Package 'LMN'

January 20, 2025

Type Package

Title Inference for Linear Models with Nuisance Parameters

Version 1.1.3

Date 2022-08-11

Description Efficient Frequentist profiling and Bayesian marginalization of parameters for which the conditional likelihood is that of a multivariate linear regression model. Arbitrary inter-observation error correlations are supported, with optimized calculations provided for independent-heteroskedastic and stationary dependence structures.

URL https://github.com/mlysy/LMN

BugReports https://github.com/mlysy/LMN/issues

License GPL-3

Imports Rcpp (>= 0.12.4.4), SuperGauss, stats

LinkingTo Rcpp, RcppEigen

Encoding UTF-8

RoxygenNote 7.2.1

Suggests testthat, numDeriv, mniw, knitr, rmarkdown, bookdown, kableExtra

VignetteBuilder knitr

NeedsCompilation yes

Author Martin Lysy [aut, cre], Bryan Yates [aut]

Maintainer Martin Lysy <mlysy@uwaterloo.ca>

Repository CRAN

Date/Publication 2022-08-22 16:20:02 UTC

Contents

LMN-packa	ige												 													2
list2mniw		•	•	•			•		•	•	•	•	 	•				•	•	•	•					3

1_loglik
n_marg 4
n_post
$1_{ m prior}$
n_prof
n_suff
11

Index

LMN-package

Inference for Linear Models with Nuisance Parameters.

Description

Efficient profile likelihood and marginal posteriors when nuisance parameters are those of linear regression models.

Details

Consider a model $p(\mathbf{Y} \mid \mathbf{B}, \mathbf{\Sigma}, \boldsymbol{\theta})$ of the form

 $\boldsymbol{Y} \sim \text{Matrix-Normal}(\boldsymbol{X}(\boldsymbol{\theta})\boldsymbol{B}, \boldsymbol{V}(\boldsymbol{\theta}), \boldsymbol{\Sigma}),$

where $Y_{n\times q}$ is the response matrix, $X(\theta)_{n\times p}$ is a covariate matrix which depends on θ , $B_{p\times q}$ is the coefficient matrix, $V(\theta)_{n\times n}$ and $\Sigma_{q\times q}$ are the between-row and between-column variance matrices, and (suppressing the dependence on θ) the Matrix-Normal distribution is defined by the multivariate normal distribution $vec(Y) \sim \mathcal{N}(vec(XB), \Sigma \otimes V)$, where vec(Y) is a vector of length nq stacking the columns of of Y, and $\Sigma \otimes V$ is the Kronecker product.

The model above is referred to as a Linear Model with Nuisance parameters (LMN) (B, Σ) , with parameters of interest θ . That is, the LMN package provides tools to efficiently conduct inference on θ first, and subsequently on (B, Σ) , by Frequentist profile likelihood or Bayesian marginal inference with a Matrix-Normal Inverse-Wishart (MNIW) conjugate prior on (B, Σ) .

Author(s)

Maintainer: Martin Lysy <mlysy@uwaterloo.ca>

Authors:

· Bryan Yates

See Also

Useful links:

- https://github.com/mlysy/LMN
- Report bugs at https://github.com/mlysy/LMN/issues

list2mniw

Description

Converts a list of return values of multiple calls to lmn_prior() or lmn_post() to a single list of MNIW parameters, which can then serve as vectorized arguments to the functions in **mniw**.

Usage

list2mniw(x)

Arguments

x List of n MNIW parameter lists.

Value

A list with the following elements:

Lambda The mean matrices as an array of size $p \times p \times n$.

Omega The between-row precision matrices, as an array of size $p \times p \times .$

Psi The between-column scale matrices, as an array of size $q \times q \times n$.

nu The degrees-of-freedom parameters, as a vector of length n.

lmn_loglik Loglikelihood function for LMN models.

Description

Loglikelihood function for LMN models.

Usage

lmn_loglik(Beta, Sigma, suff)

Arguments

Beta	A p x q matrix of regression coefficients (see lmn_suff()).
Sigma	A q x q matrix of error variances (see $lmn_suff()$).
suff	An object of class lmn_suff (see lmn_suff()).

Value

Scalar; the value of the loglikelihood.

Examples

```
# generate data
n <- 50
q <- 3
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- 1 # intercept covariate
V <- 0.5 # scalar variance specification
suff <- lmn_suff(Y, X = X, V = V) # sufficient statistics
# calculate loglikelihood
Beta <- matrix(rnorm(q),1,q)
Sigma <- diag(rexp(q))</pre>
```

lmn_loglik(Beta = Beta, Sigma = Sigma, suff = suff)

```
lmn_marg
```

Marginal log-posterior for the LMN model.

Description

Marginal log-posterior for the LMN model.

Usage

lmn_marg(suff, prior, post)

Arguments

suff	An object of class lmn_suff (see lmn_suff()).
prior	A list with elements Lambda, Omega, Psi, nu corresponding to the parameters of the prior MNIW distribution. See lmn_prior().
post	A list with elements Lambda, Omega, Psi, nu corresponding to the parameters of the posterior MNIW distribution. See $lmn_post()$.

Value

The scalar value of the marginal log-posterior.

Examples

generate data n <- 50 q <- 2 p <- 3 Y <- matrix(rnorm(n*q),n,q) # response matrix X <- matrix(rnorm(n*p),n,p) # covariate matrix V <- .5 * exp(-(1:n)/n) # Toeplitz variance specification</pre>

suff <- lmn_suff(Y = Y, X = X, V = V, Vtype = "acf") # sufficient statistics</pre>

4

```
# default noninformative prior pi(Beta, Sigma) ~ |Sigma|^(-(q+1)/2)
prior <- lmn_prior(p = suff$p, q = suff$q)
post <- lmn_post(suff, prior = prior) # posterior MNIW parameters
lmn_marg(suff, prior = prior, post = post)</pre>
```

lmn_post

Parameters of the posterior conditional distribution of an LMN model.

Description

Calculates the parameters of the LMN model's Matrix-Normal Inverse-Wishart (MNIW) conjugate posterior distribution (see **Details**).

Usage

lmn_post(suff, prior)

Arguments

suff	An object of class lmn_suff (see lmn_suff()).
prior	A list with elements Lambda, Omega, Psi, nu as returned by lmn_prior().

Details

The Matrix-Normal Inverse-Wishart (MNIW) distribution $(B, \Sigma) \sim \text{MNIW}(\Lambda, \Omega, \Psi, \nu)$ on random matrices $X_{p \times q}$ and symmetric positive-definite $\Sigma_{q \times q}$ is defined as

 $\begin{array}{lll} \boldsymbol{\Sigma} & \sim & \operatorname{Inverse-Wishart}(\boldsymbol{\Psi}, \boldsymbol{\nu}) \\ \boldsymbol{B} \mid \boldsymbol{\Sigma} & \sim & \operatorname{Matrix-Normal}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}^{-1}, \boldsymbol{\Sigma}), \end{array}$

where the Matrix-Normal distribution is defined in lmn_suff().

The posterior MNIW distribution is required to be a proper distribution, but the prior is not. For example, prior = NULL corresponds to the noninformative prior

$$\pi(B, \mathbf{\Sigma}) \sim |\mathbf{Sigma}|^{-(q+1)/2}$$

Value

A list with elements named as in prior specifying the parameters of the posterior MNIW distribution. Elements Omega = NA and nu = NA specify that parameters Beta = 0 and Sigma = diag(q), respectively, are known and not to be estimated.

Examples

```
# generate data
n <- 50
q <- 2
p <- 3
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- matrix(rnorm(n*p),n,p) # covariate matrix
V <- .5 * exp(-(1:n)/n) # Toeplitz variance specification
suff <- lmn_suff(Y = Y, X = X, V = V, Vtype = "acf") # sufficient statistics</pre>
```

lmn_prior

Conjugate prior specification for LMN models.

Description

The conjugate prior for LMN models is the Matrix-Normal Inverse-Wishart (MNIW) distribution. This convenience function converts a partial MNIW prior specification into a full one.

Usage

lmn_prior(p, q, Lambda, Omega, Psi, nu)

Arguments

р	Integer specifying row dimension of Beta. $p = 0$ corresponds to no Beta in the model, i.e., $X = 0$ in lmn_suff().
q	Integer specifying the dimension of Sigma.
Lambda	Mean parameter for Beta. Either:
	 Ap x q matrix. A scalar, in which case Lambda = matrix(Lambda, p, q). Missing, in which case Lambda = matrix(0, p, q).
Omega	Row-wise precision parameter for Beta. Either:
-	 A p x p matrix. A scalar, in which case Omega = diag(rep(Omega,p)). Missing, in which case Omega = matrix(0, p, p). NA, which signifies that Beta is known, in which case the prior is purely Inverse-Wishart on Sigma (see Details).
Psi	Scale parameter for Sigma. Either:
	 A q x q matrix. A scalar, in which case Psi = diag(rep(Psi,q)). Missing, in which case Psi = matrix(0, q, q).
nu	Degrees-of-freedom parameter for Sigma. Either a scalar, missing (defaults to $nu = 0$), or NA, which signifies that Sigma = diag(q) is known, in which case the prior is purely Matrix-Normal on Beta (see Details).

6

lmn_prof

Details

The Matrix-Normal Inverse-Wishart (MNIW) distribution $(B, \Sigma) \sim \text{MNIW}(\Lambda, \Omega, \Psi, \nu)$ on random matrices $X_{p \times q}$ and symmetric positive-definite $\Sigma_{q \times q}$ is defined as

 $\begin{array}{lll} \boldsymbol{\Sigma} & \sim & \operatorname{Inverse-Wishart}(\boldsymbol{\Psi}, \boldsymbol{\nu}) \\ \boldsymbol{B} \mid \boldsymbol{\Sigma} & \sim & \operatorname{Matrix-Normal}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}^{-1}, \boldsymbol{\Sigma}), \end{array}$

where the Matrix-Normal distribution is defined in lmn_suff().

Value

A list with elements Lambda, Omega, Psi, nu with the proper dimensions specified above, except possibly Omega = NA or nu = NA (see **Details**).

Examples

```
# problem dimensions
p <- 2
q <- 4
# default noninformative prior pi(Beta, Sigma) ~ |Sigma|^(-(q+1)/2)
lmn_prior(p, q)
# pi(Sigma) ~ |Sigma|^(-(q+1)/2)
# Beta | Sigma ~ Matrix-Normal(0, I, Sigma)
lmn_prior(p, q, Lambda = 0, Omega = 1)
# Sigma = diag(q)
# Beta ~ Matrix-Normal(0, I, Sigma = diag(q))
lmn_prior(p, q, Lambda = 0, Omega = 1, nu = NA)</pre>
```

lmn_prof

Profile loglikelihood for the LMN model.

Description

Calculate the loglikelihood of the LMN model defined in lmn_suff() at the MLE Beta = Bhat and Sigma = Sigma.hat.

Usage

lmn_prof(suff, noSigma = FALSE)

Arguments

suff	An object of class lmn_suff (see lmn_suff()).
noSigma	Logical. If TRUE assumes that Sigma = diag(ncol(Y)) is known and therefore not estimated.

Value

Scalar; the calculated value of the profile loglikelihood.

Examples

```
# generate data
n <- 50
q <- 2
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- matrix(1,n,1) # covariate matrix
V <- exp(-(1:n)/n) # diagonal variance specification
suff <- lmn_suff(Y, X = X, V = V, Vtype = "diag") # sufficient statistics
# profile loglikelihood
lmn_prof(suff)
# check that it's the same as loglikelihood at MLE
lmn_loglik(Beta = suff$Bhat, Sigma = suff$S/suff$n, suff = suff)
```

```
lmn_suff
```

Calculate the sufficient statistics of an LMN model.

Description

Calculate the sufficient statistics of an LMN model.

Usage

```
lmn_suff(Y, X, V, Vtype, npred = 0)
```

Arguments

Υ	An n x q matrix of responses.
Х	An N \times p matrix of covariates, where N = n + npred (see Details). May also be passed as:
	 A scalar, in which case the one-column covariate matrix is X = X * matrix(1, N, 1)X = 0, in which case the mean of Y is known to be zero, i.e., no regression coefficients are estimated.
V, Vtype	The between-observation variance specification. Currently the following op- tions are supported:
	• Vtype = "full": V is an N x N symmetric positive-definite matrix.
	 Vtype = "diag": V is a vector of length N such that V = diag(V).
	 Vtype = "scalar": V is a scalar such that V = V * diag(N).
	• Vtype = "acf": V is either a vector of length N or an object of class SuperGauss::Toeplitz, such that V = toeplitz(V).

For V	specified as a	matrix or	scalar, Vty	pe is deduced	automatically	and need
not be	e specified.					

npred A nonnegative integer. If positive, calculates sufficient statistics to make predictions for new responses. See **Details**.

Details

The multi-response normal linear regression model is defined as

 $\boldsymbol{Y} \sim \text{Matrix-Normal}(\boldsymbol{X}\boldsymbol{B}, \boldsymbol{V}, \boldsymbol{\Sigma}),$

where $Y_{n \times q}$ is the response matrix, $X_{n \times p}$ is the covariate matrix, $B_{p \times q}$ is the coefficient matrix, $V_{n \times n}$ and $\Sigma_{q \times q}$ are the between-row and between-column variance matrices, and the Matrix-Normal distribution is defined by the multivariate normal distribution $\operatorname{vec}(Y) \sim \mathcal{N}(\operatorname{vec}(XB), \Sigma \otimes V)$, where $\operatorname{vec}(Y)$ is a vector of length nq stacking the columns of of Y, and $\Sigma \otimes V$ is the Kronecker product.

The function lmn_suff() returns everything needed to efficiently calculate the likelihood function

$$\mathcal{L}(\boldsymbol{B}, \boldsymbol{\Sigma} \mid \boldsymbol{Y}, \boldsymbol{X}, \boldsymbol{V}) = p(\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{V}, \boldsymbol{B}, \boldsymbol{\Sigma}).$$

When npred > 0, define the variables $Y_star = rbind(Y, y)$, $X_star = rbind(X, x)$, and $V_star = rbind(cbind(V, w)$, cbind(t(w), v)). Then lmn_suff() calculates summary statistics required to estimate the conditional distribution

$$p(\boldsymbol{y} \mid \boldsymbol{Y}, \boldsymbol{X}_{\star}, \boldsymbol{V}_{\star}, \boldsymbol{B}, \boldsymbol{\Sigma}).$$

The inputs to lmn_suff() in this case are Y = Y, X = X_star, and V = V_star.

Value

An S3 object of type lmn_suff, consisting of a list with elements:

Bhat The
$$p \times q$$
 matrix $\hat{B} = (X'V^{-1}X)^{-1}X'V^{-1}Y$.

- T The $p \times p$ matrix $T = X'V^{-1}X$.
- S The $q \times q$ matrix $S = (Y X\hat{B})'V^{-1}(Y X\hat{B})$.
- 1dV The scalar log-determinant of V.
- n, p, q The problem dimensions, namely n = nrow(Y), p = nrow(Beta) (or p = 0 if X = 0), and q = ncol(Y).

In addition, when npred > 0 and with x, w, and v defined in **Details**:

- Ap The npred x q matrix $A_p = w'V^{-1}Y$.
- Xp The npred x p matrix $\boldsymbol{X}_p = \boldsymbol{x} \boldsymbol{w} \boldsymbol{V}^{-1} \boldsymbol{X}.$
- Vp The scalar $V_p = v \boldsymbol{w} \boldsymbol{V}^{-1} \boldsymbol{w}$.

Examples

```
# Data
n <- 50
q <- 3
Y <- matrix(rnorm(n*q),n,q)</pre>
# No intercept, diagonal V input
X <- 0
V <- exp(-(1:n)/n)
lmn_suff(Y, X = X, V = V, Vtype = "diag")
# X = (scaled) Intercept, scalar V input (no need to specify Vtype)
X <- 2
V <- .5
lmn_suff(Y, X = X, V = V)
# X = dense matrix, Toeplitz variance matrix
p <- 2
X <- matrix(rnorm(n*p), n, p)</pre>
Tz <- SuperGauss::Toeplitz$new(acf = 0.5*exp(-seq(1:n)/n))</pre>
lmn_suff(Y, X = X, V = Tz, Vtype = "acf")
```

10

Index

list2mniw, 3 LMN (LMN-package), 2 LMN-package, 2 lmn_loglik, 3 lmn_marg, 4 lmn_post, 5 lmn_post(), 3, 4 lmn_prior, 6 lmn_prior(), 3-5 lmn_prof, 7 lmn_suff, 8 lmn_suff(), 3-7

SuperGauss::Toeplitz,8