Package ‘LOMAR’

January 20, 2025
Type Package

Title Localization Microscopy Data Analysis
Version 0.5.0
Maintainer Jean-Karim Heriche <heriche@embl.de>

Description Read, register and compare point sets from single molecule localization microscopy.

URL https://git.embl.de/heriche/lomar
Depends R (>= 3.6.0)

Imports Rcpp, FNN, stats, data.table, parallel, doParallel, foreach,
proxy, reshape2, pracma, transport, RANN, ff, dbscan, EBImage,
tools, rhdf5, mclust, methods, abind, alphashape3d

LinkingTo BH (>= 1.78.0-0), Rcpp
Suggests testthat

License GPL-3

Encoding UTF-8

ByteCompile true

RoxygenNote 7.3.1

SystemRequirements C++, gmp, fftw3
NeedsCompilation yes

Author Jean-Karim Heriche [cre, aut] (<https://orcid.org/0000-0001-6867-9425>)
Repository CRAN

Date/Publication 2024-09-26 18:20:03 UTC

Contents

apply_transformationo
ATY2PS o v e e e e e e e e e e e e e e e e
binning L e e e
circle_hough_transform
coloc_index e

https://git.embl.de/heriche/lomar
https://orcid.org/0000-0001-6867-9425

Index

Contents

costWd . . . e e e 7
CPA . . e e 7
CIOP_POINE_SEL. o it e it e e e e e e e e e e e e 9
denoise e e e e e e 9
dist_to_boundary e 10
dist_to_line e 10
downsample e e 11
find_elbow e 11
Gaussian_ Wd 12
get_kernel_matriX L 12
get_persistence_diagrams Lo e e e e e 13
get_shape e 15
get_surface_area e 15
GMM_Wd. . . . e e e e e 16
gradientWd L e e e 16
GIOUP_EVENLS v v vttt et e e e e e e e e e e e e e e 17
ICP o o e e e 18
1dX2rowcol . . . oL L e e e e e e e e 19
IME2PS . . o o o e e e 19
JEMPC L o o e e e 20
local_densities e e e e e e e e e e 22
[oCPrec2CoV . . . o o e e e e e e e 23
LOCS2PS . o o e 24
locs_from_CSV e s e 24
multiple_registration L. e e e 25
POINES2IME o o oo e e e e e e e e e e 26
points_from_roi 27
point_sets_from_locs 27
point_sets_from_tiffs 29
PS2ATY . . . L e e e e e e 30
PSSK . e 30
Q2dr . . e e 31
Q21 . o e 31
restore_coordinates e 32
TOLX o v e e e e e e e e e e e e e e e e 32
TOLY o v e 33
TOLZ . o o e e e e e e e 33
scale_alpha_shape L. 34
shape_features_3d. 34
sliced.Wd e 35
standardize_coordinates e 35
L5 36
WEIMMICZ .« . o o v v v v e e e e e e e e e e e e e e e e e e 36
39

apply_transformation 3

apply_transformation apply_transformation

Description

Apply rotation and translation to a point set

Usage

apply_transformation(X, R, t, s)

Arguments
X a point set as an N x D matrix
R D x D rotation matrix
t 1 x D translation vector
s scaling factor
Value

transformed point set as a N x D matrix

ary2ps ary2ps

Description
Convert a 4d array to a list of 3d point sets. The points are formed by extracting the coordinates of
array values strictly above the given cut-off (default 0).

Usage
ary2ps(ary, bkg = @)

Arguments

ary a 4d array with last dimension indexing instances.

bkg Extract points for array values strictly above this (default = 0)
Value

a list of point sets.

4 binning

binning binning

Description

Binning in 1D, 2D or 3D.

Usage

binning(x, y, nbins, xrange = NULL)

Arguments
X design matrix, dimension n x d with d in 1:3.
y either a response vector of length n or NULL.
nbins vector of length d containing number of bins for each dimension, may be set to
NULL.
xrange range for endpoints of bins for each dimension, either matrix of dimension 2 x
d or NULL. xrange is increased if the cube defined does not contain all design
points.
Details

Copied from package aws which is no longer in CRAN. Original author: Joerg Polzehl (polzehl @ wias-
berlin.de) who adapted code of function binning in package sm.

Value

a list with elements:

* x matrix of coordinates of non-empty bin centers

* x.freq number of observations in nonempty bins

* midpoints.x1 bin centers in dimension 1

* midpoints.x2 bin centers in dimension 2

* midpoints.x3 bin centers in dimension 3

* breaks.x1 break points dimension 1

* breaks.x2 break points dimension 2

* breaks.x3 break points dimension 3

* table.freq number of observations per bin

* means means of y in non-empty bins (if y isn’t NULL)

* devs standard deviations of y in non-empty bins (if y isn’t NULL)

circle_hough_transform 5

circle_hough_transform

Circle Hough transform

Description

Extract coordinates of the centres of circles from a 2D image using the Hough transform

Usage

circle_hough_transform(

pixels,
rmin,

rmax,
threshold,
resolution =

360,

min.separation = rmin/4,

ncpu = 1

Arguments

pixels

rmin
rmax
threshold

resolution

min.separation

ncpu

Value

input data, either a matrix representing a 2D image or a data frame of signal
coordinates with columns X, y. For images, background is expected to be 0 and
signal to have positive values.

minimum search radius.
maximum search radius.
score threshold between O and 1.

number of steps in the circle transform (default: 360). This represents the max-
imum number of votes a point can get.

distance between circle centres below which overlapping circles are considered
the same and merged (default to 0.25*rmin)

number of threads to use to speed up computation (default: 1)

a data frame with columns x, y, r and score

Examples

point.set <- data.frame(x = c(-9.8,-5.2,12.5,2.5,4.5,1.3,-0.2,0.4,9.3,-1.4,0.5,-1.1,-7.7),

y = c(-4.2,1.5,-0.5,12,-3,-7.2,10.9,6.7,-1.3,10,6.7,-6.2,2.9))

circles <- circle_hough_transform(pixels = point.set, rmin = 3, rmax = 6, resolution = 100,

threshold = @.1, ncpu = 1)

6 coloc_index

coloc_index coloc_index

Description

Compute a co-localization index between two sets of points. Adapted from: Willems and MacGillavry,
A coordinate-based co-localization index to quantify and visualize spatial associations in single-
molecule localization microscopy. Sci Rep 12, 4676 (2022). https://doi.org/10.1038/s41598-022-
08746-4

Usage

coloc_index(
P1,
locprecl = NULL,
locprecz1 = NULL,
P2,
locprec2 = NULL,
locprecz2 = NULL

)
Arguments
P1 a point set as matrix or data frame with columns X,y,z.
locpreci (optional) localization precision in x,y for P1
locpreczi (optional) localization precision along z for P1
P2 a point set as matrix or data frame with columns X,y,z.
locprec2 (optional) localization precision in x,y for P2
locprecz?2 (optional) localization precision along z for P2
Details

This can be seen as measuring the similarity between two spatial distributions. Co-clustering in
dense structures can give values above 1.

Localization precision is optional but if used then all locprec parameters must be specified.

Value

a list with two elements:

* vector of co-localization indices for points in P1 relative to P2

* vector of co-localization indices for points in P2 relative to P1

costWd

costWd

costWd

Description

Objective function to minimize when using GMMs

Usage

costWd(Tr, X, Y, CX, CY, wl = NULL, w2 = NULL, S = NULL)

Arguments
Tr Transformation vector as translation vector + rotation (angle in 2d, quaternion
in 3d))
X matrix of means of first GMM (i.e. reference point set)
Y matrix of means of second GMM (i.e. moving point set)
CX array of covariance matrices of first GMM such that X[i,] has covariance matrix
CX[,.i]
CcY array of covariance matrices of second GMM such that Y[i,] has covariance
matrix CY[,,i]
w1 (optional) vector of mixture weights of first GMM.
w2 (optional) vector of mixture weights of second GMM.
S (optional) array of pre-computed sqrtm(sqrtm(CX[,,i]) %*% CY[,,j]1 %*% sqrtm(CX[,,i]))
Value
cost value
cpd cpd
Description

Affine and rigid registration of two point sets using the coherent point drift algorithm. See: Myro-
nenko A., Song X. (2010): "Point-Set Registration: Coherent Point Drift", IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 32, issue 12, pp. 2262-2275.

w =0,

weights = NULL,
scale = FALSE,
maxIter = 100,
subsample = NULL,

tol = 1e-04
)
Arguments
X reference point set, a N x D matrix
Y point set to transform, a M x D matrix,
w noise weight in the range [0, 1)
weights a M x N matrix of point correspondence weights
scale logical (default: FALSE), whether to use scaling
maxIter maximum number of iterations to perform (default: 100)
subsample if set, use this randomly selected fraction of the points
tol tolerance for determining convergence
Value
a list of

* Y: transformed point set,

¢ R: rotation matrix,

* t: translation vector,

* s: scaling factor,

* P: matrix of correspondence probabilities between the two point sets,
* sigma: final variance,

* iter: number of iterations performed,

* converged: boolean, whether the algorithm has converged.

Examples

data.filel <- system.file("test_data"”, "parasaurolophusA.txt"”, package
mustWork = TRUE)

PS1 <- read.csv(data.filel, sep = '\t', header = FALSE)

data.file2 <- system.file("test_data"”, "parasaurolophusB.txt"”, package
mustWork = TRUE)

PS2 <- read.csv(data.file2, sep = '\t', header = FALSE)

transformation <- cpd(PS1, PS2, maxIter = 10, tol = le-3)

"LOMAR"

"LOMAR"

cpd

crop_point_set 9

Not run:

Visualize registration outcome

library(rgl)

plot3d(PS1, col = "blue")

points3d(PS2, col = "green")
points3d(transformation[['Y']], col = "magenta”)

End(Not run)

crop_point_set crop_point_set

Description
Retain points in the set that are within the given distance from the geometric median of the set.
Using the geometric median is more robust than using the centre of mass (i.e. mean).

Usage

crop_point_set(point.set, size, center = NULL)

Arguments
point.set a point set as a matrix with columns x,y,z.
size vector of distances from the target region centre along each axis. Points are
discarded if they are outside the ellipsoid defined by size and centred on the
given position.
center (optional) coordinates of the centre of the target region. If not given, default to
the geometric median of the point set.
Value

point set as a matrix with columns Xx,y,z.

denoise denoise

Description
Point density is estimated using a Gaussian mixture model and points in low density regions are
considered as noise and removed.

Usage

denoise(points, k = 16, prob = 0.3)

10 dist_to_line

Arguments

points a data frame with columns x,y,z.

k integer, number of mixture components for the GMM

prob probability level in the range [0,1] to identify high density regions
Value

a point set

dist_to_boundary dist_to_boundary

Description

Given a point set and an alpha-shape, get the distance of each point to the closest boundary point of
the alpha-shape. Points inside the shape get negative values.

Usage

dist_to_boundary(points, shape)

Arguments

points a data frame with x,y,z columns

shape an object of class ashape3d with a single alpha value
Value

vector of distances (negative values indicate points inside the shape)

dist_to_line dist_to_line

Description

Compute distance between a set of points and a line defined by two points

Usage
dist_to_line(pts, a = NULL, b = NULL)

Arguments
pts a data frame or matrix with 3 columns of coordinates
a vector of coordinates of a point on the line

b a second point on the line

downsample 11

Value

vector of distances

downsample downsample

Description
Weighted downsampling of a point set. If point weights are not provided, they are computed to be
proportional to the local density around each point.

Usage
downsample(point.set, n = NULL, k = NULL, weights = NULL)

Arguments
point.set a point set
n integer, sample size.
k integer, number of nearest neighbours to consider to estimate local density
weights a vector of probability weights
Value
a point set
find_elbow find_elbow
Description

Find elbow in a 2D curve represented by a list of ordered values

Usage

find_elbow(values)

Arguments

values vector of values in decreasing order

Details

This function finds the point with maximum distance from the line between the first and last points.
Adapted from StackOverflow: http://stackoverflow.com/questions/2018178/finding-the-best-trade-
off-point-on-a-curve

12

Value

index and value of the selected point

get_kernel_matrix

Gaussian_Wd Gaussian_Wd

Description

Compute 2-Wasserstein distance between two Gaussian distributions

Usage

Gaussian_Wd(m1, m2, S1, S2, S = NULL)

(optional) matrix of pre-computed sqrtm(sqrtm(S1) %*% S2 %*% sqrtm(S1))

Arguments
m1 mean of first distribution
m2 mean of second distribution
S1 variance of first distribution
S2 variance of second distribution
S

Value

distance value

get_kernel_matrix get_kernel_matrix

Description

Compute kernel/distance matrix between persistence diagrams.

Usage

get_kernel_matrix(

Diag = NULL,

method = c("sWd", "pssk"),
dimensions = NULL,
return.dist = FALSE,

M = NULL,
sigma = NULL,
ncpu = 1,

cluster.type = "PSOCK"

get_persistence_diagrams 13

Arguments
Diag list of persistence diagrams as n X 3 matrices
method which kernel or distance to compute. One of sWd (for sliced Wasserstein kernel)
or pssk (for the persistence scale-space kernel)
dimensions vector of the dimensions of the topological features to consider, if NULL (de-

fault) use all available dimensions

return.dist logical (default: FALSE) for method sWd, whether to return the sliced Wasser-
stein distance matrix instead of the kernel.

M number of slices for the sliced Wasserstein kernel
sigma kernel bandwidth
ncpu number of parallel threads to use for computation

cluster.type type of multicore cluster to use, either PSOCK (default) or FORK

Value

a matrix

Examples

PS <- list(data.frame(x = c(2.4,-6.9,4.6,-0.7,-3.3,-4.9,-3.5,-3.5,4.2,-7),

y = ¢c(5.7,1.9,4.8,3.4,-3,-2.1,7.2,1.8,6.1,-1.6),
z=¢(2.7,-0.1,-0.7,-0.6,0.4,-1.5,-0.6,-0.9,2.2,0.7)),
data.frame(x = c(0,0,3.1,-5.6,-5,-7.4,-0.7,-7.7,-6.7,4,4.2,0.2,5.8,3.9,3.9),
y=c(6.3,-6.1,-3.5,4.6,-4.1,0.3,8.8,-2.3,2.9,3.7,-1.4,-3.9,5.5,-1.2,-6.7),
z=c(-1.5,1.7,-0.4,-1.4,1.8,1.7,-0.9,-1.8,-0.5,1.7,1.3,0.5,-1.4,1.6,-0.1)),
data.frame(x = ¢(-9.8,-5.2,12.5,2.5,4.5,1.3,-0.2,0.4,9.3,-1.4,0.5,-1.1,-7.7),
y = c(-4.2,1.5,-0.5,12,-3,-7.2,10.9,6.7,-1.3,10,6.7,-6.2,2.9),
z=c(3.4,-3.8,-1.4,1.8,3.5,2.5,2.6,-4.8,-3.8,3.9,4.1,-3.6,-4)))

Dgs <- get_persistence_diagrams(point.sets = PS, maxdimension = 1, maxscale =5, ncpu=1)
K <- get_kernel_matrix(Diag = Dgs, method = 'sWd', dimensions = c(0,1), M = 10, sigma = 5)

get_persistence_diagrams
get_persistence_diagrams

Description

Compute persistence diagrams for a list of point sets. By default, compute persistent homology
from the Vietoris-Rips filtration. If use.dtm is TRUE, compute instead the persistent homology of
the sublevel set of the distance to measure evaluated over a grid.

14 get_persistence_diagrams

Usage

get_persistence_diagrams(
point.sets = NULL,
maxdimension = NULL,
maxscale = NULL,
use.dtm = FALSE,
mo = NULL,
grid.by = NULL,
ncpu = 1,
cluster.type = "PSOCK"

Arguments

point.sets list of point sets, each as a data frame with columns x,y,z

maxdimension maximum dimension of the homological features to be computed

maxscale limit of the Vietoris-Rips filtration

use.dtm logical (default: FALSE), whether to use the distance to measure function

mo parameter for the dtm function

grid.by vector of space between points of the grid for the dtm function along each di-
mension

ncpu number of parallel threads to use for computation

cluster.type type of multicore cluster to use, either PSOCK (default) or FORK

Value

a list of persistence diagrams as n x 3 matrices. Each row is a topological feature and the columns
are dimension, birth and death of the feature.

Examples

PS <- list(data.frame(x = c(2.4,-6.9,4.6,-0.7,-3.3,-4.9,-3.5,-3.5,4.2,-7),

y =¢(5.7,1.9,4.8,3.4,-3,-2.1,7. 2 1.8,6.1,-1.6),
z=c¢(2.7,-0.1,-0.7,-0.6,0.4,-1.5,-0.6,-0.9,2.2,0.7)),
data.frame(x = c(0,0,3.1,-5.6,-5,-7.4,-0.7,-7.7,-6.7,4,4.2,0.2,5.8,3.9,3.9),
y=c(6.3,-6.1,-3.5,4.6,-4.1,0.3,8.8,-2.3,2.9,3.7,-1.4,-3.9,5.5,-1.2,-6.7),
z=c¢(-1.5,1.7,-0.4,-1.4,1.8,1.7,-0.9,-1.8,-0.5,1.7,1.3,0.5,-1.4,1.6,-0.1)))
Diags <- get_persistence_diagrams(point.sets = PS, maxdimension = 1, maxscale =5, ncpu = 1)

get_shape 15

get_shape get_shape

Description

Get the the alpha-shape of a point set. If not given, the function automatically determines alpha
using a downsampled point set. As a consequence, alpha and therefore the computed shape can
vary slightly between runs.

Usage

get_shape(points, alpha = NULL)

Arguments
points a data frame with columns x, y, z.
alpha (optional) positive number

Value

an alpha-shape object of class ashape3d

get_surface_area get_surface_area

Description

Compute the surface area of an alpha-shape by summing the surfaces of the boundary triangles

Usage

get_surface_area(as)

Arguments

as an alpha-shape object of class ashape3d

Value

a numeric value

16 gradientWd

GMM_Wd GMM_Wd

Description

Compute 2-Wasserstein distance between two Gaussian mixture models See: Delon J, Desolneux
A. (2019) A Wasserstein-type distance in the space of Gaussian Mixture Models. hal-02178204v2

Usage

GMM_Wd(m1, m2, S1, S2, wl = NULL, w2 = NULL, S = NULL)

Arguments
m1 matrix of means of first GMM
m2 matrix of means of second GMM
S1 array of covariance matrices of first GMM such that m1[i,] has covariance matrix
S1[,.]
S2 array of covariance matrices of second GMM such that m2[i,] has covariance
matrix S2[,,i]
wi (optional) vector of mixture weights of first GMM.
w2 (optional) vector of mixture weights of second GMM.
S (optional) array of pre-computed sqrtm(sqrtm(S1[,,i]) %*% S2[,,j] %* % sqrtm(S1[,,i]))
Value

list of distance value d and optimal transport matrix ot

gradientWd gradientWd

Description

Gradient of the objective function with respect to rotation and translation parameters

Usage

gradientWd(Tr, X, Y, CX, CY, wl = NULL, w2 = NULL, S = NULL)

group_events 17

Arguments
Tr Transformation vector as translation vector + rotation (angle in 2d, quaternion
in 3d))
matrix of means of first GMM (i.e. reference point set)
matrix of means of second GMM (i.e. moving point set)
CX array of covariance matrices of first GMM such that X[i,] has covariance matrix
Cl1L.1]
CcY array of covariance matrices of second GMM such that Y[i,] has covariance
matrix C2[,,i]
wl (optional) vector of mixture weights of first GMM.
w2 (optional) vector of mixture weights of second GMM.
S (optional) array of pre-computed sqrtm(sqrtm(CX[,,i]) %*% CY[,,j] %*% sqrtm(CXI,,i]))
Value
gradient vector
group_events group_events

Description

Localisation events are grouped by recursively clustering mutual nearest neighbours. Neighbours
are determined using the Mahalanobis distance to account for anisotropy in the localisation pre-
cision. Since the Mahalanobis distance has approximately a chi-squared distribution, a distance
threshold can be chosen from a chi-squared table where the number of degrees of freedom is the
dimension and alpha can be seen as the probability of missing a localization event generated from
the same fluorophore as the event under consideration.

Usage

group_events(points, locprec = NULL, locprecz = NULL, p = 0.1)

Arguments
points a data frame with columns x,y,z.
locprec localization precision in X,y
locprecz localization precision along z, defaults to locprec
p confidence level, see description. Defaults to 0.1
Value

a list with two elements:

* points: a point set as data frame with columns Xx,y,z

* membership: a vector of integers indicating the cluster to which each input point is allocated.

18

icp

icp

icp

Description

Rigid registration of two point sets using the iterative closest point algorithm.

Usage

icp(
X,
Y,

weights = NULL,
iterations = 100,
subsample = NULL,
scale = FALSE,
tol = 0.001

Arguments

X
Y

weights

iterations
subsample

scale

tol

Value

reference point set, a N x D matrix

point set to transform, a M x D matrix,

mented.

tolerance for determining convergence

a list of

* Y: transformed point set, a M x D matrix,

R: rotation matrix,
t: translation vector,

s: scaling factor,

iter: number of iterations performed,

conv: boolean, whether the algorithm has converged.

number of iterations to perform (default: 100)
if set, use this randomly selected fraction of the points

logical (default: FALSE), whether to use scaling.

vector of length nrow(Y) containing weights for each point in Y. Not imple-

idx2rowcol 19

Examples

data.filel <- system.file("test_data”, "parasaurolophusA.txt”, package = "LOMAR",
mustWork = TRUE)

PS1 <- read.csv(data.filel, sep = '\t', header = FALSE)

data.file2 <- system.file("test_data"”, "parasaurolophusB.txt", package = "LOMAR",
mustWork = TRUE)

PS2 <- read.csv(data.file2, sep = '\t', header = FALSE)

transformation <- icp(PS1, PS2, iterations = 10, tol = 1e-3)

Not run:

Visualize registration outcome

library(rgl)

plot3d(PS1, col = "blue")

points3d(PS2, col = "green")

points3d(transformation[['Y']], col = "magenta")

End(Not run)

idx2rowcol idx2rowcol

Description

Convert indices into a dist object to row, column coordinates of the corresponding distance matrix

Usage

idx2rowcol (idx, n)

Arguments

idx vector of indices

n size of the n x n distance matrix
Value

a matrix with two columns nr and nc

img2ps img2ps

Description

Read an image into a point set. The points are formed by extracting the coordinates of voxel values
strictly above the given cut-off (default 0).

20

Usage

jrmpc

img2ps(img = NULL, bkg = @, crop.size = NULL)

Arguments
img
bkg

crop.size

Value

either a 2d or 3d array or a path to a file containing a 2d or 3d image.
Extract points for values strictly above this (default = 0).

vector (of length 2 or 3) containing the desired reduced size of the images along
each dimension, e.g. ¢(30,30,30).

a point set as matrix with columns Xx,y[,z]

Examples

img.file <- system.file("test_data/img”, "alienl1_3d.tif"”, package = "LOMAR",

mustWork = TRUE)

point_set <- img2ps(img = img.file, bkg = @)

jrmpc

jrmpc

Description

Joint registration of multiple point sets See: G. D. Evangelidis, D. Kounades-Bastian, R. Horaud,
andE. Z. Psarakis. A generative model for the joint registration of multiple point sets. In European
Conference on Computer Vision, pages 109-122. Springer, 2014

Usage
jrmpe(
V y
C = NULL,
K = NULL,
g = NULL,

initialPriors = NULL,
updatePriors = TRUE,
maxIter = 100,
fixedVarIlter = 0,

tol = 0.01,

initializeBy = NULL,
model.selection = FALSE,

model.selection.threshold = NULL,

rotation.only = FALSE

jrmpc

Arguments

\
C

initialPriors

updatePriors
maxIter
fixedVarIter
tol

initializeBy

model.selection

21

list of point sets as N x D matrices

(optional) list of arrays of covariance matrices with C[[j]][,,i] the covariance
matrix associated with point i of set j.

(optional) number of components of the GMM, defaults to the average number
of points in a set.

(optional) proportion of noisy points, defaults to 1/K. If set, priors will be ini-
tialized uniformly.

(optional) vector of length K of prior probabilities. Defaults to uniform dis-
tribution using g. If set, will determine g so it is an error to specify g with
initialPriors.

logical, whether to update priors at each iteration (default: TRUE).
maximum number of iterations to perform (default: 100).

number of iterations before starting variance updates

tolerance for determining convergence (default: 1e-2).

(optional) how to initialize the GMM means. Defaults to distributing the means
on the surface of the sphere enclosing all (centred) sets. Currently supported
values are:

* ’sampling’: sample from the data,

* a K x D matrix of points

whether to perform model selection (default: FALSE). If set to TRUE, GMM
components with no support in the data are deleted.

model.selection. threshold

rotation.only

Value

a list of

value below which we consider a GMM component has no support, set to 1/K if
not explicitly given

if set to TRUE, no translation is performed (default: FALSE)

* Y: list of transformed point sets as N x d matrices,

R: list of d x d rotation matrices, one for each point set in V,

« t: list of translation vectors, one for each point set in V,
¢ M: centres of the GMM,
e S: variances of the GMM.

* a: list of posterior probabilities as N x K matrices

e jter: number of iterations

* conv: error value used to evaluate convergence relative to tol

* 7: support scores of the GMM components

22 local_densities

Examples

X <- read.csv(system.file("test_data", "parasaurolophusA.txt”, package="LOMAR",
mustWork = TRUE), sep = "\t")
Y <- read.csv(system.file("test_data”, "parasaurolophusB.txt", package="LOMAR",
mustWork = TRUE), sep = "\t")

Z <- read.csv(system.file("test_data"”, "parasaurolophusC.txt", package="LOMAR",
mustWork = TRUE), sep = "\t")

PS <- list(X, Y, Z)

C <- list(Q)

for(i in 1:3) {

cv <- diag(@.1, ncol(PS[[il])) + jitter(@.01, amount = 0.01)

cv <- replicate(nrow(PS[[il]), cv)

CLLil] <= cv

3

transformation <- jrmpc(PS, C = C, K = 100, maxIter = 20, tol = 9.01,
model.selection = TRUE)

Not run:

Visualize registration outcome
library(rgl)

colours <- c("blue”, "green”, "magenta")

Yt <- transformation[['Y']]

plot3d(Yt[[1]1], col = colours[1])

for(i in 2:1length(Yt)) {

points3d(Yt[[i]], col = colours[i])

3

Visualize GMM centres highlighting those with high variance

GMM <- as.data.frame(cbind(transformation[['M']], transformation[['S']1]))

colnames(GMM) <- c("x", "y", "z", "S")

colours <- rep("blue”, nrow(GMM))

Find high variance components

threshold <- quantile(transformation[['S']], ©.75)

high.var.idx <- which(transformation[['S']]>threshold)

colourslhigh.var.idx] <- "red”

plot3d(GMM[, c("x", "y", "z")]1, col = colours, type = 's', size = 2, box = FALSE, xlab ="",
ylab = '', zlab = '', xlim = ¢(-0.15,0.15), ylim = c(-0.15, 0.15),
zlim = c(-0.15, 0.15))

End(Not run)

local_densities local_densities

Description

Compute local point density at each point of a point set

Usage

local_densities(X, k = NULL)

locprec2cov 23

Arguments

X point set, a N x D matrix

k (optional) number of nearest neighbors used (defaults to all points).
Details

Local density is computed as in Ning X, Li F, Tian G, Wang Y (2018) An efficient outlier removal
method for scattered point cloud data. PLOS ONE 13(8):€0201280. https://doi.org/10.1371/journal.pone.0201280

Value

vector of density value for each point

locprec2cov locprec2cov

Description

Converts localization precision columns to a list of arrays of covariance matrices

Usage

locprec2cov(point.sets, scale = FALSE)

Arguments
point.sets a list of n point sets with locprec columns (locprecz column required for 3D
data)
scale logical, whether to scale the localization precision by the variance of the coor-
dinates
Value

a list of 2x2xn or 3x3xn arrays.

24

locs_tfrom_csv

locs2ps

locs2ps

Description

Cluster localizations into point sets using DBSCAN

Usage

locs2ps(
points,
eps,
minPts,
keep.locprec
keep.channel
cluster.2d =

Arguments

points

eps

minPts
keep.locprec
keep.channel

cluster.2d

Value

= TRUE,
= TRUE,

FALSE

a point set as a data frame of coordinates with columns x,y,z.

DBSCAN parameter, size of the epsilon neighbourhood

DBSCAN parameter, number of minimum points in the eps region

logical (default: TRUE), whether to preserve the localization precision columns
logical (default: TRUE), whether to preserve channel information column

logical (default: FALSE), whether to cluster only using X,y (and ignore z)

a list of matrices with columns x,y,z and eventually locprec[z] and names set to the cluster indices.

locs_from_csv

locs_from_csv

Description

Reads and filters single molecule localization events from a csv file as typically output by the SMAP
software. The main columns of interest are the coordinates (X, y, z), point set membership (site) and
localization precision (locprec and locprecz).

multiple_registration

Usage

locs_from_csv(
file = NULL,
roi = NULL,
channels

frame.filter =

llrel.filter

locprec.filter
locprecz.filter

Arguments

file

roi

channels

frame.filter

llrel.filter

locprec.filter

locprecz.filter

Value

25

NULL,

NULL,

NULL,

o,
0

a csv file with columns x[nm], y[nm], z[nm] and optionally site[numbers], chan-
nel, locprec[nm] and locprecz[nm], other columns are ignored.

region of interest, keep points within the specified volume. Must be a data frame
with columns x,y,z and rows min and max defining a bounding box.

vector of integers indicating which channel(s) of a multicolour experiment to
get data from.

vector of min and max values, filter out points from frames outside the specified
range.

vector of min and max values, filter out points on log-likelihood (for fitted data).

filter out points with locprec value greater than the specified number. Points
with locprec == 0 are also removed.

filter out points with locprecz value greater than the specified number. Points
with locprecz == 0 are also removed.

a data frame with columns x,y,z, optionally site, locprec and locprecz.

Examples

data.file <- system.file("test_data”, "simulated_NUP107_data.csv"”, package = "LOMAR",

mustWork = TRUE)

locs <- locs_from_csv(file = data.file, locprec.filter = 20)

multiple_registration multiple_registration

Description

Registration of multiple point sets using tree-guided progressive registration followed by iterative

refinement.

26 points2img

Usage

multiple_registration(PS, registration, refine.iter = 20, ...)
Arguments

PS list of point sets

registration pairwise registration method to use
refine.iter Maximum number of refinement iterations (default: 20)

additional arguments to the registration method

Value
a list of

* Y: list of transformed point sets as N x d matrices

points2img points2img

Description

Convert a data frame of point coordinates into an image. Expected photon count at each voxel is
computed as in: F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-
emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express 2(5), 1377-1393
(2011).

Usage

points2img(points, voxel.size, method, channels = NULL, ncpu = 1)

Arguments
points a point set as a data frame of coordinates with columns x,y,z.
voxel.size a numeric vector of length 3 indicating the size of the voxel along X,y and z in
the same unit as the coordinates (e.g. nm)
method how to calculate voxel values. Available methods are:
* ’histogram’: value is the number of points (i.e. emitters) in the voxel
* ’photon’: value is the expected number of photons from the points in the
voxel. Input data frame must have columns locprec, locprecz and phot[on].
channels vector of channels to consider, must be values present in the input data frame
channel column
ncpu number of threads to use to speed up computation (default: 1)
Value

an array of dimensions x,y,z and channels if applicable

points_from_roi 27

Examples
point.set <- data.frame(x = c(-9.8,-5.2,12.5,2.5,4.5,1.3,-0.2,0.4,9.3,-1.4,0.5,-1.1,-7.7),
y = c(-4.2,1.5,-0.5,12,-3,-7.2,10.9,6.7,-1.3,10,6.7,-6.2,2.9),
z =c(3.4,-3.8,-1.4,1.8,3.5,2.5,2.6,-4.8,-3.8,3.9,4.1,-3.6,-4))
img <- points2img(point.set, voxel.size = c¢(2,2,2), method = 'histogram')

points_from_roi points_from_roi

Description
Extract points within given bounding box. Points are translated so that (0,0,0) correspond to the
bounding box corner defined by roi['min’,c(’x’,’y’,z’)]

Usage

points_from_roi(points, roi)

Arguments

points a point set as a data frame of coordinates with columns x,y,z.

roi a data frame with columns x,y,z and rows min and max defining a bounding box
Value

a data frame with same columns as input

point_sets_from_locs point_sets_from_locs

Description

Extracts list of point sets from a data frame of single molecule localization coordinates. By default,
uses point set membership indicated in the site column.

Usage

point_sets_from_locs(
locs = NULL,
channels = NULL,
min.cardinality
max.cardinality
crop.size = NULL,
keep.locprec = TRUE,
sample.size = NULL,

NULL,
NULL,

28 point_sets_from_locs

ignore.site = FALSE,
cluster.points = FALSE,

eps = NULL,
minPts = NULL
)
Arguments
locs a data frame with columns x[nm], y[nm], z[nm] and optionally site[numbers],
locprec[nm] and locprecz[nm], other columns are ignored.
channels vector of integers indicating which channel(s) of a multicolour experiment to

extract point sets from.

min.cardinality
filter out point sets with less than the specified number of points.

max.cardinality
filter out point sets with more than the specified number of points.

crop.size remove points from a set if they are further away than the specified distance
from the center of the set.

keep.locprec logical (default:TRUE). Whether to keep locprec information for each point.

sample.size returns this number of randomly selected point sets. Selects the point sets after
applying eventual filtering.

ignore.site logical (default: FALSE), set to TRUE if point set membership is not present or
needed.

cluster.points logical (default: FALSE), whether to cluster the points using DBSCAN (only if
ignore.site is also TRUE).

eps DBSCAN parameter, size of the epsilon neighbourhood
minPts DBSCAN parameter, number of minimum points in the eps region
Value

a list of matrices with columns x,y,z, optionally locprec and name set to the value of the site column
(if applicable).

Examples

data.file <- system.file("test_data”, "simulated_NUP107_data.csv”, package = "LOMAR",
mustWork = TRUE)

locs <- locs_from_csv(file = data.file, locprec.filter = 20)

point.sets <- point_sets_from_locs(locs, keep.locprec = TRUE, min.cardinality = 15)

point_sets_from_tiffs 29

point_sets_from_tiffs point_sets_from_tiffs

Description

Read in single molecule localization events from a series of 3D images in TIFF files where each
image file represents a point set.

Usage

point_sets_from_tiffs(
image_dir = NULL,
pattern = NULL,
image.size = NULL,
sample.size = NULL,
sample.first = FALSE,
min.cardinality = NULL,
max.cardinality = NULL,
crop.size = NULL

)
Arguments
image_dir path to a directory containing the TIFF files.
pattern regular expression, select images whose file path matches the given pattern.
image.size vector of length 3 containing the size of the images along each dimension, e.g.
c(40,40,40).
sample.size if set, selects this number of images at random. A sample size larger than the

available number of samples produces a warning and is ignored.

sample.first if TRUE, samples are selected before applying any eventual filtering. This is
more efficient as it avoids reading all data files.

min.cardinality
if set, filter out all point sets with less than the specified number of points.

max.cardinality
if set, filter out all point sets with more than the specified number of points.

crop.size vector of length 3 containing the desired reduced size of the images along each
dimension, e.g. ¢(30,30,30).
Value

a list with two elements:

* point.sets: a list of point sets as matrices with columns x,y,z and

* file.names: a vector of paths to the TIFF files from which the point sets were extracted.

30 pssk

Examples

data.dir <- system.file("test_data/img"”, package = "LOMAR", mustWork = TRUE)
point_sets <- point_sets_from_tiffs(image_dir = data.dir, pattern = "\\.tiff?$",
image.size = c(64, 64, 4), min.cardinality = 10)

ps2ary ps2ary

Description

Convert a list of 3d point sets to a 4d array. Also works for 2d point sets to 3d array conversion.

Usage

ps2ary(point.sets, dims)

Arguments

point.sets a list of point sets.

dims vector of dimensions of the axes (x,y in 2d, x,y,z in 3d).

Value

a 3d or 4d array.

pssk pssk

Description

Compute the persistence scale-space kernel on persistence diagrams. Reference: Jan Reininghaus,
Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for topological ma-
chine learning. In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 4741-4748, 2015.

Usage
pssk(Dgl = NULL, Dg2 = NULL, sigma = NULL, dimensions = NULL)

Arguments
Dg1 a persistence diagram as a nl x 3 matrix where each row is a topological feature
and the columns are dimension, birth and death of the feature.
Dg2 another persistence diagram as a n2 x 3 matrix
sigma kernel bandwidth
dimensions vector of the dimensions of the topological features to consider, if NULL (de-

fault) use all available dimensions

q2dr 31

Value

kernel value

Examples

D1 <- matrix(c(o,0,0,1,1,0,0,0,1.5, 3.5,2,2.5,3, 4, 6), ncol = 3, byrow = FALSE)
D2 <- matrix(c(9,0,1,1,0, @, 1.2, 2, 1.4, 3.2,4.6,6.5), ncol 3, byrow = FALSE)
K <- pssk(Dgl = D1, Dg2 = D2, sigma = 1)

g2dr Get derivative of 3D rotation matrix from quaternion

Description

Get derivative of 3D rotation matrix from quaternion

Usage

g2dr(q)

Arguments

q quaternion

Value

derivative of rotation matrix

q2r Convert quaternion to rotation matrix
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

Description

Convert quaternion to rotation matrix http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

Usage

gz2r(q)

Arguments

q quaternion

Value

rotation matrix

32 rotx

restore_coordinates restore_coordinates

Description

Restore coordinates from mean 0 and standard deviation 1 to their original distribution

Usage

restore_coordinates(X, mu, sigma)

Arguments
X standardized point set as N x D matrix
mu 1 x D vector of means
sigma standard deviation

Value

N X D matrix of unstandardized coordinates

rotx rotx

Description

Create a rotation matrix representing a rotation of theta radians about the x-axis

Usage

rotx(theta)

Arguments

theta angle in radians

Value

a 3x3 rotation matrix

roty 33

roty roty

Description

Create a rotation matrix representing a rotation of theta radians about the y-axis

Usage

roty(theta)

Arguments

theta angle in radians

Value

a 3x3 rotation matrix

rotz rotz

Description

Create a rotation matrix representing a rotation of theta radians about the z-axis

Usage

rotz(theta)

Arguments

theta angle in radians

Value

a 3x3 rotation matrix

34 shape_features_3d

scale_alpha_shape scale_alpha_shape

Description
Uniformly scale an alpha-shape. Note that this computes the alpha-shape of the scaled point set
associated with the input alpha-shape.

Usage

scale_alpha_shape(as, s)

Arguments
as an alpha-shape object of class ashape3d
s scaling factor

Value

an object of class ashape3d

shape_features_3d shape_features_3d

Description

Compute shape features of a 3D alpha-shape object

Usage

shape_features_3d(as)

Arguments

as an alpha-shape object of class ashape3d

Details

Features are: - major.axis, minor.axis and least.axis: Lengths of the axes of the fitted ellipsoid -
elongation: from O (line) to 1 (globular) - flatness: from O (flat) to 1 (spherical) - max.feret.diameter:
Maximum Feret diameter - max.inscribed.radius: Radius of the largest inscribed sphere - sphericity:
from O (not spherical) to 1 (perfect sphere) - concavity: fraction of the convex hull volume not in
the object - volume - area: area of the surface of the alpha-shape

Value

a named vector of numeric values or NULL if no non-singular vertices

sliced Wd 35

sliced_Wd sliced_Wd

Description

Compute sliced Wasserstein distance or kernel. Reference: Mathieu Carriere, Marco Cuturi, and
Steve Oudot. Sliced Wasserstein kernel for persistence diagrams. In Proceedings of the 34th In-
ternational Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Re-
search, pages 664-673, 2017.

Usage

sliced_Wd(Dg1, Dg2, M = 10, sigma = 1, dimensions = NULL, return.dist = FALSE)

Arguments
Dg1 a persistence diagram as a nl x 3 matrix where each row is a topological feature
and the columns are dimension, birth and death of the feature.
Dg2 another persistence diagram as a n2 x 3 matrix
M number of slices (default: 10)
sigma kernel bandwidth (default: 1)
dimensions vector of the dimensions of the topological features to consider, if NULL (de-

fault) use all available dimensions

return.dist logical (default: FALSE). Whether to return the kernel or distance value.

Value

kernel or distance value

Examples

D1 <- matrix(c(0,0,0,1,1,0,0,0,1.5, 3.5,2,2.5,3, 4, 6), ncol = 3, byrow = FALSE)
D2 <- matrix(c(0,0,1,1,0, @, 1.2, 2, 1.4, 3.2,4.6,6.5), ncol = 3, byrow = FALSE)
K <- sliced_Wd(Dgl = D1, Dg2 = D2, M = 10, sigma = 1, return.dist = TRUE)

standardize_coordinates
standardize _coordinates

Description

Transform coordinates to have mean 0 and standard deviation 1

36 wgmmreg

Usage

standardize_coordinates(X)

Arguments

X point set as N x D matrix

Value

a list of X: standardized matrix, mu: vector of means, sigma: standard deviation

tr tr

Description

Compute the trace of a matrix

Usage

tr(x)

Arguments

X matrix

Value

trace of the matrix

wgmmreg wgmmreg

Description

Rigid registration of two point sets by minimizing the Wasserstein distance between GMMs

wgmmreg

Usage

wgmmreg (
X,
Y,
CX,
Cy,
wx = NULL,
wy = NULL,
maxIter = 200,
subsample = NULL,

tol = 1e-08

)
Arguments

X reference point set, a N x D matrix

Y point set to transform, a M x D matrix,

CX array of covariance matrices for each point in X

cY array of covariance matrices for each point in Y

WX (optional) vector of mixture weights for X.

wy (optional) vector of mixture weights for Y.

maxIter maximum number of iterations to perform (default: 200)

subsample if set, use this randomly selected fraction of the points

tol tolerance for determining convergence (default: 1e-8)
Value

a list of

* Y: transformed point set,

¢ R: rotation matrix,

e t: translation vector,

¢ ¢: final value of the cost function,

» converged: logical, whether the algorithm converged.

Examples

data.filel <- system.file("test_data"”, "parasaurolophusA.txt”, package = "LOMAR",
mustWork = TRUE)

PS1 <- read.csv(data.filel, sep = '\t', header = FALSE)

data.file2 <- system.file("test_data”, "parasaurolophusB.txt", package = "LOMAR",
mustWork = TRUE)

C1 <- diag(@.1, ncol(PS1)) + jitter(0.01, amount = 0.01)

C1 <- replicate(nrow(PS1),C1)

PS2 <- read.csv(data.file2, sep = '\t', header = FALSE)

C2 <- diag(@.1, ncol(PS2)) + jitter(0.01, amount = 0.01)

38

wgmmreg

C2 <- replicate(nrow(PS2),C2)

transformation <- wgmmreg(PS1, PS2, C1, C2, subsample = 0.1, maxIter = 30, tol = le-4)
Not run:

Visualize registration outcome

library(rgl)

plot3d(PS1, col = "blue")

points3d(PS2, col = "green")

points3d(transformation[['Y']], col = "magenta”)

End(Not run)

Index

apply_transformation, 3 point_sets_from_tiffs, 29
ary2ps, 3 points2img, 26
points_from_roi, 27
binning, 4 ps2ary, 30
pssk, 30
circle_hough_transform, 5
coloc_index, 6 g2dr, 31
costWd, 7 qz2r, 31
cpd, 7
crop_point_set, 9 restore_coordinates, 32
rotx, 32
denoise, 9 roty, 33
dist_to_boundary, 10 rotz, 33
dist_to_line, 10
downsample, 11 scale_alpha_shape, 34
shape_features_3d, 34
find_elbow, 11 sliced_Wd, 35

standardize_coordinates, 35
Gaussian_Wd, 12
get_kernel_matrix, 12 tr, 36
get_persistence_diagrams, 13
get_shape, 15
get_surface_area, 15
GMM_Wd, 16
gradientWd, 16
group_events, 17

wgmmreg, 36

icp, 18
idx2rowcol, 19
img2ps, 19

jrmpc, 20
local_densities, 22
locprec2cov, 23
locs2ps, 24
locs_from_csv, 24

multiple_registration, 25

point_sets_from_locs, 27

39

	apply_transformation
	ary2ps
	binning
	circle_hough_transform
	coloc_index
	costWd
	cpd
	crop_point_set
	denoise
	dist_to_boundary
	dist_to_line
	downsample
	find_elbow
	Gaussian_Wd
	get_kernel_matrix
	get_persistence_diagrams
	get_shape
	get_surface_area
	GMM_Wd
	gradientWd
	group_events
	icp
	idx2rowcol
	img2ps
	jrmpc
	local_densities
	locprec2cov
	locs2ps
	locs_from_csv
	multiple_registration
	points2img
	points_from_roi
	point_sets_from_locs
	point_sets_from_tiffs
	ps2ary
	pssk
	q2dr
	q2r
	restore_coordinates
	rotx
	roty
	rotz
	scale_alpha_shape
	shape_features_3d
	sliced_Wd
	standardize_coordinates
	tr
	wgmmreg
	Index

