Package 'JSDNE'

May 4, 2025

Title Estimating the Age using Auricular Surface by DNE

Version 4.5

Maintainer Jisun Jang <jisun.jang.19@ucl.ac.uk>

Description The age is estimated by calculating the Dirichlet Normal Energy (DNE) on the whole auricular surface and the apex of the auricular surface. It involves three estimation methods: principal component discriminant analysis (PCQDA), and principal component logistic regression analysis (PCLR) methods, principal component regression analysis with Southeast Asian (A_PCR), and principal component regression analysis with multipopulation (M_PCR). The package is created with the data from the Louis Lopes Collection in Lisbon, the 21st Century Identified Human Remains Collection in Coimbra, and the CAL Milano Cemetery Skeletal Collection in Milan, and the skeletal collection at Khon Kaen University (KKU) Human Skeletal Research Centre (HSRC), housed in the Department of Anatomy in the Faculty of Medicine at KKU in Khon Kaen.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1 **Depends** R (>= 2.10)

LazyData true

Imports dplyr, MASS, molaR, nnet, Rvcg

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Jisun Jang [aut, cre]

Repository CRAN

Date/Publication 2025-05-03 22:30:05 UTC

Contents

Apex																																2	,
A_PCR_result																																3	i.
A_PCR_Test	•	•	•	•	•			•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3	i.

Apex

11

A_PCR_Train	4
M_PCR_result	4
M_PCR_Test	5
M_PCR_Train	5
PCLR_result	6
PCLR_Test	6
PCLR_Train	7
PCQDA_result	7
PCQDA_Test	8
PCQDA_Train	8
PCR_result	9
PCR_Test	9
PCR_Train	10
WholeSurface	10

Index

Apex

Surface mesh of apex of auricular surface.

Description

Surface mesh of apex of auricular surface.

Usage

data(Apex)

Format

An object of class mesh3d of length 4.

Examples

PCQDA_output <- PCQDA_result(WholeSurface,Apex)
PCR_output <- PCR_result(WholeSurface,Apex)
PCLR_output <- PCLR_result(WholeSurface,Apex)</pre>

A_PCR_result

Description

A_PCR method is the principal component linear regression analysis with Southeast Asian (A_PCR) method using the Dirichlet Normal Energy (DNE). The function automatically calculates the DNE on the auricular surface It provides the estimated age and standard errors (SE, 9.0yrs).

Usage

A_PCR_result(x, y)

Arguments

х	the name of inputted ply file of the whole auricular surface
У	the name of inputted ply file of the apex of the auricular surface

Value

estimated result gets printed to the console

A_PCR_Test

Description

A_PCR_Test is the test set of the A_PCR model. It consists of Age, MeanDNE.Apex, Proportion.DNEunder0.0001, Proportion.DNEover0.6, IQRDNE.Whole. The number of rows is 66.

Usage

A_PCR_Test

Format

An object of class data. frame with 66 rows and 5 columns.

A_PCR_Test

A_PCR_Train

A_PCR_Train

Description

A_PCR_Train is the train set of the A_PCR model. It consists of Age, MeanDNE.Apex, Proportion.DNEunder0.0001, Proportion.DNEover0.6, IQRDNE.Whole. The number of rows is 269.

Usage

A_PCR_Train

Format

An object of class data. frame with 269 rows and 5 columns.

M_PCR_result

Estimating the age using M_PCR method

Description

M_PCR method is the principal component linear regression analysis with multi-population (M_PCR) method using the Dirichlet Normal Energy (DNE). The function automatically calculates the DNE on the auricular surface It provides the estimated age and standard errors (SE, 10.2yrs).

Usage

M_PCR_result(x, y)

Arguments

х	the name of inputted ply file of the whole auricular surface
у	the name of inputted ply file of the apex of the auricular surface

Value

estimated result gets printed to the console

M_PCR_Test

M_PCR_Train

Description

M_PCR_Train is the test set of the M_PCR model. It consists of Age,MeanDNE.Apex,MedianDNE.Apex,MeanDNE.Convex The number of rows is 272.

Usage

M_PCR_Test

Format

An object of class data. frame with 272 rows and 7 columns.

M_PCR_Train M_PCR_Train

Description

M_PCR_Train is the train set of the M_PCR model. It consists of Age, MeanDNE.Apex, MedianDNE.Apex, MeanDNE.Convex, MeanDNE.Concave, Proportion.DNEunder0.0001, Population. The number of rows is 953.

Usage

M_PCR_Train

Format

An object of class data.frame with 953 rows and 7 columns.

```
PCLR_result
```

Description

DNE_PCLR method is the principal component logistic regression analysis (PCLR) method using the Dirichlet Normal Energy (DNE). This method involves 2 age groups to distinguish if the specimen is over 63 or under 67. The function automatically calculates the DNE on the auricular surface. It provides the estimated age group and age range of the estimated age group.

Usage

PCLR_result(x, y)

Arguments

х	the name of inputted ply file of the whole auricular surface
У	the name of inputted ply file of the apex of the auricular surface

Value

estimated result gets printed to the console

PCLR_Test

Description

PCR_Train is the test set of the PCR model. It consists of Age, Cluster1, MeanDNE.Apex, TotalDNE.TotalPolygonFaces, MedianDNE.Whole, IQRDNE.Whole and MeanDNE.Convex. The number of rows is 191.

Usage

PCLR_Test

Format

An object of class data. frame with 191 rows and 7 columns.

PCLR_Test

PCLR_Train

Description

PCLR_Train is the train set of the PCR model. It consists of Age, Cluster1, MeanDNE.Apex, TotalDNE.TotalPolygonFaces, MedianDNE.Whole, IQRDNE.Whole and MeanDNE.Convex. The number of rows is 699.

Usage

PCLR_Train

Format

An object of class data.frame with 699 rows and 7 columns.

PCQDA_result

Estimating the age using DNE_PCQDA method

Description

DNE_PCQDA method is the principal component quadratic discriminant analysis (PCQDA) method using the Dirichlet Normal Energy (DNE). This method involves 4 age groups. The function automatically calculates the DNE on the auricular surface. It provides the estimated age group and age range of the estimated age group.

Usage

PCQDA_result(x, y)

Arguments

х	the name of inputted ply file of the whole auricular surface
У	the name of inputted ply file of the apex of the auricular surface

Value

estimated result gets printed to the console

PCQDA_Test

Description

PCQDA_Test is the test set of the PCQDA model. It consists of Cluster2, Age, MeanDNE.Apex, TotalDNE.TotalPolygonFaces, Proportion.DNEunder0.0001, and Proportion.DNEover0.6. The number of rows is 186.

Usage

PCQDA_Test

Format

An object of class data.frame with 186 rows and 6 columns.

PCQDA_Train

PCQDA_Train

Description

PCQDA_Train is the train set of the PCQDA model. It consists of Cluster2, Age, MeanDNE.Apex, TotalDNE.TotalPolygonFaces, Proportion.DNEunder0.0001, and Proportion.DNEover0.6. The number of rows is 704.

Usage

PCQDA_Train

Format

An object of class data.frame with 704 rows and 6 columns.

PCR_result

Description

DNE_PCR method is the principal component linear regression analysis (PCR) method using the Dirichlet Normal Energy (DNE). The function automatically calculates the DNE on the auricular surface It provides the estimated age and standard errors (SE).

Usage

PCR_result(x, y)

Arguments

х	the name of inputted ply file of the whole auricular surface
У	the name of inputted ply file of the apex of the auricular surface

Value

estimated result gets printed to the console

PCR_Test

PCR_Test

Description

PCR_Train is the test set of the PCR model. It consists of Age, MeanDNE.Apex, IQRDNE.Apex, TotalDNE.TotalPolygonFaces, MeanDNE.Convex and Proportion.DNEunder0.0001. The number of rows is 188.

Usage

PCR_Test

Format

An object of class data.frame with 188 rows and 6 columns.

PCR_Train

Description

PCR_Train is the train set of the PCR model. It consists of Age, MeanDNE.Apex, IQRDNE.Apex, TotalDNE.TotalPolygonFaces, MeanDNE.Convex and Proportion.DNEunder0.0001. The number of rows is 702.

Usage

PCR_Train

Format

An object of class data.frame with 702 rows and 6 columns.

WholeSurfaceSurface mesh of whole auricular s

Description

Surface mesh of whole auricular surface.

Usage

data(WholeSurface)

Format

An object of class mesh3d of length 4.

Examples

PCQDA_output <- PCQDA_result(WholeSurface,Apex)
PCR_output <- PCR_result(WholeSurface,Apex)
PCLR_output <- PCLR_result(WholeSurface,Apex)</pre>

Index

* datasets A_PCR_Test, 3 A_PCR_Train,4 Apex, 2 M_PCR_Test, 5 M_PCR_Train, 5 PCLR_Test, 6 PCLR_Train,7 PCQDA_Test, 8 PCQDA_Train,8 PCR_Test, 9 PCR_Train, 10 WholeSurface, 10 A_PCR_result, 3 A_PCR_Test, 3 A_PCR_Train,4 Apex, 2 M_PCR_result,4 M_PCR_Test, 5 M_PCR_Train, 5 PCLR_result,6 PCLR_Test, 6 PCLR_Train, 7 PCQDA_result,7 PCQDA_Test, 8 PCQDA_Train, 8 PCR_result,9 PCR_Test, 9 PCR_Train, 10 WholeSurface, 10