
Package ‘KScorrect’
January 20, 2025

Type Package

Title Lilliefors-Corrected Kolmogorov-Smirnov Goodness-of-Fit Tests

Version 1.4.0

Depends R (>= 3.6.0)

Imports MASS (>= 7.3.0), doParallel (>= 1.0.14), foreach (>= 1.4.4),
iterators (>= 1.0.10), parallel (>= 3.6.0), mclust (>= 5.4)

Date 2019-06-30

Author Phil Novack-Gottshall, Steve C. Wang

Maintainer Phil Novack-Gottshall <pnovack-gottshall@ben.edu>

Description Implements the Lilliefors-corrected Kolmogorov-Smirnov test for use
in goodness-of-fit tests, suitable when population parameters are unknown and
must be estimated by sample statistics. P-values are estimated by simulation.
Can be used with a variety of continuous distributions, including normal,
lognormal, univariate mixtures of normals, uniform, loguniform, exponential,
gamma, and Weibull distributions. Functions to generate random numbers and
calculate density, distribution, and quantile functions are provided for use
with the log uniform and mixture distributions.

License CC0

URL https://github.com/pnovack-gottshall/KScorrect

BugReports https://github.com/pnovack-gottshall/KScorrect/issues

LazyData TRUE

RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2019-07-03 19:30:03 UTC

1

https://github.com/pnovack-gottshall/KScorrect
https://github.com/pnovack-gottshall/KScorrect/issues

2 KScorrect-package

Contents
KScorrect-package . 2
dlunif . 3
dmixnorm . 4
ks_test_stat . 7
LcKS . 8

Index 13

KScorrect-package KScorrect: Lilliefors-Corrected Kolmogorov-Smirnov Goodness-of-
Fit Tests

Description

Implements the Lilliefors-corrected Kolmogorov-Smirnov test for use in goodness-of-fit tests.

Details

KScorrect implements the Lilliefors-corrected Kolmogorov-Smirnov test for use in goodness-of-fit
tests, suitable when population parameters are unknown and must be estimated by sample statistics.
P-values are estimated by simulation. Coded to complement ks.test, it can be used with a variety
of continuous distributions, including normal, lognormal, univariate mixtures of normals, uniform,
loguniform, exponential, gamma, and Weibull distributions.

Functions to generate random numbers and calculate density, distribution, and quantile functions
are provided for use with the loguniform and mixture distributions.

Author(s)

Phil Novack-Gottshall <pnovack-gottshall@ben.edu>

Steve C. Wang <scwang@swarthmore.edu>

Examples

Get the package version and citation of KScorrect
packageVersion("KScorrect")
citation("KScorrect")

x <- runif(200)
Lc <- LcKS(x, cdf="pnorm", nreps=999)
hist(Lc$D.sim)
abline(v = Lc$D.obs, lty = 2)
print(Lc, max=50) # Print first 50 simulated statistics
Approximate p-value (usually) << 0.05

Confirmation uncorrected version has increased Type II error rate when
using sample statistics to estimate parameters:
ks.test(x, "pnorm", mean(x), sd(x)) # p-value always larger, (usually) > 0.05

dlunif 3

x <- rlunif(200, min=exp(1), max=exp(10)) # random loguniform sample
Lc <- LcKS(x, cdf="plnorm")
Lc$p.value # Approximate p-value: (usually) << 0.05

dlunif The Log Uniform Distribution

Description

Density, distribution function, quantile function and random generation for the log uniform distri-
bution in the interval from min to max. Parameters must be raw values (not log-transformed) and
will be log-transformed using specified base.

Usage

dlunif(x, min, max, base = exp(1))

plunif(q, min, max, base = exp(1))

qlunif(p, min, max, base = exp(1))

rlunif(n, min, max, base = exp(1))

Arguments

x Vector of quantiles.

min Lower limit of the distribution, in raw (not log-transformed) values. Negative
values will give warning.

max Upper limit of the distribution, in raw (not log-transformed) values. Negative
values will give warning.

base The base to which logarithms are computed. Defaults to e=exp(1). Must be a
positive number.

q Vector of quantiles.

p Vector of probabilities.

n Number of observations.

Details

A log uniform (or loguniform or log-uniform) random variable has a uniform distribution when
log-transformed.

Value

dlunif gives the density, plunif gives the distribution function, qlunif gives the quantile function,
and rlunif generates random numbers.

4 dmixnorm

Note

Parameters min, max must be provided as raw (not log-transformed) values and will be log-transformed
using base. In other words, when log-transformed, a log uniform random variable with parameters
min=a and max=b is uniform over the interval from log(a) to log(b).

Author(s)

Steve Wang <scwang@swarthmore.edu>

See Also

Distributions for other standard distributions

Examples

plot(1:100, dlunif(1:100, exp(1), exp(10)), type="l", main="Loguniform density")
plot(log(1:100), dlunif(log(1:100), log(1), log(10)), type="l",

main="Loguniform density")

plot(1:100, plunif(1:100, exp(1), exp(10)), type="l", main="Loguniform cumulative")
plot(qlunif(ppoints(100), exp(1), exp(10)), type="l", main="Loguniform quantile")

hist(rlunif(1000, exp(1), exp(10)), main="random loguniform sample")
hist(log(rlunif(10000, exp(1), exp(10))), main="random loguniform sample")
hist(log(rlunif(10000, exp(1), exp(10), base=10), base=10), main="random loguniform sample")

dmixnorm The Normal Mixture Distribution

Description

Density, distribution function, quantile function, and random generation for a univariate (one-
dimensional) distribution composed of a mixture of normal distributions with means equal to mean,
standard deviations equal to sd, and mixing proportion of the components equal to pro.

Usage

dmixnorm(x, mean, sd, pro)

pmixnorm(q, mean, sd, pro)

qmixnorm(p, mean, sd, pro, expand = 1)

rmixnorm(n, mean, sd, pro)

dmixnorm 5

Arguments

x Vector of quantiles.
mean Vector of means, one for each component.
sd Vector of standard deviations, one for each component. If a single value is pro-

vided, an equal-variance mixture model is implemented. Must be non-negative.
pro Vector of mixing proportions, one for each component. If missing, an equal-

proportion model is implemented, with a warning. If proportions do not sum to
unity, they are rescaled to do so. Must be non-negative.

q Vector of quantiles.
p Vector of probabilities.
expand Value to expand the range of probabilities for quantile approximation. Default

= 1.0. See details below.
n Number of observations.

Details

These functions use, modify, and wrap around those from the mclust package, especially dens,
and sim. Functions are slightly faster than the corresponding mclust functions when used with
univariate distributions.

Unlike mclust, which primarily focuses on parameter estimation based on mixture samples, the
functions here are modified to calculate PDFs, CDFs, approximate quantiles, and random numbers
for mixture distributions with user-specified parameters. The functions are written to emulate the
syntax of other R distribution functions (e.g., Normal).

The number of mixture components (argument G in mclust) is specified from the length of the
mean vector. If a single sd value is provided, an equal-variance mixture model (modelNames="E" in
mclust) is implemented; if multiple values are provided, a variable-variance model (modelNames="V"
in mclust) is implemented. If mixing proportion pro is missing, all components are assigned equal
mixing proportions, with a warning. Mixing proportions are rescaled to sum to unity. If the lengths
of supplied means, standard deviations, and mixing proportions conflict, an error is called.

Analytical solutions are not available to calculate a quantile function for all combinations of mixture
parameters. qmixnorm approximates the quantile function using a spline function calculated from
cumulative density functions for the specified mixture distribution. Quantile values for probabilities
near zero and one are approximated by taking a randomly generated sample (with sample size equal
to the product of 1000 and the number of mixture components), and expanding that range positively
and negatively by a multiple (specified by (default) expand = 1) of the observed range in the
random sample. In cases where the distribution range is large (such as when mixture components
are discrete or there are large distances between components), resulting extreme probability values
will be very close to zero or one and can result in non-calculable (NaN) quantiles (and a warning).
Use of other expand values (especially expand < 1.0 that expand the ranges by smaller multiples)
often will yield improved approximations. Note that expand values equal to or close to 0 may result
in inaccurate approximation of extreme quantiles. In situations requiring extreme quantile values,
it is recommended that the largest expand value that does not result in a non-calculable quantile
(i.e., no warning called) be used. See examples for confirmation that approximations are accurate,
comparing the approximate quantiles from a single ’mixture’ distribution to those calculated for the
same distribution using qnorm, and demonstrating cases in which using non-default expand values
will allow correct approximation of quantiles.

6 dmixnorm

Value

dmixnorm gives the density, pmixnorm gives the distribution function, qmixnorm approximates the
quantile function, and rmixnorm generates random numbers.

Author(s)

Phil Novack-Gottshall <pnovack-gottshall@ben.edu> and Steve Wang <scwang@swarthmore.edu>,
based on functions written by Luca Scrucca.

See Also

Distributions for other standard distributions, and mclust::dens, sim, and cdfMclust for alter-
native density, quantile, and random number functions for multivariate mixture distributions.

Examples

Mixture of two normal distributions
mean <- c(3, 6)
pro <- c(.25, .75)
sd <- c(.5, 1)
x <- rmixnorm(n=5000, mean=mean, pro=pro, sd=sd)
hist(x, n=20, main="random bimodal sample")

Not run:
Requires functions from the 'mclust' package
require(mclust)
Confirm 'rmixnorm' above produced specified model
mod <- mclust::Mclust(x)
mod # Best model (correctly) has two-components with unequal variances
mod$parameters # and approximately same parameters as specified above
sd^2 # Note reports var (sigma-squared) instead of sd used above

End(Not run)

Density, distribution, and quantile functions
plot(seq(0, 10, .1), dmixnorm(seq(0, 10, .1), mean=mean, sd=sd, pro=pro),

type="l", main="Normal mixture density")
plot(seq(0, 10, .1), pmixnorm(seq(0, 10, .1), mean=mean, sd=sd, pro=pro),

type="l", main="Normal mixture cumulative")
plot(stats::ppoints(100), qmixnorm(stats::ppoints(100), mean=mean, sd=sd, pro=pro),

type="l", main="Normal mixture quantile")

Any number of mixture components are allowed
plot(seq(0, 50, .01), pmixnorm(seq(0, 50, .01), mean=1:50, sd=.05, pro=rep(1, 50)),

type="l", main="50-component normal mixture cumulative")

'expand' can be specified to prevent non-calculable quantiles:
q1 <- qmixnorm(stats::ppoints(30), mean=c(1, 20), sd=c(1, 1), pro=c(1, 1))
q1 # Calls a warning because of NaNs
Reduce 'expand'. (Values < 0.8 allow correct approximation)
q2 <- qmixnorm(stats::ppoints(30), mean=c(1, 20), sd=c(1, 1), pro=c(1, 1), expand=.5)
plot(stats::ppoints(30), q2, type="l", main="Quantile with reduced range")

ks_test_stat 7

Not run:
Requires functions from the 'mclust' package
Confirmation that qmixnorm approximates correct solution
(single component 'mixture' should mimic qnorm):
x <- rmixnorm(n=5000, mean=0, pro=1, sd=1)
mpar <- mclust::Mclust(x)$param
approx <- qmixnorm(p=ppoints(100), mean=mpar$mean, pro=mpar$pro,

sd=sqrt(mpar$variance$sigmasq))
known <- qnorm(p=ppoints(100), mean=mpar$mean, sd=sqrt(mpar$variance$sigmasq))
cor(approx, known) # Approximately the same
plot(approx, main="Quantiles for (unimodal) normal")
lines(known)
legend("topleft", legend=c("known", "approximation"), pch=c(NA,1),

lty=c(1, NA), bty="n")

End(Not run)

ks_test_stat Internal KScorrect Function.

Description

Internal function not intended to be called directly by users.

Usage

ks_test_stat(x, y, ...)

Arguments

x a numeric vector of data values.

y a character string naming a cumulative distribution function or an actual cumu-
lative distribution function such as pnorm. Only continuous CDFs are valid. See
/codeLcKS for accepted functions.

... parameters of the distribution specified (as a character string) by y.

Details

Simplified and faster ks.test function that calculates just the two-sided test statistic D.

Note

Calculating the Kolmogorov-Smirnov test statistic D by itself is faster than calculating the other
ouput that that function produces.

See Also

ks.test

8 LcKS

LcKS Lilliefors-corrected Kolmogorov-Smirnov Goodness-Of-Fit Test

Description

Implements the Lilliefors-corrected Kolmogorov-Smirnov test for use in goodness-of-fit tests, suit-
able when population parameters are unknown and must be estimated by sample statistics. It uses
Monte Carlo simulation to estimate p-values. Using a modification of ks.test, it can be used with
a variety of continuous distributions, including normal, lognormal, univariate mixtures of normals,
uniform, loguniform, exponential, gamma, and Weibull distributions. The Monte Carlo algorithm
can run ’in parallel.’

Usage

LcKS(x, cdf, nreps = 4999, G = 1:9, varModel = c("E", "V"),
parallel = FALSE, cores = NULL)

Arguments

x A numeric vector of data values (observed sample).

cdf Character string naming a cumulative distribution function. Case insensitive.
Only continuous CDFs are valid. Allowed CDFs include:

• "pnorm" for normal,
• "pmixnorm" for (univariate) normal mixture,
• "plnorm" for lognormal (log-normal, log normal),
• "punif" for uniform,
• "plunif" for loguniform (log-uniform, log uniform),
• "pexp" for exponential,
• "pgamma" for gamma,
• "pweibull" for Weibull.

nreps Number of replicates to use in simulation algorithm. Default = 4999 replicates.
See details below. Should be a positive integer.

G Numeric vector of mixture components to consider, for mixture models only.
Default = 1:9 fits up to 9 components. Must contain positive integers. See
details below.

varModel For mixture models, character string determining whether to allow equal-variance
mixture components (E), variable-variance mixture components (V) or both (the
default).

parallel Logical value that switches between running Monte Carlo algorithm in parallel
(if TRUE) or not (if FALSE, the default).

cores Numeric value to control how many cores to build when running in parallel.
Default = detectCores - 1.

LcKS 9

Details

The function builds a simulation distribution D.sim of length nreps by drawing random samples
from the specified continuous distribution function cdf with parameters calculated from the pro-
vided sample x. Observed statistic D and simulated test statistics are calculated using a simplified
version of ks.test.

The default nreps = 4999 provides accurate p-values. nreps = 1999 is sufficient for most cases,
and computationally faster when dealing with more complicated distributions (such as univariate
normal mixtures, gamma, and Weibull). See below for potentially faster parallel implementations.

The p-value is calculated as the number of Monte Carlo samples with test statistics D as extreme as
or more extreme than that in the observed sample D.obs, divided by the nreps number of Monte
Carlo samples. A value of 1 is added to both the numerator and denominator to allow the observed
sample to be represented within the null distribution (Manly 2004); this has the benefit of avoiding
nonsensical p.value = 0.000 and accounts for the fact that the p-value is an estimate.

Parameter estimates are calculated for the specified continuous distribution, using maximum-likelihood
estimates. When testing against the gamma and Weibull distributions, MASS::fitdistr is used to
calculate parameter estimates using maximum likelihood optimization, with sensible starting val-
ues. Because this incorporates an optimization routine, the simulation algorithm can be slow if us-
ing large nreps or problematic samples. Warnings often occur during these optimizations, caused
by difficulties estimating sample statistic standard errors. Because such SEs are not used in the
Lilliefors-corrected simulation algorithm, warnings are suppressed during these optimizations.

Sample statistics for the (univariate) normal mixture distribution pmixnorm are calculated using
package mclust, which uses BIC to identify the optimal mixture model for the sample, and the EM
algorithm to calculate parameter estimates for this model. The number of mixture components G
(with default allowing up to 9 components), variance model (whether equal E or variable V variance),
and component statistics (means, sds, and mixing proportions pro) are estimated from the sample
when calculating D.obs and passed internally when creating random Monte Carlo samples. It is
possible that some of these samples may differ in their optimal G (for example a two-component
input sample might yield a three-component random sample within the simulation distribution).
This can be constrained by specifying that simulation BIC-optimizations only consider G mixture
components.

Be aware that constraining G changes the null hypothesis. The default (G = 1:9) null hypothesis is
that a sample was drawn from any G = 1:9-component mixture distribution. Specifying a particular
value, such as G = 2, restricts the null hypothesis to particular mixture distributions with just G
components, even if simulated samples might better be represented as different mixture models.

The LcKS(cdf = "pmixnorm") test implements two control loops to avoid errors caused by this con-
straint and when working with problematic samples. The first loop occurs during model-selection
for the observed sample x, and allows for estimation of parameters for the second-best model when
those for the optimal model are not able to be calculated by the EM algorithm. A second loop
occurs during the simulation algorithm, rejecting samples that cannot be fit by the mixture model
specified by the observed sample x. Such problematic cases are most common when the observed
or simulated samples have a component(s) with very small variance (i.e., duplicate observations) or
when a Monte Carlo sample cannot be fit by the specified G.

Parellel computing can be implemented using parallel = TRUE, using the operating-system ver-
satile doParallel-package and foreach infrastructure, using a default detectCores - 1 number
of cores. Parallel computing is generally advisable for the more complicated cumulative density

10 LcKS

functions (i.e., univariate normal mixture, gamma, Weibull), where maximum likelihood estima-
tion is time-intensive, but is generally not advisable for density functions with quickly calculated
sample statistics (i.e., other distribution functions). Warnings within the function provide sensible
recommendations, but users are encouraged to experiment to discover their fastest implementation
for their individual cases.

Value

A list containing the following components:

D.obs The value of the test statistic D for the observed sample.

D.sim Simulation distribution of test statistics, with length = nreps. This can be used
to calculate critical values; see examples.

p.value p-value of the test, calculated as (
∑

(D.sim > D.obs) + 1)/(nreps+ 1).

Note

The Kolmogorov-Smirnov (such as ks.test) is only valid as a goodness-of-fit test when the pop-
ulation parameters are known. This is typically not the case in practice. This invalidation occurs
because estimating the parameters changes the null distribution of the test statistic; i.e., using the
sample to estimate population parameters brings the Kolmogorov-Smirnov test statistic D closer
to the null distribution than it would be under the hypothesis where the population parameters are
known. In other words, it is biased and results in increased Type II error rates. Lilliefors (1967,
1969) provided a solution, using Monte Carlo simulation to approximate the shape of the null dis-
tribution when the sample statistics are used to estimate population parameters, and to use this null
distribution as the basis for critical values. The function LcKS generalizes this solution for a range
of continuous distributions.

Author(s)

Phil Novack-Gottshall <pnovack-gottshall@ben.edu>, based on code from Charles Geyer (Uni-
versity of Minnesota).

References

Lilliefors, H. W. 1967. On the Kolmogorov-Smirnov test for normality with mean and variance
unknown. Journal of the American Statistical Association 62(318):399-402.

Lilliefors, H. W. 1969. On the Kolmogorov-Smirnov test for the exponential distribution with mean
unknown. Journal of the American Statistical Association 64(325):387-389.

Manly, B. F. J. 2004. Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman &
Hall, Cornwall, Great Britain.

Parsons, F. G., and P. H. Wirsching. 1982. A Kolmogorov-Smirnov goodness-of-fit test for the two-
parameter Weibull distribution when the parameters are estimated from the data. Microelectronics
Reliability 22(2):163-167.

LcKS 11

See Also

Distributions for standard cumulative distribution functions, plunif for the loguniform cumula-
tive distribution function, and pmixnorm for the univariate normal mixture cumulative distribution
function.

Examples

x <- runif(200)
Lc <- LcKS(x, cdf = "pnorm", nreps = 999)
hist(Lc$D.sim)
abline(v = Lc$D.obs, lty = 2)
print(Lc, max = 50) # Print first 50 simulated statistics
Approximate p-value (usually) << 0.05

Confirmation uncorrected version has increased Type II error rate when
using sample statistics to estimate parameters:
ks.test(x, "pnorm", mean(x), sd(x)) # p-value always larger, (usually) > 0.05

Confirm critical values for normal distribution are correct
nreps <- 9999
x <- rnorm(25)
Lc <- LcKS(x, "pnorm", nreps = nreps)
sim.Ds <- sort(Lc$D.sim)
crit <- round(c(.8, .85, .9, .95, .99) * nreps, 0)
Lilliefors' (1967) critical values, using improved values from
Parsons & Wirsching (1982) (for n = 25):
0.141 0.148 0.157 0.172 0.201
round(sim.Ds[crit], 3) # Approximately the same critical values

Confirm critical values for exponential are the same as reported by Lilliefors (1969)
nreps <- 9999
x <- rexp(25)
Lc <- LcKS(x, "pexp", nreps = nreps)
sim.Ds <- sort(Lc$D.sim)
crit <- round(c(.8, .85, .9, .95, .99) * nreps, 0)
Lilliefors' (1969) critical values (for n = 25):
0.170 0.180 0.191 0.210 0.247
round(sim.Ds[crit], 3) # Approximately the same critical values

Not run:
Gamma and Weibull tests require functions from the 'MASS' package
Takes time for maximum likelihood optimization of statistics
require(MASS)
x <- runif(100, min = 1, max = 100)
Lc <- LcKS(x, cdf = "pgamma", nreps = 499)
Lc$p.value

Confirm critical values for Weibull the same as reported by Parsons & Wirsching (1982)
nreps <- 9999
x <- rweibull(25, shape = 1, scale = 1)
Lc <- LcKS(x, "pweibull", nreps = nreps)
sim.Ds <- sort(Lc$D.sim)

12 LcKS

crit <- round(c(.8, .85, .9, .95, .99) * nreps, 0)
Parsons & Wirsching (1982) critical values (for n = 25):
0.141 0.148 0.157 0.172 0.201
round(sim.Ds[crit], 3) # Approximately the same critical values

Mixture test requires functions from the 'mclust' package
Takes time to identify model parameters
require(mclust)
x <- rmixnorm(200, mean = c(10, 20), sd = 2, pro = c(1,3))
Lc <- LcKS(x, cdf = "pmixnorm", nreps = 499, G = 1:9) # Default G (1:9) takes long time
Lc$p.value
G <- Mclust(x)$parameters$variance$G # Optimal model has only two components
Lc <- LcKS(x, cdf = "pmixnorm", nreps = 499, G = G) # Restricting to likely G saves time
But note changes null hypothesis: now testing against just two-component mixture
Lc$p.value

Running 'in parallel'
require(doParallel)
set.seed(3124)
x <- rmixnorm(300, mean = c(110, 190, 200), sd = c(3, 15, .1), pro = c(1, 3, 1))
system.time(LcKS(x, "pgamma"))
system.time(LcKS(x, "pgamma", parallel = TRUE)) # Should be faster

End(Not run)

Index

cdfMclust, 6

dens, 5, 6
detectCores, 8, 9
Distributions, 4, 6, 11
dlunif, 3
dmixnorm, 4

fitdistr, 9
foreach, 9

ks.test, 2, 7–9
ks_test_stat, 7
KScorrect (KScorrect-package), 2
KScorrect-package, 2

LcKS, 8

Normal, 5

plunif, 11
plunif (dlunif), 3
pmixnorm, 9, 11
pmixnorm (dmixnorm), 4

qlunif (dlunif), 3
qmixnorm (dmixnorm), 4

rlunif (dlunif), 3
rmixnorm (dmixnorm), 4

sim, 5, 6

13

	KScorrect-package
	dlunif
	dmixnorm
	ks_test_stat
	LcKS
	Index

