
Package ‘IssueTrackeR’
July 16, 2025

Type Package

Title List Things to Do

Version 1.2.0

Description Manage a 'GitHub' problem using R: wrangle issues, labels and
milestones. It includes functions for storing, prioritizing (sorting),
displaying, adding, deleting, and selecting (filtering) issues based
on qualitative and quantitative information. Issues (labels and
milestones) are written in lists and categorized into the S3 class to
be easily manipulated as datasets in R.

License MIT + file LICENSE

URL https://github.com/TanguyBarthelemy/IssueTrackeR,

https://tanguybarthelemy.github.io/IssueTrackeR/

BugReports https://github.com/TanguyBarthelemy/IssueTrackeR/issues

Depends R (>= 4.1)

Imports cli, crayon, gh, yaml, tools, stats, utils, grDevices

Suggests rlang, spelling, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

RoxygenNote 7.3.2

NeedsCompilation no

Author Tanguy Barthelemy [aut, cre]

Maintainer Tanguy Barthelemy <tanguy.barthelemy@insee.fr>

Repository CRAN

Date/Publication 2025-07-16 08:50:02 UTC

1

https://github.com/TanguyBarthelemy/IssueTrackeR
https://tanguybarthelemy.github.io/IssueTrackeR/
https://github.com/TanguyBarthelemy/IssueTrackeR/issues

2 append

Contents
append . 2
format_issues . 3
format_labels . 4
format_milestones . 4
get_issues . 5
new_issue . 7
new_issues . 9
print.IssueTB . 12
sample . 13
summary.IssueTB . 15
update_database . 16
write_issues_to_dataset . 17

Index 20

append Vector Merging

Description

Add elements to a vector.

Usage

append(x, values, after = length(x))

S3 method for class 'IssuesTB'
append(x, values, after = nrow(x))

Arguments

x the vector the values are to be appended to.

values a IssueTB or a IssuesTB object.

after a subscript, after which the values are to be appended.

Value

A vector containing the values in x with the elements of values appended after the specified element
of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

format_issues 3

Examples

append(1:5, 0:1, after = 3)

format_issues Format the issue in a simpler format

Description

Format the issue in a simpler format

Usage

format_issues(raw_issues, raw_comments, verbose = TRUE)

Arguments

raw_issues a gh_response object output from the function gh which contains all the data
and metadata for GitHub issues.

raw_comments a gh_response object output from the function gh which contains all the data
and metadata for GitHub comments.

verbose A logical value indicating whether to print additional information. Default is
TRUE.

Value

a list representing an issue with simpler structure (with number, title, body and labels) of all issues.

Examples

raw_issues <- gh::gh(
repo = "rjdemetra",
owner = "rjdverse",
endpoint = "/repos/:owner/:repo/issues",
.limit = Inf

)
raw_comments <- gh::gh(

repo = "rjdemetra",
owner = "rjdverse",
endpoint = "/repos/:owner/:repo/issues/comments",
.limit = Inf

)
all_issues <- format_issues(raw_issues = raw_issues,

raw_comments = raw_comments,
verbose = FALSE)

4 format_milestones

format_labels Format the label in a simpler format

Description

Format the label in a simpler format

Usage

format_labels(raw_labels, verbose = TRUE)

Arguments

raw_labels a gh_response object output from the function gh which contains all the data
and metadata for GitHub labels.

verbose A logical value indicating whether to print additional information. Default is
TRUE.

Value

a list representing labels with simpler structure (with name, description, colour)

Examples

With labels
raw_labels <- gh::gh(

repo = "rjdemetra",
owner = "rjdverse",
endpoint = "/repos/:owner/:repo/labels",
.limit = Inf

)
format_labels(raw_labels)

format_milestones Format the milestones in a simpler format

Description

Format the milestones in a simpler format

Usage

format_milestones(raw_milestones, verbose = TRUE)

get_issues 5

Arguments

raw_milestones a gh_response object output from the function gh which contains all the data
and metadata for GitHub milestones.

verbose A logical value indicating whether to print additional information. Default is
TRUE.

Value

a list representing milestones with simpler structure (with title, description and due_on)

Examples

With milestones
milestones_jdplus_main <- gh::gh(

repo = "jdplus-main",
owner = "jdemetra",
endpoint = "/repos/:owner/:repo/milestones",
state = "all",
.limit = Inf

)
format_milestones(milestones_jdplus_main)

get_issues Retrieve information from the issues of GitHub

Description

use gh to ask the API of GitHub and et a list of issues with their labels and milestones.

Usage

get_issues(
source = c("local", "online"),
dataset_dir = getOption("IssueTrackeR.dataset.dir"),
dataset_name = "open_issues.yaml",
repo = getOption("IssueTrackeR.repo"),
owner = getOption("IssueTrackeR.owner"),
state = c("open", "closed", "all"),
verbose = TRUE

)

get_labels(
source = c("local", "online"),
dataset_dir = getOption("IssueTrackeR.dataset.dir"),

6 get_issues

dataset_name = "list_labels.yaml",
repo = getOption("IssueTrackeR.repo"),
owner = getOption("IssueTrackeR.owner"),
verbose = TRUE

)

get_milestones(
source = c("local", "online"),
dataset_dir = getOption("IssueTrackeR.dataset.dir"),
dataset_name = "list_milestones.yaml",
repo = getOption("IssueTrackeR.repo"),
owner = getOption("IssueTrackeR.owner"),
verbose = TRUE

)

Arguments

source a character string that is either "online" if you want to fetch information from
GitHub or "local" (by default) if you want to fetch information locally.

dataset_dir A character string specifying the path which contains the datasets (only taken
into account if source is set to "local"). Defaults to the package option
IssueTrackeR.dataset.dir.

dataset_name A character string specifying the name of the datasets which will be written
(only taken into account if source is set to "local"). Defaults to "open_issues.yaml".

repo A character string specifying the GitHub repository name (only taken into ac-
count if source is set to "online"). Defaults to the package option IssueTrackeR.repo.

owner A character string specifying the GitHub owner (only taken into account if
source is set to "online"). Defaults to the package option IssueTrackeR.owner.

state a character string that is either "open" (by default) if you want to fetch only
open issues from GitHub, "closed" if you want to fetch only closed issues
from GitHub or "all" if you want to fetch all issues from GitHub (closed and
open). Only taken into account if source is set to "online".

verbose A logical value indicating whether to print additional information. Default is
TRUE.

Details

The functions of get type are useful to retrieve object related to issues from GitHub. So it’s possible
to retrieve issues, labels and milestones.

The defaults value for the argument dataset_name depends on the function:

• defaults is "list_issues.yaml" for get_issues()

• defaults is "list_milestones.yaml" for get_milestones()

• defaults is "list_labels.yaml" for get_labels()

new_issue 7

Value

The function get_issues returns an object of class IssuesTB. It is a list composed by object of
class IssueTB. An object of class IssueTB represents an issue with simpler structure (with number,
title, body and labels).

The function get_labels returns a list representing labels with simpler structure (with name, de-
scription, colour).

The function get_milestones returns a list representing milestones with simpler structure (with
title, description and due_on).

Examples

From online

issues <- get_issues(source = "online")
print(issues)

labels <- get_labels(source = "online")
print(labels)

milestones <- get_milestones(source = "online")
print(milestones)

From local

path <- system.file("data_issues", package = "IssueTrackeR")
issues <- get_issues(

source = "local",
dataset_dir = path,
dataset_name = "list_issues.yaml"

)
milestones <- get_milestones(

source = "local",
dataset_dir = path,
dataset_name = "list_milestones.yaml"

)
labels <- get_labels(

source = "local",
dataset_dir = path,
dataset_name = "list_labels.yaml"

)

new_issue Create a new IssueTB object

Description

Create a new IssueTB object

8 new_issue

Usage

new_issue(x = NULL, ...)

S3 method for class 'IssueTB'
new_issue(x, ...)

S3 method for class 'data.frame'
new_issue(x, ...)

S3 method for class 'list'
new_issue(x, ...)

S3 method for class 'IssuesTB'
new_issue(x, ...)

Default S3 method:
new_issue(
x,
title,
body,
number,
state = c("open", "closed"),
created_at = Sys.Date(),
labels = NULL,
milestone = NA_character_,
repo = NA_character_,
owner = NA_character_,
url = NA_character_,
html_url = NA_character_,
comments = NULL,
creator = NA_character_,
assignee = NA_character_,
state_reason = NA_character_,
...

)

Arguments

x a object representing an issue (IssueTB object, a list or a data.frame)

... Other information we would like to add to the issue.

title a string. The title of the issue.

body a string. The body (text) of the issue.

number a string. The number of the issue.

state a string that is either "open" (by default) if the issue is still open or "closed" if
the issue is now closed.

created_at a date (or timestamp). The title of the issue.

new_issues 9

labels a vector string (or missing). The labels of the issue.

milestone a string (or missing). The milestone of the issue.

repo A character string specifying the GitHub repository name (only taken into ac-
count if source is set to "online"). Defaults to the package option IssueTrackeR.repo.

owner A character string specifying the GitHub owner (only taken into account if
source is set to "online"). Defaults to the package option IssueTrackeR.owner.

url a string. The URL of the API to the GitHub issue.

html_url a string. The URL to the GitHub issue.

comments vector of string (the comments of the issue)

creator a string. The GitHub username of the creator of the issue.

assignee a string. The GitHub username of the assignee of the issue.

state_reason a string. "open", "completed", "reopened" or "not_planned".

Value

a IssueTB object.

Examples

Empty issue
issue1 <- new_issue()

Custom issue
issue1 <- new_issue(

title = "Nouvelle issue",
body = "Un nouveau bug pour la fonction...",
number = 47,
created_at = Sys.Date()

)

issue2 <- new_issue(x = issue1)

new_issues Create a new IssuesTB object

Description

Create a new IssuesTB object

Usage

new_issues(x = NULL, ...)

S3 method for class 'IssueTB'
new_issues(x, ...)

10 new_issues

S3 method for class 'IssuesTB'
new_issues(x, ...)

S3 method for class 'data.frame'
new_issues(x, ...)

S3 method for class 'list'
new_issues(x, ...)

Default S3 method:
new_issues(
x,
title,
body,
number,
state,
created_at = Sys.Date(),
labels = list(),
comments = list(),
milestone = NA_character_,
repo = NA_character_,
owner = NA_character_,
url = NA_character_,
html_url = NA_character_,
creator = NA_character_,
assignee = NA_character_,
state_reason = NA_character_,
...

)

Arguments

x a object representing a list of issues (IssuesTB object, a list or a data.frame)

... Other information we would like to add to the issue.

title a vector of string. The titles of the issues.

body a vector of string. The bodies (text) of the issues.

number a vector of string. The numbers of the issues.

state a vector of string that is either "open" (by default) if the issues are still open or
"closed" if the issues are now closed.

created_at a vector of date (or timestamp). The creation dates of the issues.

labels a list of vector string (or missing). The labels of the issues.

comments a list of vector string. The comments of the issues.

milestone a vector of string (or missing). The milestones of the issues.

repo A character string specifying the GitHub repository name (only taken into ac-
count if source is set to "online"). Defaults to the package option IssueTrackeR.repo.

new_issues 11

owner A character string specifying the GitHub owner (only taken into account if
source is set to "online"). Defaults to the package option IssueTrackeR.owner.

url a vector of string. The URLs of the API to the GitHub issues.

html_url a vector of string. The URLs to the GitHub issues.

creator a vector of string. The GitHub usernames of the creator of the issues.

assignee a vector of string. The GitHub usernames of the assignee of the issues.

state_reason a vector of string. "open", "completed", "reopened" or "not_planned".

Value

a IssuesTB object.

Examples

Empty list of issues
issues1 <- new_issues()

List of issues from issue
issue1 <- new_issue(

title = "Une autre issue",
state = "open",
body = "J'ai une question au sujet de...",
number = 2,
created_at = Sys.Date()

)
issues2 <- new_issues(x = issue1)

Custom issues
issues3 <- new_issues(

title = "Une autre issue",
state = "open",
body = "J'ai une question au sujet de...",
number = 2,
created_at = Sys.Date()

)

issues4 <- new_issues(
title = c("Nouvelle issue", "Une autre issue"),
body = c("Un nouveau bug pour la fonction...",

"J'ai une question au sujet de..."),
state = c("open", "closed"),
number = 1:2,
created_at = Sys.Date()

)

12 print.IssueTB

print.IssueTB Display IssueTB and IssuesTB object

Description

Display IssueTB and IssuesTB with formatted output in the console

Usage

S3 method for class 'IssueTB'
print(x, ...)

S3 method for class 'IssuesTB'
print(x, ...)

S3 method for class 'summary.IssueTB'
print(x, ...)

S3 method for class 'summary.IssuesTB'
print(x, ...)

Arguments

x a IssueTB or IssuesTB object.

... Unused argument

Details

This function displays an issue (IssueTB object) or a list of issues (IssuesTB object) with a for-
matted output.

Value

invisibly (with invisible()) NULL.

Examples

all_issues <- get_issues(
source = "local",
dataset_dir = system.file("data_issues", package = "IssueTrackeR"),
dataset_name = "list_issues.yaml"

)

Display one issue
print(all_issues[1,])

Display several issues
print(all_issues[1:10,])

sample 13

Display the summary of one issue
summary(all_issues[2,])

Display the summary of
summary(all_issues[1:10,])

sample Random Samples and Permutations

Description

sample takes a sample of the specified size from the elements of x using either with or without
replacement.

Usage

sample(x, size, replace = FALSE, prob = NULL)

S3 method for class 'IssuesTB'
sample(x, size = nrow(x), replace = FALSE, prob = NULL)

Arguments

x either a vector of one or more elements from which to choose, or a positive
integer. See ‘Details.’

size a non-negative integer giving the number of items to choose.

replace should sampling be with replacement?

prob a vector of probability weights for obtaining the elements of the vector being
sampled.

Details

If x has length 1, is numeric (in the sense of is.numeric) and x >= 1, sampling via sample takes
place from 1:x. Note that this convenience feature may lead to undesired behaviour when x is of
varying length in calls such as sample(x). See the examples.

Otherwise x can be any R object for which length and subsetting by integers make sense: S3 or
S4 methods for these operations will be dispatched as appropriate.

For sample the default for size is the number of items inferred from the first argument, so that
sample(x) generates a random permutation of the elements of x (or 1:x).

It is allowed to ask for size = 0 samples with n = 0 or a length-zero x, but otherwise n > 0 or positive
length(x) is required.

Non-integer positive numerical values of n or x will be truncated to the next smallest integer, which
has to be no larger than .Machine$integer.max.

The optional prob argument can be used to give a vector of weights for obtaining the elements of
the vector being sampled. They need not sum to one, but they should be non-negative and not all

14 sample

zero. If replace is true, Walker’s alias method (Ripley, 1987) is used when there are more than 200
reasonably probable values: this gives results incompatible with those from R < 2.2.0.

If replace is false, these probabilities are applied sequentially, that is the probability of choosing
the next item is proportional to the weights amongst the remaining items. The number of nonzero
weights must be at least size in this case.

sample.int is a bare interface in which both n and size must be supplied as integers.

Argument n can be larger than the largest integer of type integer, up to the largest representable
integer in type double. Only uniform sampling is supported. Two random numbers are used to
ensure uniform sampling of large integers.

Value

For sample a vector of length size with elements drawn from either x or from the integers 1:x.

For sample.int, an integer vector of length size with elements from 1:n, or a double vector if
n ≥ 231.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Ripley, B. D. (1987) Stochastic Simulation. Wiley.

See Also

RNGkind(sample.kind = ..) about random number generation, notably the change of sample()
results with R version 3.6.0.

CRAN package sampling for other methods of weighted sampling without replacement.

Examples

x <- 1:12
a random permutation
sample(x)
bootstrap resampling -- only if length(x) > 1 !
sample(x, replace = TRUE)

100 Bernoulli trials
sample(c(0,1), 100, replace = TRUE)

More careful bootstrapping -- Consider this when using sample()
programmatically (i.e., in your function or simulation)!

sample()'s surprise -- example
x <- 1:10

sample(x[x > 8]) # length 2
sample(x[x > 9]) # oops -- length 10!
sample(x[x > 10]) # length 0

safer version:

https://CRAN.R-project.org/package=sampling

summary.IssueTB 15

resample <- function(x, ...) x[sample.int(length(x), ...)]
resample(x[x > 8]) # length 2
resample(x[x > 9]) # length 1
resample(x[x > 10]) # length 0

R 3.0.0 and later
sample.int(1e10, 12, replace = TRUE)
sample.int(1e10, 12) # not that there is much chance of duplicates

summary.IssueTB Compute a summary of an issue or a list of issues

Description

Compute a summary of an issue or a list of issues

Usage

S3 method for class 'IssueTB'
summary(object, ...)

S3 method for class 'IssuesTB'
summary(object, ...)

Arguments

object a IssueTB or IssuesTB object.

... Unused argument

Details

This function compute the summary of an issue (IssueTB object) with adding some information
(number of comments, ...). For a list of issues (IssuesTB object), it just summarise the information
with statistics by modalities.

Value

invisibly (with invisible()) NULL.

Examples

all_issues <- get_issues(
source = "local",
dataset_dir = system.file("data_issues", package = "IssueTrackeR"),
dataset_name = "list_issues.yaml"

)

Summarise one issue
summary(all_issues[1,])

16 update_database

Summarise several issues
summary(all_issues[1:10,])

update_database Update database

Description

Update the different local database (issues, labels and milestones) with the online reference.

Usage

update_database(
dataset_dir = getOption("IssueTrackeR.dataset.dir"),
datasets_name = c(open = "open_issues.yaml", closed = "closed_issues.yaml", labels =

"list_labels.yaml", milestones = "list_milestones.yaml"),
verbose = TRUE,
...

)

Arguments

dataset_dir A character string specifying the path which contains the datasets (only taken
into account if source is set to "local"). Defaults to the package option
IssueTrackeR.dataset.dir.

datasets_name A named character string of length 4, specifying the names of the different
datasets which will be written. The names datasets_name have to be "open",
"closed", "labels" and "milestones". Defaults to c(open = "open_issues.yaml",
closed = "closed_issues.yaml", labels = "list_labels.yaml", milestones
= "list_milestones.yaml") .

verbose A logical value indicating whether to print additional information. Default is
TRUE.

... Additional arguments for connecting to the GitHub repository:

• repo A character string specifying the GitHub repository name. Defaults
to the package option IssueTrackeR.repo.

• owner A character string specifying the GitHub owner. Defaults to the
package option IssueTrackeR.owner. (See the documentation of get to
have more information on theses parameters):

Value

invisibly (with invisible()) TRUE.

write_issues_to_dataset 17

Examples

update_database()

write_issues_to_dataset

Save datasets in a yaml file

Description

Save datasets in a yaml file

Usage

write_issues_to_dataset(issues, ...)

S3 method for class 'IssuesTB'
write_issues_to_dataset(
issues,
dataset_dir = getOption("IssueTrackeR.dataset.dir"),
dataset_name = "list_issues.yaml",
verbose = TRUE,
...

)

Default S3 method:
write_issues_to_dataset(issues, ...)

write_labels_to_dataset(
labels,
dataset_dir = getOption("IssueTrackeR.dataset.dir"),
dataset_name = "list_labels.yaml",
verbose = TRUE

)

write_milestones_to_dataset(
milestones,
dataset_dir = getOption("IssueTrackeR.dataset.dir"),
dataset_name = "list_milestones.yaml",
verbose = TRUE

)

18 write_issues_to_dataset

Arguments

issues a IssuesTB object.

... Unused parameter.

dataset_dir A character string specifying the path which contains the datasets (only taken
into account if source is set to "local"). Defaults to the package option
IssueTrackeR.dataset.dir.

dataset_name A character string specifying the name of the datasets which will be written
(only taken into account if source is set to "local"). Defaults to "open_issues.yaml".

verbose A logical value indicating whether to print additional information. Default is
TRUE.

labels a list representing all labels with simpler structure (with name, description,
colour)

milestones a list representing milestones with simpler structure (with title, description and
due_on).

Details

Depending on the object, the defaults value of the argument dataset_name is:

• "list_issues.yaml" for issues;

• "list_labels.yaml" for labels;

• "list_milestones.yaml" for milestones.

Value

invisibly (with invisible()) TRUE if the export was successful and an error otherwise.

Examples

path <- system.file("data_issues", package = "IssueTrackeR")
issues <- get_issues(

source = "local",
dataset_dir = path,
dataset_name = "list_issues.yaml"

)
milestones <- get_milestones(

source = "local",
dataset_dir = path,
dataset_name = "list_milestones.yaml"

)
labels <- get_labels(

source = "local",
dataset_dir = path,
dataset_name = "list_labels.yaml"

)

write_issues_to_dataset(issues)
write_labels_to_dataset(labels)

write_issues_to_dataset 19

write_milestones_to_dataset(milestones)

Index

.Machine, 13

append, 2

format_issues, 3
format_labels, 4
format_milestones, 4

get, 16
get_issues, 5
get_labels (get_issues), 5
get_milestones (get_issues), 5
gh, 3–5

is.numeric, 13

new_issue, 7
new_issues, 9

print.IssuesTB (print.IssueTB), 12
print.IssueTB, 12
print.summary.IssuesTB (print.IssueTB),

12
print.summary.IssueTB (print.IssueTB),

12

RNGkind, 14

sample, 13
summary.IssuesTB (summary.IssueTB), 15
summary.IssueTB, 15

update_database, 16

write_issues_to_dataset, 17
write_labels_to_dataset

(write_issues_to_dataset), 17
write_milestones_to_dataset

(write_issues_to_dataset), 17

20

	append
	format_issues
	format_labels
	format_milestones
	get_issues
	new_issue
	new_issues
	print.IssueTB
	sample
	summary.IssueTB
	update_database
	write_issues_to_dataset
	Index

