| Type: | Package | 
| Title: | Inference for Linear Models with Nuisance Parameters | 
| Version: | 1.1.3 | 
| Date: | 2022-08-11 | 
| Description: | Efficient Frequentist profiling and Bayesian marginalization of parameters for which the conditional likelihood is that of a multivariate linear regression model. Arbitrary inter-observation error correlations are supported, with optimized calculations provided for independent-heteroskedastic and stationary dependence structures. | 
| URL: | https://github.com/mlysy/LMN | 
| BugReports: | https://github.com/mlysy/LMN/issues | 
| License: | GPL-3 | 
| Imports: | Rcpp (≥ 0.12.4.4), SuperGauss, stats | 
| LinkingTo: | Rcpp, RcppEigen | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.2.1 | 
| Suggests: | testthat, numDeriv, mniw, knitr, rmarkdown, bookdown, kableExtra | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | yes | 
| Packaged: | 2022-08-22 15:54:36 UTC; mlysy | 
| Author: | Martin Lysy [aut, cre], Bryan Yates [aut] | 
| Maintainer: | Martin Lysy <mlysy@uwaterloo.ca> | 
| Repository: | CRAN | 
| Date/Publication: | 2022-08-22 16:20:02 UTC | 
Inference for Linear Models with Nuisance Parameters.
Description
Efficient profile likelihood and marginal posteriors when nuisance parameters are those of linear regression models.
Details
Consider a model p(\boldsymbol{Y} \mid \boldsymbol{B}, \boldsymbol{\Sigma}, \boldsymbol{\theta}) of the form
\boldsymbol{Y} \sim \textrm{Matrix-Normal}(\boldsymbol{X}(\boldsymbol{\theta})\boldsymbol{B}, \boldsymbol{V}(\boldsymbol{\theta}), \boldsymbol{\Sigma}),
where \boldsymbol{Y}_{n \times q} is the response matrix, \boldsymbol{X}(\theta)_{n \times p} is a covariate matrix which depends on \boldsymbol{\theta}, \boldsymbol{B}_{p \times q} is the coefficient matrix, \boldsymbol{V}(\boldsymbol{\theta})_{n \times n} and \boldsymbol{\Sigma}_{q \times q} are the between-row and between-column variance matrices, and (suppressing the dependence on \boldsymbol{\theta}) the Matrix-Normal distribution is defined by the multivariate normal distribution
\textrm{vec}(\boldsymbol{Y}) \sim \mathcal{N}(\textrm{vec}(\boldsymbol{X}\boldsymbol{B}), \boldsymbol{\Sigma} \otimes \boldsymbol{V}),
where \textrm{vec}(\boldsymbol{Y}) is a vector of length nq stacking the columns of of \boldsymbol{Y}, and \boldsymbol{\Sigma} \otimes \boldsymbol{V} is the Kronecker product.
The model above is referred to as a Linear Model with Nuisance parameters (LMN) (\boldsymbol{B}, \boldsymbol{\Sigma}), with parameters of interest \boldsymbol{\theta}.  That is, the LMN package provides tools to efficiently conduct inference on \boldsymbol{\theta} first, and subsequently on (\boldsymbol{B}, \boldsymbol{\Sigma}), by Frequentist profile likelihood or Bayesian marginal inference with a Matrix-Normal Inverse-Wishart (MNIW) conjugate prior on (\boldsymbol{B}, \boldsymbol{\Sigma}).
Author(s)
Maintainer: Martin Lysy mlysy@uwaterloo.ca
Authors:
- Bryan Yates 
See Also
Useful links:
- Report bugs at https://github.com/mlysy/LMN/issues 
Convert list of MNIW parameter lists to vectorized format.
Description
Converts a list of return values of multiple calls to lmn_prior() or lmn_post() to a single list of MNIW parameters, which can then serve as vectorized arguments to the functions in mniw.
Usage
list2mniw(x)
Arguments
| x | List of  | 
Value
A list with the following elements:
- Lambda
- The mean matrices as an array of size - p x p x n.
- Omega
- The between-row precision matrices, as an array of size - p x p x .
- Psi
- The between-column scale matrices, as an array of size - q x q x n.
- nu
- The degrees-of-freedom parameters, as a vector of length - n.
Loglikelihood function for LMN models.
Description
Loglikelihood function for LMN models.
Usage
lmn_loglik(Beta, Sigma, suff)
Arguments
| Beta | A  | 
| Sigma | A  | 
| suff | An object of class  | 
Value
Scalar; the value of the loglikelihood.
Examples
# generate data
n <- 50
q <- 3
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- 1 # intercept covariate
V <- 0.5 # scalar variance specification
suff <- lmn_suff(Y, X = X, V = V) # sufficient statistics
# calculate loglikelihood
Beta <- matrix(rnorm(q),1,q)
Sigma <- diag(rexp(q))
lmn_loglik(Beta = Beta, Sigma = Sigma, suff = suff)
Marginal log-posterior for the LMN model.
Description
Marginal log-posterior for the LMN model.
Usage
lmn_marg(suff, prior, post)
Arguments
| suff | An object of class  | 
| prior | A list with elements  | 
| post | A list with elements  | 
Value
The scalar value of the marginal log-posterior.
Examples
# generate data
n <- 50
q <- 2
p <- 3
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- matrix(rnorm(n*p),n,p) # covariate matrix
V <- .5 * exp(-(1:n)/n) # Toeplitz variance specification
suff <- lmn_suff(Y = Y, X = X, V = V, Vtype = "acf") # sufficient statistics
# default noninformative prior pi(Beta, Sigma) ~ |Sigma|^(-(q+1)/2)
prior <- lmn_prior(p = suff$p, q = suff$q)
post <- lmn_post(suff, prior = prior) # posterior MNIW parameters
lmn_marg(suff, prior = prior, post = post)
Parameters of the posterior conditional distribution of an LMN model.
Description
Calculates the parameters of the LMN model's Matrix-Normal Inverse-Wishart (MNIW) conjugate posterior distribution (see Details).
Usage
lmn_post(suff, prior)
Arguments
| suff | An object of class  | 
| prior | A list with elements  | 
Details
The Matrix-Normal Inverse-Wishart (MNIW) distribution (\boldsymbol{B}, \boldsymbol{\Sigma}) \sim \textrm{MNIW}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}, \boldsymbol{\Psi}, \nu) on random matrices \boldsymbol{X}_{p \times q} and symmetric positive-definite \boldsymbol{\Sigma}_{q \times q} is defined as
\begin{array}{rcl}
\boldsymbol{\Sigma} & \sim & \textrm{Inverse-Wishart}(\boldsymbol{\Psi}, \nu) \\
\boldsymbol{B} \mid \boldsymbol{\Sigma} & \sim & \textrm{Matrix-Normal}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}^{-1}, \boldsymbol{\Sigma}),
\end{array}
where the Matrix-Normal distribution is defined in lmn_suff().
The posterior MNIW distribution is required to be a proper distribution, but the prior is not.  For example, prior = NULL corresponds to the noninformative prior
\pi(B, \boldsymbol{\Sigma}) \sim |\boldsymbol{Sigma}|^{-(q+1)/2}.
Value
A list with elements named as in prior specifying the parameters of the posterior MNIW distribution.  Elements Omega = NA and nu = NA specify that parameters Beta = 0 and Sigma = diag(q), respectively, are known and not to be estimated.
Examples
# generate data
n <- 50
q <- 2
p <- 3
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- matrix(rnorm(n*p),n,p) # covariate matrix
V <- .5 * exp(-(1:n)/n) # Toeplitz variance specification
suff <- lmn_suff(Y = Y, X = X, V = V, Vtype = "acf") # sufficient statistics
Conjugate prior specification for LMN models.
Description
The conjugate prior for LMN models is the Matrix-Normal Inverse-Wishart (MNIW) distribution. This convenience function converts a partial MNIW prior specification into a full one.
Usage
lmn_prior(p, q, Lambda, Omega, Psi, nu)
Arguments
| p | Integer specifying row dimension of  | 
| q | Integer specifying the dimension of  | 
| Lambda | Mean parameter for  
 | 
| Omega | Row-wise precision parameter for  
 | 
| Psi | Scale parameter for  
 | 
| nu | Degrees-of-freedom parameter for  | 
Details
The Matrix-Normal Inverse-Wishart (MNIW) distribution (\boldsymbol{B}, \boldsymbol{\Sigma}) \sim \textrm{MNIW}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}, \boldsymbol{\Psi}, \nu) on random matrices \boldsymbol{X}_{p \times q} and symmetric positive-definite \boldsymbol{\Sigma}_{q \times q} is defined as
\begin{array}{rcl}
\boldsymbol{\Sigma} & \sim & \textrm{Inverse-Wishart}(\boldsymbol{\Psi}, \nu) \\
\boldsymbol{B} \mid \boldsymbol{\Sigma} & \sim & \textrm{Matrix-Normal}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}^{-1}, \boldsymbol{\Sigma}),
\end{array}
where the Matrix-Normal distribution is defined in lmn_suff().
Value
A list with elements Lambda, Omega, Psi, nu with the proper dimensions specified above, except possibly Omega = NA or nu = NA (see Details).
Examples
# problem dimensions
p <- 2
q <- 4
# default noninformative prior pi(Beta, Sigma) ~ |Sigma|^(-(q+1)/2)
lmn_prior(p, q)
# pi(Sigma) ~ |Sigma|^(-(q+1)/2)
# Beta | Sigma ~ Matrix-Normal(0, I, Sigma)
lmn_prior(p, q, Lambda = 0, Omega = 1)
# Sigma = diag(q)
# Beta ~ Matrix-Normal(0, I, Sigma = diag(q))
lmn_prior(p, q, Lambda = 0, Omega = 1, nu = NA)
Profile loglikelihood for the LMN model.
Description
Calculate the loglikelihood of the LMN model defined in lmn_suff() at the MLE Beta = Bhat and Sigma = Sigma.hat.
Usage
lmn_prof(suff, noSigma = FALSE)
Arguments
| suff | An object of class  | 
| noSigma | Logical. If  | 
Value
Scalar; the calculated value of the profile loglikelihood.
Examples
# generate data
n <- 50
q <- 2
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- matrix(1,n,1) # covariate matrix
V <- exp(-(1:n)/n) # diagonal variance specification
suff <- lmn_suff(Y, X = X, V = V, Vtype = "diag") # sufficient statistics
# profile loglikelihood
lmn_prof(suff)
# check that it's the same as loglikelihood at MLE
lmn_loglik(Beta = suff$Bhat, Sigma = suff$S/suff$n, suff = suff)
Calculate the sufficient statistics of an LMN model.
Description
Calculate the sufficient statistics of an LMN model.
Usage
lmn_suff(Y, X, V, Vtype, npred = 0)
Arguments
| Y | An  | 
| X | An  
 | 
| V,Vtype | The between-observation variance specification. Currently the following options are supported: 
 For  | 
| npred | A nonnegative integer. If positive, calculates sufficient statistics to make predictions for new responses. See Details. | 
Details
The multi-response normal linear regression model is defined as
\boldsymbol{Y} \sim \textrm{Matrix-Normal}(\boldsymbol{X}\boldsymbol{B}, \boldsymbol{V}, \boldsymbol{\Sigma}),
where \boldsymbol{Y}_{n \times q} is the response matrix, \boldsymbol{X}_{n \times p} is the covariate matrix, \boldsymbol{B}_{p \times q} is the coefficient matrix, \boldsymbol{V}_{n \times n} and \boldsymbol{\Sigma}_{q \times q} are the between-row and between-column variance matrices, and the Matrix-Normal distribution is defined by the multivariate normal distribution
\textrm{vec}(\boldsymbol{Y}) \sim \mathcal{N}(\textrm{vec}(\boldsymbol{X}\boldsymbol{B}), \boldsymbol{\Sigma} \otimes \boldsymbol{V}),
where \textrm{vec}(\boldsymbol{Y}) is a vector of length nq stacking the columns of of \boldsymbol{Y}, and \boldsymbol{\Sigma} \otimes \boldsymbol{V} is the Kronecker product.
The function lmn_suff() returns everything needed to efficiently calculate the likelihood function
\mathcal{L}(\boldsymbol{B}, \boldsymbol{\Sigma} \mid \boldsymbol{Y}, \boldsymbol{X}, \boldsymbol{V}) = p(\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{V}, \boldsymbol{B}, \boldsymbol{\Sigma}).
When npred > 0, define the variables Y_star = rbind(Y, y), X_star = rbind(X, x), and V_star = rbind(cbind(V, w), cbind(t(w), v)).  Then lmn_suff() calculates summary statistics required to estimate the conditional distribution
p(\boldsymbol{y} \mid \boldsymbol{Y}, \boldsymbol{X}_\star, \boldsymbol{V}_\star, \boldsymbol{B}, \boldsymbol{\Sigma}).
The inputs to lmn_suff() in this case are Y = Y, X = X_star, and V = V_star.
Value
An S3 object of type lmn_suff, consisting of a list with elements:
- Bhat
- The - p \times qmatrix- \hat{\boldsymbol{B}} = (\boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{Y}.
- T
- The - p \times pmatrix- \boldsymbol{T} = \boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{X}.
- S
- The - q \times qmatrix- \boldsymbol{S} = (\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{B}})'\boldsymbol{V}^{-1}(\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{B}}).
- ldV
- The scalar log-determinant of - V.
- n,- p,- q
- The problem dimensions, namely - n = nrow(Y),- p = nrow(Beta)(or- p = 0if- X = 0), and- q = ncol(Y).
In addition, when npred > 0 and with \boldsymbol{x}, \boldsymbol{w}, and v defined in Details:
- Ap
- The - npred x qmatrix- \boldsymbol{A}_p = \boldsymbol{w}'\boldsymbol{V}^{-1}\boldsymbol{Y}.
- Xp
- The - npred x pmatrix- \boldsymbol{X}_p = \boldsymbol{x} - \boldsymbol{w}\boldsymbol{V}^{-1}\boldsymbol{X}.
- Vp
- The scalar - V_p = v - \boldsymbol{w}\boldsymbol{V}^{-1}\boldsymbol{w}.
Examples
# Data
n <- 50
q <- 3
Y <- matrix(rnorm(n*q),n,q)
# No intercept, diagonal V input
X <- 0
V <- exp(-(1:n)/n)
lmn_suff(Y, X = X, V = V, Vtype = "diag")
# X = (scaled) Intercept, scalar V input (no need to specify Vtype)
X <- 2
V <- .5
lmn_suff(Y, X = X, V = V)
# X = dense matrix, Toeplitz variance matrix
p <- 2
X <- matrix(rnorm(n*p), n, p)
Tz <- SuperGauss::Toeplitz$new(acf = 0.5*exp(-seq(1:n)/n))
lmn_suff(Y, X = X, V = Tz, Vtype = "acf")