Package 'LCMCR'

January 20, 2025

Type Package
Title Bayesian Non-Parametric Latent-Class Capture-Recapture
Version 0.4.14
Date 2023-12-13
Author Daniel Manrique-Vallier
Description Bayesian population size estimation using non parametric latent-class models.
Maintainer Daniel Manrique-Vallier <dmanriqu@indiana.edu></dmanriqu@indiana.edu>
License GPL (>= 2)
Depends R (>= 3.5.1)
Imports methods
Collate ArrayUtils.R MCMCenv_refClass.R CR_Support.R Lcm_CR_fn.R
SystemRequirements Gnu Scientific Library version >= 2.5
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-12-13 22:10:02 UTC

Contents

LCMCR-package	2
kosovo_aggregate	3
lcmCR	4
lcmCR_PostSampl	6
lcm_CR_Basic-class	7
lcm_CR_Basic_generator	8
MCMCenviron-class	9

11

Index

LCMCR-package

Description

This package implements a fully Bayesian multiple-recapture method for estimating the unknown size of a population using non-parametric latent class models. This is an implementation of the method described in Manrique-Vallier (2016). The estimation algorithm is based on Markov Chain Monte Carlo sampling.

Details

Package:	LCMCR
Type:	Package
Version:	0.4.14
Date:	2023-12-13
License:	GPL >= 2

Author(s)

Daniel Manrique-Vallier <dmanriqu@indiana.edu>

References

Manrique-Vallier, D. (2016) "Bayesian Population Size Estimation Using Dirichlet Process Mixtures", Biometrics.

Examples

library('LCMCR')

###Using Kosovo data.###
data(kosovo_aggregate)

#Posterior quantiles#

```
quantile(N, c(0.025, 0.5, 0.975))
###Example 2: Capture-Recapture estimation using the lcm_CR_Basic object directly###
#Create and initialize an LCMCR object for MCMC sampling#
sampler <- lcmCR(captures = kosovo_aggregate, tabular = FALSE, in_list_label = '1',</pre>
                 not_in_list_label = '0', K = 10, a_alpha = 0.25, b_alpha = 0.25,
                 seed = 'auto', buffer_size = 1000, thinning = 100)
#Run 10000 iterations as burn-in
sampler$Update(10000, output = FALSE)
#List all parameters from the model
sampler$Get_Param_List()
#Set parameter 'n0' for tracing
sampler$Set_Trace('n0')
#List currently traced parameters.
sampler$Get_Trace_List()
#Activate tracing
sampler$Activate_Tracing()
#Run the sampler 100000 times
sampler$Update(100000, output = FALSE)
#Get the 1000 samples from the posterior distribution of N
N <- sampler$Get_Trace('n0') + sampler$n</pre>
#Plot the trace of N
plot(N, type = '1')
#Compute posterior quantiles
quantile(N, c(0.025, 0.5, 0.975))
## End(Not run)
```

kosovo_aggregate Killings in the Kosovo war from March 20 to June 22, 1999.

Description

Capture pattern data for J = 4 independently collected lists that jointly document n = 4400 observed killings in the Kosovo war betwen March 20 to June 22, 1999.

Usage

```
data("kosovo_aggregate")
```

Format

A data frame with 4400 observations on the following 4 variables.

EXH a factor with levels 0 1 $\,$

ABA a factor with levels 0 1 $\,$

OSCE a factor with levels 0 1

HRW a factor with levels 0 1 $\,$

Details

This data set was analyzed by Ball et al. (2002).

References

Ball, P., Betts, W., Scheuren, F., Dudukovic, J., and Asher, J. (2002), "Killings and Refugee Flow in Kosovo, MarchJune, 1999," Report to ICTY.

Examples

data(kosovo_aggregate)

lcmCR

Bayesian Nonparametric Latent Class Capture-Recapture

Description

Create and initialize an object of class lcm_CR_Basic.

Usage

```
lcmCR(captures, tabular = FALSE, in_list_label = "1", not_in_list_label = "0",
K = 5, a_alpha = 0.25, b_alpha = 0.25, buffer_size = 10000, thinning = 10,
seed = "auto", verbose = TRUE)
```

Arguments

captures	input dataset. A data frame with the multiple-recapture data. See 'Details' for input formats.	
tabular	a logical value indicating whether or not the data is tabulated. See 'Details'.	
in_list_label	factor label that indicates that individual is in list (e.g. 'Yes')	
not_in_list_label		
	factor label that indicates that individual is in not list (e.g. 'No')	
К	maximum number of latent classes. Indicates the truncation level of the stick- breaking process.	
a_alpha	shape parameter of the prior distribution of concentration parameter of the stick- breaking process.	

4

lcmCR

b_alpha	inverse scale parameter of the prior distribution of concentration parameter of the stick-breaking process.
buffer_size	size of the tracing buffer.
thinning	thinning interval for the tracing buffer
seed	integer seed of the internal RNG.
verbose	Generate progress messages?

Details

Input data must be provided as a data frame. The first J columns are two-level factors representing the multiple-recapture lists. Arguments in_list_label and not_in_list_label indicate the labels that represent inclusion and exclusion from the lists. This function supports two input formats:

- When tabular=FALSE each row represents a single individual's capture history. The number of rows must match the size of the observed population. Rows indicating no capture in all list simultaneously are illegal.
- When tabular=TRUE each row represents a unique capture pattern. This format requires an additional numeric column at the right, called "Freq", indicating the count corresponding to such pattern.

Value

An object of class lcm_CR_Basic initialized and ready to use.

Author(s)

Daniel Manrique-Vallier

See Also

lcm_CR_Basic, lcm_CR_Basic_generator

Examples

```
require('LCMCR')
data(kosovo_aggregate)
sampler <- lcmCR(captures = kosovo_aggregate, tabular = FALSE, in_list_label = '1',
    not_in_list_label = '0', K = 10, a_alpha = 0.25, b_alpha = 0.25,
    seed = 'auto', buffer_size = 10000, thinning = 100)
sampler
N <- lcmCR_PostSampl(sampler, burnin = 10000, samples = 1000, thinning = 100, output = FALSE)
quantile(N, c(0.025, 0.5, 0.975))</pre>
```

lcmCR_PostSampl

Description

Convenience function for generate samples from the posterior distribution of the population size using an initialized lcm_CR_Basic object.

Usage

Arguments

object	an initialized lcm_CR_Basic object.
burnin	number of burn in iterations.
samples	Number of samples to be generated. Note that this is not the same as the number of iterations for the sampler. Samples are saved one every thinning iterations.
thinning	subsampling interval. Samples are saved one every thinning iterations.
clear_buffer	logical. Clear the tracing buffer before sampling?
output	logical. Print messages?

Value

A vector with the samples posterior samples of the population size parameter.

Warning

Invoking this function deletes the content of the object's tracing buffer.

Note

To create and initialize the lcm_CR_Basic object use lcmCR or lcm_CR_Basic_generator. The user is responsible to check whether the chain has reached the stationary distribution or not.

Author(s)

Daniel Manrique-Vallier

Examples

lcm_CR_Basic-class Class "lcm_CR_Basic"

Description

MCMC sampler for the Bayesian non-parametric latent class capture-recapture model.

Extends

Class "MCMCenviron", directly. All reference classes extend and inherit methods from "envRefClass".

Fields

All fields are read-only.

pointer: external pointer to the C++ object.

blobsize: size (in bytes) of the raw object data for serialization. (currently not implemented.)

local_seed: seed of the internal random number generator.

J: number of lists in the Capture-Recapture data.

K: maximum number of latent classes in the model (truncation level of the stick-breaking process).

n: observed number of individuals.

Captures: original provided data.

Methods

initialize(data_captures, K, a_alpha, b_alpha, in_list_symbol, len_buffer, subsamp): Class constructor.

Arguments:

data_captures: input dataset. A data frame with the multiple-recapture data.

- K: maximum number of latent classes. Indicates the truncation level of the stick-breaking process.
- a_alpha: shape parameter of the prior distribution of concentration parameter of the stickbreaking process.
- b_alpha: inverse scale parameter of the prior distribution of concentration parameter of the stick-breaking process.
- in_list_symbol: factor label that indicates that individual is in list (e.g. 'Yes')

buffer_size: Size of the tracing buffer.

- subsamp: thinning interval for the tracing buffer.
- verbose: logical. Generate progress messages?

The following methods are inherited (from the corresponding class): Change_SubSamp ("MCM-Cenviron"), Set_Trace ("MCMCenviron"), Change_Trace_Length ("MCMCenviron"), initialize ("MCM-Cenviron"), Get_Iteration ("MCMCenviron"), Get_Param ("MCMCenviron"), Reset_Traces ("MCM-Cenviron"), Get_Status ("MCMCenviron"), Update ("MCMCenviron"), Get_Trace_Size ("MCM-Cenviron"), Get_Trace ("MCMCenviron"), Get_Trace ("MCMCenviron"), Get_Param_List ("MCMCenviron"), Init_Model ("MCMCenviron"), Activate_Tracing ("MCMCenviron"), Deactivate_Tracing ("MCMCenviron"), Set_Seed ("MCMCenviron"), show ("MCMCenviron")

Note

Use the convenience function lcmCR to create objects of this class. This class inherits most of its functionality from "MCMCenviron".

Author(s)

Daniel Manrique-Vallier

See Also

lcmCR, MCMCenviron.

Examples

showClass("lcm_CR_Basic")

lcm_CR_Basic_generator

Generator for Class lcm_CR_Basic

Description

Generator function for class lcm_CR_Basic.

Usage

```
lcm_CR_Basic_generator(...)
```

Arguments

... arguments to be passed to lcm_CR_Basic constructor.

Value

An object of class lcm_CR_Basic.

Note

The convenience function lcmCR provides a simpler mechanism to create lcm_CR_Basic objects.

Author(s)

Daniel Manrique-Vallier.

See Also

1cmCR

MCMCenviron-class

Examples

MCMCenviron-class Class "MCMCenviron"

Description

A generic interface for MCMC sampler objects implementing Bayesian models. Methods provide access to underlying functionality implemented in C++. The underlying implementation provides basic functionality for controlling the chain, and a 'tracing buffer' for storing and retrieving the samples.

Extends

All reference classes extend and inherit methods from "envRefClass".

Fields

(All fields are read-only.)

pointer: external pointer to the C++ object

blobsize: size (in bytes) of the raw object data for serialization. (currently not implemented.)

seed: seed of the internal random number generator.

Methods

GENERAL METHODS

Init_Model(output = TRUE, seed=c('auto', 'r.seed')): Initializes the sampler.

Arguments:

output: logical. Print messages to the screen?

- seed: integer. Seed of the internal RNG. Additionally, seed='auto' autogenerates the seed from the internal clock; seed='r.seed' autogenerates the seed from the current state of the .Random.seed variable.
- Update(num_iter, output = TRUE): Runs num_iter iterations of the sampler. Set output = FALSE
 to suppress console output.
- Get_Iteration(): Retrieves the current number of iterations the sampler.
- Get_Param_List(): Retrieves the names of the parameters of the model.
- Get_Param(param): Retrieves the current value of the parameter param.
- Set_Seed(seed): Seeds the internal random number generator. It does not affect R's internal RNG.

Get_Status(): Retrieves the current state of the chain

Value:

iteration numeric. Current iteration initialized logical. Is the sampler initialized? buffer_size numeric. Capacity (in samples) of the tracing buffer. buffer_used numeric. Number of samples currently stored in the tracing buffer. tracing character. Names of the variables currently traced. thinning numeric. Thinning interval of the tracing buffer.

METHODS FOR CONTROLLING THE TRACING BUFFER

Get_Trace_List(): Retrieves the names of the parameters being currently traced.

- Activate_Tracing(): Activates the tracing buffer. Traced variables will be stored in the buffer when generated with Update().
- Deactivate_Tracing(): Deactivates the tracing buffer. Calls to Update() will not store samples in the buffer.
- Set_Trace(traces): Adds parameters to tracer.

Arguments:

param: character vector. Names of the parameters to trace. To list the available parameters
for tracing use the Get_Param_List() method.

Get_Trace(param): Retrieves samples stored in the tracing buffer.

Arguments:

param: character. Name of the parameter to retrieve.

Value: An array. The first dimension indexes the sample; the rest correspond to the original dimensions of the parameter as defined in the model.

Reset_Traces(): Deletes the content of the tracing buffer.

Change_SubSamp(new_subsamp): Changes the sub-sampling period (thinning) of the tracing buffer.

Warning: This operation deletes the current content of the tracing buffer.

Get_Trace_Size(): Retrieves the size (in number of samples) of the trace buffer.

Change_Trace_Length(new_length): Changes the size (in number of samples) of the tracing buffer.

Warning: This operation deletes the current content of the tracing buffer.

Note

This class is not designed to be used directly, but as a generic interface for samplers implementing specific models.

Author(s)

Daniel Manrique-Vallier

Examples

showClass("MCMCenviron")

Index

* capture-recapture
 lcmCR, 4
* classes
 lcm_CR_Basic-class, 7
* datasets
 kosovo_aggregate, 3

envRefClass, 7, 9

kosovo_aggregate, 3

lcm_CR_Basic, 5, 6, 8 lcm_CR_Basic (lcm_CR_Basic-class), 7 lcm_CR_Basic-class, 7 lcm_CR_Basic_generator, 5, 6, 8 LCMCR (LCMCR-package), 2 lcmCR, 4, 6, 8 LCMCR-package, 2 lcmCR_PostSampl, 6

MCMCenviron, 7, 8 MCMCenviron-class, 9