorized length of yhat, the fourth component of
the returned list of the Model function.
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Parallel processing may be performed when the user specifies CPUs to be greater than one, implying
that the specified number of CPUs exists and is available. Parallelization may be performed on a
multicore computer or a computer cluster. Either a Simple Network of Workstations (SNOW) or
Message Passing Interface is used (MPI). With small data sets and few samples, parallel processing
may be slower, due to computer network communication. With larger data sets and more samples,
the user should experience a faster run-time.

For more information on posterior predictive checks, see https://web.archive.org/web/20150215050702/
http://www.bayesian-inference.com/posteriorpredictivechecks.

Value

This function returns an object of class iterquad.ppc (where “ppc” stands for posterior predictive
checks). The returned object is a list with the following components:

y This stores y, the dependent variable.

yhat This is a N × S matrix, where N is the number of records of y and S is the
number of posterior samples.

Deviance This is a vector of length S, where S is the number of independent posterior
samples. Samples are obtained with the sampling importance resampling algo-
rithm, SIR.

monitor This is a N × S matrix, where N is the number of monitored variables and S
is the number of independent posterior samples. Samples are obtained with the
sampling importance resampling algorithm, SIR.

Author(s)

Statisticat, LLC.

See Also

IterativeQuadrature and SIR.

predict.laplace Posterior Predictive Checks

Description

This may be used to predict either new, unobserved instances of y (called ynew) or replicates of y
(called yrep), and then perform posterior predictive checks. Either ynew or yrep is predicted given
an object of class laplace, the model specification, and data. This function requires that posterior
samples were produced with LaplaceApproximation.

Usage

## S3 method for class 'laplace'
predict(object, Model, Data, CPUs=1, Type="PSOCK", ...)

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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Arguments

object An object of class laplace is required.

Model The model specification function is required.

Data A data set in a list is required. The dependent variable is required to be named
either y or Y.

CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

... Additional arguments are unused.

Details

Since Laplace Approximation characterizes marginal posterior distributions with modes and vari-
ances, and posterior predictive checks involve samples, the predict.laplace function requires the
use of independent samples of the marginal posterior distributions, provided by LaplaceApproximation
when sir=TRUE.

The samples of the marginal posterior distributions of the target distributions (the parameters) are
passed along with the data to the Model specification and used to draw samples from the deviance
and monitored variables. At the same time, the fourth component in the returned list, which is
labeled yhat, is a vector of expectations of y, given the samples, model specification, and data.
To predict yrep, simply supply the data set used to estimate the model. To predict ynew, supply a
new data set instead (though for some model specifications, this cannot be done, and ynew must be
specified in the Model function). If the new data set does not have y, then create y in the list and set
it equal to something sensible, such as mean(y) from the original data set.

The variable y must be a vector. If instead it is matrix Y, then it will be converted to vector y. The
vectorized length of y or Y must be equal to the vectorized length of yhat, the fourth component of
the returned list of the Model function.

Parallel processing may be performed when the user specifies CPUs to be greater than one, implying
that the specified number of CPUs exists and is available. Parallelization may be performed on a
multicore computer or a computer cluster. Either a Simple Network of Workstations (SNOW) or
Message Passing Interface is used (MPI). With small data sets and few samples, parallel processing
may be slower, due to computer network communication. With larger data sets and more samples,
the user should experience a faster run-time.

For more information on posterior predictive checks, see https://web.archive.org/web/20150215050702/
http://www.bayesian-inference.com/posteriorpredictivechecks.

Value

This function returns an object of class laplace.ppc (where “ppc” stands for posterior predictive
checks). The returned object is a list with the following components:

y This stores y, the dependent variable.

yhat This is a N × S matrix, where N is the number of records of y and S is the
number of posterior samples.

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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Deviance This is a vector of length S, where S is the number of independent posterior
samples. Samples are obtained with the sampling importance resampling algo-
rithm, SIR.

monitor This is a N × S matrix, where N is the number of monitored variables and S
is the number of independent posterior samples. Samples are obtained with the
sampling importance resampling algorithm, SIR.

Author(s)

Statisticat, LLC.

See Also

LaplaceApproximation and SIR.

predict.pmc Posterior Predictive Checks

Description

This may be used to predict either new, unobserved instances of y (called ynew) or replicates of y
(called yrep), and then perform posterior predictive checks. Either ynew or yrep is predicted given
an object of class demonoid, the model specification, and data.

Usage

## S3 method for class 'pmc'
predict(object, Model, Data, CPUs=1, Type="PSOCK", ...)

Arguments

object An object of class pmc is required.

Model The model specification function is required.

Data A data set in a list is required. The dependent variable is required to be named
either y or Y.

CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

... Additional arguments are unused.
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Details

This function passes each iteration of marginal posterior samples along with data to Model, where
the fourth component in the return list is labeled yhat, and is a vector of expectations of y, given
the samples, model specification, and data. Stationary samples are used if detected, otherwise non-
stationary samples will be used. To predict yrep, simply supply the data set used to estimate the
model. To predict ynew, supply a new data set instead (though for some model specifications, this
cannot be done, and ynew must be specified in the Model function). If the new data set does not
have y, then create y in the list and set it equal to something sensible, such as mean(y) from the
original data set.

The variable y must be a vector. If instead it is matrix Y, then it will be converted to vector y. The
vectorized length of y or Y must be equal to the vectorized length of yhat, the fourth component of
the return list of the Model function.

Parallel processing may be performed when the user specifies CPUs to be greater than one, implying
that the specified number of CPUs exists and is available. Parallelization may be performed on a
multicore computer or a computer cluster. Either a Simple Network of Workstations (SNOW) or
Message Passing Interface is used (MPI). With small data sets and few samples, parallel processing
may be slower, due to computer network communication. With larger data sets and more samples,
the user should experience a faster run-time.

For more information on posterior predictive checks, see https://web.archive.org/web/20150215050702/
http://www.bayesian-inference.com/posteriorpredictivechecks.

Value

This function returns an object of class pmc.ppc (where ppc stands for posterior predictive checks).
The returned object is a list with the following components:

y This stores the vectorized form of y, the dependent variable.

yhat This is a N × S matrix, where N is the number of records of y and S is the
number of posterior samples.

Deviance This is a vector of predictive deviance.

Author(s)

Statisticat, LLC.

See Also

PMC

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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predict.vb Posterior Predictive Checks

Description

This may be used to predict either new, unobserved instances of y (called ynew) or replicates of y
(called yrep), and then perform posterior predictive checks. Either ynew or yrep is predicted given
an object of class vb, the model specification, and data. This function requires that posterior samples
were produced with VariationalBayes.

Usage

## S3 method for class 'vb'
predict(object, Model, Data, CPUs=1, Type="PSOCK", ...)

Arguments

object An object of class vb is required.

Model The model specification function is required.

Data A data set in a list is required. The dependent variable is required to be named
either y or Y.

CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

... Additional arguments are unused.

Details

Since Variational Bayes characterizes marginal posterior distributions with modes and variances,
and posterior predictive checks involve samples, the predict.vb function requires the use of in-
dependent samples of the marginal posterior distributions, provided by VariationalBayes when
sir=TRUE.

The samples of the marginal posterior distributions of the target distributions (the parameters) are
passed along with the data to the Model specification and used to draw samples from the deviance
and monitored variables. At the same time, the fourth component in the returned list, which is
labeled yhat, is a vector of expectations of y, given the samples, model specification, and data.
To predict yrep, simply supply the data set used to estimate the model. To predict ynew, supply a
new data set instead (though for some model specifications, this cannot be done, and ynew must be
specified in the Model function). If the new data set does not have y, then create y in the list and set
it equal to something sensible, such as mean(y) from the original data set.

The variable y must be a vector. If instead it is matrix Y, then it will be converted to vector y. The
vectorized length of y or Y must be equal to the vectorized length of yhat, the fourth component of
the returned list of the Model function.
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Parallel processing may be performed when the user specifies CPUs to be greater than one, implying
that the specified number of CPUs exists and is available. Parallelization may be performed on a
multicore computer or a computer cluster. Either a Simple Network of Workstations (SNOW) or
Message Passing Interface is used (MPI). With small data sets and few samples, parallel processing
may be slower, due to computer network communication. With larger data sets and more samples,
the user should experience a faster run-time.

For more information on posterior predictive checks, see https://web.archive.org/web/20150215050702/
http://www.bayesian-inference.com/posteriorpredictivechecks.

Value

This function returns an object of class vb.ppc (where “ppc” stands for posterior predictive checks).
The returned object is a list with the following components:

y This stores y, the dependent variable.
yhat This is a N × S matrix, where N is the number of records of y and S is the

number of posterior samples.
Deviance This is a vector of length S, where S is the number of independent posterior

samples. Samples are obtained with the sampling importance resampling algo-
rithm, SIR.

monitor This is a N × S matrix, where N is the number of monitored variables and S
is the number of independent posterior samples. Samples are obtained with the
sampling importance resampling algorithm, SIR.

Author(s)

Statisticat, LLC.

See Also

SIR and VariationalBayes.

print.demonoid Print an object of class demonoid to the screen.

Description

This may be used to print the contents of an object of class demonoid to the screen.

Usage

## S3 method for class 'demonoid'
print(x, ...)

Arguments

x An object of class demonoid is required.
... Additional arguments are unused.

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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Details

If the user has an object of class demonoid.hpc, then the print function may still be used by spec-
ifying the chain as a component in a list, such as printing the second chain with print(Fit[[2]])
when the demonoid.hpc object is named Fit, for example.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

Consort, LaplacesDemon, and LaplacesDemon.hpc.

Examples

### See the LaplacesDemon function for an example.

print.heidelberger Print an object of class heidelberger to the screen.

Description

This may be used to print the contents of an object of class heidelberger to the screen.

Usage

## S3 method for class 'heidelberger'
print(x, digits=3, ...)

Arguments

x An object of class heidelberger is required.

digits This is the number of digits to print.

... Additional arguments are unused.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

Heidelberger.Diagnostic.

Examples

### See the Heidelberger.Diagnostic function for an example.
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print.iterquad Print an object of class iterquad to the screen.

Description

This may be used to print the contents of an object of class iterquad to the screen.

Usage

## S3 method for class 'iterquad'
print(x, ...)

Arguments

x An object of class iterquad is required.

... Additional arguments are unused.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

IterativeQuadrature

Examples

### See the IterativeQuadrature function for an example.

print.laplace Print an object of class laplace to the screen.

Description

This may be used to print the contents of an object of class laplace to the screen.

Usage

## S3 method for class 'laplace'
print(x, ...)

Arguments

x An object of class laplace is required.

... Additional arguments are unused.
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Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

LaplaceApproximation

Examples

### See the LaplaceApproximation function for an example.

print.miss Print an object of class miss to the screen.

Description

This may be used to print the contents of an object of class miss to the screen.

Usage

## S3 method for class 'miss'
print(x, ...)

Arguments

x An object of class miss is required.

... Additional arguments are unused.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

MISS.

Examples

### See the MISS function for an example.
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print.pmc Print an object of class pmc to the screen.

Description

This may be used to print the contents of an object of class pmc to the screen.

Usage

## S3 method for class 'pmc'
print(x, ...)

Arguments

x An object of class pmc is required.

... Additional arguments are unused.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

PMC.

Examples

### See the PMC function for an example.

print.raftery Print an object of class raftery to the screen.

Description

This may be used to print the contents of an object of class raftery to the screen.

Usage

## S3 method for class 'raftery'
print(x, digits=3, ...)

Arguments

x An object of class raftery is required.

digits This is the number of digits to print.

... Additional arguments are unused.
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Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

Raftery.Diagnostic.

Examples

### See the Raftery.Diagnostic function for an example.

print.vb Print an object of class vb to the screen.

Description

This may be used to print the contents of an object of class vb to the screen.

Usage

## S3 method for class 'vb'
print(x, ...)

Arguments

x An object of class vb is required.

... Additional arguments are unused.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

VariationalBayes

Examples

### See the VariationalBayes function for an example.
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Raftery.Diagnostic Raftery and Lewis’s diagnostic

Description

Raftery and Lewis (1992) introduced an MCMC diagnostic that estimates the number of iterations
needed for a given level of precision in posterior samples, as well as estimating burn-in, when
quantiles are the posterior summaries of interest.

Usage

Raftery.Diagnostic(x, q=0.025, r=0.005, s=0.95, eps=0.001)

Arguments

x This required argument accepts an object of class demonoid. It attempts to use
Posterior2, but when this is missing it uses Posterior1.

q This is the quantile to be estimated.

r This is the desired margin of error of the estimate, also called the accuracy.

s This is the probability of obtaining an estimate in the interval (q-r, q+r).

eps This is the precision required for the estimate of time to convergence.

Details

In this MCMC diagnostic, a posterior quantile q of interest is specified. Next, an acceptable tol-
erance r is specified for q, which means that it is desired to measure q with an accuracy of +/-
r. Finally, the user selects a probability s, which is the probability of being within the interval
(q−r, q+r). The Raftery.Diagnostic then estimates the number N of iterations and the number
M of burn-in iterations that are necessary to satisfy the specified conditions regarding quantile q.

The diagnostic was designed to test a short, initial update, in which the chains were called pilot
chains, and the application was later suggested for iterative use after any update as a general method
for pursuing convergence (Raftery and Lewis, 1996).

Results of the Raftery.Diagnostic differ depending on the chosen quantile q. Estimates are
conservative, so more iterations are suggested than necessary.

Value

The Raftery.Diagnostic function returns an object of class raftery that is list. A print method
is available for objects of this class. The list has the following components:

tspar These are the time-series parameters of the posterior samples in x.

params This is a vector containing the parameters q, r, and s.

Niters This is the number of iterations in the posterior samples in x.
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resmatrix This is a 3-dimensional array containing the results: M is the suggested burn-
in, N is the suggested number of iterations, Nmin is the suggested number
of iterations based on zero autocorrelation, and I = (M + N)/Nmin is the
"dependence factor". The dependence factor is interpreted as the proportional
increase in the number of iterations attributable to autocorrelation. Highly au-
tocorrelated chains (> 5) are worrisome, and may be due to influential initial
values, parameter correlations, or poor mixing.

Note

The Raftery.Diagnostic function was adapted from the raftery.diag function in the coda pack-
age, which was adapted from the FORTRAN program ‘gibbsit’, written by Steven Lewis.

References

Raftery, A.E. and Lewis, S.M. (1992). "How Many Iterations in the Gibbs Sampler?" In Bayesian
Statistics, 4 (J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith, eds.). Oxford, U.K.: Ox-
ford University Press, p. 763–773.

Raftery, A.E. and Lewis, S.M. (1992). "One Long Run with Diagnostics: Implementation Strategies
for Markov chain Monte Carlo". Statistical Science, 7, p. 493–497.

Raftery, A.E. and Lewis, S.M. (1996). "Implementing MCMC". In Practical Markov Chain Monte
Carlo (W.R. Gilks, D.J. Spiegelhalter and S. Richardson, eds.). Chapman and Hall: Baton Rouge,
FL.

See Also

burnin, LaplacesDemon, print.raftery, and Thin.

Examples

#library(LaplacesDemon)
###After updating with LaplacesDemon, do:
#rd <- Raftery.Diagnostic(Fit)
#print(rd)

RejectionSampling Rejection Sampling

Description

The RejectionSampling function implements rejection sampling of a target density given a pro-
posal density.

Usage

RejectionSampling(Model, Data, mu, S, df=Inf, logc, n=1000, CPUs=1, Type="PSOCK")
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Arguments

Model This is a model specification function. For more information, see LaplaceApproximation.

Data This is a list of data. For more information, see LaplaceApproximation.

mu This is a mean vector µ for the multivariate normal or multivariate t proposal
density.

S This is a convariance matrix Σ for the multivariate normal or multivariate t pro-
posal density.

df This is a scalar degrees of freedom parameter ν. It defaults to infinity, in which
case the multivariate normal density is used.

logc This is the logarithm of the rejection sampling constant.

n This is the number of independent draws to be simulated from the proposal
density.

CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

Details

Rejection sampling (von Neumann, 1951) is a Monte Carlo method for drawing independent sam-
ples from a distribution that is proportional to the target distribution, f(x), given a sampling dis-
tribution, g(x), from which samples can readily be drawn, and for which there is a finite constant
c.

Here, the target distribution, f(x), is the result of the Model function. The sampling distribution,
g(x), is either a multivariate normal or multivariate t-distribution. The parameters of g(x) (mu, S,
and df) are used to create random draws, θ, of the sampling distribution, g(x). These draws, θ, are
used to evaluate the target distribution, f(x), via the Model specification function. The evaluations
of the target distribution, sampling distribution, and the constant are used to create a probability of
acceptance for each draw, by comparing to a vector of n uniform draws, u. Each draw, θ is accepted
if

u ≤ f(θ|y)
cg(θ)

Before beginning rejection sampling, a goal of the user is to find the bounding constant, c, such that
f(θ|y) ≤ cg(θ) for all θ. These are all expressed in logarithms, so the goal is to find log f(θ|y) −
log g(θ) ≤ log(c) for all θ. This is done by maximizing log f(θ|y)− log g(θ) over all θ. By using,
say, LaplaceApproximation to find the modes of the parameters of interest, and using the resultant
LP, the mode of the logarithm of the joint posterior distribution, as log(c).

The RejectionSampling function performs one iteration of rejection sampling. Rejection sam-
pling is often iterated, then called the rejection sampling algorithm, until a sufficient number or
proportion of θ is accepted. An efficient rejection sampling algorithm has a high acceptance rate.
However, rejection sampling becomes less efficient as the model dimension (the number of param-
eters) increases.

Extensions of rejection sampling include Adaptive Rejection Sampling (ARS) (either derivative-
based or derivative-free) and Adaptive Rejection Metropolis Sampling (ARMS), as in Gilks et al.
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(1995). The random-walk Metropolis algorithm (Metropolis et al., 1953) combined the rejection
sampling (a method of Monte Carlo simulation) of von Neumann (1951) with Markov chains.

Parallel processing may be performed when the user specifies CPUs to be greater than one, implying
that the specified number of CPUs exists and is available. Parallelization may be performed on a
multicore computer or a computer cluster. Either a Simple Network of Workstations (SNOW) or
Message Passing Interface (MPI) is used. With small data sets and few samples, parallel processing
may be slower, due to computer network communication. With larger data sets and more samples,
the user should experience a faster run-time.

This function is similar to the rejectsampling function in the LearnBayes package.

Value

The RejectionSampling function returns an object of class rejection, which is a matrix of ac-
cepted, independent, simulated draws from the target distribution.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Gilks, W.R., Best, N.G., Tan, K.K.C. (1995). "Adaptive Rejection Metropolis Sampling within
Gibbs Sampling". Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 44,
No. 4, p. 455–472.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., and Teller, E. (1953). "Equation of State
Calculations by Fast Computing Machines". Journal of Chemical Physics, 21, p. 1087-1092.

von Neumann, J. (1951). "Various Techniques Used in Connection with Random Digits. Monte
Carlo Methods". National Bureau Standards, 12, p. 36–38.

See Also

dmvn, dmvt, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, and VariationalBayes.

Examples

library(LaplacesDemon)
### Suppose an output object of class laplace is called Fit:
#rs <- RejectionSampling(Model, MyData, mu=Fit$Summary1[,1],
# S=Fit$Covar, df=Inf, logc=Fit$LP.Final, n=1000)
#rs
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SensitivityAnalysis Sensitivity Analysis

Description

This function performs an elementary sensitivity analysis for two models regarding marginal pos-
terior distributions and posterior inferences.

Usage

SensitivityAnalysis(Fit1, Fit2, Pred1, Pred2)

Arguments

Fit1 This argument accepts an object of class demonoid, iterquad, laplace, pmc,
or vb.

Fit2 This argument accepts an object of class demonoid, iterquad, laplace, pmc,
or vb.

Pred1 This argument accepts an object of class demonoid.ppc, iterquad.ppc, laplace.ppc,
pmc.ppc, or vb.ppc.

Pred2 This argument accepts an object of class demonoid.ppc, iterquad.ppc, laplace.ppc,
pmc.ppc, or vb.ppc.

Details

Sensitivity analysis is concerned with the influence from changes to the inputs of a model on the
output. Comparing differences resulting from different prior distributions is the most common
application of sensitivity analysis, though results from different likelihoods may be compared as
well. The outputs of interest are the marginal posterior distributions and posterior inferences.

There are many more methods of conducting a sensitivity analysis than exist in the SensitivityAnalysis
function. For more information, see Oakley and O’Hagan (2004). The SIR function is useful for
approximating changes in the posterior due to small changes in prior distributions.

The SensitivityAnalysis function compares marginal posterior distributions and posterior pre-
dictive distributions. Specifically, it calculates the probability that each distribution in Fit1 and
Pred1 is greater than the associated distribution in Fit2 and Pred2, and returns a variance ratio of
each pair of distributions. If the probability is 0.5 that a distribution is greater than another, or if the
variance ratio is 1, then no difference is found due to the inputs.

Additional comparisons and methods are currently outside the scope of the SensitivityAnalysis
function. The BayesFactor function may also be considered, as well as comparing posterior predic-
tive checks resulting from summary.demonoid.ppc, summary.iterquad.ppc, summary.laplace.ppc,
summary.pmc.ppc, or summary.vb.ppc.

Regarding marginal posterior distributions, the SensitivityAnalysis function compares only dis-
tributions with identical parameter names. For example, suppose a statistician conducts a sensitivity
analysis to study differences resulting from two prior distributions: a normal distribution and a Stu-
dent t distribution. These distributions have two and three parameters, respectively. The statistician
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has named the parameters beta and sigma for the normal distribution, while for the Student t dis-
tribution, the parameters are named beta, sigma, and nu. In this case, the SensitivityAnalysis
function compares the marginal posterior distributions for beta and sigma, though nu is ignored
because it is not in both models. If the statistician does not want certain parameters compared, then
differing parameter names should be assigned.

Robust Bayesian analysis is a very similar topic, and often called simply Bayesian sensitivity anal-
ysis. In robust Bayesian analysis, the robustness of answers from a Bayesian analysis to uncertainty
about the precise details of the analysis is studied. An answer is considered robust if it does not
depend sensitively on the assumptions and inputs on which it is based. Robust Bayes methods ac-
knowledge that it is sometimes very difficult to come up with precise distributions to be used as
priors. Likewise the appropriate likelihood function that should be used for a particular problem
may also be in doubt. In a robust Bayesian analysis, a standard Bayesian analysis is applied to all
possible combinations of prior distributions and likelihood functions selected from classes of priors
and likelihoods considered empirically plausible by the statistician.

Value

This function returns a list with the following components:

Posterior This is a J × 2 matrix of J marginal posterior distributions. Column names are
"p(Fit1 > Fit2)" and "var(Fit1) / var(Fit2)".

Post.Pred.Dist This is a N × 2 matrix of N posterior predictive distributions. Column names
are "p(Pred1 > Pred2)" and "var(Pred1) / var(Pred2)".

Author(s)

Statisticat, LLC <software@bayesian-inference.com>

References

Berger, J.O. (1984). "The Robust Bayesian Viewpoint (with discussion)". In J. B. Kadane, editor,
Robustness of Bayesian Analyses, p. 63–144. North-Holland, Amsterdam.

Berger, J.O. (1985). "Statistical Decision Theory and Bayesian Analysis". Springer-Verlag, New
York.

Berger, J.O. (1994). "An Overview of Robust Bayesian Analysis (with discussion)". Test, 3, p.
5–124.

Oakley, J. and O’Hagan, A. (2004). "Probabilistic Sensitivity Analysis of Complex Models: a
Bayesian Approach". Journal of the Royal Statistical Society, Series B, 66, p. 751–769.

Weiss, R. (1995). "An Approach to Bayesian Sensitivity Analysis". Journal of the Royal Statistical
Society, Series B, 58, p. 739–750.

See Also

BayesFactor, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, PMC, predict.demonoid,
predict.iterquad, predict.laplace, predict.pmc, SIR, summary.demonoid.ppc, summary.iterquad.ppc,
summary.laplace.ppc, summary.pmc.ppc, and VariationalBayes.
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Examples

#sa <- SensitivityAnalysis(Fit1, Fit2, Pred1, Pred2)
#sa

SIR Sampling Importance Resampling

Description

The SIR function performs Sampling Importance Resampling, also called Sequential Importance
Resampling, and uses a multivariate normal proposal density.

Usage

SIR(Model, Data, mu, Sigma, n=1000, CPUs=1, Type="PSOCK")

Arguments

Model This is a model specification function. For more information, see LaplaceApproximation.

Data This is a list of data. For more information, see LaplaceApproximation.

mu This is a mean vector, µ, for a multivariate normal distribution, and is usually the
posterior means from an object of class iterquad (from IterativeQuadrature)
or class vb (from VariationalBayes), or the posterior modes from an object of
class laplace (from LaplaceApproximation).

Sigma This is a covariance matrix, Σ, for a multivariate normal distribution, and is
usually the Covar component of an object of class iterquad, laplace, or vb.

n This is the number of samples to be drawn from the posterior distribution.

CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

Details

Sampling Importance Resampling (SIR) was introduced in Gordon, et al. (1993), and is the original
particle filtering algorithm (and this family of algorithms is also known as Sequential Monte Carlo).
A distribution is approximated with importance weights, which are approximations to the relative
posterior densities of the particles, and the sum of the weights is one. In this terminology, each
sample in the distribution is a “particle”. SIR is a sequential or recursive form of importance sam-
pling. As in importance sampling, the expectation of a function can be approximated as a weighted
average. The optimal proposal distribution is the target distribution.

In the LaplacesDemon package, the main use of the SIR function is to produce posterior samples
for iterative quadrature, Laplace Approximation, or Variational Bayes, and SIR is called behind-the-
scenes by the IterativeQuadrature, LaplaceApproximation, or VariationalBayes function.
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Iterative quadrature estimates the posterior mean and the associated covariance matrix. Assuming
normality, this output characterizes the marginal posterior distributions. However, it is often useful
to have posterior samples, in which case the SIR function is used to draw samples. The number
of samples, n, should increase with the number and intercorrelations of the parameters. Otherwise,
multimodal posterior distributions may occur.

Laplace Approximation estimates the posterior mode and the associated covariance matrix. As-
suming normality, this output characterizes the marginal posterior distributions. However, it is
often useful to have posterior samples, in which case the SIR function is used to draw samples.
The number of samples, n, should increase with the number and intercorrelations of the parameters.
Otherwise, multimodal posterior distributions may occur.

Variational Bayes estimates both the posterior mean and variance. Assuming normality, this output
characterizes the marginal posterior distributions. However, it is often useful to have posterior
samples, in which case the SIR function is used to draw samples. The number of samples, n, should
increase with the number of intercorrelations of the parameters. Otherwise, multimodal posterior
distributions may occur.

SIR is also commonly used when considering a mild change in a prior distribution. For example,
suppose a model was updated in LaplacesDemon, and it had a least-informative prior distribution,
but the statistician would like to estimate the impact of changing to a weakly-informative prior dis-
tribution. The change is made in the model specification function, and the posterior means and co-
variance are supplied to the SIR function. The returned samples are estimates of the posterior, given
the different prior distribution. This is akin to sensitivity analysis (see the SensitivityAnalysis
function).

In other contexts (for which this function is not designed), SIR is used with dynamic linear models
(DLMs) and state-space models (SSMs) for state filtering.

Parallel processing may be performed when the user specifies CPUs to be greater than one, implying
that the specified number of CPUs exists and is available. Parallelization may be performed on a
multicore computer or a computer cluster. Either a Simple Network of Workstations (SNOW) or
Message Passing Interface (MPI) is used. With small data sets and few samples, parallel processing
may be slower, due to computer network communication. With larger data sets and more samples,
the user should experience a faster run-time.

This function was adapted from the sir function in the LearnBayes package.

Value

The SIR function returns a matrix of samples drawn from the posterior distribution.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Gordon, N.J., Salmond, D.J., and Smith, A.F.M. (1993). "Novel Approach to Nonlinear/Non-
Gaussian Bayesian State Estimation". IEEE Proceedings F on Radar and Signal Processing,
140(2), p. 107–113.
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See Also

dmvn, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, SensitivityAnalysis,
and VariationalBayes.

Stick Truncated Stick-Breaking

Description

The Stick function provides the utility of truncated stick-breaking regarding the vector θ. Stick-
breaking is commonly referred to as a stick-breaking process, and is used often in a Dirichlet process
(Sethuraman, 1994). It is commonly associated with infinite-dimensional mixtures, but in practice,
the ‘infinite’ number is truncated to a finite number, since it is impossible to estimate an infinite
number of parameters (Ishwaran and James, 2001).

Usage

Stick(theta)

Arguments

theta This required argument, θ is a vector of length (M − 1) regarding M mixture
components.

Details

The Dirichlet process (DP) is a stochastic process used in Bayesian nonparametric modeling, most
commonly in DP mixture models, otherwise known as infinite mixture models. A DP is a distribu-
tion over distributions. Each draw from a DP is itself a discrete distribution. A DP is an infinite-
dimensional generalization of Dirichlet distributions. It is called a DP because it has Dirichlet-
distributed, finite-dimensional, marginal distributions, just as the Gaussian process has Gaussian-
distributed, finite-dimensional, marginal distributions. Distributions drawn from a DP cannot be
described using a finite number of parameters, thus the classification as a nonparametric model.
The truncated stick-breaking (TSB) process is associated with a truncated Dirichlet process (TDP).

An example of a TSB process is cluster analysis, where the number of clusters is unknown and
treated as mixture components. In such a model, the TSB process calculates probability vector π
from θ, given a user-specified maximum number of clusters to explore as C, where C is the length
of θ + 1. Vector π is assigned a TSB prior distribution (for more information, see dStick).

Elsewhere, each element of θ is constrained to the interval (0,1), and the original TSB form is
beta-distributed with the α parameter of the beta distribution constrained to 1 (Ishwaran and James,
2001). The β hyperparameter in the beta distribution is usually gamma-distributed.

A larger value for a given θm is associated with a higher probability of the associated mixture
component, however, the proportion changes according to the position of the element in the θ vector.

A variety of stick-breaking processes exist. For example, rather than each θ being beta-distributed,
there have been other forms introduced such as logistic and probit, among others.
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Value

The Stick function returns a probability vector wherein each element relates to a mixture compo-
nent.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

References

Ishwaran, H. and James, L. (2001). "Gibbs Sampling Methods for Stick Breaking Priors". Journal
of the American Statistical Association, 96(453), p. 161–173.

Sethuraman, J. (1994). "A Constructive Definition of Dirichlet Priors". Statistica Sinica, 4, p.
639–650.

See Also

ddirichlet, dmvpolya, and dStick.

summary.demonoid.ppc Posterior Predictive Check Summary

Description

This may be used to summarize either new, unobserved instances of y (called ynew) or replicates of
y (called yrep). Either ynew or yrep is summarized, depending on predict.demonoid.

Usage

## S3 method for class 'demonoid.ppc'
summary(object, Categorical, Rows,

Discrep, d, Quiet, ...)

Arguments

object An object of class demonoid.ppc is required.
Categorical Logical. If TRUE, then y and yhat are considered to be categorical (such as y=0

or y=1), rather than continuous.
Rows An optional vector of row numbers, for example c(1:10). All rows will be

estimated, but only these rows will appear in the summary.
Discrep A character string indicating a discrepancy test. Discrep defaults to NULL.

Valid character strings when y is continuous are: "Chi-Square", "Chi-Square2
", "Kurtosis", "L-criterion", "MASE", "MSE", "PPL", "Quadratic Loss",
"Quadratic Utility", "RMSE", "Skewness", "max(yhat[i,]) > max(y)", "mean(yhat[i,])
> mean(y)", "mean(yhat[i,] > d)", "mean(yhat[i,] > mean(y))", "min(yhat[i,])
< min(y)", "round(yhat[i,]) = d", and "sd(yhat[i,]) > sd(y)". Valid char-
acter strings when y is categorical are: "p(yhat[i,] != y[i])". Kurtosis and
skewness are not discrepancies, but are included here for convenience.
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d This is an optional integer to be used with the Discrep argument above, and it
defaults to d=0.

Quiet This logical argument defaults to FALSE and will print results to the console.
When TRUE, results are not printed.

... Additional arguments are unused.

Details

This function summarizes an object of class demonoid.ppc, which consists of posterior predictive
checks on either ynew or yrep, depending respectively on whether unobserved instances of y or the
model sample of y was used in the predict.demonoid function.

The purpose of a posterior predictive check is to assess how well (or poorly) the model fits the data,
or to assess discrepancies between the model and the data. For more information on posterior pre-
dictive checks, see https://web.archive.org/web/20150215050702/http://www.bayesian-inference.
com/posteriorpredictivechecks.

When y is continuous and known, this function estimates the predictive concordance between y
and yrep as per Gelfand (1996), and the predictive quantile (PQ), which is for record-level outlier
detection used to calculate Gelfand’s predictive concordance.

When y is categorical and known, this function estimates the record-level lift, which is p(yhat[i,]
= y[i]) / [p(y = j) / n], or the number of correctly predicted samples over the rate of that cate-
gory of y in vector y.

A discrepancy measure is an approach to studying discrepancies between the model and data (Gel-
man et al., 1996). Below is a list of discrepancy measures, followed by a brief introduction to
discrepancy analysis:

• The "Chi-Square" discrepancy measure is the chi-square goodness-of-fit test that is recom-
mended by Gelman. For each record i=1:N, this returns (y[i] - E(y[i]))^2 / var(yhat[i,]).

• The "Chi-Square2" discrepancy measure returns the following for each record: Pr(chisq.rep[i,]
> chisq.obs[i,]), where chisq.obs[i,] <- (y[i] - E(y[i]))^2 / E(y[i]), and chisq.rep[i,] <- (yhat[i,]
- E(yhat[i,]))^2 / E(yhat[i,]), and the overall discrepancy is the percent of records that were
outside of the 95% quantile-based probability interval (see p.interval).

• The "Kurtosis" discrepancy measure returns the kurtosis of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding kurtotic replicate distributions.

• The "L-criterion" discrepancy measure of Laud and Ibrahim (1995) provides the record-
level combination of two components (see below), and the discrepancy statistic is the sum,
L, as well as a calibration number, S.L. For more information on the L-criterion, see the
accompanying vignette entitled "Bayesian Inference".

• The "MASE" (Mean Absolute Scaled Error) is a discrepancy measure for the accuracy of time-
series forecasts, estimated as (|y - yhat|) / mean(abs(diff(y))). The discrepancy statistic
is the mean of the record-level values.

• The "MSE" (Mean Squared Error) discrepancy measure provides the MSE for each record
across all replicates, and the discrepancy statistic is the mean of the record-level MSEs. MSE
and quadratic loss are identical.

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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• The "PPL" (Posterior Predictive Loss) discrepancy measure of Gelfand and Ghosh (1998) pro-
vides the record-level combination of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution. The d=0 ar-
gument applies the following weight to the accuracy component, which is then added to the
variance component: d/(d + 1). For ynew, use d = 0. For yrep and model comparison, d is
commonly set to 1, 10, or 100000. Larger values of d put more stress on fit and downgrade
the precision of the estimates.

• The "Quadratic Loss" discrepancy measure provides the mean quadratic loss for each record
across all replicates, and the discrepancy statistic is the mean of the record-level mean quadratic
losses. Quadratic loss and MSE are identical, and quadratic loss is the negative of quadratic
utility.

• The "Quadratic Utility" discrepancy measure provides the mean quadratic utility for each
record across all replicates, and the discrepancy statistic is the mean of the record-level mean
quadratic utilities. Quadratic utility is the negative of quadratic loss.

• The "RMSE" (Root Mean Squared Error) discrepancy measure provides the RMSE for each
record across all replicates, and the discrepancy statistic is the mean of the record-level RM-
SEs.

• The "Skewness" discrepancy measure returns the skewness of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding skewed replicate distributions.

• The "max(yhat[i,]) > max(y)" discrepancy measure returns a record-level indicator when
a record’s maximum yrep

i exceeds the maximum of y. The discrepancy statistic is the mean of
the record-level indicators, reporting the proportion of records with replications that exceed
the maximum of y.

• The "mean(yhat[i,]) > mean(y)" discrepancy measure returns a record-level indicator when
the mean of a record’s yrepi is greater than the mean of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with mean replications that
exceed the mean of y.

• The "mean(yhat[i,] > d)" discrepancy measure returns a record-level proportion of yrepi

that exceeds a specified value, d. The discrepancy statistic is the mean of the record-level
proportions.

• The "mean(yhat[i,] > mean(y))" discrepancy measure returns a record-level proportion of
yrepi that exceeds the mean of y. The discrepancy statistic is the mean of the record-level
proportions.

• The "min(yhat[i,]) < min(y)" discrepancy measure returns a record-level indicator when
a record’s minimum yrepi is less than the minimum of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with replications less than
the minimum of y.

• The "round(yhat[i,]) = d" discrepancy measure returns a record-level proportion of yrepi

that, when rounded, is equal to a specified discrete value, d. The discrepancy statistic is the
mean of the record-level proportions.

• The "sd(yhat[i,]) > sd(y)" discrepancy measure returns a record-level indicator when the
standard deviation of replicates is larger than the standard deviation of all of y. The discrep-
ancy statistic is the mean of the record-level indicators, reporting the proportion of records
with larger standard deviations than y.
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• The "p(yhat[i,] != y[i])" discrepancy measure returns the record-level probability that
yrep
i is not equal to y. This is valid when y is categorical and yhat is the predicted category.

The probability is the proportion of replicates.

After observing a discrepancy statistic, the user attempts to improve the model by revising the
model to account for discrepancies between data and the current model. This approach to model
revision relies on an analysis of the discrepancy statistic. Given a discrepancy measure that is based
on model fit, such as the L-criterion, the user may correlate the record-level discrepancy statis-
tics with the dependent variable, independent variables, and interactions of independent variables.
The discrepancy statistic should not correlate with the dependent and independent variables. In-
teraction variables may be useful for exploring new relationships that are not in the current model.
Alternatively, a decision tree may be applied to the record-level discrepancy statistics, given the
independent variables, in an effort to find relationships in the data that may be helpful in the model.
Model revision may involve the addition of a finite mixture component to account for outliers in
discrepancy, or specifying the model with a distribution that is more robust to outliers. There are
too many suggestions to include here, and discrepancy analysis varies by model.

Value

This function returns a list with the following components:

BPIC The Bayesian Predictive Information Criterion (BPIC) was introduced by Ando
(2007). BPIC is a variation of the Deviance Information Criterion (DIC) that
has been modified for predictive distributions. For more information on DIC
(Spiegelhalter et al., 2002), see the accompanying vignette entitled "Bayesian
Inference". BPIC = Dbar + 2pD. The goal is to minimize BPIC.

Concordance This is the percentage of the records of y that are within the 95% quantile-
based probability interval (see p.interval) of yrep. Gelfand’s suggested goal
is to achieve 95% predictive concordance. Lower percentages indicate too many
outliers and a poor fit of the model to the data, and higher percentages may
suggest overfitting. Concordance occurs only when y is continuous.

Mean Lift This is the mean of the record-level lifts, and occurs only when y is specified as
categorical with Categorical=TRUE.

Discrepancy.Statistic

This is only reported if the Discrep argument receives a valid discrepancy
measure as listed above. The Discrep applies to each record of y, and the
Discrepancy.Statistic reports the results of the discrepancy measure on the
entire data set. For example, if Discrep="min(yhat[i,]) < min(y)", then the
overall result is the proportion of records in which the minimum sample of yhat
was less than the overall minimum y. This is Pr(min(yhat[i,]) < min(y) |
y, Theta), where Theta is the parameter set.

L-criterion The L-criterion (Laud and Ibrahim, 1995) was developed for model and variable
selection. It is a sum of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution.
The L-criterion measures model performance with a combination of how close
its predictions are to the observed data and variability of the predictions. Better
models have smaller values of L. L is measured in the same units as the re-
sponse variable, and measures how close the data vector y is to the predictive
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distribution. In addition to the value of L, there is a value for S.L, which is the
calibration number of L, and is useful in determining how much of a decrease is
necessary between models to be noteworthy.

Summary When y is continuous, this is a N × 8 matrix, where N is the number of records
of y and there are 8 columns, as follows: y, Mean, SD, LB (the 2.5% quan-
tile), Median, UB (the 97.5% quantile), PQ (the predictive quantile, which is
Pr(yrep ≥ y)), and Test, which shows the record-level result of a test, if spec-
ified. When y is categorical, this matrix has a number of columns equal to the
number of categories of y plus 3, also including y, Lift, and Discrep.

Author(s)

Statisticat, LLC.

References

Ando, T. (2007). "Bayesian Predictive Information Criterion for the Evaluation of Hierarchical
Bayesian and Empirical Bayes Models". Biometrika, 94(2), p. 443–458.

Gelfand, A. (1996). "Model Determination Using Sampling Based Methods". In Gilks, W., Richard-
son, S., Spiegehalter, D., Chapter 9 in Markov Chain Monte Carlo in Practice. Chapman and Hall:
Boca Raton, FL.

Gelfand, A. and Ghosh, S. (1998). "Model Choice: A Minimum Posterior Predictive Loss Ap-
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Laud, P.W. and Ibrahim, J.G. (1995). "Predictive Model Selection". Journal of the Royal Statistical
Society, B 57, p. 247–262.
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See Also

LaplacesDemon, predict.demonoid, and p.interval.

Examples

### See the LaplacesDemon function for an example.
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summary.iterquad.ppc Posterior Predictive Check Summary

Description

This may be used to summarize either new, unobserved instances of y (called ynew) or replicates of
y (called yrep). Either ynew or yrep is summarized, depending on predict.iterquad.

Usage

## S3 method for class 'iterquad.ppc'
summary(object, Categorical, Rows,

Discrep, d, Quiet, ...)

Arguments

object An object of class iterquad.ppc is required.

Categorical Logical. If TRUE, then y and yhat are considered to be categorical (such as y=0
or y=1), rather than continuous.

Rows An optional vector of row numbers, for example c(1:10). All rows will be
estimated, but only these rows will appear in the summary.

Discrep A character string indicating a discrepancy test. Discrep defaults to NULL. Valid
character strings when y is continuous are: "Chi-Square", "Chi-Square2",
"Kurtosis", "L-criterion", "MASE", "MSE", "PPL", "Quadratic Loss", "Quadratic
Utility", "RMSE", "Skewness", "max(yhat[i,]) > max(y)", "mean(yhat[i,])
> mean(y)", "mean(yhat[i,] > d)", "mean(yhat[i,] > mean(y))", "min(yhat[i,])
< min(y)", "round(yhat[i,]) = d", and "sd(yhat[i,]) > sd(y)". Valid char-
acter strings when y is categorical are: "p(yhat[i,] != y[i])". Kurtosis and
skewness are not discrepancies, but are included here for convenience.

d This is an optional integer to be used with the Discrep argument above, and it
defaults to d=0.

Quiet This logical argument defaults to FALSE and will print results to the console.
When TRUE, results are not printed.

... Additional arguments are unused.

Details

This function summarizes an object of class iterquad.ppc, which consists of posterior predictive
checks on either ynew or yrep, depending respectively on whether unobserved instances of y or
the model sample of y was used in the predict.iterquad function. The deviance and monitored
variables are also summarized.

The purpose of a posterior predictive check is to assess how well (or poorly) the model fits the data,
or to assess discrepancies between the model and the data. For more information on posterior pre-
dictive checks, see https://web.archive.org/web/20150215050702/http://www.bayesian-inference.
com/posteriorpredictivechecks.

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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When y is continuous and known, this function estimates the predictive concordance between y
and yrep as per Gelfand (1996), and the predictive quantile (PQ), which is for record-level outlier
detection used to calculate Gelfand’s predictive concordance.

When y is categorical and known, this function estimates the record-level lift, which is p(yhat[i,]
= y[i]) / [p(y = j) / n], or the number of correctly predicted samples over the rate of that cate-
gory of y in vector y.

A discrepancy measure is an approach to studying discrepancies between the model and data (Gel-
man et al., 1996). Below is a list of discrepancy measures, followed by a brief introduction to
discrepancy analysis:

• The "Chi-Square" discrepancy measure is the chi-square goodness-of-fit test that is recom-
mended by Gelman. For each record i=1:N, this returns (y[i] - E(y[i]))^2 / var(yhat[i,]).

• The "Chi-Square2" discrepancy measure returns the following for each record: Pr(chisq.rep[i,]
> chisq.obs[i,]), where chisq.obs[i,] <- (y[i] - E(y[i]))^2 / E(y[i]), and chisq.rep[i,] <- (yhat[i,]
- E(yhat[i,]))^2 / E(yhat[i,]), and the overall discrepancy is the percent of records that were
outside of the 95% quantile-based probability interval (see p.interval).

• The "Kurtosis" discrepancy measure returns the kurtosis of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding kurtotic replicate distributions.

• The "L-criterion" discrepancy measure of Laud and Ibrahim (1995) provides the record-
level combination of two components (see below), and the discrepancy statistic is the sum,
L, as well as a calibration number, S.L. For more information on the L-criterion, see the
accompanying vignette entitled "Bayesian Inference".

• The "MASE" (Mean Absolute Scaled Error) is a discrepancy measure for the accuracy of time-
series forecasts, estimated as (|y - yhat|) / mean(abs(diff(y))). The discrepancy statistic
is the mean of the record-level values.

• The "MSE" (Mean Squared Error) discrepancy measure provides the MSE for each record
across all replicates, and the discrepancy statistic is the mean of the record-level MSEs. MSE
and quadratic loss are identical.

• The "PPL" (Posterior Predictive Loss) discrepancy measure of Gelfand and Ghosh (1998) pro-
vides the record-level combination of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution. The d=0 ar-
gument applies the following weight to the accuracy component, which is then added to the
variance component: d/(d + 1). For ynew, use d = 0. For yrep and model comparison, d is
commonly set to 1, 10, or 100000. Larger values of d put more stress on fit and downgrade
the precision of the estimates.

• The "Quadratic Loss" discrepancy measure provides the mean quadratic loss for each record
across all replicates, and the discrepancy statistic is the mean of the record-level mean quadratic
losses. Quadratic loss and MSE are identical, and quadratic loss is the negative of quadratic
utility.

• The "Quadratic Utility" discrepancy measure provides the mean quadratic utility for each
record across all replicates, and the discrepancy statistic is the mean of the record-level mean
quadratic utilities. Quadratic utility is the negative of quadratic loss.

• The "RMSE" (Root Mean Squared Error) discrepancy measure provides the RMSE for each
record across all replicates, and the discrepancy statistic is the mean of the record-level RM-
SEs.
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• The "Skewness" discrepancy measure returns the skewness of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding skewed replicate distributions.

• The "max(yhat[i,]) > max(y)" discrepancy measure returns a record-level indicator when
a record’s maximum yrep

i exceeds the maximum of y. The discrepancy statistic is the mean of
the record-level indicators, reporting the proportion of records with replications that exceed
the maximum of y.

• The "mean(yhat[i,]) > mean(y)" discrepancy measure returns a record-level indicator when
the mean of a record’s yrepi is greater than the mean of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with mean replications that
exceed the mean of y.

• The "mean(yhat[i,] > d)" discrepancy measure returns a record-level proportion of yrepi

that exceeds a specified value, d. The discrepancy statistic is the mean of the record-level
proportions.

• The "mean(yhat[i,] > mean(y))" discrepancy measure returns a record-level proportion of
yrep
i that exceeds the mean of y. The discrepancy statistic is the mean of the record-level

proportions.

• The "min(yhat[i,]) < min(y)" discrepancy measure returns a record-level indicator when
a record’s minimum yrepi is less than the minimum of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with replications less than
the minimum of y.

• The "round(yhat[i,]) = d" discrepancy measure returns a record-level proportion of yrepi

that, when rounded, is equal to a specified discrete value, d. The discrepancy statistic is the
mean of the record-level proportions.

• The "sd(yhat[i,]) > sd(y)" discrepancy measure returns a record-level indicator when the
standard deviation of replicates is larger than the standard deviation of all of y. The discrep-
ancy statistic is the mean of the record-level indicators, reporting the proportion of records
with larger standard deviations than y.

• The "p(yhat[i,] != y[i])" discrepancy measure returns the record-level probability that
yrep
i is not equal to y. This is valid when y is categorical and yhat is the predicted category.

The probability is the proportion of replicates.

After observing a discrepancy statistic, the user attempts to improve the model by revising the
model to account for discrepancies between data and the current model. This approach to model
revision relies on an analysis of the discrepancy statistic. Given a discrepancy measure that is based
on model fit, such as the L-criterion, the user may correlate the record-level discrepancy statis-
tics with the dependent variable, independent variables, and interactions of independent variables.
The discrepancy statistic should not correlate with the dependent and independent variables. In-
teraction variables may be useful for exploring new relationships that are not in the current model.
Alternatively, a decision tree may be applied to the record-level discrepancy statistics, given the
independent variables, in an effort to find relationships in the data that may be helpful in the model.
Model revision may involve the addition of a finite mixture component to account for outliers in
discrepancy, or specifying the model with a distribution that is more robust to outliers. There are
too many suggestions to include here, and discrepancy analysis varies by model.
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Value

This function returns a list with the following components:

BPIC The Bayesian Predictive Information Criterion (BPIC) was introduced by Ando
(2007). BPIC is a variation of the Deviance Information Criterion (DIC) that
has been modified for predictive distributions. For more information on DIC
(Spiegelhalter et al., 2002), see the accompanying vignette entitled "Bayesian
Inference". BPIC = Dbar + 2pD. The goal is to minimize BPIC.

Concordance This is the percentage of the records of y that are within the 95% quantile-
based probability interval (see p.interval) of yrep. Gelfand’s suggested goal
is to achieve 95% predictive concordance. Lower percentages indicate too many
outliers and a poor fit of the model to the data, and higher percentages may
suggest overfitting. Concordance occurs only when y is continuous.

Mean Lift This is the mean of the record-level lifts, and occurs only when y is specified as
categorical with Categorical=TRUE.

Discrepancy.Statistic

This is only reported if the Discrep argument receives a valid discrepancy
measure as listed above. The Discrep applies to each record of y, and the
Discrepancy.Statistic reports the results of the discrepancy measure on the
entire data set. For example, if Discrep="min(yhat[i,]) < min(y)", then the
overall result is the proportion of records in which the minimum sample of yhat
was less than the overall minimum y. This is Pr(min(yhat[i,]) < min(y) |
y, Theta), where Theta is the parameter set.

L-criterion The L-criterion (Laud and Ibrahim, 1995) was developed for model and variable
selection. It is a sum of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution.
The L-criterion measures model performance with a combination of how close
its predictions are to the observed data and variability of the predictions. Better
models have smaller values of L. L is measured in the same units as the re-
sponse variable, and measures how close the data vector y is to the predictive
distribution. In addition to the value of L, there is a value for S.L, which is the
calibration number of L, and is useful in determining how much of a decrease is
necessary between models to be noteworthy.

Monitor This is a N × 5 matrix, where N is the number of monitored variables and there
are 5 columns, as follows: Mean, SD, LB (the 2.5% quantile), Median, and UB
(the 97.5% quantile).

Summary When y is continuous, this is a N × 8 matrix, where N is the number of records
of y and there are 8 columns, as follows: y, Mean, SD, LB (the 2.5% quan-
tile), Median, UB (the 97.5% quantile), PQ (the predictive quantile, which is
Pr(yrep ≥ y)), and Test, which shows the record-level result of a test, if spec-
ified. When y is categorical, this matrix has a number of columns equal to the
number of categories of y plus 3, also including y, Lift, and Discrep.

Author(s)

Statisticat, LLC.
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See Also

IterativeQuadrature, predict.iterquad, and p.interval.

Examples

### See the IterativeQuadrature function for an example.

summary.laplace.ppc Posterior Predictive Check Summary

Description

This may be used to summarize either new, unobserved instances of y (called ynew) or replicates of
y (called yrep). Either ynew or yrep is summarized, depending on predict.laplace.

Usage

## S3 method for class 'laplace.ppc'
summary(object, Categorical, Rows, Discrep,

d, Quiet, ...)

Arguments

object An object of class laplace.ppc is required.

Categorical Logical. If TRUE, then y and yhat are considered to be categorical (such as y=0
or y=1), rather than continuous.

Rows An optional vector of row numbers, for example c(1:10). All rows will be
estimated, but only these rows will appear in the summary.
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Discrep A character string indicating a discrepancy test. Discrep defaults to NULL. Valid
character strings when y is continuous are: "Chi-Square", "Chi-Square2",
"Kurtosis", "L-criterion", "MASE", "MSE", "PPL", "Quadratic Loss", "Quadratic
Utility", "RMSE", "Skewness", "max(yhat[i,]) > max(y)", "mean(yhat[i,])
> mean(y)", "mean(yhat[i,] > d)", "mean(yhat[i,] > mean(y))", "min(yhat[i,])
< min(y)", "round(yhat[i,]) = d", and "sd(yhat[i,]) > sd(y)". Valid char-
acter strings when y is categorical are: "p(yhat[i,] != y[i])". Kurtosis and
skewness are not discrepancies, but are included here for convenience.

d This is an optional integer to be used with the Discrep argument above, and it
defaults to d=0.

Quiet This logical argument defaults to FALSE and will print results to the console.
When TRUE, results are not printed.

... Additional arguments are unused.

Details

This function summarizes an object of class laplace.ppc, which consists of posterior predictive
checks on either ynew or yrep, depending respectively on whether unobserved instances of y or
the model sample of y was used in the predict.laplace function. The deviance and monitored
variables are also summarized.

The purpose of a posterior predictive check is to assess how well (or poorly) the model fits the data,
or to assess discrepancies between the model and the data. For more information on posterior pre-
dictive checks, see https://web.archive.org/web/20150215050702/http://www.bayesian-inference.
com/posteriorpredictivechecks.

When y is continuous and known, this function estimates the predictive concordance between y
and yrep as per Gelfand (1996), and the predictive quantile (PQ), which is for record-level outlier
detection used to calculate Gelfand’s predictive concordance.

When y is categorical and known, this function estimates the record-level lift, which is p(yhat[i,]
= y[i]) / [p(y = j) / n], or the number of correctly predicted samples over the rate of that cate-
gory of y in vector y.

A discrepancy measure is an approach to studying discrepancies between the model and data (Gel-
man et al., 1996). Below is a list of discrepancy measures, followed by a brief introduction to
discrepancy analysis:

• The "Chi-Square" discrepancy measure is the chi-square goodness-of-fit test that is recom-
mended by Gelman. For each record i=1:N, this returns (y[i] - E(y[i]))^2 / var(yhat[i,]).

• The "Chi-Square2" discrepancy measure returns the following for each record: Pr(chisq.rep[i,]
> chisq.obs[i,]), where chisq.obs[i,] <- (y[i] - E(y[i]))^2 / E(y[i]), and chisq.rep[i,] <- (yhat[i,]
- E(yhat[i,]))^2 / E(yhat[i,]), and the overall discrepancy is the percent of records that were
outside of the 95% quantile-based probability interval (see p.interval).

• The "Kurtosis" discrepancy measure returns the kurtosis of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding kurtotic replicate distributions.

• The "L-criterion" discrepancy measure of Laud and Ibrahim (1995) provides the record-
level combination of two components (see below), and the discrepancy statistic is the sum,
L, as well as a calibration number, S.L. For more information on the L-criterion, see the
accompanying vignette entitled "Bayesian Inference".

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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• The "MASE" (Mean Absolute Scaled Error) is a discrepancy measure for the accuracy of time-
series forecasts, estimated as (|y - yhat|) / mean(abs(diff(y))). The discrepancy statistic
is the mean of the record-level values.

• The "MSE" (Mean Squared Error) discrepancy measure provides the MSE for each record
across all replicates, and the discrepancy statistic is the mean of the record-level MSEs. MSE
and quadratic loss are identical.

• The "PPL" (Posterior Predictive Loss) discrepancy measure of Gelfand and Ghosh (1998) pro-
vides the record-level combination of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution. The d=0 ar-
gument applies the following weight to the accuracy component, which is then added to the
variance component: d/(d + 1). For ynew, use d = 0. For yrep and model comparison, d is
commonly set to 1, 10, or 100000. Larger values of d put more stress on fit and downgrade
the precision of the estimates.

• The "Quadratic Loss" discrepancy measure provides the mean quadratic loss for each record
across all replicates, and the discrepancy statistic is the mean of the record-level mean quadratic
losses. Quadratic loss and MSE are identical, and quadratic loss is the negative of quadratic
utility.

• The "Quadratic Utility" discrepancy measure provides the mean quadratic utility for each
record across all replicates, and the discrepancy statistic is the mean of the record-level mean
quadratic utilities. Quadratic utility is the negative of quadratic loss.

• The "RMSE" (Root Mean Squared Error) discrepancy measure provides the RMSE for each
record across all replicates, and the discrepancy statistic is the mean of the record-level RM-
SEs.

• The "Skewness" discrepancy measure returns the skewness of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding skewed replicate distributions.

• The "max(yhat[i,]) > max(y)" discrepancy measure returns a record-level indicator when
a record’s maximum yrep

i exceeds the maximum of y. The discrepancy statistic is the mean of
the record-level indicators, reporting the proportion of records with replications that exceed
the maximum of y.

• The "mean(yhat[i,]) > mean(y)" discrepancy measure returns a record-level indicator when
the mean of a record’s yrepi is greater than the mean of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with mean replications that
exceed the mean of y.

• The "mean(yhat[i,] > d)" discrepancy measure returns a record-level proportion of yrepi

that exceeds a specified value, d. The discrepancy statistic is the mean of the record-level
proportions.

• The "mean(yhat[i,] > mean(y))" discrepancy measure returns a record-level proportion of
yrepi that exceeds the mean of y. The discrepancy statistic is the mean of the record-level
proportions.

• The "min(yhat[i,]) < min(y)" discrepancy measure returns a record-level indicator when
a record’s minimum yrepi is less than the minimum of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with replications less than
the minimum of y.
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• The "round(yhat[i,]) = d" discrepancy measure returns a record-level proportion of yrepi

that, when rounded, is equal to a specified discrete value, d. The discrepancy statistic is the
mean of the record-level proportions.

• The "sd(yhat[i,]) > sd(y)" discrepancy measure returns a record-level indicator when the
standard deviation of replicates is larger than the standard deviation of all of y. The discrep-
ancy statistic is the mean of the record-level indicators, reporting the proportion of records
with larger standard deviations than y.

• The "p(yhat[i,] != y[i])" discrepancy measure returns the record-level probability that
yrep
i is not equal to y. This is valid when y is categorical and yhat is the predicted category.

The probability is the proportion of replicates.

After observing a discrepancy statistic, the user attempts to improve the model by revising the
model to account for discrepancies between data and the current model. This approach to model
revision relies on an analysis of the discrepancy statistic. Given a discrepancy measure that is based
on model fit, such as the L-criterion, the user may correlate the record-level discrepancy statis-
tics with the dependent variable, independent variables, and interactions of independent variables.
The discrepancy statistic should not correlate with the dependent and independent variables. In-
teraction variables may be useful for exploring new relationships that are not in the current model.
Alternatively, a decision tree may be applied to the record-level discrepancy statistics, given the
independent variables, in an effort to find relationships in the data that may be helpful in the model.
Model revision may involve the addition of a finite mixture component to account for outliers in
discrepancy, or specifying the model with a distribution that is more robust to outliers. There are
too many suggestions to include here, and discrepancy analysis varies by model.

Value

This function returns a list with the following components:

BPIC The Bayesian Predictive Information Criterion (BPIC) was introduced by Ando
(2007). BPIC is a variation of the Deviance Information Criterion (DIC) that
has been modified for predictive distributions. For more information on DIC
(Spiegelhalter et al., 2002), see the accompanying vignette entitled "Bayesian
Inference". BPIC = Dbar + 2pD. The goal is to minimize BPIC.

Concordance This is the percentage of the records of y that are within the 95% quantile-
based probability interval (see p.interval) of yrep. Gelfand’s suggested goal
is to achieve 95% predictive concordance. Lower percentages indicate too many
outliers and a poor fit of the model to the data, and higher percentages may
suggest overfitting. Concordance occurs only when y is continuous.

Mean Lift This is the mean of the record-level lifts, and occurs only when y is specified as
categorical with Categorical=TRUE.

Discrepancy.Statistic

This is only reported if the Discrep argument receives a valid discrepancy
measure as listed above. The Discrep applies to each record of y, and the
Discrepancy.Statistic reports the results of the discrepancy measure on the
entire data set. For example, if Discrep="min(yhat[i,]) < min(y)", then the
overall result is the proportion of records in which the minimum sample of yhat
was less than the overall minimum y. This is Pr(min(yhat[i,]) < min(y) |
y, Theta), where Theta is the parameter set.
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L-criterion The L-criterion (Laud and Ibrahim, 1995) was developed for model and variable
selection. It is a sum of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution.
The L-criterion measures model performance with a combination of how close
its predictions are to the observed data and variability of the predictions. Better
models have smaller values of L. L is measured in the same units as the re-
sponse variable, and measures how close the data vector y is to the predictive
distribution. In addition to the value of L, there is a value for S.L, which is the
calibration number of L, and is useful in determining how much of a decrease is
necessary between models to be noteworthy.

Monitor This is a N × 5 matrix, where N is the number of monitored variables and there
are 5 columns, as follows: Mean, SD, LB (the 2.5% quantile), Median, and UB
(the 97.5% quantile).

Summary When y is continuous, this is a N × 8 matrix, where N is the number of records
of y and there are 8 columns, as follows: y, Mean, SD, LB (the 2.5% quan-
tile), Median, UB (the 97.5% quantile), PQ (the predictive quantile, which is
Pr(yrep ≥ y)), and Test, which shows the record-level result of a test, if spec-
ified. When y is categorical, this matrix has a number of columns equal to the
number of categories of y plus 3, also including y, Lift, and Discrep.

Author(s)
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Examples

### See the LaplaceApproximation function for an example.

summary.miss MISS Summary

Description

This function summarizes posterior predictive distributions from an object of class miss.

Usage

## S3 method for class 'miss'
summary(object, ...)

Arguments

object An object of class miss is required.

... Additional arguments are unused.

Details

This function summarizes the posterior predictive distributions from an object of class miss.

Value

This function returns a M × 7 matrix, in which each row is the posterior predictive distribution of
one of M missing values. Columns are Mean, SD, MCSE, ESS, LB, Median, and UB.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>

See Also

MISS.

Examples

### See the MISS function for an example.
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summary.pmc.ppc Posterior Predictive Check Summary

Description

This may be used to summarize either new, unobserved instances of y (called ynew) or replicates of
y (called yrep). Either ynew or yrep is summarized, depending on predict.pmc.

Usage

## S3 method for class 'pmc.ppc'
summary(object, Categorical, Rows,

Discrep, d, Quiet, ...)

Arguments

object An object of class pmc.ppc is required.

Categorical Logical. If TRUE, then y and yhat are considered to be categorical (such as y=0
or y=1), rather than continuous.

Rows An optional vector of row numbers, for example c(1:10). All rows will be
estimated, but only these rows will appear in the summary.

Discrep A character string indicating a discrepancy test. Discrep defaults to NULL.
Valid character strings when y is continuous are: "Chi-Square", "Chi-Square2
", "Kurtosis", "L-criterion", "MASE", "MSE", "PPL", "Quadratic Loss",
"Quadratic Utility", "RMSE", "Skewness", "max(yhat[i,]) > max(y)", "mean(yhat[i,])
> mean(y)", "mean(yhat[i,] > d)", "mean(yhat[i,] > mean(y))", "min(yhat[i,])
< min(y)", "round(yhat[i,]) = d", and "sd(yhat[i,]) > sd(y)". Valid char-
acter strings when y is categorical are: "p(yhat[i,] != y[i])". Kurtosis and
skewness are not discrepancies, but are included here for convenience.

d This is an optional integer to be used with the Discrep argument above, and it
defaults to d=0.

Quiet This logical argument defaults to FALSE and will print results to the console.
When TRUE, results are not printed.

... Additional arguments are unused.

Details

This function summarizes an object of class pmc.ppc, which consists of posterior predictive checks
on either ynew or yrep, depending respectively on whether unobserved instances of y or the model
sample of y was used in the predict.demonoid function.

The purpose of a posterior predictive check is to assess how well (or poorly) the model fits the data,
or to assess discrepancies between the model and the data. For more information on posterior pre-
dictive checks, see https://web.archive.org/web/20150215050702/http://www.bayesian-inference.
com/posteriorpredictivechecks.

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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When y is continuous and known, this function estimates the predictive concordance between y
and yrep as per Gelfand (1996), and the predictive quantile (PQ), which is for record-level outlier
detection used to calculate Gelfand’s predictive concordance.

When y is categorical and known, this function estimates the record-level lift, which is p(yhat[i,]
= y[i]) / [p(y = j) / n], or the number of correctly predicted samples over the rate of that cate-
gory of y in vector y.

A discrepancy measure is an approach to studying discrepancies between the model and data (Gel-
man et al., 1996). Below is a list of discrepancy measures, followed by a brief introduction to
discrepancy analysis:

• The "Chi-Square" discrepancy measure is the chi-square goodness-of-fit test that is recom-
mended by Gelman. For each record i=1:N, this returns (y[i] - E(y[i]))^2 / var(yhat[i,]).

• The "Chi-Square2" discrepancy measure returns the following for each record: Pr(chisq.rep[i,]
> chisq.obs[i,]), where chisq.obs[i,] <- (y[i] - E(y[i]))^2 / E(y[i]), and chisq.rep[i,] <- (yhat[i,]
- E(yhat[i,]))^2 / E(yhat[i,]), and the overall discrepancy is the percent of records that were
outside of the 95% quantile-based probability interval (see p.interval).

• The "Kurtosis" discrepancy measure returns the kurtosis of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding kurtotic replicate distributions.

• The "L-criterion" discrepancy measure of Laud and Ibrahim (1995) provides the record-
level combination of two components (see below), and the discrepancy statistic is the sum,
L, as well as a calibration number, S.L. For more information on the L-criterion, see the
accompanying vignette entitled "Bayesian Inference".

• The "MASE" (Mean Absolute Scaled Error) is a discrepancy measure for the accuracy of time-
series forecasts, estimated as (|y - yhat|) / mean(abs(diff(y))). The discrepancy statistic
is the mean of the record-level values.

• The "MSE" (Mean Squared Error) discrepancy measure provides the MSE for each record
across all replicates, and the discrepancy statistic is the mean of the record-level MSEs. MSE
and quadratic loss are identical.

• The "PPL" (Posterior Predictive Loss) discrepancy measure of Gelfand and Ghosh (1998) pro-
vides the record-level combination of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution. The d=0 ar-
gument applies the following weight to the accuracy component, which is then added to the
variance component: d/(d + 1). For ynew, use d = 0. For yrep and model comparison, d is
commonly set to 1, 10, or 100000. Larger values of d put more stress on fit and downgrade
the precision of the estimates.

• The "Quadratic Loss" discrepancy measure provides the mean quadratic loss for each record
across all replicates, and the discrepancy statistic is the mean of the record-level mean quadratic
losses. Quadratic loss and MSE are identical, and quadratic loss is the negative of quadratic
utility.

• The "Quadratic Utility" discrepancy measure provides the mean quadratic utility for each
record across all replicates, and the discrepancy statistic is the mean of the record-level mean
quadratic utilities. Quadratic utility is the negative of quadratic loss.

• The "RMSE" (Root Mean Squared Error) discrepancy measure provides the RMSE for each
record across all replicates, and the discrepancy statistic is the mean of the record-level RM-
SEs.
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• The "Skewness" discrepancy measure returns the skewness of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding skewed replicate distributions.

• The "max(yhat[i,]) > max(y)" discrepancy measure returns a record-level indicator when
a record’s maximum yrep

i exceeds the maximum of y. The discrepancy statistic is the mean of
the record-level indicators, reporting the proportion of records with replications that exceed
the maximum of y.

• The "mean(yhat[i,]) > mean(y)" discrepancy measure returns a record-level indicator when
the mean of a record’s yrepi is greater than the mean of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with mean replications that
exceed the mean of y.

• The "mean(yhat[i,] > d)" discrepancy measure returns a record-level proportion of yrepi

that exceeds a specified value, d. The discrepancy statistic is the mean of the record-level
proportions.

• The "mean(yhat[i,] > mean(y))" discrepancy measure returns a record-level proportion of
yrep
i that exceeds the mean of y. The discrepancy statistic is the mean of the record-level

proportions.

• The "min(yhat[i,]) < min(y)" discrepancy measure returns a record-level indicator when
a record’s minimum yrepi is less than the minimum of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with replications less than
the minimum of y.

• The "round(yhat[i,]) = d" discrepancy measure returns a record-level proportion of yrepi

that, when rounded, is equal to a specified discrete value, d. The discrepancy statistic is the
mean of the record-level proportions.

• The "sd(yhat[i,]) > sd(y)" discrepancy measure returns a record-level indicator when the
standard deviation of replicates is larger than the standard deviation of all of y. The discrep-
ancy statistic is the mean of the record-level indicators, reporting the proportion of records
with larger standard deviations than y.

• The "p(yhat[i,] != y[i])" discrepancy measure returns the record-level probability that
yrep
i is not equal to y. This is valid when y is categorical and yhat is the predicted category.

The probability is the proportion of replicates.

After observing a discrepancy statistic, the user attempts to improve the model by revising the
model to account for discrepancies between data and the current model. This approach to model
revision relies on an analysis of the discrepancy statistic. Given a discrepancy measure that is based
on model fit, such as the L-criterion, the user may correlate the record-level discrepancy statis-
tics with the dependent variable, independent variables, and interactions of independent variables.
The discrepancy statistic should not correlate with the dependent and independent variables. In-
teraction variables may be useful for exploring new relationships that are not in the current model.
Alternatively, a decision tree may be applied to the record-level discrepancy statistics, given the
independent variables, in an effort to find relationships in the data that may be helpful in the model.
Model revision may involve the addition of a finite mixture component to account for outliers in
discrepancy, or specifying the model with a distribution that is more robust to outliers. There are
too many suggestions to include here, and discrepancy analysis varies by model.
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Value

This function returns a list with the following components:

BPIC The Bayesian Predictive Information Criterion (BPIC) was introduced by Ando
(2007). BPIC is a variation of the Deviance Information Criterion (DIC) that
has been modified for predictive distributions. For more information on DIC
(Spiegelhalter et al., 2002), see the accompanying vignette entitled "Bayesian
Inference". BPIC = Dbar + 2pD. The goal is to minimize BPIC.

Concordance This is the percentage of the records of y that are within the 95% quantile-
based probability interval (see p.interval) of yrep. Gelfand’s suggested goal
is to achieve 95% predictive concordance. Lower percentages indicate too many
outliers and a poor fit of the model to the data, and higher percentages may
suggest overfitting. Concordance occurs only when y is continuous.

Mean Lift This is the mean of the record-level lifts, and occurs only when y is specified as
categorical with Categorical=TRUE.

Discrepancy.Statistic

This is only reported if the Discrep argument receives a valid discrepancy
measure as listed above. The Discrep applies to each record of y, and the
Discrepancy.Statistic reports the results of the discrepancy measure on the
entire data set. For example, if Discrep="min(yhat[i,]) < min(y)", then the
overall result is the proportion of records in which the minimum sample of yhat
was less than the overall minimum y. This is Pr(min(yhat[i,]) < min(y) |
y, Theta), where Theta is the parameter set.

L-criterion The L-criterion (Laud and Ibrahim, 1995) was developed for model and variable
selection. It is a sum of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution.
The L-criterion measures model performance with a combination of how close
its predictions are to the observed data and variability of the predictions. Better
models have smaller values of L. L is measured in the same units as the re-
sponse variable, and measures how close the data vector y is to the predictive
distribution. In addition to the value of L, there is a value for S.L, which is the
calibration number of L, and is useful in determining how much of a decrease is
necessary between models to be noteworthy.

Summary When y is continuous, this is a N × 8 matrix, where N is the number of records
of y and there are 8 columns, as follows: y, Mean, SD, LB (the 2.5% quan-
tile), Median, UB (the 97.5% quantile), PQ (the predictive quantile, which is
Pr(yrep ≥ y)), and Test, which shows the record-level result of a test, if spec-
ified. When y is categorical, this matrix has a number of columns equal to the
number of categories of y plus 3, also including y, Lift, and Discrep.

Author(s)

Statisticat, LLC.
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See Also

PMC, predict.pmc, and p.interval.

Examples

### See the PMC function for an example.

summary.vb.ppc Posterior Predictive Check Summary

Description

This may be used to summarize either new, unobserved instances of y (called ynew) or replicates of
y (called yrep). Either ynew or yrep is summarized, depending on predict.vb.

Usage

## S3 method for class 'vb.ppc'
summary(object, Categorical, Rows, Discrep,

d, Quiet, ...)

Arguments

object An object of class vb.ppc is required.

Categorical Logical. If TRUE, then y and yhat are considered to be categorical (such as y=0
or y=1), rather than continuous.

Rows An optional vector of row numbers, for example c(1:10). All rows will be
estimated, but only these rows will appear in the summary.
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Discrep A character string indicating a discrepancy test. Discrep defaults to NULL. Valid
character strings when y is continuous are: "Chi-Square", "Chi-Square2",
"Kurtosis", "L-criterion", "MASE", "MSE", "PPL", "Quadratic Loss", "Quadratic
Utility", "RMSE", "Skewness", "max(yhat[i,]) > max(y)", "mean(yhat[i,])
> mean(y)", "mean(yhat[i,] > d)", "mean(yhat[i,] > mean(y))", "min(yhat[i,])
< min(y)", "round(yhat[i,]) = d", and "sd(yhat[i,]) > sd(y)". Valid char-
acter strings when y is categorical are: "p(yhat[i,] != y[i])". Kurtosis and
skewness are not discrepancies, but are included here for convenience.

d This is an optional integer to be used with the Discrep argument above, and it
defaults to d=0.

Quiet This logical argument defaults to FALSE and will print results to the console.
When TRUE, results are not printed.

... Additional arguments are unused.

Details

This function summarizes an object of class vb.ppc, which consists of posterior predictive checks
on either ynew or yrep, depending respectively on whether unobserved instances of y or the model
sample of y was used in the predict.vb function. The deviance and monitored variables are also
summarized.

The purpose of a posterior predictive check is to assess how well (or poorly) the model fits the data,
or to assess discrepancies between the model and the data. For more information on posterior pre-
dictive checks, see https://web.archive.org/web/20150215050702/http://www.bayesian-inference.
com/posteriorpredictivechecks.

When y is continuous and known, this function estimates the predictive concordance between y
and yrep as per Gelfand (1996), and the predictive quantile (PQ), which is for record-level outlier
detection used to calculate Gelfand’s predictive concordance.

When y is categorical and known, this function estimates the record-level lift, which is p(yhat[i,]
= y[i]) / [p(y = j) / n], or the number of correctly predicted samples over the rate of that cate-
gory of y in vector y.

A discrepancy measure is an approach to studying discrepancies between the model and data (Gel-
man et al., 1996). Below is a list of discrepancy measures, followed by a brief introduction to
discrepancy analysis:

• The "Chi-Square" discrepancy measure is the chi-square goodness-of-fit test that is recom-
mended by Gelman. For each record i=1:N, this returns (y[i] - E(y[i]))^2 / var(yhat[i,]).

• The "Chi-Square2" discrepancy measure returns the following for each record: Pr(chisq.rep[i,]
> chisq.obs[i,]), where chisq.obs[i,] <- (y[i] - E(y[i]))^2 / E(y[i]), and chisq.rep[i,] <- (yhat[i,]
- E(yhat[i,]))^2 / E(yhat[i,]), and the overall discrepancy is the percent of records that were
outside of the 95% quantile-based probability interval (see p.interval).

• The "Kurtosis" discrepancy measure returns the kurtosis of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding kurtotic replicate distributions.

• The "L-criterion" discrepancy measure of Laud and Ibrahim (1995) provides the record-
level combination of two components (see below), and the discrepancy statistic is the sum,
L, as well as a calibration number, S.L. For more information on the L-criterion, see the
accompanying vignette entitled "Bayesian Inference".

https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
https://web.archive.org/web/20150215050702/http://www.bayesian-inference.com/posteriorpredictivechecks
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• The "MASE" (Mean Absolute Scaled Error) is a discrepancy measure for the accuracy of time-
series forecasts, estimated as (|y - yhat|) / mean(abs(diff(y))). The discrepancy statistic
is the mean of the record-level values.

• The "MSE" (Mean Squared Error) discrepancy measure provides the MSE for each record
across all replicates, and the discrepancy statistic is the mean of the record-level MSEs. MSE
and quadratic loss are identical.

• The "PPL" (Posterior Predictive Loss) discrepancy measure of Gelfand and Ghosh (1998) pro-
vides the record-level combination of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution. The d=0 ar-
gument applies the following weight to the accuracy component, which is then added to the
variance component: d/(d + 1). For ynew, use d = 0. For yrep and model comparison, d is
commonly set to 1, 10, or 100000. Larger values of d put more stress on fit and downgrade
the precision of the estimates.

• The "Quadratic Loss" discrepancy measure provides the mean quadratic loss for each record
across all replicates, and the discrepancy statistic is the mean of the record-level mean quadratic
losses. Quadratic loss and MSE are identical, and quadratic loss is the negative of quadratic
utility.

• The "Quadratic Utility" discrepancy measure provides the mean quadratic utility for each
record across all replicates, and the discrepancy statistic is the mean of the record-level mean
quadratic utilities. Quadratic utility is the negative of quadratic loss.

• The "RMSE" (Root Mean Squared Error) discrepancy measure provides the RMSE for each
record across all replicates, and the discrepancy statistic is the mean of the record-level RM-
SEs.

• The "Skewness" discrepancy measure returns the skewness of yrep for each record, and the
discrepancy statistic is the mean for all records. This does not measure discrepancies between
the model and data, and is useful for finding skewed replicate distributions.

• The "max(yhat[i,]) > max(y)" discrepancy measure returns a record-level indicator when
a record’s maximum yrep

i exceeds the maximum of y. The discrepancy statistic is the mean of
the record-level indicators, reporting the proportion of records with replications that exceed
the maximum of y.

• The "mean(yhat[i,]) > mean(y)" discrepancy measure returns a record-level indicator when
the mean of a record’s yrepi is greater than the mean of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with mean replications that
exceed the mean of y.

• The "mean(yhat[i,] > d)" discrepancy measure returns a record-level proportion of yrepi

that exceeds a specified value, d. The discrepancy statistic is the mean of the record-level
proportions.

• The "mean(yhat[i,] > mean(y))" discrepancy measure returns a record-level proportion of
yrepi that exceeds the mean of y. The discrepancy statistic is the mean of the record-level
proportions.

• The "min(yhat[i,]) < min(y)" discrepancy measure returns a record-level indicator when
a record’s minimum yrepi is less than the minimum of y. The discrepancy statistic is the mean
of the record-level indicators, reporting the proportion of records with replications less than
the minimum of y.
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• The "round(yhat[i,]) = d" discrepancy measure returns a record-level proportion of yrepi

that, when rounded, is equal to a specified discrete value, d. The discrepancy statistic is the
mean of the record-level proportions.

• The "sd(yhat[i,]) > sd(y)" discrepancy measure returns a record-level indicator when the
standard deviation of replicates is larger than the standard deviation of all of y. The discrep-
ancy statistic is the mean of the record-level indicators, reporting the proportion of records
with larger standard deviations than y.

• The "p(yhat[i,] != y[i])" discrepancy measure returns the record-level probability that
yrep
i is not equal to y. This is valid when y is categorical and yhat is the predicted category.

The probability is the proportion of replicates.

After observing a discrepancy statistic, the user attempts to improve the model by revising the
model to account for discrepancies between data and the current model. This approach to model
revision relies on an analysis of the discrepancy statistic. Given a discrepancy measure that is based
on model fit, such as the L-criterion, the user may correlate the record-level discrepancy statis-
tics with the dependent variable, independent variables, and interactions of independent variables.
The discrepancy statistic should not correlate with the dependent and independent variables. In-
teraction variables may be useful for exploring new relationships that are not in the current model.
Alternatively, a decision tree may be applied to the record-level discrepancy statistics, given the
independent variables, in an effort to find relationships in the data that may be helpful in the model.
Model revision may involve the addition of a finite mixture component to account for outliers in
discrepancy, or specifying the model with a distribution that is more robust to outliers. There are
too many suggestions to include here, and discrepancy analysis varies by model.

Value

This function returns a list with the following components:

BPIC The Bayesian Predictive Information Criterion (BPIC) was introduced by Ando
(2007). BPIC is a variation of the Deviance Information Criterion (DIC) that
has been modified for predictive distributions. For more information on DIC
(Spiegelhalter et al., 2002), see the accompanying vignette entitled "Bayesian
Inference". BPIC = Dbar + 2pD. The goal is to minimize BPIC.

Concordance This is the percentage of the records of y that are within the 95% quantile-
based probability interval (see p.interval) of yrep. Gelfand’s suggested goal
is to achieve 95% predictive concordance. Lower percentages indicate too many
outliers and a poor fit of the model to the data, and higher percentages may
suggest overfitting. Concordance occurs only when y is continuous.

Mean Lift This is the mean of the record-level lifts, and occurs only when y is specified as
categorical with Categorical=TRUE.

Discrepancy.Statistic

This is only reported if the Discrep argument receives a valid discrepancy
measure as listed above. The Discrep applies to each record of y, and the
Discrepancy.Statistic reports the results of the discrepancy measure on the
entire data set. For example, if Discrep="min(yhat[i,]) < min(y)", then the
overall result is the proportion of records in which the minimum sample of yhat
was less than the overall minimum y. This is Pr(min(yhat[i,]) < min(y) |
y, Theta), where Theta is the parameter set.
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L-criterion The L-criterion (Laud and Ibrahim, 1995) was developed for model and variable
selection. It is a sum of two components: one involves the predictive variance
and the other includes the accuracy of the means of the predictive distribution.
The L-criterion measures model performance with a combination of how close
its predictions are to the observed data and variability of the predictions. Better
models have smaller values of L. L is measured in the same units as the re-
sponse variable, and measures how close the data vector y is to the predictive
distribution. In addition to the value of L, there is a value for S.L, which is the
calibration number of L, and is useful in determining how much of a decrease is
necessary between models to be noteworthy.

Monitor This is a N × 5 matrix, where N is the number of monitored variables and there
are 5 columns, as follows: Mean, SD, LB (the 2.5% quantile), Median, and UB
(the 97.5% quantile).

Summary When y is continuous, this is a N × 8 matrix, where N is the number of records
of y and there are 8 columns, as follows: y, Mean, SD, LB (the 2.5% quan-
tile), Median, UB (the 97.5% quantile), PQ (the predictive quantile, which is
Pr(yrep ≥ y)), and Test, which shows the record-level result of a test, if spec-
ified. When y is categorical, this matrix has a number of columns equal to the
number of categories of y plus 3, also including y, Lift, and Discrep.

Author(s)

Statisticat, LLC.
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Examples

### See the VariationalBayes function for an example.

Thin Thin

Description

This function reduces the number of posterior samples by retaining every kth sample.

Usage

Thin(x, By=1)

Arguments

x This is a vector or matrix of posterior samples to be thinned.

By This argument specifies that every kth posterior sample will be retained, and By
defaults to 1, meaning that thinning will not occur, because every sample will
be retained.

Details

A thinned matrix of posterior samples is a matrix in which only every kth posterior sample (or
row) in the original matrix is retained. The act of thinning posterior samples has been criticized
as throwing away information, which is correct. However, it is common practice to thin posterior
samples, usually associated with MCMC such as LaplacesDemon, for two reasons. First, Each
chain (column vector) in a matrix of posterior samples probably has higher autocorrelation than
desired, which reduces the effective sample size (see ESS for more information). Therefore, a
thinned matrix usually contains posterior samples that are closer to independent than an un-thinned
matrix. The other reason for the popularity of thinning is that it a user may not have the random-
access memory (RAM) to store large, un-thinned matrices of posterior samples.

LaplacesDemon and PMC automatically thin posterior samples, deviance samples, and samples of
monitored variables, according to its own user-specified argument. The Thin function is made
available here, should it be necessary to thin posterior samples outside of objects of class demonoid
or pmc.

Value

The Thin argument returns a thinned matrix. When x is a vector, the returned object is a matrix
with 1 column.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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See Also

ESS, LaplacesDemon, and PMC.

Examples

library(LaplacesDemon)
x <- matrix(runif(100), 10, 10)
Thin(x, By=2)

Validate Holdout Validation

Description

This function performs holdout validation on an object of class demonoid or pmc, given both a
modeled and validation data set.

Usage

Validate(object, Model, Data, plot=FALSE, PDF=FALSE)

Arguments

object This is an object of class demonoid or pmc.

Model This is a model specification function for LaplacesDemon or PMC.

Data This is a list that contains two lists of data, as specified for LaplacesDemon. The
first component in the list is the list of modeled data, and the second component
in the list is the list of validation data.

plot Logical. When plot=TRUE, two plots are displayed. The upper plot shows the
density of the modeled deviance in black and the density of the validation de-
viance in red. The lower plot shows the density of the change in deviance in
gray. The plot argument defaults to FALSE.

PDF Logical. When PDF=TRUE (and plot=TRUE), the plot is saved as a .pdf file. The
PDF argument defaults to FALSE.

Details

There are numerous ways to validate a model. In this context, validation means to assess the
predictive performance of a model on out-of-sample data. If reasonable, leave-one-out cross-
validation (LOOCV) via the conditional predictive ordinate (CPO) should be considered when us-
ing LaplacesDemon or PMC. For more information on CPO, see the accompanying vignettes entitled
"Bayesian Inference" and "Examples". CPO is unavailable when using LaplaceApproximation or
VariationalBayes.

For LaplaceApproximation or VariationalBayes, it is recommended that the user perform hold-
out validation by comparing posterior predictive checks, comparing the differences in the specified
discrepancy measure.
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When LOOCV is unreasonable, popular alternatives include k-fold cross-validation and holdout
validation. Although k-fold cross-validation is not performed explicitly here, the user may accom-
plish it with some effort. Of these methods, holdout validation includes the most bias, but is the
most common in applied use, since only one model is fitted, rather than k − 1 models in k-fold
cross-validation. The Validate function performs holdout validation.

For holdout validation, the observed data is sampled randomly into two data sets of approximately
equal size, or three data sets that consists of two data sets of approximately equal size and a re-
mainder data set. Of the two data sets approximately equal in size, one is called the modeled (or
training) data set, and the other is called the validation (or test) data set. The modeled data set
is used when updating the model. After the model is updated, both data sets are predicted in the
Validate function, given the model. Predictive loss is estimated for the validation data set, relative
to the modeled data set.

Predictive loss is associated with overfitting, differences between the model and validation data set,
or model misspecification. Bayesian inference is reputed to be much more robust to overfitting than
frequentist inference.

There are many ways to measure predictive loss, and within each approach, there are usually nu-
merous possible loss functions. The log-likelihood of the model is a popular approximate utility
function, and consequently, the deviance of the model is a popular loss function.

A vector of model-level (rather than record-level) deviance samples is returned with each object
of class demonoid or pmc. The Validate function obtains this vector for each data set, and then
calculates the Bayesian Predictive Information Criterion (BPIC), as per Ando (2007). BPIC is a
variation of the Deviance Information Criterion (DIC) that has been modified for predictive distri-
butions. For more information on DIC (Spiegelhalter et al., 2002), see the accompanying vignette
entitled "Bayesian Inference". The goal is to minimize BPIC.

When DIC is applied after the model, such as with a predictive distribution, it is positively biased, or
too small. The bias is due to the same data y being used both to construct the posterior distributions
and to evaluate pD, the penalty term for model complexity. For example, for validation data set
ynew, BPIC is:

BPIC = −2log[p(ynew|y,Θ)] + 2pD

When plot=TRUE, the distributions of the modeled and validation deviances are plotted above, and
the lower plot is the modeled deviance subtracted from the validation deviance. When positive, this
distribution of the change in deviance is the loss in predictive deviance associated with moving from
the modeled data set to the validation data set.

After using the Validate function, the user is encouraged to perform posterior predictive checks
on each data set via the summary.demonoid.ppc or summary.pmc.ppc function.

Value

This function returns a list with three components. The first two components are also lists. Each
list consists of y, yhat, and Deviance. The third component is a matrix that reports the expected
deviance, pD, and BPIC. The object is of class demonoid.val for LaplacesDemon, or pmc.val
when associated with PMC.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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See Also
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Examples

library(LaplacesDemon)
#Given an object called Fit of class demonoid, a Model specification,
#and a modeled data set (MyData.M) and validation data set (MyData.V):
#Validate(Fit, Model, Data=list(MyData.M=MyData.M, MyData.V=MyData.V))

VariationalBayes Variational Bayes

Description

The VariationalBayes function is a numerical approximation method for deterministically esti-
mating the marginal posterior distributions, target distributions, in a Bayesian model with approx-
imated distributions by minimizing the Kullback-Leibler Divergence (KLD) between the target and
its approximation.

Usage

VariationalBayes(Model, parm, Data, Covar=NULL, Interval=1.0E-6,
Iterations=1000, Method="Salimans2", Samples=1000, sir=TRUE,
Stop.Tolerance=1.0E-5, CPUs=1, Type="PSOCK")

Arguments

Model This required argument receives the model from a user-defined function. The
user-defined function is where the model is specified. VariationalBayes passes
two arguments to the model function, parms and Data. For more information,
see the LaplacesDemon function and “LaplacesDemon Tutorial” vignette.

parm This argument requires a vector of initial values equal in length to the number
of parameters. VariationalBayes will attempt to optimize these initial values
for the parameters, where the optimized values are the posterior means, for later
use with the IterativeQuadrature, LaplacesDemon, or PMC function. The GIV
function may be used to randomly generate initial values. Parameters must be
continuous.
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Data This required argument accepts a list of data. The list of data must include
mon.names which contains monitored variable names, and parm.names which
contains parameter names. VariationalBayes must be able to determine the
sample size of the data, and will look for a scalar sample size variable n or N.
If not found, it will look for variable y or Y, and attempt to take its number of
rows as sample size. VariationalBayes needs to determine sample size due to
the asymptotic nature of this method. Sample size should be at least

√
J with J

exchangeable parameters.

Covar This argument defaults to NULL, but may otherwise accept a K ×K covariance
matrix (where K is the number of dimensions or parameters) of the parameters.
When the model is updated for the first time and prior variance or covariance
is unknown, then Covar=NULL should be used. Once VariationalBayes has
finished updating, it may be desired to continue updating where it left off, in
which case the covariance matrix from the last run can be input into the next
run.

Interval This argument receives an interval for estimating approximate gradients. The
logarithm of the unnormalized joint posterior density of the Bayesian model
is evaluated at the current parameter value, and again at the current parameter
value plus this interval.

Iterations This argument accepts an integer that determines the number of iterations that
VariationalBayes will attempt to maximize the logarithm of the unnormalized
joint posterior density. Iterations defaults to 1000. VariationalBayes will
stop before this number of iterations if the tolerance is less than or equal to the
Stop.Tolerance criterion. The required amount of computer memory increases
with Iterations. If computer memory is exceeded, then all will be lost.

Method This optional argument currently accepts only Salimans2, which is the second
algorithm in Salimans and Knowles (2013).

Samples This argument indicates the number of posterior samples to be taken with sam-
pling importance resampling via the SIR function, which occurs only when
sir=TRUE. Note that the number of samples should increase with the number
and intercorrelations of the parameters.

sir This logical argument indicates whether or not Sampling Importance Resam-
pling (SIR) is conducted via the SIR function to draw independent posterior
samples. This argument defaults to TRUE. Even when TRUE, posterior samples
are drawn only when VariationalBayes has converged. Posterior samples are
required for many other functions, including plot.vb and predict.vb. The
only time that it is advantageous for sir=FALSE is when VariationalBayes is
used to help the initial values for IterativeQuadrature, LaplacesDemon, or
PMC, and it is unnecessary for time to be spent on sampling. Less time can be
spent on sampling by increasing CPUs, which parallelizes the sampling.

Stop.Tolerance This argument accepts any positive number and defaults to 1.0E-3. Tolerance is
calculated each iteration, and the criteria varies by algorithm. The algorithm is
considered to have converged to the user-specified Stop.Tolerance when the
tolerance is less than or equal to the value of Stop.Tolerance, and the algo-
rithm terminates at the end of the current iteration. Often, multiple criteria are
used, in which case the maximum of all criteria becomes the tolerance. For
example, when partial derivatives are taken, it is commonly required that the
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Euclidean norm of the partial derivatives is a criterion, and another common cri-
terion is the Euclidean norm of the differences between the current and previous
parameter values. Several algorithms have other, specific tolerances.

CPUs This argument accepts an integer that specifies the number of central processing
units (CPUs) of the multicore computer or computer cluster. This argument
defaults to CPUs=1, in which parallel processing does not occur. Parallelization
occurs only for sampling with SIR when sir=TRUE.

Type This argument specifies the type of parallel processing to perform, accepting
either Type="PSOCK" or Type="MPI".

Details

Variational Bayes (VB) is a family of numerical approximation algorithms that is a subset of varia-
tional inference algorithms, or variational methods. Some examples of variational methods include
the mean-field approximation, loopy belief propagation, tree-reweighted belief propagation, and
expectation propagation (EP).

Variational inference for probabilistic models was introduced in the field of machine learning, in-
fluenced by statistical physics literature (Saul et al., 1996; Saul and Jordan, 1996; Jaakkola, 1997).
The mean-field methods in Neal and Hinton (1999) led to variational algorithms.

Variational inference algorithms were later generalized for conjugate exponential-family models
(Attias, 1999, 2000; Wiegerinck, 2000; Ghahramani and Beal, 2001; Xing et al., 2003). These
algorithms still require different designs for different model forms. Salimans and Knowles (2013)
introduced general-purpose VB algorithms for Gaussian posteriors.

A VB algorithm deterministically estimates the marginal posterior distributions (target distribu-
tions) in a Bayesian model with approximated distributions by minimizing the Kullback-Leibler
Divergence (KLD) between the target and its approximation. The complicated posterior distribution
is approximated with a simpler distribution. The simpler, approximated distribution is called the
variational approximation, or approximation distribution, of the posterior. The term variational is
derived from the calculus of variations, and regards optimization algorithms that select the best
function (which is a distribution in VB), rather than merely selecting the best parameters.

VB algorithms often use Gaussian distributions as approximating distributions. In this case, both
the mean and variance of the parameters are estimated.

Usually, a VB algorithm is slower to convergence than a Laplace Approximation algorithm, and
faster to convergence than a Monte Carlo algorithm such as Markov chain Monte Carlo (MCMC).
VB often provides solutions with comparable accuracy to MCMC in less time. Though Monte
Carlo algorithms provide a numerical approximation to the exact posterior using a set of samples,
VB provides a locally-optimal, exact analytical solution to an approximation of the posterior. VB
is often more applicable than MCMC to big data or large-dimensional models.

Since VB is deterministic, it is asymptotic and subject to the same limitations with respect to sample
size as Laplace Approximation. However, VB estimates more parameters than Laplace Approxima-
tion, such as when Laplace Approximation optimizes the posterior mode of a Gaussian distribution,
while VB optimizes both the Gaussian mean and variance.

Traditionally, VB algorithms required customized equations. The VariationalBayes function uses
general-purpose algorithms. A general-purpose VB algorithm is less efficient than an algorithm
custom designed for the model form. However, a general-purpose algorithm is applied consistently
and easily to numerous model forms.
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When Method="Salimans2", the second algorithm of Salimans and Knowles (2013) is used. This
requires the gradient and Hessian, which is more efficient with a small number of parameters as
long as the posterior is twice differentiable. The step size is constant. This algorithm is suitable
for marginal posterior distributions that are Gaussian and unimodal. A stochastic approximation
algorithm is used in the context of fixed-form VB, inspired by considering fixed-form VB to be
equivalent to performing a linear regression with the sufficient statistics of the approximation as in-
dependent variables and the unnormalized logarithm of the joint posterior density as the dependent
variable. The number of requested iterations should be large, since the step-size decreases for larger
requested iterations, and a small step-size will eventually converge. A large number of requested
iterations results in a smaller step-size and better convergence properties, so hope for early conver-
gence. However convergence is checked only in the last half of the iterations after the algorithm
begins to average the mean and variance from the samples of the stochastic approximation. The
history of stochastic samples is returned.

Value

VariationalBayes returns an object of class vb that is a list with the following components:

Call This is the matched call of VariationalBayes.
Converged This is a logical indicator of whether or not VariationalBayes converged

within the specified Iterations according to the supplied Stop.Tolerance
criterion. Convergence does not indicate that the global maximum has been
found, but only that the tolerance was less than or equal to the Stop.Tolerance
criterion.

Covar This is the estimated covariance matrix. The Covar matrix may be scaled and
input into the Covar argument of the LaplacesDemon or PMC function for further
estimation, or the diagonal of this matrix may be used to represent the posterior
variance of the parameters, provided the algorithm converged and matrix inver-
sion was successful. To scale this matrix for use with Laplace’s Demon or PMC,
multiply it by 2.382/d, where d is the number of initial values.

Deviance This is a vector of the iterative history of the deviance in the VariationalBayes
function, as it sought convergence.

History This is an array of the iterative history of the parameters in the VariationalBayes
function, as it sought convergence. The first matrix is for means and the second
matrix is for variances.

Initial.Values This is the vector of initial values that was originally given to VariationalBayes
in the parm argument.

LML This is an approximation of the logarithm of the marginal likelihood of the data
(see the LML function for more information). When the model has converged
and sir=TRUE, the NSIS method is used. When the model has converged and
sir=FALSE, the LME method is used. This is the logarithmic form of equation
4 in Lewis and Raftery (1997). As a rough estimate of Kass and Raftery (1995),
the LME-based LML is worrisome when the sample size of the data is less
than five times the number of parameters, and LML should be adequate in most
problems when the sample size of the data exceeds twenty times the number
of parameters (p. 778). The LME is inappropriate with hierarchical models.
However LML is estimated, it is useful for comparing multiple models with the
BayesFactor function.
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LP.Final This reports the final scalar value for the logarithm of the unnormalized joint
posterior density.

LP.Initial This reports the initial scalar value for the logarithm of the unnormalized joint
posterior density.

Minutes This is the number of minutes that VariationalBayes was running, and this
includes the initial checks as well as drawing posterior samples and creating
summaries.

Monitor When sir=TRUE, a number of independent posterior samples equal to Samples
is taken, and the draws are stored here as a matrix. The rows of the matrix are
the samples, and the columns are the monitored variables.

Posterior When sir=TRUE, a number of independent posterior samples equal to Samples
is taken, and the draws are stored here as a matrix. The rows of the matrix are
the samples, and the columns are the parameters.

Step.Size.Final

This is the final, scalar Step.Size value at the end of the VariationalBayes
algorithm.

Step.Size.Initial

This is the initial, scalar Step.Size.

Summary1 This is a summary matrix that summarizes the point-estimated posterior means
and variances. Uncertainty around the posterior means is estimated from the
estimated covariance matrix. Rows are parameters. The following columns are
included: Mean, SD (Standard Deviation), LB (Lower Bound), and UB (Upper
Bound). The bounds constitute a 95% probability interval.

Summary2 This is a summary matrix that summarizes the posterior samples drawn with
sampling importance resampling (SIR) when sir=TRUE, given the point-estimated
posterior means and covariance matrix. Rows are parameters. The following
columns are included: Mean, SD (Standard Deviation), LB (Lower Bound), and
UB (Upper Bound). The bounds constitute a 95% probability interval.

Tolerance.Final

This is the last Tolerance of the VariationalBayes algorithm.

Tolerance.Stop This is the Stop.Tolerance criterion.

Author(s)

Statisticat, LLC <software@bayesian-inference.com>
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See Also

BayesFactor, IterativeQuadrature, LaplaceApproximation, LaplacesDemon, GIV, LML, PMC,
and SIR.

Examples

# The accompanying Examples vignette is a compendium of examples.
#################### Load the LaplacesDemon Library #####################
library(LaplacesDemon)

############################## Demon Data ###############################
data(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(log(demonsnacks[,10]+1)))
J <- ncol(X)
for (j in 2:J) X[,j] <- CenterScale(X[,j])

######################### Data List Preparation #########################
mon.names <- "mu[1]"
parm.names <- as.parm.names(list(beta=rep(0,J), sigma=0))
pos.beta <- grep("beta", parm.names)
pos.sigma <- grep("sigma", parm.names)
PGF <- function(Data) {

beta <- rnorm(Data$J)
sigma <- runif(1)
return(c(beta, sigma))
}

MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,
parm.names=parm.names, pos.beta=pos.beta, pos.sigma=pos.sigma, y=y)

########################## Model Specification ##########################
Model <- function(parm, Data)

{
### Parameters
beta <- parm[Data$pos.beta]
sigma <- interval(parm[Data$pos.sigma], 1e-100, Inf)



WAIC 383

parm[Data$pos.sigma] <- sigma
### Log-Prior
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=mu[1],

yhat=rnorm(length(mu), mu, sigma), parm=parm)
return(Modelout)
}

############################ Initial Values #############################
#Initial.Values <- GIV(Model, MyData, PGF=TRUE)
Initial.Values <- rep(0,J+1)

#Fit <- VariationalBayes(Model, Initial.Values, Data=MyData, Covar=NULL,
# Iterations=1000, Method="Salimans2", Stop.Tolerance=1e-3, CPUs=1)
#Fit
#print(Fit)
#PosteriorChecks(Fit)
#caterpillar.plot(Fit, Parms="beta")
#plot(Fit, MyData, PDF=FALSE)
#Pred <- predict(Fit, Model, MyData, CPUs=1)
#summary(Pred, Discrep="Chi-Square")
#plot(Pred, Style="Covariates", Data=MyData)
#plot(Pred, Style="Density", Rows=1:9)
#plot(Pred, Style="Fitted")
#plot(Pred, Style="Jarque-Bera")
#plot(Pred, Style="Predictive Quantiles")
#plot(Pred, Style="Residual Density")
#plot(Pred, Style="Residuals")
#Levene.Test(Pred)
#Importance(Fit, Model, MyData, Discrep="Chi-Square")

#Fit$Covar is scaled (2.38^2/d) and submitted to LaplacesDemon as Covar.
#Fit$Summary[,1] is submitted to LaplacesDemon as Initial.Values.
#End

WAIC Widely Applicable Information Criterion

Description

This function calculates the Widely Applicable Information Criterion (WAIC), also known as the
Widely Available Information Criterion or the Watanable-Akaike, of Watanabe (2010).
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Usage

WAIC(x)

Arguments

x This required argument accepts a N × S matrix of log-likelihood (LL) for N
records and S samples.

Details

WAIC is an extension of the Akaike Information Criterion (AIC) that is more fully Bayesian than
the Deviance Information Criterion (DIC).

Like DIC, WAIC estimates the effective number of parameters to adjust for overfitting. Two ad-
justments have been proposed. pWAIC1 is similar to pD in the original DIC. In contrast, pWAIC2
is calculated with variance more similarly to pV, which Gelman proposed for DIC. Gelman et al.
(2014, p.174) recommends pWAIC2 because its results are closer in practice to the results of leave-
one-out cross-validation (LOO-CV). pWAIC is considered an approximation to the number of un-
constrained and uninformed parameters, where a parameter counts as 1 when estimated without
contraint or any prior information, 0 if fully constrained or all information comes from the prior
distribution, or an intermediate number if both the data and prior are informative, which is usually
the case.

Gelman et al. (2014, p. 174) scale the WAIC of Watanabe (2010) by a factor of 2 so that it is compa-
rable to AIC and DIC. WAIC is then reported as −2(lppd− pWAIC). Gelman et al. (2014) prefer
WAIC to AIC or DIC when feasible, which is less often than AIC or DIC. The LaplacesDemon func-
tion requires the model specification function to return the model-level deviance, which is −2(LL),
where LL is the sum of the record-level log-likelihood. Therefore, if the user desires to calculate
WAIC, then the record-level log-likelihood must be monitored.

Value

The WAIC argument returns a list with four components:

WAIC This is the Widely Applicable Information Criterion (WAIC), which is −2(lppd−
pWAIC).

lppd This is the log pointwise predictive density. For more information, see Gelman
et al. (2014, p. 168).

pWAIC This is the effective number of parameters preferred by Gelman et al. (2014).

pWAIC1 This is the effective number of parameters, is calculated with an alternate method,
and is included here for completeness. It is not used to calculate WAIC in the
WAIC function.

Author(s)

Statisticat, LLC. <software@bayesian-inference.com>
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See Also

LaplacesDemon

Examples

#library(LaplacesDemon)
#N <- 10 #Number of records
#S <- 1000 #Number of samples
#LL <- t(rmvn(S, -70+rnorm(N),
# as.positive.definite(matrix(rnorm(N*N),N,N))))
#WAIC(LL)
### Compare with DIC:
#Dev <- -2*colSums(LL)
#DIC <- list(DIC=mean(Dev) + var(Dev)/2, Dbar=mean(Dev), pV=var(Dev)/2)
#DIC
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