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2 KMD

KMD Kernel Measure of Multi-sample Dissimilarity

Description

Compute the kernel measure of multi-sample dissimilarity (KMD) with directed K-nearest neighbor
(K-NN) graph or minimum spanning tree (MST).

Usage

KMD(X, Y, M = length(unique(Y)), Knn = 1, Kernel = "discrete")

Arguments

X the data matrix (n by dx) or the distance/similarity matrix (n by n)

Y a vector of length n, indicating the labels (from 1 to M) of the data

M the number of possible labels

Knn the number of nearest neighbors to use, or "MST"

Kernel an M by M kernel matrix with row i and column j being the kernel value k(i, j);
or "discrete" which indicates using the discrete kernel.

Details

The kernel measure of multi-sample dissimilarity (KMD) measures the dissimilarity between mul-
tiple samples, based on the observations from them. It converges to the population quantity (de-
pending on the kernel) which is between 0 and 1. A small value indicates the multiple samples are
from the same distribution, and a large value indicates the corresponding distributions are different.
The population quantity is 0 if and only if all distributions are the same, and 1 if and only if all
distributions are mutually singular.

If X is an n by n matrix, it will be interpreted as a distance/similarity matrix. In such case, MST
requires it to be symmetric (an undirected graph). K-NN graph does not require it to be symmetric,
with the nearest neighbors of point i computed based on the i-th row, and ties broken at random. The
diagonal terms (self-distances) will be ignored. If X is an n by dx data matrix, Euclidean distance
will be used for computing the K-NN graph (ties broken at random) and the MST.

Value

The algorithm returns a real number which is the sample KMD and is asymptotically between 0 and
1.

See Also

KMD_test
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Examples

n = 60
d = 2
set.seed(1)
X1 = matrix(runif(n*d/2),ncol = d)
X2 = matrix(runif(n*d/2),ncol = d)
X2[,1] = X2[,1] + 1
X = rbind(X1,X2)
Y = c(rep(1,n/2),rep(2,n/2))
print(KMD(X, Y, M = 2, Knn = 1, Kernel = "discrete"))
# 0.9344444. X1 and X2 are mutually singular, so the theoretical KMD is 1.
print(KMD(X, Y, M = 2, Knn = 1, Kernel = base::diag(c(1,1))))
# 0.9344444. This is essentially the same as specifying the discrete kernel above.
print(KMD(X, Y, M = 2, Knn = 2, Kernel = "discrete"))
print(KMD(X, Y, M = 2, Knn = "MST", Kernel = "discrete"))
# 0.9508333, 0.9399074. One can also use other geometric graphs (2-NN graph and MST here)
# to estimate the same theoretical quantity.

KMD_test Testing based on KMD

Description

Testing based on the kernel measure of multi-sample dissimilarity (KMD). Both permutation test
and asymptotic test are available. The tests are consistent against all alternatives where at least two
samples have different distributions.

Usage

KMD_test(
X,
Y,
M = length(unique(Y)),
Knn = ceiling(length(Y)/10),
Kernel = "discrete",
Permutation = TRUE,
B = 500

)

Arguments

X the data matrix (n by dx) or the distance/similarity matrix (n by n)

Y a vector of length n, indicating the labels (from 1 to M) of the data

M the number of possible labels

Knn the number of nearest neighbors to use, or "MST"

Kernel an M by M kernel matrix with row i and column j being the kernel value k(i, j);
or "discrete" which indicates using the discrete kernel.
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Permutation TRUE or FALSE; whether to perform permutation test or the asymptotic test.

B the number of permutations to perform, only used for permutation test.

Details

The kernel measure of multi-sample dissimilarity (KMD) measures the dissimilarity between multi-
ple samples using geometric graphs such as K-nearest neighbor (K-NN) graph and minimum span-
ning tree (MST), based on the observations from them. A small value indicates the multiple samples
are from the same distribution, and a large value indicates the corresponding distributions are dif-
ferent. The test rejects the null hypothesis that all samples are from the same distribution for large
value of sample KMD. The permutation test returns the p-value given by (sum(KMD_i >= KMD_0)
+ 1)/(B + 1), where KMD_i is the KMD computed after a random permutation on the Y labels, and
B is the total number of permutations that have been performed. The asymptotic test first normal-
izes the KMD by the square root of the permutation variance, and then returns the p-value given by:
P(N(0,1) > normalized KMD).

If X is an n by n matrix, it will be interpreted as a distance/similarity matrix. In such case, MST
requires it to be symmetric (an undirected graph). K-NN graph does not require it to be symmetric,
with the nearest neighbors of point i computed based on the i-th row, and ties broken at random. The
diagonal terms (self-distances) will be ignored. If X is an n by dx data matrix, Euclidean distance
will be used for computing the K-NN graph (ties broken at random) and the MST.

Value

If Permutation == TRUE, permutation test is performed and the algorithm returns a p-value for test-
ing H0: the M distributions are equal against H1: not all the distributions are equal. If Permutation
== FALSE, asymptotic test is performed and a 1 by 2 matrix: (z value, p-value) is returned.

See Also

KMD

Examples

d = 2
set.seed(1)
X1 = matrix(rnorm(100*d), nrow = 100, ncol = d)
X2 = matrix(rnorm(100*d,sd=sqrt(1.5)), nrow = 100, ncol = d)
X3 = matrix(rnorm(100*d,sd=sqrt(2)), nrow = 100, ncol = d)
X = rbind(X1,X2,X3)
Y = c(rep(1,100),rep(2,100),rep(3,100))
print(KMD_test(X, Y, M = 3, Knn = 1, Kernel = "discrete"))
# A small p-value since the three distributions are not the same.
print(KMD_test(X, Y, M = 3, Knn = 1, Kernel = "discrete", Permutation = FALSE))
# p-value of the asymptotic test is similar to that of the permutation test
print(KMD_test(X, Y, M = 3, Knn = 1, Kernel = diag(c(10,1,1))))
# p-value is improved by using a different kernel
print(KMD_test(X, Y, M = 3, Knn = 30, Kernel = "discrete"))
# The suggested choice Knn = 0.1n yields a very small p-value.
print(KMD_test(X, Y, M = 3, Knn = "MST", Kernel = "discrete"))
# One can also use the MST.



KMD_test 5

print(KMD_test(X, Y, M = 3, Knn = 2, Kernel = "discrete"))
# MST has similar performance as 2-NN, which is between 1-NN and 30-NN

# Check null distribution of the z values
ni = 100
n = 3*ni
d = 2
Null_KMD = function(id){

set.seed(id)
X = matrix(rnorm(n*d), nrow = n, ncol = d)
Y = c(rep(1,ni),rep(2,ni),rep(3,ni))
return(KMD_test(X, Y, M = 3, Knn = "MST", Kernel = "discrete", Permutation = FALSE)[1,1])

}
hist(sapply(1:500, Null_KMD), breaks = c(-Inf,seq(-5,5,length=50),Inf), freq = FALSE,

xlim = c(-4,4), ylim = c(0,0.5), main = expression(paste(n[i]," = 100")),
xlab = expression(paste("normalized ",hat(eta))))

lines(seq(-5,5,length=1000),dnorm(seq(-5,5,length=1000)),col="red")
# The histogram of the normalized KMD is close to that of a standard normal distribution.
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