Package 'KneeArrower'

January 20, 2025

Type Package Title Finds Cutoff Points on Knee Curves Version 1.0.0 Author Alan Tseng Maintainer Alan Tseng <alan.tseng@alum.utoronto.ca> Description Given a set of points around a knee curve, analyzes first and second derivatives to find knee points. License GPL-3 **Encoding** UTF-8 LazyData true Imports signal RoxygenNote 7.1.1 Suggests testthat, knitr, rmarkdown VignetteBuilder knitr NeedsCompilation no **Repository** CRAN Date/Publication 2020-09-24 08:30:02 UTC

Contents

Index	
	inverse
	findCutoffFirstDerivative
	findCutoffCurvature
	findCutoff
	derivative

derivative

Description

Derivative of a function with respect to x

Usage

derivative(x, y, m = 0, n = 50)

Arguments

х	x coordinates of points in function's domain
У	y coordinates of points in function's range
m	the order of the derivative (0 for y, 1 for y', 2 for y'')
n	number of points in the domain for interpolation

Value

a function representing the mth derivative of y(x) with respect to x

Examples

x <- seq(0,5,0.1)
y <- x^2 - 2*x + 3 # So dy/dx = 2x - 2
fp <- derivative(x, y, 1)
fp(2) # 2
fp(5) # 8</pre>

findCutoff Finds cutoff point on knee curve

Description

Finds cutoff point on knee curve

Usage

```
findCutoff(x, y, method = "first", frac.of.steepest.slope = 0.5)
```

Arguments

x	vector of x coordinates of points around curve		
У	vector of y coordinates of points around curve		
method	the method to define the knee point. Value can be "first" for first derivative cutoff or "curvature" for maximum curvature cutoff.		
<pre>frac.of.steepest.slope</pre>			
	the slope at the cutoff point relative to the steepest (positive or negative) slope on		
	the curve. Only used if method is set to "first". Can be set to any number > 0 or		
	<= 1. If the knee curve is increasing and concave down, then lower numbers will		
	lead to higher knee points, and higher numbers will lead to lower knee points.		

Value

a list containing the (x, y) coordinates of the knee point chosen using the specified method

Examples

```
# Generate some knee data
x <- runif(100, min=-3, max=3)
y <- -exp(-x) * (1+rnorm(100)/3)
plot(x, y)
# Plot knee points calculated using two different methods
points(findCutoff(x,y), col="red", pch=20, cex=3)
points(findCutoff(x,y, method="curvature"), col="blue", pch=20, cex=3)</pre>
```

findCutoffCurvature Finds the point on the curve that has the maximum curvature

Description

Finds the point on the curve that has the maximum curvature

Usage

```
findCutoffCurvature(x, y)
```

Arguments

Х	x coordinates of points around the curve
У	y coordinates of points around the curve

Value

(x, y) coordinates of the point with the greatest curvature

```
findCutoffFirstDerivative
```

Finds the point where the derivative is a fraction of the steepest slope

Description

Finds the point where the derivative is a fraction of the steepest slope

Usage

```
findCutoffFirstDerivative(x, y, slope_ratio = 0.5)
```

Arguments

х	x coordinates of points around the curve
У	y coordinates of points around the curve
slope_ratio	the fraction of the steepest slope that defines knee point

Value

(x, y) coordinates of the knee point

inverse

Inverse of a function

Description

Inverse of a function

Usage

inverse(f, domain)

Arguments

f	univariate function
domain	domain of f given as (min, max) interval

Value

a function g such that f(x) = y and g(y) = x

Examples

expinv <- inverse(exp, c(0,3))
expinv(exp(1))</pre>

Index

 ${\tt derivative, 2}$

findCutoff, 2
findCutoffCurvature, 3
findCutoffFirstDerivative, 4

inverse,4